Last active
April 8, 2016 06:23
-
-
Save stas-sl/e0053ae8840e7073da00abce7e48aebc to your computer and use it in GitHub Desktop.
This file has been truncated, but you can view the full file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
I0407 15:14:50.542440 1004 solver.cpp:280] Solving | |
I0407 15:14:50.542451 1004 solver.cpp:281] Learning Rate Policy: poly | |
I0407 15:14:50.601984 1004 solver.cpp:229] Iteration 0, loss = 4.3042 | |
I0407 15:14:50.602022 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 15:14:50.602041 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:14:50.602053 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:14:50.602068 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 15:14:50.602082 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0 | |
I0407 15:14:50.602092 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0 | |
I0407 15:14:50.602120 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0 | |
I0407 15:14:50.602133 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0 | |
I0407 15:14:50.602145 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0 | |
I0407 15:14:50.602156 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0 | |
I0407 15:14:50.602167 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 0 | |
I0407 15:14:50.602179 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 0.0625 | |
I0407 15:14:50.602191 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 0 | |
I0407 15:14:50.602202 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 0 | |
I0407 15:14:50.602215 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 0 | |
I0407 15:14:50.602226 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 0 | |
I0407 15:14:50.602236 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 0 | |
I0407 15:14:50.602248 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 0 | |
I0407 15:14:50.602260 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 0 | |
I0407 15:14:50.602272 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 0 | |
I0407 15:14:50.602283 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 0 | |
I0407 15:14:50.602294 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 0 | |
I0407 15:14:50.602313 1004 solver.cpp:245] Train net output #22: loss/loss01 = 4.30402 (* 0.0454545 = 0.195637 loss) | |
I0407 15:14:50.602327 1004 solver.cpp:245] Train net output #23: loss/loss02 = 4.30418 (* 0.0454545 = 0.195644 loss) | |
I0407 15:14:50.602341 1004 solver.cpp:245] Train net output #24: loss/loss03 = 4.30405 (* 0.0454545 = 0.195639 loss) | |
I0407 15:14:50.602355 1004 solver.cpp:245] Train net output #25: loss/loss04 = 4.30409 (* 0.0454545 = 0.195641 loss) | |
I0407 15:14:50.602368 1004 solver.cpp:245] Train net output #26: loss/loss05 = 4.30427 (* 0.0454545 = 0.195648 loss) | |
I0407 15:14:50.602385 1004 solver.cpp:245] Train net output #27: loss/loss06 = 4.30422 (* 0.0454545 = 0.195646 loss) | |
I0407 15:14:50.602399 1004 solver.cpp:245] Train net output #28: loss/loss07 = 4.30442 (* 0.0454545 = 0.195655 loss) | |
I0407 15:14:50.602413 1004 solver.cpp:245] Train net output #29: loss/loss08 = 4.30441 (* 0.0454545 = 0.195655 loss) | |
I0407 15:14:50.602427 1004 solver.cpp:245] Train net output #30: loss/loss09 = 4.30435 (* 0.0454545 = 0.195652 loss) | |
I0407 15:14:50.602440 1004 solver.cpp:245] Train net output #31: loss/loss10 = 4.30442 (* 0.0454545 = 0.195655 loss) | |
I0407 15:14:50.602454 1004 solver.cpp:245] Train net output #32: loss/loss11 = 4.30405 (* 0.0454545 = 0.195639 loss) | |
I0407 15:14:50.602468 1004 solver.cpp:245] Train net output #33: loss/loss12 = 4.3036 (* 0.0454545 = 0.195618 loss) | |
I0407 15:14:50.602481 1004 solver.cpp:245] Train net output #34: loss/loss13 = 4.30382 (* 0.0454545 = 0.195628 loss) | |
I0407 15:14:50.602495 1004 solver.cpp:245] Train net output #35: loss/loss14 = 4.30447 (* 0.0454545 = 0.195658 loss) | |
I0407 15:14:50.602509 1004 solver.cpp:245] Train net output #36: loss/loss15 = 4.30378 (* 0.0454545 = 0.195626 loss) | |
I0407 15:14:50.602522 1004 solver.cpp:245] Train net output #37: loss/loss16 = 4.30419 (* 0.0454545 = 0.195645 loss) | |
I0407 15:14:50.602535 1004 solver.cpp:245] Train net output #38: loss/loss17 = 4.30434 (* 0.0454545 = 0.195652 loss) | |
I0407 15:14:50.602550 1004 solver.cpp:245] Train net output #39: loss/loss18 = 4.30449 (* 0.0454545 = 0.195659 loss) | |
I0407 15:14:50.602563 1004 solver.cpp:245] Train net output #40: loss/loss19 = 4.30435 (* 0.0454545 = 0.195652 loss) | |
I0407 15:14:50.602576 1004 solver.cpp:245] Train net output #41: loss/loss20 = 4.30444 (* 0.0454545 = 0.195656 loss) | |
I0407 15:14:50.602591 1004 solver.cpp:245] Train net output #42: loss/loss21 = 4.30406 (* 0.0454545 = 0.195639 loss) | |
I0407 15:14:50.602603 1004 solver.cpp:245] Train net output #43: loss/loss22 = 4.30444 (* 0.0454545 = 0.195656 loss) | |
I0407 15:14:50.602625 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:14:50.602638 1004 solver.cpp:245] Train net output #45: total_confidence = 7.77861e-42 | |
I0407 15:14:50.602663 1004 sgd_solver.cpp:106] Iteration 0, lr = 0.001 | |
I0407 15:15:28.466101 1004 solver.cpp:229] Iteration 500, loss = 4.15622 | |
I0407 15:15:28.466258 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 15:15:28.466277 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:15:28.466290 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:15:28.466305 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 15:15:28.466316 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 15:15:28.466328 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 15:15:28.466341 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 15:15:28.466353 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 15:15:28.466366 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:15:28.466377 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:15:28.466388 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:15:28.466400 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:15:28.466413 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:15:28.466424 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:15:28.466436 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:15:28.466447 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:15:28.466459 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:15:28.466471 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:15:28.466482 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:15:28.466495 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:15:28.466506 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:15:28.466517 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:15:28.466532 1004 solver.cpp:245] Train net output #22: loss/loss01 = 4.29894 (* 0.0454545 = 0.195406 loss) | |
I0407 15:15:28.466547 1004 solver.cpp:245] Train net output #23: loss/loss02 = 4.30041 (* 0.0454545 = 0.195473 loss) | |
I0407 15:15:28.466562 1004 solver.cpp:245] Train net output #24: loss/loss03 = 4.3008 (* 0.0454545 = 0.195491 loss) | |
I0407 15:15:28.466575 1004 solver.cpp:245] Train net output #25: loss/loss04 = 4.29867 (* 0.0454545 = 0.195394 loss) | |
I0407 15:15:28.466589 1004 solver.cpp:245] Train net output #26: loss/loss05 = 4.28876 (* 0.0454545 = 0.194944 loss) | |
I0407 15:15:28.466603 1004 solver.cpp:245] Train net output #27: loss/loss06 = 4.22321 (* 0.0454545 = 0.191964 loss) | |
I0407 15:15:28.466617 1004 solver.cpp:245] Train net output #28: loss/loss07 = 4.07307 (* 0.0454545 = 0.185139 loss) | |
I0407 15:15:28.466631 1004 solver.cpp:245] Train net output #29: loss/loss08 = 3.94756 (* 0.0454545 = 0.179434 loss) | |
I0407 15:15:28.466645 1004 solver.cpp:245] Train net output #30: loss/loss09 = 3.89266 (* 0.0454545 = 0.176939 loss) | |
I0407 15:15:28.466658 1004 solver.cpp:245] Train net output #31: loss/loss10 = 3.88092 (* 0.0454545 = 0.176406 loss) | |
I0407 15:15:28.466673 1004 solver.cpp:245] Train net output #32: loss/loss11 = 3.872 (* 0.0454545 = 0.176 loss) | |
I0407 15:15:28.466687 1004 solver.cpp:245] Train net output #33: loss/loss12 = 3.86888 (* 0.0454545 = 0.175858 loss) | |
I0407 15:15:28.466701 1004 solver.cpp:245] Train net output #34: loss/loss13 = 3.86966 (* 0.0454545 = 0.175894 loss) | |
I0407 15:15:28.466716 1004 solver.cpp:245] Train net output #35: loss/loss14 = 3.87604 (* 0.0454545 = 0.176184 loss) | |
I0407 15:15:28.466729 1004 solver.cpp:245] Train net output #36: loss/loss15 = 3.86969 (* 0.0454545 = 0.175895 loss) | |
I0407 15:15:28.466743 1004 solver.cpp:245] Train net output #37: loss/loss16 = 3.87173 (* 0.0454545 = 0.175988 loss) | |
I0407 15:15:28.466758 1004 solver.cpp:245] Train net output #38: loss/loss17 = 3.87168 (* 0.0454545 = 0.175985 loss) | |
I0407 15:15:28.466771 1004 solver.cpp:245] Train net output #39: loss/loss18 = 3.87305 (* 0.0454545 = 0.176048 loss) | |
I0407 15:15:28.466800 1004 solver.cpp:245] Train net output #40: loss/loss19 = 3.87164 (* 0.0454545 = 0.175984 loss) | |
I0407 15:15:28.466815 1004 solver.cpp:245] Train net output #41: loss/loss20 = 3.87493 (* 0.0454545 = 0.176133 loss) | |
I0407 15:15:28.466830 1004 solver.cpp:245] Train net output #42: loss/loss21 = 3.87095 (* 0.0454545 = 0.175952 loss) | |
I0407 15:15:28.466843 1004 solver.cpp:245] Train net output #43: loss/loss22 = 3.87381 (* 0.0454545 = 0.176082 loss) | |
I0407 15:15:28.466856 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:15:28.466867 1004 solver.cpp:245] Train net output #45: total_confidence = 8.47256e-39 | |
I0407 15:15:28.466881 1004 sgd_solver.cpp:106] Iteration 500, lr = 0.000999 | |
I0407 15:16:06.256582 1004 solver.cpp:229] Iteration 1000, loss = 3.73107 | |
I0407 15:16:06.256698 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 15:16:06.256718 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:16:06.256731 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:16:06.256744 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 15:16:06.256757 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0 | |
I0407 15:16:06.256767 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0 | |
I0407 15:16:06.256779 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 15:16:06.256791 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 15:16:06.256803 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:16:06.256815 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:16:06.256827 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:16:06.256839 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:16:06.256850 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:16:06.256862 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:16:06.256873 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:16:06.256886 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:16:06.256896 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:16:06.256908 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:16:06.256921 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:16:06.256932 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:16:06.256944 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:16:06.256956 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:16:06.256971 1004 solver.cpp:245] Train net output #22: loss/loss01 = 4.00873 (* 0.0454545 = 0.182215 loss) | |
I0407 15:16:06.256985 1004 solver.cpp:245] Train net output #23: loss/loss02 = 4.35265 (* 0.0454545 = 0.197848 loss) | |
I0407 15:16:06.256999 1004 solver.cpp:245] Train net output #24: loss/loss03 = 4.25774 (* 0.0454545 = 0.193534 loss) | |
I0407 15:16:06.257014 1004 solver.cpp:245] Train net output #25: loss/loss04 = 4.22139 (* 0.0454545 = 0.191882 loss) | |
I0407 15:16:06.257027 1004 solver.cpp:245] Train net output #26: loss/loss05 = 4.39398 (* 0.0454545 = 0.199727 loss) | |
I0407 15:16:06.257041 1004 solver.cpp:245] Train net output #27: loss/loss06 = 4.23028 (* 0.0454545 = 0.192285 loss) | |
I0407 15:16:06.257055 1004 solver.cpp:245] Train net output #28: loss/loss07 = 3.2598 (* 0.0454545 = 0.148173 loss) | |
I0407 15:16:06.257069 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.4248 (* 0.0454545 = 0.0647634 loss) | |
I0407 15:16:06.257087 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.534303 (* 0.0454545 = 0.0242865 loss) | |
I0407 15:16:06.257102 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.000726271 (* 0.0454545 = 3.30123e-05 loss) | |
I0407 15:16:06.257117 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000106567 (* 0.0454545 = 4.84393e-06 loss) | |
I0407 15:16:06.257131 1004 solver.cpp:245] Train net output #33: loss/loss12 = 3.35888e-05 (* 0.0454545 = 1.52676e-06 loss) | |
I0407 15:16:06.257145 1004 solver.cpp:245] Train net output #34: loss/loss13 = 5.35354e-05 (* 0.0454545 = 2.43343e-06 loss) | |
I0407 15:16:06.257159 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00019694 (* 0.0454545 = 8.95183e-06 loss) | |
I0407 15:16:06.257174 1004 solver.cpp:245] Train net output #36: loss/loss15 = 5.2357e-05 (* 0.0454545 = 2.37986e-06 loss) | |
I0407 15:16:06.257189 1004 solver.cpp:245] Train net output #37: loss/loss16 = 8.4608e-05 (* 0.0454545 = 3.84582e-06 loss) | |
I0407 15:16:06.257202 1004 solver.cpp:245] Train net output #38: loss/loss17 = 6.8814e-05 (* 0.0454545 = 3.12791e-06 loss) | |
I0407 15:16:06.257230 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000118135 (* 0.0454545 = 5.36978e-06 loss) | |
I0407 15:16:06.257246 1004 solver.cpp:245] Train net output #40: loss/loss19 = 9.38366e-05 (* 0.0454545 = 4.2653e-06 loss) | |
I0407 15:16:06.257259 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000129618 (* 0.0454545 = 5.89173e-06 loss) | |
I0407 15:16:06.257274 1004 solver.cpp:245] Train net output #42: loss/loss21 = 7.36929e-05 (* 0.0454545 = 3.34968e-06 loss) | |
I0407 15:16:06.257287 1004 solver.cpp:245] Train net output #43: loss/loss22 = 7.96104e-05 (* 0.0454545 = 3.61866e-06 loss) | |
I0407 15:16:06.257300 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:16:06.257311 1004 solver.cpp:245] Train net output #45: total_confidence = 1.62451e-09 | |
I0407 15:16:06.257325 1004 sgd_solver.cpp:106] Iteration 1000, lr = 0.000998 | |
I0407 15:16:43.939045 1004 solver.cpp:229] Iteration 1500, loss = 1.17895 | |
I0407 15:16:43.939137 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:16:43.939157 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:16:43.939168 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:16:43.939182 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 15:16:43.939193 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 15:16:43.939205 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 15:16:43.939218 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 15:16:43.939229 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 15:16:43.939241 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:16:43.939256 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 15:16:43.939270 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:16:43.939281 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:16:43.939293 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:16:43.939306 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:16:43.939328 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:16:43.939344 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:16:43.939355 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:16:43.939368 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:16:43.939378 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:16:43.939390 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:16:43.939401 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:16:43.939414 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:16:43.939429 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.92654 (* 0.0454545 = 0.178479 loss) | |
I0407 15:16:43.939445 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.83849 (* 0.0454545 = 0.174477 loss) | |
I0407 15:16:43.939465 1004 solver.cpp:245] Train net output #24: loss/loss03 = 4.07168 (* 0.0454545 = 0.185076 loss) | |
I0407 15:16:43.939479 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.90695 (* 0.0454545 = 0.177589 loss) | |
I0407 15:16:43.939493 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.51167 (* 0.0454545 = 0.159622 loss) | |
I0407 15:16:43.939507 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.31569 (* 0.0454545 = 0.150713 loss) | |
I0407 15:16:43.939522 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.94479 (* 0.0454545 = 0.0883996 loss) | |
I0407 15:16:43.939535 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.37529 (* 0.0454545 = 0.0625131 loss) | |
I0407 15:16:43.939549 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.532317 (* 0.0454545 = 0.0241962 loss) | |
I0407 15:16:43.939563 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.508725 (* 0.0454545 = 0.0231239 loss) | |
I0407 15:16:43.939579 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.00161178 (* 0.0454545 = 7.32626e-05 loss) | |
I0407 15:16:43.939594 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00114199 (* 0.0454545 = 5.19085e-05 loss) | |
I0407 15:16:43.939607 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.00111889 (* 0.0454545 = 5.08585e-05 loss) | |
I0407 15:16:43.939621 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00179907 (* 0.0454545 = 8.1776e-05 loss) | |
I0407 15:16:43.939636 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.00129373 (* 0.0454545 = 5.8806e-05 loss) | |
I0407 15:16:43.939651 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.00161798 (* 0.0454545 = 7.35445e-05 loss) | |
I0407 15:16:43.939664 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.00153596 (* 0.0454545 = 6.98165e-05 loss) | |
I0407 15:16:43.939697 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.00171755 (* 0.0454545 = 7.80703e-05 loss) | |
I0407 15:16:43.939713 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.0016039 (* 0.0454545 = 7.29048e-05 loss) | |
I0407 15:16:43.939726 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.00159063 (* 0.0454545 = 7.23011e-05 loss) | |
I0407 15:16:43.939740 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.0016175 (* 0.0454545 = 7.35227e-05 loss) | |
I0407 15:16:43.939754 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00152259 (* 0.0454545 = 6.92085e-05 loss) | |
I0407 15:16:43.939767 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:16:43.939779 1004 solver.cpp:245] Train net output #45: total_confidence = 1.60334e-07 | |
I0407 15:16:43.939792 1004 sgd_solver.cpp:106] Iteration 1500, lr = 0.000997 | |
I0407 15:17:21.963235 1004 solver.cpp:229] Iteration 2000, loss = 1.12813 | |
I0407 15:17:21.963364 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 15:17:21.963383 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:17:21.963395 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:17:21.963408 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 15:17:21.963421 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 15:17:21.963433 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 15:17:21.963445 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 15:17:21.963457 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 15:17:21.963469 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:17:21.963482 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:17:21.963495 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:17:21.963505 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:17:21.963517 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:17:21.963528 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:17:21.963541 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:17:21.963551 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:17:21.963563 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:17:21.963577 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:17:21.963587 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:17:21.963599 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:17:21.963610 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:17:21.963623 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:17:21.963639 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.87842 (* 0.0454545 = 0.176292 loss) | |
I0407 15:17:21.963652 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.52915 (* 0.0454545 = 0.160416 loss) | |
I0407 15:17:21.963667 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.80902 (* 0.0454545 = 0.173137 loss) | |
I0407 15:17:21.963681 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.60174 (* 0.0454545 = 0.163715 loss) | |
I0407 15:17:21.963696 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.82678 (* 0.0454545 = 0.173944 loss) | |
I0407 15:17:21.963709 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.02438 (* 0.0454545 = 0.137472 loss) | |
I0407 15:17:21.963723 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.6835 (* 0.0454545 = 0.0765228 loss) | |
I0407 15:17:21.963737 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.893967 (* 0.0454545 = 0.0406349 loss) | |
I0407 15:17:21.963752 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.55225 (* 0.0454545 = 0.0251023 loss) | |
I0407 15:17:21.963765 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0191349 (* 0.0454545 = 0.000869768 loss) | |
I0407 15:17:21.963780 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000949246 (* 0.0454545 = 4.31476e-05 loss) | |
I0407 15:17:21.963794 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000698698 (* 0.0454545 = 3.1759e-05 loss) | |
I0407 15:17:21.963809 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000869426 (* 0.0454545 = 3.95194e-05 loss) | |
I0407 15:17:21.963824 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00102098 (* 0.0454545 = 4.64084e-05 loss) | |
I0407 15:17:21.963838 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000805288 (* 0.0454545 = 3.6604e-05 loss) | |
I0407 15:17:21.963852 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000903746 (* 0.0454545 = 4.10794e-05 loss) | |
I0407 15:17:21.963866 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.00093384 (* 0.0454545 = 4.24473e-05 loss) | |
I0407 15:17:21.963898 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000993297 (* 0.0454545 = 4.51499e-05 loss) | |
I0407 15:17:21.963914 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000889562 (* 0.0454545 = 4.04346e-05 loss) | |
I0407 15:17:21.963932 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000926217 (* 0.0454545 = 4.21008e-05 loss) | |
I0407 15:17:21.963948 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000912629 (* 0.0454545 = 4.14831e-05 loss) | |
I0407 15:17:21.963961 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00095271 (* 0.0454545 = 4.3305e-05 loss) | |
I0407 15:17:21.963974 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:17:21.963986 1004 solver.cpp:245] Train net output #45: total_confidence = 6.54347e-07 | |
I0407 15:17:21.963999 1004 sgd_solver.cpp:106] Iteration 2000, lr = 0.000996 | |
I0407 15:18:00.979277 1004 solver.cpp:229] Iteration 2500, loss = 1.11928 | |
I0407 15:18:00.979374 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 15:18:00.979404 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:18:00.979428 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:18:00.979451 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 15:18:00.979473 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.4375 | |
I0407 15:18:00.979495 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.6875 | |
I0407 15:18:00.979516 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 15:18:00.979542 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.75 | |
I0407 15:18:00.979565 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:18:00.979585 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:18:00.979606 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:18:00.979626 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:18:00.979647 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:18:00.979671 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:18:00.979691 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:18:00.979712 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:18:00.979732 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:18:00.979751 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:18:00.979771 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:18:00.979792 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:18:00.979812 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:18:00.979835 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:18:00.979861 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.57533 (* 0.0454545 = 0.162515 loss) | |
I0407 15:18:00.979887 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.83735 (* 0.0454545 = 0.174425 loss) | |
I0407 15:18:00.979912 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.74756 (* 0.0454545 = 0.170344 loss) | |
I0407 15:18:00.979938 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.78415 (* 0.0454545 = 0.172007 loss) | |
I0407 15:18:00.979964 1004 solver.cpp:245] Train net output #26: loss/loss05 = 2.86269 (* 0.0454545 = 0.130122 loss) | |
I0407 15:18:00.979989 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.09067 (* 0.0454545 = 0.0950303 loss) | |
I0407 15:18:00.980012 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.62928 (* 0.0454545 = 0.074058 loss) | |
I0407 15:18:00.980039 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.58028 (* 0.0454545 = 0.0718307 loss) | |
I0407 15:18:00.980067 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0490309 (* 0.0454545 = 0.00222868 loss) | |
I0407 15:18:00.980098 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0197341 (* 0.0454545 = 0.000897006 loss) | |
I0407 15:18:00.980123 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000980531 (* 0.0454545 = 4.45696e-05 loss) | |
I0407 15:18:00.980147 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000756962 (* 0.0454545 = 3.44074e-05 loss) | |
I0407 15:18:00.980172 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000823396 (* 0.0454545 = 3.74271e-05 loss) | |
I0407 15:18:00.980197 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00100932 (* 0.0454545 = 4.58782e-05 loss) | |
I0407 15:18:00.980222 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.00085444 (* 0.0454545 = 3.88382e-05 loss) | |
I0407 15:18:00.980247 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000907814 (* 0.0454545 = 4.12643e-05 loss) | |
I0407 15:18:00.980273 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000840721 (* 0.0454545 = 3.82146e-05 loss) | |
I0407 15:18:00.980319 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.00100567 (* 0.0454545 = 4.57122e-05 loss) | |
I0407 15:18:00.980347 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000989316 (* 0.0454545 = 4.49689e-05 loss) | |
I0407 15:18:00.980373 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000875047 (* 0.0454545 = 3.97749e-05 loss) | |
I0407 15:18:00.980398 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000967429 (* 0.0454545 = 4.39741e-05 loss) | |
I0407 15:18:00.980422 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000937313 (* 0.0454545 = 4.26051e-05 loss) | |
I0407 15:18:00.980444 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:18:00.980464 1004 solver.cpp:245] Train net output #45: total_confidence = 1.58938e-06 | |
I0407 15:18:00.980485 1004 sgd_solver.cpp:106] Iteration 2500, lr = 0.000995 | |
I0407 15:18:38.995471 1004 solver.cpp:229] Iteration 3000, loss = 1.11299 | |
I0407 15:18:38.995611 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 15:18:38.995631 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:18:38.995645 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:18:38.995656 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 15:18:38.995668 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 15:18:38.995681 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 15:18:38.995692 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 15:18:38.995704 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 15:18:38.995717 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:18:38.995728 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:18:38.995739 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:18:38.995751 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:18:38.995762 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:18:38.995774 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:18:38.995785 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:18:38.995797 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:18:38.995808 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:18:38.995828 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:18:38.995851 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:18:38.995868 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:18:38.995880 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:18:38.995892 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:18:38.995908 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.8553 (* 0.0454545 = 0.175241 loss) | |
I0407 15:18:38.995924 1004 solver.cpp:245] Train net output #23: loss/loss02 = 4.16645 (* 0.0454545 = 0.189384 loss) | |
I0407 15:18:38.995939 1004 solver.cpp:245] Train net output #24: loss/loss03 = 4.21365 (* 0.0454545 = 0.191529 loss) | |
I0407 15:18:38.995952 1004 solver.cpp:245] Train net output #25: loss/loss04 = 4.32652 (* 0.0454545 = 0.19666 loss) | |
I0407 15:18:38.995966 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.91439 (* 0.0454545 = 0.177927 loss) | |
I0407 15:18:38.995980 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.69368 (* 0.0454545 = 0.167895 loss) | |
I0407 15:18:38.996000 1004 solver.cpp:245] Train net output #28: loss/loss07 = 2.28152 (* 0.0454545 = 0.103706 loss) | |
I0407 15:18:38.996014 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.798591 (* 0.0454545 = 0.0362996 loss) | |
I0407 15:18:38.996028 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0761353 (* 0.0454545 = 0.0034607 loss) | |
I0407 15:18:38.996042 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0348608 (* 0.0454545 = 0.00158458 loss) | |
I0407 15:18:38.996057 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.00220238 (* 0.0454545 = 0.000100108 loss) | |
I0407 15:18:38.996070 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00201854 (* 0.0454545 = 9.17517e-05 loss) | |
I0407 15:18:38.996085 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.00191198 (* 0.0454545 = 8.69081e-05 loss) | |
I0407 15:18:38.996099 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00208781 (* 0.0454545 = 9.49003e-05 loss) | |
I0407 15:18:38.996114 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.00214207 (* 0.0454545 = 9.7367e-05 loss) | |
I0407 15:18:38.996129 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.00209638 (* 0.0454545 = 9.52899e-05 loss) | |
I0407 15:18:38.996142 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.00213479 (* 0.0454545 = 9.70357e-05 loss) | |
I0407 15:18:38.996183 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.00213411 (* 0.0454545 = 9.70051e-05 loss) | |
I0407 15:18:38.996199 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00209823 (* 0.0454545 = 9.53743e-05 loss) | |
I0407 15:18:38.996213 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.00211056 (* 0.0454545 = 9.59345e-05 loss) | |
I0407 15:18:38.996227 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00222981 (* 0.0454545 = 0.000101355 loss) | |
I0407 15:18:38.996242 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00221842 (* 0.0454545 = 0.000100837 loss) | |
I0407 15:18:38.996253 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:18:38.996265 1004 solver.cpp:245] Train net output #45: total_confidence = 8.40228e-07 | |
I0407 15:18:38.996279 1004 sgd_solver.cpp:106] Iteration 3000, lr = 0.000994 | |
I0407 15:19:16.850486 1004 solver.cpp:229] Iteration 3500, loss = 1.10823 | |
I0407 15:19:16.850600 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 15:19:16.850618 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:19:16.850631 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:19:16.850644 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 15:19:16.850656 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 15:19:16.850668 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 15:19:16.850680 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 15:19:16.850692 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 15:19:16.850704 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:19:16.850716 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 15:19:16.850728 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:19:16.850739 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:19:16.850751 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:19:16.850764 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:19:16.850775 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:19:16.850786 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:19:16.850797 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:19:16.850810 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:19:16.850821 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:19:16.850832 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:19:16.850843 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:19:16.850855 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:19:16.850870 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.54985 (* 0.0454545 = 0.161357 loss) | |
I0407 15:19:16.850885 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.60507 (* 0.0454545 = 0.163867 loss) | |
I0407 15:19:16.850899 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.59081 (* 0.0454545 = 0.163219 loss) | |
I0407 15:19:16.850914 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.46809 (* 0.0454545 = 0.15764 loss) | |
I0407 15:19:16.850930 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.07715 (* 0.0454545 = 0.13987 loss) | |
I0407 15:19:16.850944 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.01354 (* 0.0454545 = 0.136979 loss) | |
I0407 15:19:16.850957 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.16915 (* 0.0454545 = 0.053143 loss) | |
I0407 15:19:16.850971 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.412662 (* 0.0454545 = 0.0187574 loss) | |
I0407 15:19:16.850986 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.488963 (* 0.0454545 = 0.0222256 loss) | |
I0407 15:19:16.851001 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.501588 (* 0.0454545 = 0.0227995 loss) | |
I0407 15:19:16.851014 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000792313 (* 0.0454545 = 3.60142e-05 loss) | |
I0407 15:19:16.851028 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000737096 (* 0.0454545 = 3.35044e-05 loss) | |
I0407 15:19:16.851042 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000742769 (* 0.0454545 = 3.37622e-05 loss) | |
I0407 15:19:16.851058 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000887919 (* 0.0454545 = 4.03599e-05 loss) | |
I0407 15:19:16.851071 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000770642 (* 0.0454545 = 3.50292e-05 loss) | |
I0407 15:19:16.851084 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000742899 (* 0.0454545 = 3.37682e-05 loss) | |
I0407 15:19:16.851099 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.00084231 (* 0.0454545 = 3.82868e-05 loss) | |
I0407 15:19:16.851130 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000767102 (* 0.0454545 = 3.48683e-05 loss) | |
I0407 15:19:16.851145 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000805799 (* 0.0454545 = 3.66272e-05 loss) | |
I0407 15:19:16.851158 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000820679 (* 0.0454545 = 3.73036e-05 loss) | |
I0407 15:19:16.851173 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000898887 (* 0.0454545 = 4.08585e-05 loss) | |
I0407 15:19:16.851186 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000797604 (* 0.0454545 = 3.62547e-05 loss) | |
I0407 15:19:16.851198 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:19:16.851210 1004 solver.cpp:245] Train net output #45: total_confidence = 4.00025e-06 | |
I0407 15:19:16.851223 1004 sgd_solver.cpp:106] Iteration 3500, lr = 0.000993 | |
I0407 15:19:54.736944 1004 solver.cpp:229] Iteration 4000, loss = 1.10626 | |
I0407 15:19:54.737049 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 15:19:54.737081 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:19:54.737104 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:19:54.737128 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 15:19:54.737149 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 15:19:54.737171 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 15:19:54.737195 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.9375 | |
I0407 15:19:54.737217 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 15:19:54.737237 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:19:54.737258 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:19:54.737280 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:19:54.737303 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:19:54.737323 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:19:54.737344 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:19:54.737363 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:19:54.737385 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:19:54.737407 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:19:54.737428 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:19:54.737448 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:19:54.737468 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:19:54.737488 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:19:54.737509 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:19:54.737535 1004 solver.cpp:245] Train net output #22: loss/loss01 = 4.21605 (* 0.0454545 = 0.191639 loss) | |
I0407 15:19:54.737563 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.84862 (* 0.0454545 = 0.174937 loss) | |
I0407 15:19:54.737589 1004 solver.cpp:245] Train net output #24: loss/loss03 = 4.34773 (* 0.0454545 = 0.197624 loss) | |
I0407 15:19:54.737612 1004 solver.cpp:245] Train net output #25: loss/loss04 = 4.38637 (* 0.0454545 = 0.199381 loss) | |
I0407 15:19:54.737634 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.92735 (* 0.0454545 = 0.178516 loss) | |
I0407 15:19:54.737659 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.57393 (* 0.0454545 = 0.116997 loss) | |
I0407 15:19:54.737684 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.546458 (* 0.0454545 = 0.024839 loss) | |
I0407 15:19:54.737709 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.0711791 (* 0.0454545 = 0.00323541 loss) | |
I0407 15:19:54.737735 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0302873 (* 0.0454545 = 0.00137669 loss) | |
I0407 15:19:54.737761 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0108092 (* 0.0454545 = 0.000491328 loss) | |
I0407 15:19:54.737788 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000363705 (* 0.0454545 = 1.65321e-05 loss) | |
I0407 15:19:54.737814 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000333516 (* 0.0454545 = 1.51598e-05 loss) | |
I0407 15:19:54.737839 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000357958 (* 0.0454545 = 1.62708e-05 loss) | |
I0407 15:19:54.737864 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000348727 (* 0.0454545 = 1.58512e-05 loss) | |
I0407 15:19:54.737890 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000324335 (* 0.0454545 = 1.47425e-05 loss) | |
I0407 15:19:54.737915 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000353868 (* 0.0454545 = 1.60849e-05 loss) | |
I0407 15:19:54.737939 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000363924 (* 0.0454545 = 1.6542e-05 loss) | |
I0407 15:19:54.737987 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000352524 (* 0.0454545 = 1.60238e-05 loss) | |
I0407 15:19:54.738013 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000356849 (* 0.0454545 = 1.62204e-05 loss) | |
I0407 15:19:54.738039 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000340102 (* 0.0454545 = 1.54592e-05 loss) | |
I0407 15:19:54.738064 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000355522 (* 0.0454545 = 1.61601e-05 loss) | |
I0407 15:19:54.738092 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000335019 (* 0.0454545 = 1.52281e-05 loss) | |
I0407 15:19:54.738114 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:19:54.738139 1004 solver.cpp:245] Train net output #45: total_confidence = 8.82845e-06 | |
I0407 15:19:54.738163 1004 sgd_solver.cpp:106] Iteration 4000, lr = 0.000992 | |
I0407 15:20:33.216863 1004 solver.cpp:229] Iteration 4500, loss = 1.10251 | |
I0407 15:20:33.216960 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 15:20:33.216989 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:20:33.217012 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:20:33.217041 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 15:20:33.217062 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 15:20:33.217083 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 15:20:33.217105 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 15:20:33.217128 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 15:20:33.217149 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:20:33.217170 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:20:33.217190 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:20:33.217209 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:20:33.217231 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:20:33.217253 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:20:33.217274 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:20:33.217294 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:20:33.217315 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:20:33.217335 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:20:33.217355 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:20:33.217376 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:20:33.217396 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:20:33.217418 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:20:33.217445 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.55257 (* 0.0454545 = 0.161481 loss) | |
I0407 15:20:33.217473 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.83471 (* 0.0454545 = 0.174305 loss) | |
I0407 15:20:33.217497 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.90317 (* 0.0454545 = 0.177417 loss) | |
I0407 15:20:33.217524 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.82169 (* 0.0454545 = 0.173713 loss) | |
I0407 15:20:33.217548 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.48073 (* 0.0454545 = 0.158215 loss) | |
I0407 15:20:33.217573 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.49817 (* 0.0454545 = 0.159008 loss) | |
I0407 15:20:33.217598 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.59218 (* 0.0454545 = 0.0723718 loss) | |
I0407 15:20:33.217623 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.426254 (* 0.0454545 = 0.0193752 loss) | |
I0407 15:20:33.217651 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0632686 (* 0.0454545 = 0.00287585 loss) | |
I0407 15:20:33.217677 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0239243 (* 0.0454545 = 0.00108747 loss) | |
I0407 15:20:33.217702 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.00100283 (* 0.0454545 = 4.55831e-05 loss) | |
I0407 15:20:33.217727 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000989121 (* 0.0454545 = 4.496e-05 loss) | |
I0407 15:20:33.217753 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.00105885 (* 0.0454545 = 4.81298e-05 loss) | |
I0407 15:20:33.217778 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000949242 (* 0.0454545 = 4.31474e-05 loss) | |
I0407 15:20:33.217803 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000990591 (* 0.0454545 = 4.50269e-05 loss) | |
I0407 15:20:33.217828 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.00102011 (* 0.0454545 = 4.63687e-05 loss) | |
I0407 15:20:33.217854 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.00109568 (* 0.0454545 = 4.98037e-05 loss) | |
I0407 15:20:33.217898 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.00101078 (* 0.0454545 = 4.59445e-05 loss) | |
I0407 15:20:33.217926 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000967165 (* 0.0454545 = 4.3962e-05 loss) | |
I0407 15:20:33.217953 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.00101809 (* 0.0454545 = 4.62767e-05 loss) | |
I0407 15:20:33.217979 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00107889 (* 0.0454545 = 4.90407e-05 loss) | |
I0407 15:20:33.218004 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00110452 (* 0.0454545 = 5.02055e-05 loss) | |
I0407 15:20:33.218026 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:20:33.218045 1004 solver.cpp:245] Train net output #45: total_confidence = 7.22191e-07 | |
I0407 15:20:33.218067 1004 sgd_solver.cpp:106] Iteration 4500, lr = 0.000991 | |
I0407 15:21:11.562465 1004 solver.cpp:338] Iteration 5000, Testing net (#0) | |
I0407 15:21:19.511219 1004 solver.cpp:393] Test loss: 0.999263 | |
I0407 15:21:19.511276 1004 solver.cpp:406] Test net output #0: loss/accuracy01 = 0 | |
I0407 15:21:19.511293 1004 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.124 | |
I0407 15:21:19.511307 1004 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.005 | |
I0407 15:21:19.511337 1004 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.09 | |
I0407 15:21:19.511351 1004 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.212 | |
I0407 15:21:19.511373 1004 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.501 | |
I0407 15:21:19.511384 1004 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0407 15:21:19.511396 1004 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 15:21:19.511409 1004 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 15:21:19.511420 1004 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 15:21:19.511437 1004 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 15:21:19.511450 1004 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 15:21:19.511461 1004 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 15:21:19.511472 1004 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 15:21:19.511483 1004 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 15:21:19.511494 1004 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 15:21:19.511505 1004 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 15:21:19.511518 1004 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 15:21:19.511534 1004 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 15:21:19.511546 1004 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 15:21:19.511557 1004 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 15:21:19.511569 1004 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 15:21:19.511584 1004 solver.cpp:406] Test net output #22: loss/loss01 = 3.53264 (* 0.0454545 = 0.160575 loss) | |
I0407 15:21:19.511597 1004 solver.cpp:406] Test net output #23: loss/loss02 = 3.53075 (* 0.0454545 = 0.160489 loss) | |
I0407 15:21:19.511615 1004 solver.cpp:406] Test net output #24: loss/loss03 = 3.61352 (* 0.0454545 = 0.164251 loss) | |
I0407 15:21:19.511627 1004 solver.cpp:406] Test net output #25: loss/loss04 = 3.71816 (* 0.0454545 = 0.169007 loss) | |
I0407 15:21:19.511641 1004 solver.cpp:406] Test net output #26: loss/loss05 = 3.56834 (* 0.0454545 = 0.162197 loss) | |
I0407 15:21:19.511654 1004 solver.cpp:406] Test net output #27: loss/loss06 = 2.54753 (* 0.0454545 = 0.115797 loss) | |
I0407 15:21:19.511668 1004 solver.cpp:406] Test net output #28: loss/loss07 = 0.925933 (* 0.0454545 = 0.0420879 loss) | |
I0407 15:21:19.511682 1004 solver.cpp:406] Test net output #29: loss/loss08 = 0.363966 (* 0.0454545 = 0.0165439 loss) | |
I0407 15:21:19.511696 1004 solver.cpp:406] Test net output #30: loss/loss09 = 0.100998 (* 0.0454545 = 0.00459081 loss) | |
I0407 15:21:19.511709 1004 solver.cpp:406] Test net output #31: loss/loss10 = 0.0472559 (* 0.0454545 = 0.002148 loss) | |
I0407 15:21:19.511723 1004 solver.cpp:406] Test net output #32: loss/loss11 = 0.00290662 (* 0.0454545 = 0.000132119 loss) | |
I0407 15:21:19.511737 1004 solver.cpp:406] Test net output #33: loss/loss12 = 0.00281991 (* 0.0454545 = 0.000128178 loss) | |
I0407 15:21:19.511751 1004 solver.cpp:406] Test net output #34: loss/loss13 = 0.00284474 (* 0.0454545 = 0.000129306 loss) | |
I0407 15:21:19.511775 1004 solver.cpp:406] Test net output #35: loss/loss14 = 0.0029047 (* 0.0454545 = 0.000132032 loss) | |
I0407 15:21:19.511788 1004 solver.cpp:406] Test net output #36: loss/loss15 = 0.00289503 (* 0.0454545 = 0.000131592 loss) | |
I0407 15:21:19.511802 1004 solver.cpp:406] Test net output #37: loss/loss16 = 0.00290745 (* 0.0454545 = 0.000132157 loss) | |
I0407 15:21:19.511817 1004 solver.cpp:406] Test net output #38: loss/loss17 = 0.00289841 (* 0.0454545 = 0.000131746 loss) | |
I0407 15:21:19.511870 1004 solver.cpp:406] Test net output #39: loss/loss18 = 0.00289845 (* 0.0454545 = 0.000131748 loss) | |
I0407 15:21:19.511885 1004 solver.cpp:406] Test net output #40: loss/loss19 = 0.00291969 (* 0.0454545 = 0.000132713 loss) | |
I0407 15:21:19.511899 1004 solver.cpp:406] Test net output #41: loss/loss20 = 0.00291029 (* 0.0454545 = 0.000132286 loss) | |
I0407 15:21:19.511914 1004 solver.cpp:406] Test net output #42: loss/loss21 = 0.00291475 (* 0.0454545 = 0.000132489 loss) | |
I0407 15:21:19.511930 1004 solver.cpp:406] Test net output #43: loss/loss22 = 0.00288478 (* 0.0454545 = 0.000131127 loss) | |
I0407 15:21:19.511942 1004 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0407 15:21:19.511955 1004 solver.cpp:406] Test net output #45: total_confidence = 1.05245e-06 | |
I0407 15:21:19.534677 1004 solver.cpp:229] Iteration 5000, loss = 1.10004 | |
I0407 15:21:19.534714 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 15:21:19.534730 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:21:19.534744 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:21:19.534755 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:21:19.534767 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 15:21:19.534780 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 15:21:19.534792 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 15:21:19.534813 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 15:21:19.534826 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:21:19.534837 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:21:19.534849 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:21:19.534862 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:21:19.534873 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:21:19.534884 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:21:19.534896 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:21:19.534907 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:21:19.534919 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:21:19.534930 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:21:19.534942 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:21:19.534953 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:21:19.534965 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:21:19.534976 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:21:19.534991 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.91312 (* 0.0454545 = 0.177869 loss) | |
I0407 15:21:19.535006 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.83994 (* 0.0454545 = 0.174543 loss) | |
I0407 15:21:19.535019 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.90418 (* 0.0454545 = 0.177463 loss) | |
I0407 15:21:19.535032 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.80887 (* 0.0454545 = 0.17313 loss) | |
I0407 15:21:19.535046 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.69504 (* 0.0454545 = 0.167956 loss) | |
I0407 15:21:19.535060 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.93824 (* 0.0454545 = 0.133556 loss) | |
I0407 15:21:19.535078 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.59527 (* 0.0454545 = 0.0725123 loss) | |
I0407 15:21:19.535091 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.502549 (* 0.0454545 = 0.0228431 loss) | |
I0407 15:21:19.535105 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0510603 (* 0.0454545 = 0.00232093 loss) | |
I0407 15:21:19.535120 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0213895 (* 0.0454545 = 0.000972248 loss) | |
I0407 15:21:19.535151 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.00114966 (* 0.0454545 = 5.22571e-05 loss) | |
I0407 15:21:19.535166 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00109962 (* 0.0454545 = 4.99829e-05 loss) | |
I0407 15:21:19.535181 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.00110016 (* 0.0454545 = 5.00072e-05 loss) | |
I0407 15:21:19.535194 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00116717 (* 0.0454545 = 5.30532e-05 loss) | |
I0407 15:21:19.535209 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.00126296 (* 0.0454545 = 5.74075e-05 loss) | |
I0407 15:21:19.535223 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.00118681 (* 0.0454545 = 5.39458e-05 loss) | |
I0407 15:21:19.535238 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.00127512 (* 0.0454545 = 5.79601e-05 loss) | |
I0407 15:21:19.535253 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.00125269 (* 0.0454545 = 5.69405e-05 loss) | |
I0407 15:21:19.535266 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00113689 (* 0.0454545 = 5.16767e-05 loss) | |
I0407 15:21:19.535280 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.00116413 (* 0.0454545 = 5.29148e-05 loss) | |
I0407 15:21:19.535295 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00124413 (* 0.0454545 = 5.65512e-05 loss) | |
I0407 15:21:19.535308 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00117186 (* 0.0454545 = 5.32665e-05 loss) | |
I0407 15:21:19.535338 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:21:19.535352 1004 solver.cpp:245] Train net output #45: total_confidence = 8.79514e-07 | |
I0407 15:21:19.535367 1004 sgd_solver.cpp:106] Iteration 5000, lr = 0.00099 | |
I0407 15:21:57.637063 1004 solver.cpp:229] Iteration 5500, loss = 1.09717 | |
I0407 15:21:57.637166 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:21:57.637184 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:21:57.637197 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 15:21:57.637210 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 15:21:57.637223 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0407 15:21:57.637234 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 15:21:57.637246 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.5 | |
I0407 15:21:57.637259 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 15:21:57.637270 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:21:57.637282 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:21:57.637295 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:21:57.637306 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:21:57.637317 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:21:57.637329 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:21:57.637341 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:21:57.637352 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:21:57.637363 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:21:57.637375 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:21:57.637387 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:21:57.637398 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:21:57.637409 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:21:57.637421 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:21:57.637436 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.79173 (* 0.0454545 = 0.172352 loss) | |
I0407 15:21:57.637451 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.61408 (* 0.0454545 = 0.164277 loss) | |
I0407 15:21:57.637465 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.84771 (* 0.0454545 = 0.174896 loss) | |
I0407 15:21:57.637478 1004 solver.cpp:245] Train net output #25: loss/loss04 = 4.01291 (* 0.0454545 = 0.182405 loss) | |
I0407 15:21:57.637492 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.90572 (* 0.0454545 = 0.177533 loss) | |
I0407 15:21:57.637506 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.37495 (* 0.0454545 = 0.153407 loss) | |
I0407 15:21:57.637519 1004 solver.cpp:245] Train net output #28: loss/loss07 = 2.73842 (* 0.0454545 = 0.124474 loss) | |
I0407 15:21:57.637533 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.14427 (* 0.0454545 = 0.0520123 loss) | |
I0407 15:21:57.637547 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.439913 (* 0.0454545 = 0.019996 loss) | |
I0407 15:21:57.637562 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0158382 (* 0.0454545 = 0.000719917 loss) | |
I0407 15:21:57.637575 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000708379 (* 0.0454545 = 3.21991e-05 loss) | |
I0407 15:21:57.637589 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00065686 (* 0.0454545 = 2.98573e-05 loss) | |
I0407 15:21:57.637603 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000656456 (* 0.0454545 = 2.98389e-05 loss) | |
I0407 15:21:57.637617 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000701138 (* 0.0454545 = 3.18699e-05 loss) | |
I0407 15:21:57.637632 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000698081 (* 0.0454545 = 3.1731e-05 loss) | |
I0407 15:21:57.637646 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000764427 (* 0.0454545 = 3.47467e-05 loss) | |
I0407 15:21:57.637660 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000691944 (* 0.0454545 = 3.1452e-05 loss) | |
I0407 15:21:57.637691 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000723272 (* 0.0454545 = 3.2876e-05 loss) | |
I0407 15:21:57.637706 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000766797 (* 0.0454545 = 3.48544e-05 loss) | |
I0407 15:21:57.637720 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000659204 (* 0.0454545 = 2.99638e-05 loss) | |
I0407 15:21:57.637734 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00065288 (* 0.0454545 = 2.96764e-05 loss) | |
I0407 15:21:57.637748 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000752718 (* 0.0454545 = 3.42145e-05 loss) | |
I0407 15:21:57.637760 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:21:57.637773 1004 solver.cpp:245] Train net output #45: total_confidence = 3.14734e-06 | |
I0407 15:21:57.637785 1004 sgd_solver.cpp:106] Iteration 5500, lr = 0.000989 | |
I0407 15:22:35.506170 1004 solver.cpp:229] Iteration 6000, loss = 1.09658 | |
I0407 15:22:35.506290 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 15:22:35.506319 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:22:35.506341 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:22:35.506362 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 15:22:35.506386 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 15:22:35.506407 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 15:22:35.506428 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 15:22:35.506448 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 15:22:35.506467 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0407 15:22:35.506489 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:22:35.506511 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:22:35.506531 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:22:35.506552 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:22:35.506572 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:22:35.506592 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:22:35.506613 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:22:35.506633 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:22:35.506654 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:22:35.506675 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:22:35.506697 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:22:35.506718 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:22:35.506738 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:22:35.506765 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.80443 (* 0.0454545 = 0.172929 loss) | |
I0407 15:22:35.506793 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.79986 (* 0.0454545 = 0.172721 loss) | |
I0407 15:22:35.506816 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.69053 (* 0.0454545 = 0.167751 loss) | |
I0407 15:22:35.506841 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.6618 (* 0.0454545 = 0.166446 loss) | |
I0407 15:22:35.506866 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.03277 (* 0.0454545 = 0.137853 loss) | |
I0407 15:22:35.506891 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.50725 (* 0.0454545 = 0.113966 loss) | |
I0407 15:22:35.506916 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.92509 (* 0.0454545 = 0.0875039 loss) | |
I0407 15:22:35.506943 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.920271 (* 0.0454545 = 0.0418305 loss) | |
I0407 15:22:35.506970 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.970482 (* 0.0454545 = 0.0441128 loss) | |
I0407 15:22:35.506995 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0133275 (* 0.0454545 = 0.000605796 loss) | |
I0407 15:22:35.507021 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000332778 (* 0.0454545 = 1.51263e-05 loss) | |
I0407 15:22:35.507046 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000321548 (* 0.0454545 = 1.46158e-05 loss) | |
I0407 15:22:35.507071 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.00030724 (* 0.0454545 = 1.39655e-05 loss) | |
I0407 15:22:35.507102 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00031203 (* 0.0454545 = 1.41832e-05 loss) | |
I0407 15:22:35.507127 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000319697 (* 0.0454545 = 1.45317e-05 loss) | |
I0407 15:22:35.507151 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000318548 (* 0.0454545 = 1.44795e-05 loss) | |
I0407 15:22:35.507176 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000326527 (* 0.0454545 = 1.48421e-05 loss) | |
I0407 15:22:35.508288 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000317491 (* 0.0454545 = 1.44314e-05 loss) | |
I0407 15:22:35.508306 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000340474 (* 0.0454545 = 1.54761e-05 loss) | |
I0407 15:22:35.508316 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000325611 (* 0.0454545 = 1.48005e-05 loss) | |
I0407 15:22:35.508325 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00030224 (* 0.0454545 = 1.37382e-05 loss) | |
I0407 15:22:35.508334 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000348682 (* 0.0454545 = 1.58492e-05 loss) | |
I0407 15:22:35.508342 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:22:35.508349 1004 solver.cpp:245] Train net output #45: total_confidence = 2.27222e-05 | |
I0407 15:22:35.508358 1004 sgd_solver.cpp:106] Iteration 6000, lr = 0.000988 | |
I0407 15:23:13.233979 1004 solver.cpp:229] Iteration 6500, loss = 1.09872 | |
I0407 15:23:13.234107 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:23:13.234127 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:23:13.234140 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:23:13.234154 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:23:13.234166 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 15:23:13.234177 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 15:23:13.234189 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 15:23:13.234202 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 15:23:13.234215 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:23:13.234226 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:23:13.234237 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:23:13.234249 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:23:13.234261 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:23:13.234273 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:23:13.234285 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:23:13.234297 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:23:13.234308 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:23:13.234320 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:23:13.234331 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:23:13.234344 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:23:13.234355 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:23:13.234366 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:23:13.234382 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.66821 (* 0.0454545 = 0.166737 loss) | |
I0407 15:23:13.234396 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.62617 (* 0.0454545 = 0.164826 loss) | |
I0407 15:23:13.234411 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.69367 (* 0.0454545 = 0.167894 loss) | |
I0407 15:23:13.234424 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.72673 (* 0.0454545 = 0.169397 loss) | |
I0407 15:23:13.234437 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.38237 (* 0.0454545 = 0.153744 loss) | |
I0407 15:23:13.234452 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.11975 (* 0.0454545 = 0.141807 loss) | |
I0407 15:23:13.234464 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.32785 (* 0.0454545 = 0.0603566 loss) | |
I0407 15:23:13.234478 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.775833 (* 0.0454545 = 0.0352651 loss) | |
I0407 15:23:13.234493 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.504426 (* 0.0454545 = 0.0229284 loss) | |
I0407 15:23:13.234506 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.013668 (* 0.0454545 = 0.000621272 loss) | |
I0407 15:23:13.234521 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000294894 (* 0.0454545 = 1.34043e-05 loss) | |
I0407 15:23:13.234535 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000303715 (* 0.0454545 = 1.38052e-05 loss) | |
I0407 15:23:13.234549 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000290809 (* 0.0454545 = 1.32186e-05 loss) | |
I0407 15:23:13.234563 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000308025 (* 0.0454545 = 1.40011e-05 loss) | |
I0407 15:23:13.234577 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000320732 (* 0.0454545 = 1.45787e-05 loss) | |
I0407 15:23:13.234591 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000331979 (* 0.0454545 = 1.509e-05 loss) | |
I0407 15:23:13.234606 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000286088 (* 0.0454545 = 1.3004e-05 loss) | |
I0407 15:23:13.234632 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000319642 (* 0.0454545 = 1.45292e-05 loss) | |
I0407 15:23:13.234648 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000316111 (* 0.0454545 = 1.43687e-05 loss) | |
I0407 15:23:13.234661 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000307771 (* 0.0454545 = 1.39896e-05 loss) | |
I0407 15:23:13.234675 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000313918 (* 0.0454545 = 1.4269e-05 loss) | |
I0407 15:23:13.234689 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000330905 (* 0.0454545 = 1.50411e-05 loss) | |
I0407 15:23:13.234701 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:23:13.234726 1004 solver.cpp:245] Train net output #45: total_confidence = 6.00117e-06 | |
I0407 15:23:13.234740 1004 sgd_solver.cpp:106] Iteration 6500, lr = 0.000987 | |
I0407 15:23:51.690795 1004 solver.cpp:229] Iteration 7000, loss = 1.09281 | |
I0407 15:23:51.690913 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:23:51.690943 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:23:51.690966 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:23:51.690989 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 15:23:51.691011 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 15:23:51.691032 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 15:23:51.691054 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.9375 | |
I0407 15:23:51.691076 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 15:23:51.691098 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:23:51.691119 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:23:51.691138 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:23:51.691159 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:23:51.691179 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:23:51.691201 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:23:51.691222 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:23:51.691243 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:23:51.691264 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:23:51.691284 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:23:51.691305 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:23:51.691346 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:23:51.691371 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:23:51.691395 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:23:51.691423 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.64193 (* 0.0454545 = 0.165542 loss) | |
I0407 15:23:51.691449 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.60828 (* 0.0454545 = 0.164013 loss) | |
I0407 15:23:51.691474 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.5754 (* 0.0454545 = 0.162518 loss) | |
I0407 15:23:51.691499 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.66556 (* 0.0454545 = 0.166616 loss) | |
I0407 15:23:51.691524 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.27376 (* 0.0454545 = 0.148807 loss) | |
I0407 15:23:51.691548 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.88166 (* 0.0454545 = 0.130984 loss) | |
I0407 15:23:51.691572 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.665906 (* 0.0454545 = 0.0302685 loss) | |
I0407 15:23:51.691599 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.483009 (* 0.0454545 = 0.021955 loss) | |
I0407 15:23:51.691627 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0469936 (* 0.0454545 = 0.00213607 loss) | |
I0407 15:23:51.691653 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0192439 (* 0.0454545 = 0.000874722 loss) | |
I0407 15:23:51.691679 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000698892 (* 0.0454545 = 3.17678e-05 loss) | |
I0407 15:23:51.691704 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000650005 (* 0.0454545 = 2.95457e-05 loss) | |
I0407 15:23:51.691728 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000660747 (* 0.0454545 = 3.0034e-05 loss) | |
I0407 15:23:51.691753 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000657241 (* 0.0454545 = 2.98746e-05 loss) | |
I0407 15:23:51.691778 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000651664 (* 0.0454545 = 2.96211e-05 loss) | |
I0407 15:23:51.691809 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000657918 (* 0.0454545 = 2.99053e-05 loss) | |
I0407 15:23:51.691834 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000665974 (* 0.0454545 = 3.02715e-05 loss) | |
I0407 15:23:51.691881 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000650807 (* 0.0454545 = 2.95822e-05 loss) | |
I0407 15:23:51.691910 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00070984 (* 0.0454545 = 3.22655e-05 loss) | |
I0407 15:23:51.691946 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000640587 (* 0.0454545 = 2.91176e-05 loss) | |
I0407 15:23:51.691972 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000629206 (* 0.0454545 = 2.86003e-05 loss) | |
I0407 15:23:51.691995 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000630954 (* 0.0454545 = 2.86797e-05 loss) | |
I0407 15:23:51.692016 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:23:51.692035 1004 solver.cpp:245] Train net output #45: total_confidence = 1.61415e-05 | |
I0407 15:23:51.692057 1004 sgd_solver.cpp:106] Iteration 7000, lr = 0.000986 | |
I0407 15:24:30.120473 1004 solver.cpp:229] Iteration 7500, loss = 1.1012 | |
I0407 15:24:30.120589 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:24:30.120620 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:24:30.120641 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:24:30.120664 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 15:24:30.120687 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 15:24:30.120707 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 15:24:30.120728 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 15:24:30.120748 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 15:24:30.120770 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:24:30.120792 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:24:30.120813 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:24:30.120834 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:24:30.120854 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:24:30.120874 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:24:30.120895 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:24:30.120915 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:24:30.120942 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:24:30.120965 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:24:30.120985 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:24:30.121006 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:24:30.121026 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:24:30.121047 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:24:30.121073 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.36744 (* 0.0454545 = 0.153066 loss) | |
I0407 15:24:30.121098 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.4978 (* 0.0454545 = 0.158991 loss) | |
I0407 15:24:30.121124 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.4528 (* 0.0454545 = 0.156946 loss) | |
I0407 15:24:30.121150 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.5017 (* 0.0454545 = 0.159168 loss) | |
I0407 15:24:30.121176 1004 solver.cpp:245] Train net output #26: loss/loss05 = 2.94386 (* 0.0454545 = 0.133812 loss) | |
I0407 15:24:30.121201 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.9983 (* 0.0454545 = 0.136287 loss) | |
I0407 15:24:30.121227 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.66838 (* 0.0454545 = 0.0758354 loss) | |
I0407 15:24:30.121251 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.781154 (* 0.0454545 = 0.035507 loss) | |
I0407 15:24:30.121278 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.032961 (* 0.0454545 = 0.00149823 loss) | |
I0407 15:24:30.121302 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0106804 (* 0.0454545 = 0.000485472 loss) | |
I0407 15:24:30.121328 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000262091 (* 0.0454545 = 1.19132e-05 loss) | |
I0407 15:24:30.121352 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000247212 (* 0.0454545 = 1.12369e-05 loss) | |
I0407 15:24:30.121377 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.00026681 (* 0.0454545 = 1.21277e-05 loss) | |
I0407 15:24:30.121403 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000256094 (* 0.0454545 = 1.16407e-05 loss) | |
I0407 15:24:30.121430 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000241961 (* 0.0454545 = 1.09982e-05 loss) | |
I0407 15:24:30.121455 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000259965 (* 0.0454545 = 1.18166e-05 loss) | |
I0407 15:24:30.121480 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000247161 (* 0.0454545 = 1.12346e-05 loss) | |
I0407 15:24:30.121526 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000263369 (* 0.0454545 = 1.19713e-05 loss) | |
I0407 15:24:30.121551 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000255895 (* 0.0454545 = 1.16316e-05 loss) | |
I0407 15:24:30.121577 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000265885 (* 0.0454545 = 1.20857e-05 loss) | |
I0407 15:24:30.121604 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000232796 (* 0.0454545 = 1.05816e-05 loss) | |
I0407 15:24:30.121631 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000239497 (* 0.0454545 = 1.08862e-05 loss) | |
I0407 15:24:30.121654 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:24:30.121673 1004 solver.cpp:245] Train net output #45: total_confidence = 4.30421e-06 | |
I0407 15:24:30.121695 1004 sgd_solver.cpp:106] Iteration 7500, lr = 0.000985 | |
I0407 15:25:09.558084 1004 solver.cpp:229] Iteration 8000, loss = 1.09551 | |
I0407 15:25:09.558225 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:25:09.558255 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:25:09.558277 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:25:09.558300 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:25:09.558323 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 15:25:09.558344 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 15:25:09.558367 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875 | |
I0407 15:25:09.558388 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 15:25:09.558409 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:25:09.558429 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:25:09.558449 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:25:09.558470 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:25:09.558491 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:25:09.558513 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:25:09.558534 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:25:09.558554 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:25:09.558574 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:25:09.558595 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:25:09.558614 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:25:09.558635 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:25:09.558655 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:25:09.558678 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:25:09.558706 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.73802 (* 0.0454545 = 0.16991 loss) | |
I0407 15:25:09.558732 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.8136 (* 0.0454545 = 0.173345 loss) | |
I0407 15:25:09.558758 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.60659 (* 0.0454545 = 0.163936 loss) | |
I0407 15:25:09.558782 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.85492 (* 0.0454545 = 0.175223 loss) | |
I0407 15:25:09.558807 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.08716 (* 0.0454545 = 0.140325 loss) | |
I0407 15:25:09.558831 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.54703 (* 0.0454545 = 0.115774 loss) | |
I0407 15:25:09.558856 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.831117 (* 0.0454545 = 0.0377781 loss) | |
I0407 15:25:09.558882 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.101115 (* 0.0454545 = 0.00459611 loss) | |
I0407 15:25:09.558909 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0339258 (* 0.0454545 = 0.00154208 loss) | |
I0407 15:25:09.558936 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0126889 (* 0.0454545 = 0.000576767 loss) | |
I0407 15:25:09.558962 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000382364 (* 0.0454545 = 1.73802e-05 loss) | |
I0407 15:25:09.558987 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000366253 (* 0.0454545 = 1.66479e-05 loss) | |
I0407 15:25:09.559011 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000332705 (* 0.0454545 = 1.5123e-05 loss) | |
I0407 15:25:09.559036 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000369179 (* 0.0454545 = 1.67809e-05 loss) | |
I0407 15:25:09.559062 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000349773 (* 0.0454545 = 1.58988e-05 loss) | |
I0407 15:25:09.559090 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000367032 (* 0.0454545 = 1.66833e-05 loss) | |
I0407 15:25:09.559116 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000373851 (* 0.0454545 = 1.69932e-05 loss) | |
I0407 15:25:09.559165 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000363015 (* 0.0454545 = 1.65007e-05 loss) | |
I0407 15:25:09.559192 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000365704 (* 0.0454545 = 1.66229e-05 loss) | |
I0407 15:25:09.559219 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000368024 (* 0.0454545 = 1.67283e-05 loss) | |
I0407 15:25:09.559244 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000360304 (* 0.0454545 = 1.63774e-05 loss) | |
I0407 15:25:09.559269 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000378336 (* 0.0454545 = 1.71971e-05 loss) | |
I0407 15:25:09.559291 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:25:09.559311 1004 solver.cpp:245] Train net output #45: total_confidence = 5.51321e-06 | |
I0407 15:25:09.559353 1004 sgd_solver.cpp:106] Iteration 8000, lr = 0.000984 | |
I0407 15:25:49.203294 1004 solver.cpp:229] Iteration 8500, loss = 1.09487 | |
I0407 15:25:49.203450 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 15:25:49.203469 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:25:49.203483 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:25:49.203495 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 15:25:49.203507 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 15:25:49.203519 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 15:25:49.203536 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 15:25:49.203547 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 15:25:49.203559 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:25:49.203572 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:25:49.203583 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:25:49.203594 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:25:49.203606 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:25:49.203618 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:25:49.203629 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:25:49.203640 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:25:49.203651 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:25:49.203662 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:25:49.203673 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:25:49.203685 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:25:49.203696 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:25:49.203708 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:25:49.203723 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.82844 (* 0.0454545 = 0.17402 loss) | |
I0407 15:25:49.203738 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.74757 (* 0.0454545 = 0.170344 loss) | |
I0407 15:25:49.203752 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.80373 (* 0.0454545 = 0.172897 loss) | |
I0407 15:25:49.203765 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.86465 (* 0.0454545 = 0.175666 loss) | |
I0407 15:25:49.203779 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.79405 (* 0.0454545 = 0.172457 loss) | |
I0407 15:25:49.203793 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.06686 (* 0.0454545 = 0.139403 loss) | |
I0407 15:25:49.203806 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.91384 (* 0.0454545 = 0.0869928 loss) | |
I0407 15:25:49.203820 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.09694 (* 0.0454545 = 0.0498611 loss) | |
I0407 15:25:49.203835 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.421811 (* 0.0454545 = 0.0191732 loss) | |
I0407 15:25:49.203848 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.029208 (* 0.0454545 = 0.00132763 loss) | |
I0407 15:25:49.203863 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.00116584 (* 0.0454545 = 5.29928e-05 loss) | |
I0407 15:25:49.203877 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.0011636 (* 0.0454545 = 5.28909e-05 loss) | |
I0407 15:25:49.203891 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.00127692 (* 0.0454545 = 5.80416e-05 loss) | |
I0407 15:25:49.203905 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00116278 (* 0.0454545 = 5.28538e-05 loss) | |
I0407 15:25:49.203919 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.0011479 (* 0.0454545 = 5.21774e-05 loss) | |
I0407 15:25:49.203933 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.00116874 (* 0.0454545 = 5.31245e-05 loss) | |
I0407 15:25:49.203948 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.00114343 (* 0.0454545 = 5.1974e-05 loss) | |
I0407 15:25:49.203975 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.00117826 (* 0.0454545 = 5.35571e-05 loss) | |
I0407 15:25:49.203990 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00117655 (* 0.0454545 = 5.34796e-05 loss) | |
I0407 15:25:49.204005 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.00119524 (* 0.0454545 = 5.43289e-05 loss) | |
I0407 15:25:49.204018 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00111161 (* 0.0454545 = 5.05277e-05 loss) | |
I0407 15:25:49.204033 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00116748 (* 0.0454545 = 5.30674e-05 loss) | |
I0407 15:25:49.204046 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:25:49.204056 1004 solver.cpp:245] Train net output #45: total_confidence = 2.93008e-07 | |
I0407 15:25:49.204069 1004 sgd_solver.cpp:106] Iteration 8500, lr = 0.000983 | |
I0407 15:26:28.684218 1004 solver.cpp:229] Iteration 9000, loss = 1.09459 | |
I0407 15:26:28.684329 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:26:28.684358 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:26:28.684381 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:26:28.684404 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:26:28.684427 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 15:26:28.684448 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 15:26:28.684469 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 15:26:28.684492 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 15:26:28.684514 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:26:28.684535 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:26:28.684554 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:26:28.684574 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:26:28.684595 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:26:28.684618 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:26:28.684639 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:26:28.684659 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:26:28.684679 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:26:28.684700 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:26:28.684720 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:26:28.684741 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:26:28.684762 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:26:28.684783 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:26:28.684811 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.60862 (* 0.0454545 = 0.164028 loss) | |
I0407 15:26:28.684837 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.64317 (* 0.0454545 = 0.165599 loss) | |
I0407 15:26:28.684861 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.93889 (* 0.0454545 = 0.179041 loss) | |
I0407 15:26:28.684886 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.77286 (* 0.0454545 = 0.171494 loss) | |
I0407 15:26:28.684911 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.86156 (* 0.0454545 = 0.175526 loss) | |
I0407 15:26:28.684940 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.19288 (* 0.0454545 = 0.145131 loss) | |
I0407 15:26:28.684965 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.73092 (* 0.0454545 = 0.0786783 loss) | |
I0407 15:26:28.684990 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.0756575 (* 0.0454545 = 0.00343898 loss) | |
I0407 15:26:28.685019 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.029141 (* 0.0454545 = 0.00132459 loss) | |
I0407 15:26:28.685045 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0118837 (* 0.0454545 = 0.000540166 loss) | |
I0407 15:26:28.685070 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000351154 (* 0.0454545 = 1.59616e-05 loss) | |
I0407 15:26:28.685096 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000346263 (* 0.0454545 = 1.57392e-05 loss) | |
I0407 15:26:28.685122 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000390581 (* 0.0454545 = 1.77537e-05 loss) | |
I0407 15:26:28.685147 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000376164 (* 0.0454545 = 1.70984e-05 loss) | |
I0407 15:26:28.685171 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000375957 (* 0.0454545 = 1.70889e-05 loss) | |
I0407 15:26:28.685196 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000398786 (* 0.0454545 = 1.81267e-05 loss) | |
I0407 15:26:28.685222 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000365396 (* 0.0454545 = 1.66089e-05 loss) | |
I0407 15:26:28.685267 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000385949 (* 0.0454545 = 1.75431e-05 loss) | |
I0407 15:26:28.685295 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000375748 (* 0.0454545 = 1.70795e-05 loss) | |
I0407 15:26:28.685322 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000332873 (* 0.0454545 = 1.51306e-05 loss) | |
I0407 15:26:28.685351 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000399072 (* 0.0454545 = 1.81396e-05 loss) | |
I0407 15:26:28.685376 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000441285 (* 0.0454545 = 2.00584e-05 loss) | |
I0407 15:26:28.685398 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:26:28.685418 1004 solver.cpp:245] Train net output #45: total_confidence = 1.73255e-06 | |
I0407 15:26:28.685441 1004 sgd_solver.cpp:106] Iteration 9000, lr = 0.000982 | |
I0407 15:27:08.015436 1004 solver.cpp:229] Iteration 9500, loss = 1.09398 | |
I0407 15:27:08.015553 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 15:27:08.015583 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:27:08.015605 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:27:08.015627 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 15:27:08.015650 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 15:27:08.015671 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 15:27:08.015692 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 15:27:08.015712 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 15:27:08.015733 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0407 15:27:08.015756 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:27:08.015779 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:27:08.015799 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:27:08.015818 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:27:08.015839 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:27:08.015861 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:27:08.015880 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:27:08.015902 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:27:08.015928 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:27:08.015951 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:27:08.015972 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:27:08.015992 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:27:08.016013 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:27:08.016041 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.73353 (* 0.0454545 = 0.169706 loss) | |
I0407 15:27:08.016067 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.79037 (* 0.0454545 = 0.17229 loss) | |
I0407 15:27:08.016091 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.89981 (* 0.0454545 = 0.177264 loss) | |
I0407 15:27:08.016118 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.90103 (* 0.0454545 = 0.17732 loss) | |
I0407 15:27:08.016144 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.5613 (* 0.0454545 = 0.161877 loss) | |
I0407 15:27:08.016170 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.2255 (* 0.0454545 = 0.146613 loss) | |
I0407 15:27:08.016196 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.16602 (* 0.0454545 = 0.053001 loss) | |
I0407 15:27:08.016221 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.760237 (* 0.0454545 = 0.0345562 loss) | |
I0407 15:27:08.016245 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.847757 (* 0.0454545 = 0.0385344 loss) | |
I0407 15:27:08.016270 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0167571 (* 0.0454545 = 0.000761684 loss) | |
I0407 15:27:08.016296 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000451851 (* 0.0454545 = 2.05387e-05 loss) | |
I0407 15:27:08.016321 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000441021 (* 0.0454545 = 2.00464e-05 loss) | |
I0407 15:27:08.016345 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000437482 (* 0.0454545 = 1.98855e-05 loss) | |
I0407 15:27:08.016371 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000427163 (* 0.0454545 = 1.94165e-05 loss) | |
I0407 15:27:08.016397 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000462041 (* 0.0454545 = 2.10019e-05 loss) | |
I0407 15:27:08.016424 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000429756 (* 0.0454545 = 1.95344e-05 loss) | |
I0407 15:27:08.016449 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000473276 (* 0.0454545 = 2.15125e-05 loss) | |
I0407 15:27:08.016496 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000465361 (* 0.0454545 = 2.11528e-05 loss) | |
I0407 15:27:08.016522 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000439633 (* 0.0454545 = 1.99833e-05 loss) | |
I0407 15:27:08.016546 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000463856 (* 0.0454545 = 2.10843e-05 loss) | |
I0407 15:27:08.016576 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000458544 (* 0.0454545 = 2.08429e-05 loss) | |
I0407 15:27:08.016602 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000443083 (* 0.0454545 = 2.01402e-05 loss) | |
I0407 15:27:08.016623 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:27:08.016644 1004 solver.cpp:245] Train net output #45: total_confidence = 8.18007e-06 | |
I0407 15:27:08.016664 1004 sgd_solver.cpp:106] Iteration 9500, lr = 0.000981 | |
I0407 15:27:46.077646 1004 solver.cpp:338] Iteration 10000, Testing net (#0) | |
I0407 15:27:53.973971 1004 solver.cpp:393] Test loss: 0.969817 | |
I0407 15:27:53.974019 1004 solver.cpp:406] Test net output #0: loss/accuracy01 = 0 | |
I0407 15:27:53.974046 1004 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.124 | |
I0407 15:27:53.974069 1004 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.081 | |
I0407 15:27:53.974093 1004 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.09 | |
I0407 15:27:53.974115 1004 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.213 | |
I0407 15:27:53.974135 1004 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.502 | |
I0407 15:27:53.974156 1004 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0407 15:27:53.974177 1004 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 15:27:53.974197 1004 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 15:27:53.974217 1004 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 15:27:53.974237 1004 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 15:27:53.974258 1004 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 15:27:53.974280 1004 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 15:27:53.974301 1004 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 15:27:53.974320 1004 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 15:27:53.974339 1004 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 15:27:53.974359 1004 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 15:27:53.974378 1004 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 15:27:53.974397 1004 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 15:27:53.974417 1004 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 15:27:53.974437 1004 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 15:27:53.974458 1004 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 15:27:53.974485 1004 solver.cpp:406] Test net output #22: loss/loss01 = 3.30996 (* 0.0454545 = 0.150453 loss) | |
I0407 15:27:53.974511 1004 solver.cpp:406] Test net output #23: loss/loss02 = 3.50193 (* 0.0454545 = 0.159178 loss) | |
I0407 15:27:53.974535 1004 solver.cpp:406] Test net output #24: loss/loss03 = 3.60704 (* 0.0454545 = 0.163956 loss) | |
I0407 15:27:53.974560 1004 solver.cpp:406] Test net output #25: loss/loss04 = 3.63403 (* 0.0454545 = 0.165183 loss) | |
I0407 15:27:53.974583 1004 solver.cpp:406] Test net output #26: loss/loss05 = 3.52901 (* 0.0454545 = 0.16041 loss) | |
I0407 15:27:53.974607 1004 solver.cpp:406] Test net output #27: loss/loss06 = 2.45808 (* 0.0454545 = 0.111731 loss) | |
I0407 15:27:53.974632 1004 solver.cpp:406] Test net output #28: loss/loss07 = 0.837081 (* 0.0454545 = 0.0380491 loss) | |
I0407 15:27:53.974655 1004 solver.cpp:406] Test net output #29: loss/loss08 = 0.316383 (* 0.0454545 = 0.014381 loss) | |
I0407 15:27:53.974683 1004 solver.cpp:406] Test net output #30: loss/loss09 = 0.0850535 (* 0.0454545 = 0.00386607 loss) | |
I0407 15:27:53.974709 1004 solver.cpp:406] Test net output #31: loss/loss10 = 0.037544 (* 0.0454545 = 0.00170654 loss) | |
I0407 15:27:53.974733 1004 solver.cpp:406] Test net output #32: loss/loss11 = 0.0016655 (* 0.0454545 = 7.57047e-05 loss) | |
I0407 15:27:53.974758 1004 solver.cpp:406] Test net output #33: loss/loss12 = 0.00164217 (* 0.0454545 = 7.4644e-05 loss) | |
I0407 15:27:53.974782 1004 solver.cpp:406] Test net output #34: loss/loss13 = 0.00165233 (* 0.0454545 = 7.51057e-05 loss) | |
I0407 15:27:53.974807 1004 solver.cpp:406] Test net output #35: loss/loss14 = 0.00165471 (* 0.0454545 = 7.52142e-05 loss) | |
I0407 15:27:53.974834 1004 solver.cpp:406] Test net output #36: loss/loss15 = 0.00166338 (* 0.0454545 = 7.56083e-05 loss) | |
I0407 15:27:53.974860 1004 solver.cpp:406] Test net output #37: loss/loss16 = 0.00166275 (* 0.0454545 = 7.55796e-05 loss) | |
I0407 15:27:53.974884 1004 solver.cpp:406] Test net output #38: loss/loss17 = 0.00165201 (* 0.0454545 = 7.50912e-05 loss) | |
I0407 15:27:53.974947 1004 solver.cpp:406] Test net output #39: loss/loss18 = 0.00165673 (* 0.0454545 = 7.5306e-05 loss) | |
I0407 15:27:53.974978 1004 solver.cpp:406] Test net output #40: loss/loss19 = 0.00165616 (* 0.0454545 = 7.528e-05 loss) | |
I0407 15:27:53.975005 1004 solver.cpp:406] Test net output #41: loss/loss20 = 0.00166249 (* 0.0454545 = 7.55677e-05 loss) | |
I0407 15:27:53.975029 1004 solver.cpp:406] Test net output #42: loss/loss21 = 0.00166385 (* 0.0454545 = 7.56295e-05 loss) | |
I0407 15:27:53.975054 1004 solver.cpp:406] Test net output #43: loss/loss22 = 0.00165271 (* 0.0454545 = 7.51232e-05 loss) | |
I0407 15:27:53.975075 1004 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0407 15:27:53.975095 1004 solver.cpp:406] Test net output #45: total_confidence = 9.78676e-06 | |
I0407 15:27:53.997715 1004 solver.cpp:229] Iteration 10000, loss = 1.0963 | |
I0407 15:27:53.997756 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0407 15:27:53.997774 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:27:53.997787 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:27:53.997800 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 15:27:53.997812 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 15:27:53.997824 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625 | |
I0407 15:27:53.997836 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875 | |
I0407 15:27:53.997848 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 15:27:53.997860 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:27:53.997874 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:27:53.997884 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:27:53.997896 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:27:53.997912 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:27:53.997925 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:27:53.997936 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:27:53.997947 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:27:53.997959 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:27:53.997972 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:27:53.997983 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:27:53.997994 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:27:53.998006 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:27:53.998018 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:27:53.998033 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.51818 (* 0.0454545 = 0.159917 loss) | |
I0407 15:27:53.998046 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.45476 (* 0.0454545 = 0.157034 loss) | |
I0407 15:27:53.998060 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.78767 (* 0.0454545 = 0.172167 loss) | |
I0407 15:27:53.998076 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.61615 (* 0.0454545 = 0.164371 loss) | |
I0407 15:27:53.998091 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.50877 (* 0.0454545 = 0.159489 loss) | |
I0407 15:27:53.998106 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.21312 (* 0.0454545 = 0.100596 loss) | |
I0407 15:27:53.998119 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.743894 (* 0.0454545 = 0.0338133 loss) | |
I0407 15:27:53.998133 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.399739 (* 0.0454545 = 0.0181699 loss) | |
I0407 15:27:53.998147 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.00872509 (* 0.0454545 = 0.000396595 loss) | |
I0407 15:27:53.998162 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.00249332 (* 0.0454545 = 0.000113333 loss) | |
I0407 15:27:53.998194 1004 solver.cpp:245] Train net output #32: loss/loss11 = 2.27997e-05 (* 0.0454545 = 1.03635e-06 loss) | |
I0407 15:27:53.998210 1004 solver.cpp:245] Train net output #33: loss/loss12 = 2.19427e-05 (* 0.0454545 = 9.97397e-07 loss) | |
I0407 15:27:53.998224 1004 solver.cpp:245] Train net output #34: loss/loss13 = 2.24047e-05 (* 0.0454545 = 1.0184e-06 loss) | |
I0407 15:27:53.998239 1004 solver.cpp:245] Train net output #35: loss/loss14 = 2.26059e-05 (* 0.0454545 = 1.02754e-06 loss) | |
I0407 15:27:53.998253 1004 solver.cpp:245] Train net output #36: loss/loss15 = 2.17788e-05 (* 0.0454545 = 9.89946e-07 loss) | |
I0407 15:27:53.998267 1004 solver.cpp:245] Train net output #37: loss/loss16 = 2.11157e-05 (* 0.0454545 = 9.59803e-07 loss) | |
I0407 15:27:53.998281 1004 solver.cpp:245] Train net output #38: loss/loss17 = 2.23452e-05 (* 0.0454545 = 1.01569e-06 loss) | |
I0407 15:27:53.998296 1004 solver.cpp:245] Train net output #39: loss/loss18 = 2.26879e-05 (* 0.0454545 = 1.03127e-06 loss) | |
I0407 15:27:53.998309 1004 solver.cpp:245] Train net output #40: loss/loss19 = 2.19054e-05 (* 0.0454545 = 9.95702e-07 loss) | |
I0407 15:27:53.998323 1004 solver.cpp:245] Train net output #41: loss/loss20 = 2.22408e-05 (* 0.0454545 = 1.01095e-06 loss) | |
I0407 15:27:53.998337 1004 solver.cpp:245] Train net output #42: loss/loss21 = 2.23377e-05 (* 0.0454545 = 1.01535e-06 loss) | |
I0407 15:27:53.998350 1004 solver.cpp:245] Train net output #43: loss/loss22 = 2.29114e-05 (* 0.0454545 = 1.04143e-06 loss) | |
I0407 15:27:53.998363 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:27:53.998374 1004 solver.cpp:245] Train net output #45: total_confidence = 1.14637e-05 | |
I0407 15:27:53.998389 1004 sgd_solver.cpp:106] Iteration 10000, lr = 0.00098 | |
I0407 15:28:31.569602 1004 solver.cpp:229] Iteration 10500, loss = 1.09612 | |
I0407 15:28:31.569736 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 15:28:31.569764 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:28:31.569790 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:28:31.569811 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:28:31.569833 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 15:28:31.569854 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 15:28:31.569876 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 15:28:31.569897 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 15:28:31.569917 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:28:31.569937 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:28:31.569957 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:28:31.569977 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:28:31.569998 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:28:31.570020 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:28:31.570041 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:28:31.570062 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:28:31.570086 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:28:31.570107 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:28:31.570127 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:28:31.570147 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:28:31.570166 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:28:31.570186 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:28:31.570214 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.69875 (* 0.0454545 = 0.168125 loss) | |
I0407 15:28:31.570241 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.65319 (* 0.0454545 = 0.166054 loss) | |
I0407 15:28:31.570267 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.62987 (* 0.0454545 = 0.164994 loss) | |
I0407 15:28:31.570291 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.74295 (* 0.0454545 = 0.170134 loss) | |
I0407 15:28:31.570317 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.15689 (* 0.0454545 = 0.143495 loss) | |
I0407 15:28:31.570340 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.91263 (* 0.0454545 = 0.132392 loss) | |
I0407 15:28:31.570365 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.44246 (* 0.0454545 = 0.0655661 loss) | |
I0407 15:28:31.570391 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.0694791 (* 0.0454545 = 0.00315814 loss) | |
I0407 15:28:31.570416 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.025751 (* 0.0454545 = 0.0011705 loss) | |
I0407 15:28:31.570442 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.00836088 (* 0.0454545 = 0.00038004 loss) | |
I0407 15:28:31.570467 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000153795 (* 0.0454545 = 6.9907e-06 loss) | |
I0407 15:28:31.570494 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000143761 (* 0.0454545 = 6.53457e-06 loss) | |
I0407 15:28:31.570523 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000157242 (* 0.0454545 = 7.14739e-06 loss) | |
I0407 15:28:31.570547 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000154476 (* 0.0454545 = 7.02164e-06 loss) | |
I0407 15:28:31.570571 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000145692 (* 0.0454545 = 6.62236e-06 loss) | |
I0407 15:28:31.570596 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000138153 (* 0.0454545 = 6.2797e-06 loss) | |
I0407 15:28:31.570621 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000151246 (* 0.0454545 = 6.8748e-06 loss) | |
I0407 15:28:31.570664 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000140403 (* 0.0454545 = 6.38195e-06 loss) | |
I0407 15:28:31.570690 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000156051 (* 0.0454545 = 7.09322e-06 loss) | |
I0407 15:28:31.570715 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000143611 (* 0.0454545 = 6.52777e-06 loss) | |
I0407 15:28:31.570739 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000149619 (* 0.0454545 = 6.80087e-06 loss) | |
I0407 15:28:31.570763 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00015472 (* 0.0454545 = 7.03273e-06 loss) | |
I0407 15:28:31.570785 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:28:31.570806 1004 solver.cpp:245] Train net output #45: total_confidence = 8.56367e-06 | |
I0407 15:28:31.570830 1004 sgd_solver.cpp:106] Iteration 10500, lr = 0.000979 | |
I0407 15:29:09.542266 1004 solver.cpp:229] Iteration 11000, loss = 1.09345 | |
I0407 15:29:09.542367 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:29:09.542397 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:29:09.542419 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:29:09.542441 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:29:09.542464 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 15:29:09.542484 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 15:29:09.542505 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 15:29:09.542526 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 15:29:09.542548 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:29:09.542570 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:29:09.542590 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:29:09.542610 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:29:09.542630 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:29:09.542650 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:29:09.542671 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:29:09.542693 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:29:09.542716 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:29:09.542737 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:29:09.542758 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:29:09.542778 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:29:09.542799 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:29:09.542820 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:29:09.542846 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.44834 (* 0.0454545 = 0.156743 loss) | |
I0407 15:29:09.542872 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.67013 (* 0.0454545 = 0.166824 loss) | |
I0407 15:29:09.542898 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.76013 (* 0.0454545 = 0.170915 loss) | |
I0407 15:29:09.542925 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.70147 (* 0.0454545 = 0.168249 loss) | |
I0407 15:29:09.542951 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.27998 (* 0.0454545 = 0.14909 loss) | |
I0407 15:29:09.542978 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.85065 (* 0.0454545 = 0.129575 loss) | |
I0407 15:29:09.543002 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.16943 (* 0.0454545 = 0.0531561 loss) | |
I0407 15:29:09.543027 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.713789 (* 0.0454545 = 0.032445 loss) | |
I0407 15:29:09.543052 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0376856 (* 0.0454545 = 0.00171298 loss) | |
I0407 15:29:09.543082 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0166576 (* 0.0454545 = 0.000757165 loss) | |
I0407 15:29:09.543108 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000361706 (* 0.0454545 = 1.64412e-05 loss) | |
I0407 15:29:09.543134 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000344175 (* 0.0454545 = 1.56443e-05 loss) | |
I0407 15:29:09.543161 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000377938 (* 0.0454545 = 1.7179e-05 loss) | |
I0407 15:29:09.543189 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000364827 (* 0.0454545 = 1.6583e-05 loss) | |
I0407 15:29:09.543213 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000384125 (* 0.0454545 = 1.74602e-05 loss) | |
I0407 15:29:09.543239 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000359624 (* 0.0454545 = 1.63466e-05 loss) | |
I0407 15:29:09.543264 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000377954 (* 0.0454545 = 1.71797e-05 loss) | |
I0407 15:29:09.543311 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.00036187 (* 0.0454545 = 1.64486e-05 loss) | |
I0407 15:29:09.543359 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00034919 (* 0.0454545 = 1.58723e-05 loss) | |
I0407 15:29:09.543391 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000366924 (* 0.0454545 = 1.66784e-05 loss) | |
I0407 15:29:09.543417 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000382079 (* 0.0454545 = 1.73672e-05 loss) | |
I0407 15:29:09.543442 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000386835 (* 0.0454545 = 1.75834e-05 loss) | |
I0407 15:29:09.543463 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:29:09.543483 1004 solver.cpp:245] Train net output #45: total_confidence = 7.10282e-06 | |
I0407 15:29:09.543506 1004 sgd_solver.cpp:106] Iteration 11000, lr = 0.000978 | |
I0407 15:29:47.712546 1004 solver.cpp:229] Iteration 11500, loss = 1.09773 | |
I0407 15:29:47.712643 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:29:47.712662 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:29:47.712676 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:29:47.712687 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:29:47.712700 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 15:29:47.712713 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 15:29:47.712724 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.9375 | |
I0407 15:29:47.712736 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 15:29:47.712749 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:29:47.712760 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:29:47.712771 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:29:47.712784 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:29:47.712795 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:29:47.712807 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:29:47.712818 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:29:47.712831 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:29:47.712841 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:29:47.712853 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:29:47.712864 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:29:47.712875 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:29:47.712888 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:29:47.712899 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:29:47.712914 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.58224 (* 0.0454545 = 0.162829 loss) | |
I0407 15:29:47.712929 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.72177 (* 0.0454545 = 0.169171 loss) | |
I0407 15:29:47.712944 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.99654 (* 0.0454545 = 0.181661 loss) | |
I0407 15:29:47.712956 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.78533 (* 0.0454545 = 0.17206 loss) | |
I0407 15:29:47.712970 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.63707 (* 0.0454545 = 0.165321 loss) | |
I0407 15:29:47.712985 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.9199 (* 0.0454545 = 0.132723 loss) | |
I0407 15:29:47.712997 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.828649 (* 0.0454545 = 0.0376659 loss) | |
I0407 15:29:47.713011 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.0934685 (* 0.0454545 = 0.00424857 loss) | |
I0407 15:29:47.713027 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0352727 (* 0.0454545 = 0.00160331 loss) | |
I0407 15:29:47.713040 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0128182 (* 0.0454545 = 0.000582643 loss) | |
I0407 15:29:47.713054 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000324931 (* 0.0454545 = 1.47696e-05 loss) | |
I0407 15:29:47.713069 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000308367 (* 0.0454545 = 1.40167e-05 loss) | |
I0407 15:29:47.713086 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000316296 (* 0.0454545 = 1.43771e-05 loss) | |
I0407 15:29:47.713101 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000326114 (* 0.0454545 = 1.48234e-05 loss) | |
I0407 15:29:47.713115 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000333029 (* 0.0454545 = 1.51377e-05 loss) | |
I0407 15:29:47.713129 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000318595 (* 0.0454545 = 1.44816e-05 loss) | |
I0407 15:29:47.713143 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000313022 (* 0.0454545 = 1.42283e-05 loss) | |
I0407 15:29:47.713174 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000327026 (* 0.0454545 = 1.48648e-05 loss) | |
I0407 15:29:47.713189 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000322194 (* 0.0454545 = 1.46452e-05 loss) | |
I0407 15:29:47.713203 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.00031676 (* 0.0454545 = 1.43982e-05 loss) | |
I0407 15:29:47.713217 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000330045 (* 0.0454545 = 1.5002e-05 loss) | |
I0407 15:29:47.713232 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000309283 (* 0.0454545 = 1.40583e-05 loss) | |
I0407 15:29:47.713243 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:29:47.713255 1004 solver.cpp:245] Train net output #45: total_confidence = 2.45776e-06 | |
I0407 15:29:47.713268 1004 sgd_solver.cpp:106] Iteration 11500, lr = 0.000977 | |
I0407 15:30:25.647348 1004 solver.cpp:229] Iteration 12000, loss = 1.0944 | |
I0407 15:30:25.647470 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 15:30:25.647490 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 15:30:25.647503 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:30:25.647516 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:30:25.647528 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 15:30:25.647547 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 15:30:25.647559 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 15:30:25.647572 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 15:30:25.647583 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0407 15:30:25.647595 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.875 | |
I0407 15:30:25.647608 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:30:25.647619 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:30:25.647631 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:30:25.647644 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:30:25.647655 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:30:25.647667 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:30:25.647680 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:30:25.647691 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:30:25.647702 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:30:25.647714 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:30:25.647725 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:30:25.647737 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:30:25.647753 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.54604 (* 0.0454545 = 0.161184 loss) | |
I0407 15:30:25.647768 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.62753 (* 0.0454545 = 0.164888 loss) | |
I0407 15:30:25.647783 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.87022 (* 0.0454545 = 0.175919 loss) | |
I0407 15:30:25.647796 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.76569 (* 0.0454545 = 0.171168 loss) | |
I0407 15:30:25.647809 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.51177 (* 0.0454545 = 0.159626 loss) | |
I0407 15:30:25.647824 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.98855 (* 0.0454545 = 0.135843 loss) | |
I0407 15:30:25.647837 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.51265 (* 0.0454545 = 0.0687569 loss) | |
I0407 15:30:25.647851 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.0238 (* 0.0454545 = 0.0465363 loss) | |
I0407 15:30:25.647864 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.711869 (* 0.0454545 = 0.0323577 loss) | |
I0407 15:30:25.647878 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.778248 (* 0.0454545 = 0.0353749 loss) | |
I0407 15:30:25.647892 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000832462 (* 0.0454545 = 3.78392e-05 loss) | |
I0407 15:30:25.647908 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000853709 (* 0.0454545 = 3.8805e-05 loss) | |
I0407 15:30:25.647923 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000902312 (* 0.0454545 = 4.10142e-05 loss) | |
I0407 15:30:25.647938 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000861424 (* 0.0454545 = 3.91556e-05 loss) | |
I0407 15:30:25.647951 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000820628 (* 0.0454545 = 3.73013e-05 loss) | |
I0407 15:30:25.647965 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000843624 (* 0.0454545 = 3.83465e-05 loss) | |
I0407 15:30:25.647979 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000899223 (* 0.0454545 = 4.08738e-05 loss) | |
I0407 15:30:25.648006 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000812421 (* 0.0454545 = 3.69282e-05 loss) | |
I0407 15:30:25.648022 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000832213 (* 0.0454545 = 3.78278e-05 loss) | |
I0407 15:30:25.648036 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000879584 (* 0.0454545 = 3.99811e-05 loss) | |
I0407 15:30:25.648049 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000833067 (* 0.0454545 = 3.78667e-05 loss) | |
I0407 15:30:25.648063 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000783768 (* 0.0454545 = 3.56258e-05 loss) | |
I0407 15:30:25.648078 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:30:25.648090 1004 solver.cpp:245] Train net output #45: total_confidence = 6.10795e-06 | |
I0407 15:30:25.648104 1004 sgd_solver.cpp:106] Iteration 12000, lr = 0.000976 | |
I0407 15:31:04.499168 1004 solver.cpp:229] Iteration 12500, loss = 1.09019 | |
I0407 15:31:04.499274 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:31:04.499302 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:31:04.499351 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:31:04.499377 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:31:04.499397 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 15:31:04.499419 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 15:31:04.499441 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 15:31:04.499464 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 15:31:04.499485 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:31:04.499505 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:31:04.499526 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:31:04.499548 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:31:04.499569 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:31:04.499589 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:31:04.499610 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:31:04.499630 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:31:04.499651 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:31:04.499672 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:31:04.499694 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:31:04.499716 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:31:04.499737 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:31:04.499758 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:31:04.499783 1004 solver.cpp:245] Train net output #22: loss/loss01 = 4.04793 (* 0.0454545 = 0.183997 loss) | |
I0407 15:31:04.499809 1004 solver.cpp:245] Train net output #23: loss/loss02 = 4.10752 (* 0.0454545 = 0.186706 loss) | |
I0407 15:31:04.499833 1004 solver.cpp:245] Train net output #24: loss/loss03 = 4.27085 (* 0.0454545 = 0.19413 loss) | |
I0407 15:31:04.499860 1004 solver.cpp:245] Train net output #25: loss/loss04 = 4.00999 (* 0.0454545 = 0.182273 loss) | |
I0407 15:31:04.499886 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.70865 (* 0.0454545 = 0.168575 loss) | |
I0407 15:31:04.499912 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.01634 (* 0.0454545 = 0.137107 loss) | |
I0407 15:31:04.499943 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.86461 (* 0.0454545 = 0.0847548 loss) | |
I0407 15:31:04.499969 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.16664 (* 0.0454545 = 0.0530292 loss) | |
I0407 15:31:04.499992 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.494074 (* 0.0454545 = 0.0224579 loss) | |
I0407 15:31:04.500018 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0418341 (* 0.0454545 = 0.00190155 loss) | |
I0407 15:31:04.500044 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.00157343 (* 0.0454545 = 7.15196e-05 loss) | |
I0407 15:31:04.500069 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00163865 (* 0.0454545 = 7.44842e-05 loss) | |
I0407 15:31:04.500094 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.00165555 (* 0.0454545 = 7.52524e-05 loss) | |
I0407 15:31:04.500119 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00167285 (* 0.0454545 = 7.60388e-05 loss) | |
I0407 15:31:04.500145 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.00167541 (* 0.0454545 = 7.61551e-05 loss) | |
I0407 15:31:04.500172 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.00167719 (* 0.0454545 = 7.6236e-05 loss) | |
I0407 15:31:04.500198 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.00160697 (* 0.0454545 = 7.30439e-05 loss) | |
I0407 15:31:04.500244 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.00168946 (* 0.0454545 = 7.67937e-05 loss) | |
I0407 15:31:04.500270 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00164707 (* 0.0454545 = 7.48668e-05 loss) | |
I0407 15:31:04.500300 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.00163487 (* 0.0454545 = 7.43122e-05 loss) | |
I0407 15:31:04.500326 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.0016789 (* 0.0454545 = 7.63134e-05 loss) | |
I0407 15:31:04.500352 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00168401 (* 0.0454545 = 7.6546e-05 loss) | |
I0407 15:31:04.500373 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:31:04.500393 1004 solver.cpp:245] Train net output #45: total_confidence = 6.09808e-06 | |
I0407 15:31:04.500416 1004 sgd_solver.cpp:106] Iteration 12500, lr = 0.000975 | |
I0407 15:31:42.602500 1004 solver.cpp:229] Iteration 13000, loss = 1.09407 | |
I0407 15:31:42.602602 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:31:42.602625 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:31:42.602638 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:31:42.602651 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 15:31:42.602663 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 15:31:42.602676 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 15:31:42.602687 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 15:31:42.602699 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 15:31:42.602711 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:31:42.602723 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:31:42.602735 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:31:42.602746 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:31:42.602758 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:31:42.602769 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:31:42.602782 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:31:42.602793 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:31:42.602805 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:31:42.602816 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:31:42.602828 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:31:42.602839 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:31:42.602851 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:31:42.602862 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:31:42.602877 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.76973 (* 0.0454545 = 0.171351 loss) | |
I0407 15:31:42.602892 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.62598 (* 0.0454545 = 0.164817 loss) | |
I0407 15:31:42.602905 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.75102 (* 0.0454545 = 0.170501 loss) | |
I0407 15:31:42.602919 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.50008 (* 0.0454545 = 0.159095 loss) | |
I0407 15:31:42.602933 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.21216 (* 0.0454545 = 0.146007 loss) | |
I0407 15:31:42.602947 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.6613 (* 0.0454545 = 0.120968 loss) | |
I0407 15:31:42.602962 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.50505 (* 0.0454545 = 0.0684113 loss) | |
I0407 15:31:42.602974 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.702977 (* 0.0454545 = 0.0319535 loss) | |
I0407 15:31:42.602988 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0522734 (* 0.0454545 = 0.00237606 loss) | |
I0407 15:31:42.603003 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0215582 (* 0.0454545 = 0.000979918 loss) | |
I0407 15:31:42.603018 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000437222 (* 0.0454545 = 1.98737e-05 loss) | |
I0407 15:31:42.603031 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000417766 (* 0.0454545 = 1.89894e-05 loss) | |
I0407 15:31:42.603045 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000416915 (* 0.0454545 = 1.89507e-05 loss) | |
I0407 15:31:42.603060 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000431301 (* 0.0454545 = 1.96046e-05 loss) | |
I0407 15:31:42.603076 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.0004152 (* 0.0454545 = 1.88727e-05 loss) | |
I0407 15:31:42.603091 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000403435 (* 0.0454545 = 1.8338e-05 loss) | |
I0407 15:31:42.603106 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000431892 (* 0.0454545 = 1.96315e-05 loss) | |
I0407 15:31:42.603137 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000445742 (* 0.0454545 = 2.0261e-05 loss) | |
I0407 15:31:42.603152 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000421999 (* 0.0454545 = 1.91818e-05 loss) | |
I0407 15:31:42.603165 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000416329 (* 0.0454545 = 1.89241e-05 loss) | |
I0407 15:31:42.603179 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000419328 (* 0.0454545 = 1.90604e-05 loss) | |
I0407 15:31:42.603193 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000424685 (* 0.0454545 = 1.93039e-05 loss) | |
I0407 15:31:42.603205 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:31:42.603217 1004 solver.cpp:245] Train net output #45: total_confidence = 3.88157e-06 | |
I0407 15:31:42.603230 1004 sgd_solver.cpp:106] Iteration 13000, lr = 0.000974 | |
I0407 15:32:20.470170 1004 solver.cpp:229] Iteration 13500, loss = 1.09126 | |
I0407 15:32:20.470274 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 15:32:20.470304 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:32:20.470326 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:32:20.470360 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 15:32:20.470394 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0407 15:32:20.470417 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 15:32:20.470438 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.5 | |
I0407 15:32:20.470458 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 15:32:20.470480 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:32:20.470502 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:32:20.470522 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:32:20.470542 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:32:20.470563 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:32:20.470583 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:32:20.470603 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:32:20.470625 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:32:20.470649 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:32:20.470669 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:32:20.470686 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:32:20.470706 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:32:20.470727 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:32:20.470748 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:32:20.470774 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.77924 (* 0.0454545 = 0.171784 loss) | |
I0407 15:32:20.470800 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.87938 (* 0.0454545 = 0.176335 loss) | |
I0407 15:32:20.470825 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.87542 (* 0.0454545 = 0.176155 loss) | |
I0407 15:32:20.470850 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.9184 (* 0.0454545 = 0.178109 loss) | |
I0407 15:32:20.470876 1004 solver.cpp:245] Train net output #26: loss/loss05 = 4.03897 (* 0.0454545 = 0.18359 loss) | |
I0407 15:32:20.470902 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.18887 (* 0.0454545 = 0.144949 loss) | |
I0407 15:32:20.470928 1004 solver.cpp:245] Train net output #28: loss/loss07 = 2.49504 (* 0.0454545 = 0.113411 loss) | |
I0407 15:32:20.470954 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.09797 (* 0.0454545 = 0.0499075 loss) | |
I0407 15:32:20.470978 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.53564 (* 0.0454545 = 0.0243473 loss) | |
I0407 15:32:20.471004 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0329046 (* 0.0454545 = 0.00149566 loss) | |
I0407 15:32:20.471029 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.00154386 (* 0.0454545 = 7.01756e-05 loss) | |
I0407 15:32:20.471055 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00147897 (* 0.0454545 = 6.72259e-05 loss) | |
I0407 15:32:20.471084 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.00158716 (* 0.0454545 = 7.21435e-05 loss) | |
I0407 15:32:20.471110 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00163997 (* 0.0454545 = 7.45442e-05 loss) | |
I0407 15:32:20.471135 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.0015397 (* 0.0454545 = 6.99865e-05 loss) | |
I0407 15:32:20.471161 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.00153874 (* 0.0454545 = 6.99428e-05 loss) | |
I0407 15:32:20.471186 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.00156802 (* 0.0454545 = 7.12737e-05 loss) | |
I0407 15:32:20.471233 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.00159929 (* 0.0454545 = 7.26949e-05 loss) | |
I0407 15:32:20.471261 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00159611 (* 0.0454545 = 7.25505e-05 loss) | |
I0407 15:32:20.471287 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.00149187 (* 0.0454545 = 6.78121e-05 loss) | |
I0407 15:32:20.471312 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.0015883 (* 0.0454545 = 7.21953e-05 loss) | |
I0407 15:32:20.471354 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00154684 (* 0.0454545 = 7.0311e-05 loss) | |
I0407 15:32:20.471376 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:32:20.471401 1004 solver.cpp:245] Train net output #45: total_confidence = 1.47773e-05 | |
I0407 15:32:20.471424 1004 sgd_solver.cpp:106] Iteration 13500, lr = 0.000973 | |
I0407 15:32:58.469681 1004 solver.cpp:229] Iteration 14000, loss = 1.09014 | |
I0407 15:32:58.469801 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 15:32:58.469830 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:32:58.469856 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 15:32:58.469885 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 15:32:58.469907 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 15:32:58.469929 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 15:32:58.469954 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 15:32:58.469976 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 15:32:58.469997 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:32:58.470018 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:32:58.470039 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:32:58.470059 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:32:58.470085 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:32:58.470108 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:32:58.470129 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:32:58.470150 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:32:58.470171 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:32:58.470191 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:32:58.470212 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:32:58.470232 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:32:58.470254 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:32:58.470278 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:32:58.470304 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.82927 (* 0.0454545 = 0.174058 loss) | |
I0407 15:32:58.470331 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.84323 (* 0.0454545 = 0.174692 loss) | |
I0407 15:32:58.470356 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.83099 (* 0.0454545 = 0.174136 loss) | |
I0407 15:32:58.470382 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.54443 (* 0.0454545 = 0.16111 loss) | |
I0407 15:32:58.470407 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.64535 (* 0.0454545 = 0.165698 loss) | |
I0407 15:32:58.470432 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.8695 (* 0.0454545 = 0.130432 loss) | |
I0407 15:32:58.470456 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.76677 (* 0.0454545 = 0.0803078 loss) | |
I0407 15:32:58.470482 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.500451 (* 0.0454545 = 0.0227478 loss) | |
I0407 15:32:58.470509 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.447555 (* 0.0454545 = 0.0203434 loss) | |
I0407 15:32:58.470535 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0326539 (* 0.0454545 = 0.00148427 loss) | |
I0407 15:32:58.470561 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.00126291 (* 0.0454545 = 5.74051e-05 loss) | |
I0407 15:32:58.470587 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00127978 (* 0.0454545 = 5.81716e-05 loss) | |
I0407 15:32:58.470613 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.00127716 (* 0.0454545 = 5.80528e-05 loss) | |
I0407 15:32:58.470638 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00124038 (* 0.0454545 = 5.6381e-05 loss) | |
I0407 15:32:58.470662 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.00136144 (* 0.0454545 = 6.18834e-05 loss) | |
I0407 15:32:58.470688 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.00130054 (* 0.0454545 = 5.91154e-05 loss) | |
I0407 15:32:58.470713 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.00132282 (* 0.0454545 = 6.01284e-05 loss) | |
I0407 15:32:58.470757 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.00129568 (* 0.0454545 = 5.88944e-05 loss) | |
I0407 15:32:58.470784 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00132937 (* 0.0454545 = 6.04258e-05 loss) | |
I0407 15:32:58.470811 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.00133025 (* 0.0454545 = 6.04657e-05 loss) | |
I0407 15:32:58.470837 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00135896 (* 0.0454545 = 6.1771e-05 loss) | |
I0407 15:32:58.470865 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00128273 (* 0.0454545 = 5.83059e-05 loss) | |
I0407 15:32:58.470885 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:32:58.470906 1004 solver.cpp:245] Train net output #45: total_confidence = 1.78623e-05 | |
I0407 15:32:58.470932 1004 sgd_solver.cpp:106] Iteration 14000, lr = 0.000972 | |
I0407 15:33:36.353240 1004 solver.cpp:229] Iteration 14500, loss = 1.08598 | |
I0407 15:33:36.353338 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 15:33:36.353356 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:33:36.353370 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:33:36.353384 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 15:33:36.353395 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 15:33:36.353407 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 15:33:36.353420 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 15:33:36.353431 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 15:33:36.353443 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:33:36.353456 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 15:33:36.353467 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:33:36.353479 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:33:36.353492 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:33:36.353502 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:33:36.353514 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:33:36.353526 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:33:36.353538 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:33:36.353549 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:33:36.353561 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:33:36.353574 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:33:36.353585 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:33:36.353596 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:33:36.353612 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.50985 (* 0.0454545 = 0.159538 loss) | |
I0407 15:33:36.353626 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.73097 (* 0.0454545 = 0.16959 loss) | |
I0407 15:33:36.353641 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.53435 (* 0.0454545 = 0.160652 loss) | |
I0407 15:33:36.353654 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.80271 (* 0.0454545 = 0.17285 loss) | |
I0407 15:33:36.353670 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.47641 (* 0.0454545 = 0.158019 loss) | |
I0407 15:33:36.353684 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.73994 (* 0.0454545 = 0.124543 loss) | |
I0407 15:33:36.353698 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.38175 (* 0.0454545 = 0.062807 loss) | |
I0407 15:33:36.353711 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.384979 (* 0.0454545 = 0.0174991 loss) | |
I0407 15:33:36.353725 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.372984 (* 0.0454545 = 0.0169538 loss) | |
I0407 15:33:36.353739 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.400717 (* 0.0454545 = 0.0182144 loss) | |
I0407 15:33:36.353754 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000189159 (* 0.0454545 = 8.59816e-06 loss) | |
I0407 15:33:36.353768 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000180433 (* 0.0454545 = 8.20149e-06 loss) | |
I0407 15:33:36.353782 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000180726 (* 0.0454545 = 8.21483e-06 loss) | |
I0407 15:33:36.353796 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000185138 (* 0.0454545 = 8.41537e-06 loss) | |
I0407 15:33:36.353811 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.00018514 (* 0.0454545 = 8.41543e-06 loss) | |
I0407 15:33:36.353826 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000192635 (* 0.0454545 = 8.75612e-06 loss) | |
I0407 15:33:36.353839 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000191507 (* 0.0454545 = 8.70488e-06 loss) | |
I0407 15:33:36.353870 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000183933 (* 0.0454545 = 8.36057e-06 loss) | |
I0407 15:33:36.353886 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000183102 (* 0.0454545 = 8.32284e-06 loss) | |
I0407 15:33:36.353900 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000183928 (* 0.0454545 = 8.36036e-06 loss) | |
I0407 15:33:36.353915 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000173287 (* 0.0454545 = 7.87667e-06 loss) | |
I0407 15:33:36.353929 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00018814 (* 0.0454545 = 8.5518e-06 loss) | |
I0407 15:33:36.353941 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:33:36.353953 1004 solver.cpp:245] Train net output #45: total_confidence = 1.86293e-06 | |
I0407 15:33:36.353965 1004 sgd_solver.cpp:106] Iteration 14500, lr = 0.000971 | |
I0407 15:34:14.105677 1004 solver.cpp:338] Iteration 15000, Testing net (#0) | |
I0407 15:34:22.024494 1004 solver.cpp:393] Test loss: 0.992694 | |
I0407 15:34:22.024539 1004 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.004 | |
I0407 15:34:22.024554 1004 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.124 | |
I0407 15:34:22.024567 1004 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.091 | |
I0407 15:34:22.024580 1004 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.09 | |
I0407 15:34:22.024590 1004 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.212 | |
I0407 15:34:22.024602 1004 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.501 | |
I0407 15:34:22.024613 1004 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0407 15:34:22.024626 1004 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 15:34:22.024636 1004 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 15:34:22.024648 1004 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 15:34:22.024659 1004 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 15:34:22.024670 1004 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 15:34:22.024682 1004 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 15:34:22.024693 1004 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 15:34:22.024704 1004 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 15:34:22.024715 1004 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 15:34:22.024725 1004 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 15:34:22.024737 1004 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 15:34:22.024749 1004 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 15:34:22.024760 1004 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 15:34:22.024770 1004 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 15:34:22.024780 1004 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 15:34:22.024796 1004 solver.cpp:406] Test net output #22: loss/loss01 = 3.39904 (* 0.0454545 = 0.154502 loss) | |
I0407 15:34:22.024809 1004 solver.cpp:406] Test net output #23: loss/loss02 = 3.54274 (* 0.0454545 = 0.161034 loss) | |
I0407 15:34:22.024823 1004 solver.cpp:406] Test net output #24: loss/loss03 = 3.65737 (* 0.0454545 = 0.166244 loss) | |
I0407 15:34:22.024837 1004 solver.cpp:406] Test net output #25: loss/loss04 = 3.62152 (* 0.0454545 = 0.164615 loss) | |
I0407 15:34:22.024850 1004 solver.cpp:406] Test net output #26: loss/loss05 = 3.51317 (* 0.0454545 = 0.15969 loss) | |
I0407 15:34:22.024863 1004 solver.cpp:406] Test net output #27: loss/loss06 = 2.53455 (* 0.0454545 = 0.115207 loss) | |
I0407 15:34:22.024876 1004 solver.cpp:406] Test net output #28: loss/loss07 = 1.00764 (* 0.0454545 = 0.0458019 loss) | |
I0407 15:34:22.024889 1004 solver.cpp:406] Test net output #29: loss/loss08 = 0.360382 (* 0.0454545 = 0.016381 loss) | |
I0407 15:34:22.024904 1004 solver.cpp:406] Test net output #30: loss/loss09 = 0.107153 (* 0.0454545 = 0.0048706 loss) | |
I0407 15:34:22.024919 1004 solver.cpp:406] Test net output #31: loss/loss10 = 0.052984 (* 0.0454545 = 0.00240836 loss) | |
I0407 15:34:22.024935 1004 solver.cpp:406] Test net output #32: loss/loss11 = 0.00358202 (* 0.0454545 = 0.000162819 loss) | |
I0407 15:34:22.024948 1004 solver.cpp:406] Test net output #33: loss/loss12 = 0.00353524 (* 0.0454545 = 0.000160693 loss) | |
I0407 15:34:22.024962 1004 solver.cpp:406] Test net output #34: loss/loss13 = 0.00353932 (* 0.0454545 = 0.000160878 loss) | |
I0407 15:34:22.024976 1004 solver.cpp:406] Test net output #35: loss/loss14 = 0.00355675 (* 0.0454545 = 0.000161671 loss) | |
I0407 15:34:22.024989 1004 solver.cpp:406] Test net output #36: loss/loss15 = 0.00357787 (* 0.0454545 = 0.00016263 loss) | |
I0407 15:34:22.025003 1004 solver.cpp:406] Test net output #37: loss/loss16 = 0.00357851 (* 0.0454545 = 0.000162659 loss) | |
I0407 15:34:22.025017 1004 solver.cpp:406] Test net output #38: loss/loss17 = 0.00355546 (* 0.0454545 = 0.000161612 loss) | |
I0407 15:34:22.025065 1004 solver.cpp:406] Test net output #39: loss/loss18 = 0.00356064 (* 0.0454545 = 0.000161847 loss) | |
I0407 15:34:22.025080 1004 solver.cpp:406] Test net output #40: loss/loss19 = 0.00356737 (* 0.0454545 = 0.000162153 loss) | |
I0407 15:34:22.025094 1004 solver.cpp:406] Test net output #41: loss/loss20 = 0.00355631 (* 0.0454545 = 0.00016165 loss) | |
I0407 15:34:22.025109 1004 solver.cpp:406] Test net output #42: loss/loss21 = 0.00357018 (* 0.0454545 = 0.000162281 loss) | |
I0407 15:34:22.025121 1004 solver.cpp:406] Test net output #43: loss/loss22 = 0.00354827 (* 0.0454545 = 0.000161285 loss) | |
I0407 15:34:22.025133 1004 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0407 15:34:22.025146 1004 solver.cpp:406] Test net output #45: total_confidence = 2.68311e-06 | |
I0407 15:34:22.047554 1004 solver.cpp:229] Iteration 15000, loss = 1.08425 | |
I0407 15:34:22.047582 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:34:22.047597 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:34:22.047610 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:34:22.047621 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:34:22.047633 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 15:34:22.047644 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 15:34:22.047657 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 15:34:22.047667 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 15:34:22.047679 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:34:22.047694 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:34:22.047708 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:34:22.047719 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:34:22.047730 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:34:22.047741 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:34:22.047754 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:34:22.047765 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:34:22.047776 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:34:22.047787 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:34:22.047799 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:34:22.047811 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:34:22.047821 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:34:22.047833 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:34:22.047847 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.87604 (* 0.0454545 = 0.176184 loss) | |
I0407 15:34:22.047862 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.81071 (* 0.0454545 = 0.173214 loss) | |
I0407 15:34:22.047875 1004 solver.cpp:245] Train net output #24: loss/loss03 = 4.06766 (* 0.0454545 = 0.184894 loss) | |
I0407 15:34:22.047888 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.89003 (* 0.0454545 = 0.17682 loss) | |
I0407 15:34:22.047902 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.52966 (* 0.0454545 = 0.160439 loss) | |
I0407 15:34:22.047915 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.522 (* 0.0454545 = 0.114636 loss) | |
I0407 15:34:22.047930 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.94924 (* 0.0454545 = 0.0886019 loss) | |
I0407 15:34:22.047942 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.406369 (* 0.0454545 = 0.0184713 loss) | |
I0407 15:34:22.047956 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.429681 (* 0.0454545 = 0.019531 loss) | |
I0407 15:34:22.047971 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0183738 (* 0.0454545 = 0.000835174 loss) | |
I0407 15:34:22.048002 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000468383 (* 0.0454545 = 2.12902e-05 loss) | |
I0407 15:34:22.048017 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000459442 (* 0.0454545 = 2.08837e-05 loss) | |
I0407 15:34:22.048032 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000461319 (* 0.0454545 = 2.0969e-05 loss) | |
I0407 15:34:22.048045 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000450346 (* 0.0454545 = 2.04703e-05 loss) | |
I0407 15:34:22.048059 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000454445 (* 0.0454545 = 2.06566e-05 loss) | |
I0407 15:34:22.048076 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000453403 (* 0.0454545 = 2.06092e-05 loss) | |
I0407 15:34:22.048090 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000449861 (* 0.0454545 = 2.04482e-05 loss) | |
I0407 15:34:22.048105 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000451919 (* 0.0454545 = 2.05418e-05 loss) | |
I0407 15:34:22.048118 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000460572 (* 0.0454545 = 2.09351e-05 loss) | |
I0407 15:34:22.048132 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000465239 (* 0.0454545 = 2.11472e-05 loss) | |
I0407 15:34:22.048146 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000443347 (* 0.0454545 = 2.01521e-05 loss) | |
I0407 15:34:22.048161 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000427002 (* 0.0454545 = 1.94092e-05 loss) | |
I0407 15:34:22.048172 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:34:22.048183 1004 solver.cpp:245] Train net output #45: total_confidence = 2.6298e-05 | |
I0407 15:34:22.048198 1004 sgd_solver.cpp:106] Iteration 15000, lr = 0.00097 | |
I0407 15:34:59.622711 1004 solver.cpp:229] Iteration 15500, loss = 1.08939 | |
I0407 15:34:59.622900 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:34:59.622921 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:34:59.622934 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 15:34:59.622947 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 15:34:59.622959 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0407 15:34:59.622972 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 15:34:59.622983 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 15:34:59.622995 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 15:34:59.623008 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:34:59.623019 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 15:34:59.623030 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:34:59.623042 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:34:59.623054 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:34:59.623065 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:34:59.623077 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:34:59.623088 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:34:59.623100 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:34:59.623111 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:34:59.623124 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:34:59.623136 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:34:59.623147 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:34:59.623159 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:34:59.623174 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.78074 (* 0.0454545 = 0.171852 loss) | |
I0407 15:34:59.623188 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.76763 (* 0.0454545 = 0.171256 loss) | |
I0407 15:34:59.623203 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.88491 (* 0.0454545 = 0.176587 loss) | |
I0407 15:34:59.623216 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.90229 (* 0.0454545 = 0.177377 loss) | |
I0407 15:34:59.623230 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.85611 (* 0.0454545 = 0.175278 loss) | |
I0407 15:34:59.623245 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.01755 (* 0.0454545 = 0.137161 loss) | |
I0407 15:34:59.623257 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.60777 (* 0.0454545 = 0.0730804 loss) | |
I0407 15:34:59.623271 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.899085 (* 0.0454545 = 0.0408675 loss) | |
I0407 15:34:59.623286 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.416061 (* 0.0454545 = 0.0189118 loss) | |
I0407 15:34:59.623299 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.528219 (* 0.0454545 = 0.0240099 loss) | |
I0407 15:34:59.623313 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000716398 (* 0.0454545 = 3.25636e-05 loss) | |
I0407 15:34:59.623348 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000687722 (* 0.0454545 = 3.12601e-05 loss) | |
I0407 15:34:59.623363 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000713235 (* 0.0454545 = 3.24198e-05 loss) | |
I0407 15:34:59.623378 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000700056 (* 0.0454545 = 3.18207e-05 loss) | |
I0407 15:34:59.623392 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000730427 (* 0.0454545 = 3.32012e-05 loss) | |
I0407 15:34:59.623406 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000698136 (* 0.0454545 = 3.17335e-05 loss) | |
I0407 15:34:59.623420 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000729347 (* 0.0454545 = 3.31522e-05 loss) | |
I0407 15:34:59.623450 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000737804 (* 0.0454545 = 3.35366e-05 loss) | |
I0407 15:34:59.623464 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000701054 (* 0.0454545 = 3.18661e-05 loss) | |
I0407 15:34:59.623479 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000728026 (* 0.0454545 = 3.30921e-05 loss) | |
I0407 15:34:59.623493 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000713765 (* 0.0454545 = 3.24439e-05 loss) | |
I0407 15:34:59.623507 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000718554 (* 0.0454545 = 3.26616e-05 loss) | |
I0407 15:34:59.623519 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:34:59.623531 1004 solver.cpp:245] Train net output #45: total_confidence = 1.02379e-05 | |
I0407 15:34:59.623544 1004 sgd_solver.cpp:106] Iteration 15500, lr = 0.000969 | |
I0407 15:35:37.432926 1004 solver.cpp:229] Iteration 16000, loss = 1.09374 | |
I0407 15:35:37.433045 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:35:37.433066 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:35:37.433079 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 15:35:37.433092 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:35:37.433104 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 15:35:37.433116 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 15:35:37.433128 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 15:35:37.433140 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 15:35:37.433152 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:35:37.433163 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:35:37.433176 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:35:37.433187 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:35:37.433198 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:35:37.433210 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:35:37.433221 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:35:37.433233 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:35:37.433244 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:35:37.433256 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:35:37.433269 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:35:37.433279 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:35:37.433291 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:35:37.433302 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:35:37.433318 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.70857 (* 0.0454545 = 0.168572 loss) | |
I0407 15:35:37.433333 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.56276 (* 0.0454545 = 0.161944 loss) | |
I0407 15:35:37.433347 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.94607 (* 0.0454545 = 0.179367 loss) | |
I0407 15:35:37.433360 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.90615 (* 0.0454545 = 0.177552 loss) | |
I0407 15:35:37.433374 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.37735 (* 0.0454545 = 0.153516 loss) | |
I0407 15:35:37.433387 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.7141 (* 0.0454545 = 0.123368 loss) | |
I0407 15:35:37.433401 1004 solver.cpp:245] Train net output #28: loss/loss07 = 2.08184 (* 0.0454545 = 0.0946292 loss) | |
I0407 15:35:37.433415 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.09797 (* 0.0454545 = 0.0499076 loss) | |
I0407 15:35:37.433431 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0561588 (* 0.0454545 = 0.00255267 loss) | |
I0407 15:35:37.433445 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0205622 (* 0.0454545 = 0.000934643 loss) | |
I0407 15:35:37.433459 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000595901 (* 0.0454545 = 2.70864e-05 loss) | |
I0407 15:35:37.433473 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000570202 (* 0.0454545 = 2.59183e-05 loss) | |
I0407 15:35:37.433487 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000597522 (* 0.0454545 = 2.71601e-05 loss) | |
I0407 15:35:37.433501 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000607181 (* 0.0454545 = 2.75991e-05 loss) | |
I0407 15:35:37.433516 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000601167 (* 0.0454545 = 2.73258e-05 loss) | |
I0407 15:35:37.433529 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000571918 (* 0.0454545 = 2.59963e-05 loss) | |
I0407 15:35:37.433543 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000585181 (* 0.0454545 = 2.65992e-05 loss) | |
I0407 15:35:37.433575 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000610734 (* 0.0454545 = 2.77606e-05 loss) | |
I0407 15:35:37.433590 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000611521 (* 0.0454545 = 2.77964e-05 loss) | |
I0407 15:35:37.433604 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.00059102 (* 0.0454545 = 2.68646e-05 loss) | |
I0407 15:35:37.433619 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00060173 (* 0.0454545 = 2.73514e-05 loss) | |
I0407 15:35:37.433632 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000591761 (* 0.0454545 = 2.68982e-05 loss) | |
I0407 15:35:37.433645 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:35:37.433656 1004 solver.cpp:245] Train net output #45: total_confidence = 1.67051e-06 | |
I0407 15:35:37.433670 1004 sgd_solver.cpp:106] Iteration 16000, lr = 0.000968 | |
I0407 15:36:15.820094 1004 solver.cpp:229] Iteration 16500, loss = 1.09274 | |
I0407 15:36:15.820194 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 15:36:15.820212 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:36:15.820225 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 15:36:15.820240 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 15:36:15.820253 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 15:36:15.820266 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 15:36:15.820278 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 15:36:15.820289 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 15:36:15.820302 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:36:15.820313 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:36:15.820325 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:36:15.820338 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:36:15.820349 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:36:15.820360 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:36:15.820372 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:36:15.820384 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:36:15.820395 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:36:15.820406 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:36:15.820418 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:36:15.820430 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:36:15.820441 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:36:15.820453 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:36:15.820469 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.55986 (* 0.0454545 = 0.161812 loss) | |
I0407 15:36:15.820484 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.70504 (* 0.0454545 = 0.168411 loss) | |
I0407 15:36:15.820498 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.78317 (* 0.0454545 = 0.171962 loss) | |
I0407 15:36:15.820513 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.87919 (* 0.0454545 = 0.176327 loss) | |
I0407 15:36:15.820526 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.52194 (* 0.0454545 = 0.160088 loss) | |
I0407 15:36:15.820540 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.78528 (* 0.0454545 = 0.126604 loss) | |
I0407 15:36:15.820554 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.99827 (* 0.0454545 = 0.0908304 loss) | |
I0407 15:36:15.820569 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.817571 (* 0.0454545 = 0.0371623 loss) | |
I0407 15:36:15.820582 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.491203 (* 0.0454545 = 0.0223274 loss) | |
I0407 15:36:15.820596 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0477316 (* 0.0454545 = 0.00216962 loss) | |
I0407 15:36:15.820611 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.0015289 (* 0.0454545 = 6.94956e-05 loss) | |
I0407 15:36:15.820626 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00145236 (* 0.0454545 = 6.60162e-05 loss) | |
I0407 15:36:15.820641 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.0015774 (* 0.0454545 = 7.16998e-05 loss) | |
I0407 15:36:15.820654 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00153851 (* 0.0454545 = 6.99323e-05 loss) | |
I0407 15:36:15.820668 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.00150353 (* 0.0454545 = 6.83422e-05 loss) | |
I0407 15:36:15.820683 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.0015191 (* 0.0454545 = 6.90498e-05 loss) | |
I0407 15:36:15.820698 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.00149292 (* 0.0454545 = 6.78601e-05 loss) | |
I0407 15:36:15.820729 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.00151446 (* 0.0454545 = 6.88393e-05 loss) | |
I0407 15:36:15.820744 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00153899 (* 0.0454545 = 6.9954e-05 loss) | |
I0407 15:36:15.820758 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.00154207 (* 0.0454545 = 7.00943e-05 loss) | |
I0407 15:36:15.820772 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00148372 (* 0.0454545 = 6.74418e-05 loss) | |
I0407 15:36:15.820786 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00151576 (* 0.0454545 = 6.88983e-05 loss) | |
I0407 15:36:15.820798 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:36:15.820809 1004 solver.cpp:245] Train net output #45: total_confidence = 2.06633e-06 | |
I0407 15:36:15.820822 1004 sgd_solver.cpp:106] Iteration 16500, lr = 0.000967 | |
I0407 15:36:54.689404 1004 solver.cpp:229] Iteration 17000, loss = 1.08644 | |
I0407 15:36:54.689512 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 15:36:54.689533 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:36:54.689546 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:36:54.689559 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:36:54.689571 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 15:36:54.689584 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 15:36:54.689595 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 15:36:54.689609 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 15:36:54.689620 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:36:54.689631 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:36:54.689643 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:36:54.689654 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:36:54.689666 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:36:54.689678 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:36:54.689689 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:36:54.689702 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:36:54.689713 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:36:54.689724 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:36:54.689735 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:36:54.689748 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:36:54.689759 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:36:54.689770 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:36:54.689786 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.79318 (* 0.0454545 = 0.172417 loss) | |
I0407 15:36:54.689800 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.91659 (* 0.0454545 = 0.178027 loss) | |
I0407 15:36:54.689815 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.94018 (* 0.0454545 = 0.179099 loss) | |
I0407 15:36:54.689828 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.94847 (* 0.0454545 = 0.179476 loss) | |
I0407 15:36:54.689842 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.6449 (* 0.0454545 = 0.165677 loss) | |
I0407 15:36:54.689857 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.17989 (* 0.0454545 = 0.14454 loss) | |
I0407 15:36:54.689870 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.73828 (* 0.0454545 = 0.0790128 loss) | |
I0407 15:36:54.689884 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.723993 (* 0.0454545 = 0.0329088 loss) | |
I0407 15:36:54.689898 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0447649 (* 0.0454545 = 0.00203477 loss) | |
I0407 15:36:54.689913 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0206297 (* 0.0454545 = 0.000937714 loss) | |
I0407 15:36:54.689930 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000394759 (* 0.0454545 = 1.79436e-05 loss) | |
I0407 15:36:54.689945 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000390721 (* 0.0454545 = 1.776e-05 loss) | |
I0407 15:36:54.689960 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000409754 (* 0.0454545 = 1.86252e-05 loss) | |
I0407 15:36:54.689975 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000413262 (* 0.0454545 = 1.87847e-05 loss) | |
I0407 15:36:54.689988 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.0004248 (* 0.0454545 = 1.93091e-05 loss) | |
I0407 15:36:54.690002 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000394169 (* 0.0454545 = 1.79168e-05 loss) | |
I0407 15:36:54.690016 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000391947 (* 0.0454545 = 1.78158e-05 loss) | |
I0407 15:36:54.690047 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000416827 (* 0.0454545 = 1.89467e-05 loss) | |
I0407 15:36:54.690062 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00040785 (* 0.0454545 = 1.85386e-05 loss) | |
I0407 15:36:54.690076 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000405886 (* 0.0454545 = 1.84494e-05 loss) | |
I0407 15:36:54.690090 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000422988 (* 0.0454545 = 1.92267e-05 loss) | |
I0407 15:36:54.690105 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000406121 (* 0.0454545 = 1.846e-05 loss) | |
I0407 15:36:54.690117 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:36:54.690129 1004 solver.cpp:245] Train net output #45: total_confidence = 2.91666e-05 | |
I0407 15:36:54.690142 1004 sgd_solver.cpp:106] Iteration 17000, lr = 0.000966 | |
I0407 15:37:33.037350 1004 solver.cpp:229] Iteration 17500, loss = 1.08365 | |
I0407 15:37:33.037482 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:37:33.037502 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:37:33.037515 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:37:33.037528 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 15:37:33.037539 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 15:37:33.037551 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.1875 | |
I0407 15:37:33.037564 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 15:37:33.037575 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 15:37:33.037587 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.8125 | |
I0407 15:37:33.037600 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 15:37:33.037611 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:37:33.037622 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:37:33.037634 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:37:33.037645 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:37:33.037657 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:37:33.037669 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:37:33.037680 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:37:33.037691 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:37:33.037703 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:37:33.037714 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:37:33.037726 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:37:33.037737 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:37:33.037753 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.80508 (* 0.0454545 = 0.172958 loss) | |
I0407 15:37:33.037768 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.7154 (* 0.0454545 = 0.168882 loss) | |
I0407 15:37:33.037782 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.84135 (* 0.0454545 = 0.174607 loss) | |
I0407 15:37:33.037796 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.85287 (* 0.0454545 = 0.17513 loss) | |
I0407 15:37:33.037811 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.58895 (* 0.0454545 = 0.163134 loss) | |
I0407 15:37:33.037823 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.7299 (* 0.0454545 = 0.169541 loss) | |
I0407 15:37:33.037837 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.71479 (* 0.0454545 = 0.0779449 loss) | |
I0407 15:37:33.037852 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.09131 (* 0.0454545 = 0.0496051 loss) | |
I0407 15:37:33.037865 1004 solver.cpp:245] Train net output #30: loss/loss09 = 1.19238 (* 0.0454545 = 0.0541993 loss) | |
I0407 15:37:33.037879 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.409212 (* 0.0454545 = 0.0186005 loss) | |
I0407 15:37:33.037894 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000633054 (* 0.0454545 = 2.87752e-05 loss) | |
I0407 15:37:33.037909 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000639348 (* 0.0454545 = 2.90613e-05 loss) | |
I0407 15:37:33.037926 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000609616 (* 0.0454545 = 2.77098e-05 loss) | |
I0407 15:37:33.037940 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00061596 (* 0.0454545 = 2.79982e-05 loss) | |
I0407 15:37:33.037955 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000610567 (* 0.0454545 = 2.7753e-05 loss) | |
I0407 15:37:33.037969 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000623147 (* 0.0454545 = 2.83248e-05 loss) | |
I0407 15:37:33.037983 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000649452 (* 0.0454545 = 2.95205e-05 loss) | |
I0407 15:37:33.038012 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000633214 (* 0.0454545 = 2.87825e-05 loss) | |
I0407 15:37:33.038027 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000642867 (* 0.0454545 = 2.92212e-05 loss) | |
I0407 15:37:33.038040 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000593523 (* 0.0454545 = 2.69783e-05 loss) | |
I0407 15:37:33.038054 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000646974 (* 0.0454545 = 2.94079e-05 loss) | |
I0407 15:37:33.038069 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000624764 (* 0.0454545 = 2.83984e-05 loss) | |
I0407 15:37:33.038080 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:37:33.038092 1004 solver.cpp:245] Train net output #45: total_confidence = 2.48492e-06 | |
I0407 15:37:33.038105 1004 sgd_solver.cpp:106] Iteration 17500, lr = 0.000965 | |
I0407 15:38:11.956302 1004 solver.cpp:229] Iteration 18000, loss = 1.07854 | |
I0407 15:38:11.956413 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:38:11.956431 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:38:11.956444 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:38:11.956456 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 15:38:11.956468 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 15:38:11.956480 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 15:38:11.956492 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.5 | |
I0407 15:38:11.956504 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 15:38:11.956516 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:38:11.956527 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:38:11.956539 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:38:11.956550 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:38:11.956562 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:38:11.956574 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:38:11.956585 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:38:11.956596 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:38:11.956609 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:38:11.956619 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:38:11.956631 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:38:11.956642 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:38:11.956655 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:38:11.956665 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:38:11.956681 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.35982 (* 0.0454545 = 0.152719 loss) | |
I0407 15:38:11.956696 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.53419 (* 0.0454545 = 0.160645 loss) | |
I0407 15:38:11.956709 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.59371 (* 0.0454545 = 0.163351 loss) | |
I0407 15:38:11.956723 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.50852 (* 0.0454545 = 0.159478 loss) | |
I0407 15:38:11.956737 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.18566 (* 0.0454545 = 0.144803 loss) | |
I0407 15:38:11.956750 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.25175 (* 0.0454545 = 0.147807 loss) | |
I0407 15:38:11.956764 1004 solver.cpp:245] Train net output #28: loss/loss07 = 2.35856 (* 0.0454545 = 0.107207 loss) | |
I0407 15:38:11.956779 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.06985 (* 0.0454545 = 0.0486296 loss) | |
I0407 15:38:11.956792 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.401095 (* 0.0454545 = 0.0182316 loss) | |
I0407 15:38:11.956806 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0277029 (* 0.0454545 = 0.00125922 loss) | |
I0407 15:38:11.956820 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000607471 (* 0.0454545 = 2.76123e-05 loss) | |
I0407 15:38:11.956835 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000611291 (* 0.0454545 = 2.77859e-05 loss) | |
I0407 15:38:11.956850 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000627329 (* 0.0454545 = 2.85149e-05 loss) | |
I0407 15:38:11.956863 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000579516 (* 0.0454545 = 2.63416e-05 loss) | |
I0407 15:38:11.956877 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000614811 (* 0.0454545 = 2.7946e-05 loss) | |
I0407 15:38:11.956892 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000566081 (* 0.0454545 = 2.5731e-05 loss) | |
I0407 15:38:11.956905 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000582016 (* 0.0454545 = 2.64553e-05 loss) | |
I0407 15:38:11.956939 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000616682 (* 0.0454545 = 2.8031e-05 loss) | |
I0407 15:38:11.956954 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000579724 (* 0.0454545 = 2.63511e-05 loss) | |
I0407 15:38:11.956969 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000595979 (* 0.0454545 = 2.70899e-05 loss) | |
I0407 15:38:11.956982 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000586387 (* 0.0454545 = 2.6654e-05 loss) | |
I0407 15:38:11.956996 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000594903 (* 0.0454545 = 2.7041e-05 loss) | |
I0407 15:38:11.957008 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:38:11.957020 1004 solver.cpp:245] Train net output #45: total_confidence = 8.26735e-06 | |
I0407 15:38:11.957033 1004 sgd_solver.cpp:106] Iteration 18000, lr = 0.000964 | |
I0407 15:38:51.017987 1004 solver.cpp:229] Iteration 18500, loss = 1.08661 | |
I0407 15:38:51.018097 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:38:51.018116 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:38:51.018129 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:38:51.018142 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:38:51.018154 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 15:38:51.018167 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 15:38:51.018178 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 15:38:51.018190 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 15:38:51.018203 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:38:51.018214 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:38:51.018226 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:38:51.018237 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:38:51.018249 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:38:51.018261 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:38:51.018272 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:38:51.018285 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:38:51.018296 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:38:51.018307 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:38:51.018319 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:38:51.018331 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:38:51.018342 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:38:51.018353 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:38:51.018368 1004 solver.cpp:245] Train net output #22: loss/loss01 = 4.00116 (* 0.0454545 = 0.181871 loss) | |
I0407 15:38:51.018383 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.89501 (* 0.0454545 = 0.177046 loss) | |
I0407 15:38:51.018396 1004 solver.cpp:245] Train net output #24: loss/loss03 = 4.08875 (* 0.0454545 = 0.185852 loss) | |
I0407 15:38:51.018410 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.8507 (* 0.0454545 = 0.175032 loss) | |
I0407 15:38:51.018425 1004 solver.cpp:245] Train net output #26: loss/loss05 = 4.07659 (* 0.0454545 = 0.185299 loss) | |
I0407 15:38:51.018440 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.08872 (* 0.0454545 = 0.140396 loss) | |
I0407 15:38:51.018453 1004 solver.cpp:245] Train net output #28: loss/loss07 = 2.00602 (* 0.0454545 = 0.0911829 loss) | |
I0407 15:38:51.018467 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.610857 (* 0.0454545 = 0.0277663 loss) | |
I0407 15:38:51.018481 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.070365 (* 0.0454545 = 0.00319841 loss) | |
I0407 15:38:51.018496 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0294157 (* 0.0454545 = 0.00133708 loss) | |
I0407 15:38:51.018510 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000902399 (* 0.0454545 = 4.10182e-05 loss) | |
I0407 15:38:51.018524 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000920532 (* 0.0454545 = 4.18423e-05 loss) | |
I0407 15:38:51.018538 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000884216 (* 0.0454545 = 4.01917e-05 loss) | |
I0407 15:38:51.018553 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000923359 (* 0.0454545 = 4.19709e-05 loss) | |
I0407 15:38:51.018566 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000865518 (* 0.0454545 = 3.93417e-05 loss) | |
I0407 15:38:51.018580 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000912268 (* 0.0454545 = 4.14667e-05 loss) | |
I0407 15:38:51.018594 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000824609 (* 0.0454545 = 3.74822e-05 loss) | |
I0407 15:38:51.018625 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000875479 (* 0.0454545 = 3.97945e-05 loss) | |
I0407 15:38:51.018640 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000865417 (* 0.0454545 = 3.93372e-05 loss) | |
I0407 15:38:51.018654 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000814129 (* 0.0454545 = 3.70059e-05 loss) | |
I0407 15:38:51.018668 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000846429 (* 0.0454545 = 3.84741e-05 loss) | |
I0407 15:38:51.018682 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000817837 (* 0.0454545 = 3.71744e-05 loss) | |
I0407 15:38:51.018693 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:38:51.018705 1004 solver.cpp:245] Train net output #45: total_confidence = 3.09178e-06 | |
I0407 15:38:51.018718 1004 sgd_solver.cpp:106] Iteration 18500, lr = 0.000963 | |
I0407 15:39:29.169054 1004 solver.cpp:229] Iteration 19000, loss = 1.08647 | |
I0407 15:39:29.169162 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0407 15:39:29.169179 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 15:39:29.169191 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:39:29.169204 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 15:39:29.169215 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 15:39:29.169229 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 15:39:29.169240 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 15:39:29.169252 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 15:39:29.169263 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:39:29.169275 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:39:29.169286 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:39:29.169298 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:39:29.169311 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:39:29.169322 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:39:29.169333 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:39:29.169344 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:39:29.169356 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:39:29.169368 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:39:29.169379 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:39:29.169391 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:39:29.169402 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:39:29.169414 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:39:29.169430 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.70272 (* 0.0454545 = 0.168305 loss) | |
I0407 15:39:29.169445 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.60447 (* 0.0454545 = 0.16384 loss) | |
I0407 15:39:29.169458 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.92786 (* 0.0454545 = 0.178539 loss) | |
I0407 15:39:29.169472 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.72508 (* 0.0454545 = 0.169322 loss) | |
I0407 15:39:29.169486 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.19015 (* 0.0454545 = 0.145007 loss) | |
I0407 15:39:29.169500 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.59097 (* 0.0454545 = 0.117771 loss) | |
I0407 15:39:29.169513 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.15914 (* 0.0454545 = 0.0526883 loss) | |
I0407 15:39:29.169528 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.751197 (* 0.0454545 = 0.0341453 loss) | |
I0407 15:39:29.169541 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0431115 (* 0.0454545 = 0.00195961 loss) | |
I0407 15:39:29.169555 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0196091 (* 0.0454545 = 0.000891324 loss) | |
I0407 15:39:29.169570 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000461002 (* 0.0454545 = 2.09546e-05 loss) | |
I0407 15:39:29.169584 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000433258 (* 0.0454545 = 1.96935e-05 loss) | |
I0407 15:39:29.169600 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000452481 (* 0.0454545 = 2.05673e-05 loss) | |
I0407 15:39:29.169613 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000462287 (* 0.0454545 = 2.10131e-05 loss) | |
I0407 15:39:29.169627 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000484398 (* 0.0454545 = 2.20181e-05 loss) | |
I0407 15:39:29.169641 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000481924 (* 0.0454545 = 2.19056e-05 loss) | |
I0407 15:39:29.169656 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000441422 (* 0.0454545 = 2.00646e-05 loss) | |
I0407 15:39:29.169685 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000493968 (* 0.0454545 = 2.24531e-05 loss) | |
I0407 15:39:29.169700 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000439087 (* 0.0454545 = 1.99585e-05 loss) | |
I0407 15:39:29.169715 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000435356 (* 0.0454545 = 1.97889e-05 loss) | |
I0407 15:39:29.169729 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000481684 (* 0.0454545 = 2.18947e-05 loss) | |
I0407 15:39:29.169742 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000477002 (* 0.0454545 = 2.16819e-05 loss) | |
I0407 15:39:29.169754 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:39:29.169766 1004 solver.cpp:245] Train net output #45: total_confidence = 5.1267e-06 | |
I0407 15:39:29.169780 1004 sgd_solver.cpp:106] Iteration 19000, lr = 0.000962 | |
I0407 15:40:07.537747 1004 solver.cpp:229] Iteration 19500, loss = 1.08625 | |
I0407 15:40:07.537879 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 15:40:07.537897 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:40:07.537911 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:40:07.537926 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 15:40:07.537940 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 15:40:07.537952 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 15:40:07.537964 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875 | |
I0407 15:40:07.537976 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 15:40:07.537988 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:40:07.538000 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:40:07.538012 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:40:07.538023 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:40:07.538034 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:40:07.538045 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:40:07.538058 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:40:07.538069 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:40:07.538080 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:40:07.538092 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:40:07.538105 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:40:07.538116 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:40:07.538127 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:40:07.538139 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:40:07.538154 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.67847 (* 0.0454545 = 0.167203 loss) | |
I0407 15:40:07.538169 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.94385 (* 0.0454545 = 0.179266 loss) | |
I0407 15:40:07.538182 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.59042 (* 0.0454545 = 0.163201 loss) | |
I0407 15:40:07.538197 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.61463 (* 0.0454545 = 0.164301 loss) | |
I0407 15:40:07.538210 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.24978 (* 0.0454545 = 0.147718 loss) | |
I0407 15:40:07.538224 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.94551 (* 0.0454545 = 0.133887 loss) | |
I0407 15:40:07.538238 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.936715 (* 0.0454545 = 0.0425779 loss) | |
I0407 15:40:07.538252 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.102169 (* 0.0454545 = 0.00464404 loss) | |
I0407 15:40:07.538267 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0329142 (* 0.0454545 = 0.0014961 loss) | |
I0407 15:40:07.538281 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0130219 (* 0.0454545 = 0.000591905 loss) | |
I0407 15:40:07.538296 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000225793 (* 0.0454545 = 1.02633e-05 loss) | |
I0407 15:40:07.538311 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000223837 (* 0.0454545 = 1.01744e-05 loss) | |
I0407 15:40:07.538324 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000240221 (* 0.0454545 = 1.09191e-05 loss) | |
I0407 15:40:07.538338 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000240478 (* 0.0454545 = 1.09308e-05 loss) | |
I0407 15:40:07.538353 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000241848 (* 0.0454545 = 1.09931e-05 loss) | |
I0407 15:40:07.538367 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000247471 (* 0.0454545 = 1.12487e-05 loss) | |
I0407 15:40:07.538381 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000235313 (* 0.0454545 = 1.06961e-05 loss) | |
I0407 15:40:07.538408 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000226373 (* 0.0454545 = 1.02897e-05 loss) | |
I0407 15:40:07.538424 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000231751 (* 0.0454545 = 1.05341e-05 loss) | |
I0407 15:40:07.538437 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000235625 (* 0.0454545 = 1.07102e-05 loss) | |
I0407 15:40:07.538452 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000247534 (* 0.0454545 = 1.12515e-05 loss) | |
I0407 15:40:07.538466 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000243962 (* 0.0454545 = 1.10892e-05 loss) | |
I0407 15:40:07.538478 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:40:07.538489 1004 solver.cpp:245] Train net output #45: total_confidence = 2.28272e-05 | |
I0407 15:40:07.538503 1004 sgd_solver.cpp:106] Iteration 19500, lr = 0.000961 | |
I0407 15:40:46.403219 1004 solver.cpp:338] Iteration 20000, Testing net (#0) | |
I0407 15:40:54.327031 1004 solver.cpp:393] Test loss: 0.962223 | |
I0407 15:40:54.327076 1004 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.02 | |
I0407 15:40:54.327093 1004 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.124 | |
I0407 15:40:54.327106 1004 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.077 | |
I0407 15:40:54.327118 1004 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.091 | |
I0407 15:40:54.327131 1004 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.213 | |
I0407 15:40:54.327142 1004 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.502 | |
I0407 15:40:54.327153 1004 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0407 15:40:54.327165 1004 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 15:40:54.327177 1004 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 15:40:54.327188 1004 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 15:40:54.327199 1004 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 15:40:54.327210 1004 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 15:40:54.327221 1004 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 15:40:54.327232 1004 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 15:40:54.327244 1004 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 15:40:54.327255 1004 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 15:40:54.327265 1004 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 15:40:54.327277 1004 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 15:40:54.327288 1004 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 15:40:54.327299 1004 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 15:40:54.327311 1004 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 15:40:54.327342 1004 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 15:40:54.327359 1004 solver.cpp:406] Test net output #22: loss/loss01 = 3.29439 (* 0.0454545 = 0.149745 loss) | |
I0407 15:40:54.327373 1004 solver.cpp:406] Test net output #23: loss/loss02 = 3.49848 (* 0.0454545 = 0.159022 loss) | |
I0407 15:40:54.327388 1004 solver.cpp:406] Test net output #24: loss/loss03 = 3.59194 (* 0.0454545 = 0.16327 loss) | |
I0407 15:40:54.327401 1004 solver.cpp:406] Test net output #25: loss/loss04 = 3.53872 (* 0.0454545 = 0.160851 loss) | |
I0407 15:40:54.327414 1004 solver.cpp:406] Test net output #26: loss/loss05 = 3.44184 (* 0.0454545 = 0.156447 loss) | |
I0407 15:40:54.327428 1004 solver.cpp:406] Test net output #27: loss/loss06 = 2.45932 (* 0.0454545 = 0.111787 loss) | |
I0407 15:40:54.327441 1004 solver.cpp:406] Test net output #28: loss/loss07 = 0.871082 (* 0.0454545 = 0.0395946 loss) | |
I0407 15:40:54.327455 1004 solver.cpp:406] Test net output #29: loss/loss08 = 0.303048 (* 0.0454545 = 0.0137749 loss) | |
I0407 15:40:54.327468 1004 solver.cpp:406] Test net output #30: loss/loss09 = 0.0826192 (* 0.0454545 = 0.00375542 loss) | |
I0407 15:40:54.327482 1004 solver.cpp:406] Test net output #31: loss/loss10 = 0.0390088 (* 0.0454545 = 0.00177313 loss) | |
I0407 15:40:54.327497 1004 solver.cpp:406] Test net output #32: loss/loss11 = 0.00405705 (* 0.0454545 = 0.000184412 loss) | |
I0407 15:40:54.327509 1004 solver.cpp:406] Test net output #33: loss/loss12 = 0.00404525 (* 0.0454545 = 0.000183875 loss) | |
I0407 15:40:54.327523 1004 solver.cpp:406] Test net output #34: loss/loss13 = 0.00403744 (* 0.0454545 = 0.00018352 loss) | |
I0407 15:40:54.327538 1004 solver.cpp:406] Test net output #35: loss/loss14 = 0.00405754 (* 0.0454545 = 0.000184434 loss) | |
I0407 15:40:54.327550 1004 solver.cpp:406] Test net output #36: loss/loss15 = 0.00406262 (* 0.0454545 = 0.000184665 loss) | |
I0407 15:40:54.327564 1004 solver.cpp:406] Test net output #37: loss/loss16 = 0.00404979 (* 0.0454545 = 0.000184081 loss) | |
I0407 15:40:54.327577 1004 solver.cpp:406] Test net output #38: loss/loss17 = 0.00401816 (* 0.0454545 = 0.000182644 loss) | |
I0407 15:40:54.327623 1004 solver.cpp:406] Test net output #39: loss/loss18 = 0.00403182 (* 0.0454545 = 0.000183265 loss) | |
I0407 15:40:54.327639 1004 solver.cpp:406] Test net output #40: loss/loss19 = 0.00402501 (* 0.0454545 = 0.000182955 loss) | |
I0407 15:40:54.327653 1004 solver.cpp:406] Test net output #41: loss/loss20 = 0.00402714 (* 0.0454545 = 0.000183052 loss) | |
I0407 15:40:54.327667 1004 solver.cpp:406] Test net output #42: loss/loss21 = 0.00401767 (* 0.0454545 = 0.000182621 loss) | |
I0407 15:40:54.327682 1004 solver.cpp:406] Test net output #43: loss/loss22 = 0.00402398 (* 0.0454545 = 0.000182908 loss) | |
I0407 15:40:54.327692 1004 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0407 15:40:54.327704 1004 solver.cpp:406] Test net output #45: total_confidence = 1.24701e-05 | |
I0407 15:40:54.349316 1004 solver.cpp:229] Iteration 20000, loss = 1.07615 | |
I0407 15:40:54.349354 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:40:54.349371 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 15:40:54.349383 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:40:54.349395 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 15:40:54.349407 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 15:40:54.349421 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 15:40:54.349431 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 15:40:54.349443 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 15:40:54.349455 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:40:54.349467 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 15:40:54.349479 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:40:54.349490 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:40:54.349503 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:40:54.349514 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:40:54.349524 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:40:54.349536 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:40:54.349547 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:40:54.349560 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:40:54.349571 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:40:54.349582 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:40:54.349594 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:40:54.349609 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:40:54.349624 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.91329 (* 0.0454545 = 0.177877 loss) | |
I0407 15:40:54.349638 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.85622 (* 0.0454545 = 0.175283 loss) | |
I0407 15:40:54.349653 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.80051 (* 0.0454545 = 0.172751 loss) | |
I0407 15:40:54.349666 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.68051 (* 0.0454545 = 0.167296 loss) | |
I0407 15:40:54.349680 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.26919 (* 0.0454545 = 0.148599 loss) | |
I0407 15:40:54.349694 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.9391 (* 0.0454545 = 0.133595 loss) | |
I0407 15:40:54.349707 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.39771 (* 0.0454545 = 0.0635322 loss) | |
I0407 15:40:54.349721 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.724578 (* 0.0454545 = 0.0329354 loss) | |
I0407 15:40:54.349735 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.358094 (* 0.0454545 = 0.016277 loss) | |
I0407 15:40:54.349750 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.398325 (* 0.0454545 = 0.0181057 loss) | |
I0407 15:40:54.349781 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000401993 (* 0.0454545 = 1.82724e-05 loss) | |
I0407 15:40:54.349797 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000398594 (* 0.0454545 = 1.81179e-05 loss) | |
I0407 15:40:54.349812 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000397522 (* 0.0454545 = 1.80692e-05 loss) | |
I0407 15:40:54.349825 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000410478 (* 0.0454545 = 1.86581e-05 loss) | |
I0407 15:40:54.349839 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000388332 (* 0.0454545 = 1.76514e-05 loss) | |
I0407 15:40:54.349853 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000379139 (* 0.0454545 = 1.72336e-05 loss) | |
I0407 15:40:54.349867 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.00037536 (* 0.0454545 = 1.70618e-05 loss) | |
I0407 15:40:54.349881 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000383943 (* 0.0454545 = 1.74519e-05 loss) | |
I0407 15:40:54.349895 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00041199 (* 0.0454545 = 1.87268e-05 loss) | |
I0407 15:40:54.349910 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000388058 (* 0.0454545 = 1.7639e-05 loss) | |
I0407 15:40:54.349925 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000388064 (* 0.0454545 = 1.76393e-05 loss) | |
I0407 15:40:54.349938 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00039514 (* 0.0454545 = 1.79609e-05 loss) | |
I0407 15:40:54.349951 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:40:54.349961 1004 solver.cpp:245] Train net output #45: total_confidence = 6.92117e-05 | |
I0407 15:40:54.349977 1004 sgd_solver.cpp:106] Iteration 20000, lr = 0.00096 | |
I0407 15:41:32.027597 1004 solver.cpp:229] Iteration 20500, loss = 1.08431 | |
I0407 15:41:32.027706 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:41:32.027726 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:41:32.027740 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:41:32.027751 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:41:32.027765 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 15:41:32.027776 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.6875 | |
I0407 15:41:32.027788 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875 | |
I0407 15:41:32.027801 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 15:41:32.027812 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:41:32.027824 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:41:32.027835 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:41:32.027848 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:41:32.027859 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:41:32.027870 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:41:32.027883 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:41:32.027894 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:41:32.027906 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:41:32.027920 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:41:32.027932 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:41:32.027945 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:41:32.027956 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:41:32.027968 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:41:32.027984 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.81035 (* 0.0454545 = 0.173198 loss) | |
I0407 15:41:32.027998 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.72645 (* 0.0454545 = 0.169384 loss) | |
I0407 15:41:32.028012 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.93784 (* 0.0454545 = 0.178993 loss) | |
I0407 15:41:32.028026 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.91011 (* 0.0454545 = 0.177732 loss) | |
I0407 15:41:32.028040 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.10472 (* 0.0454545 = 0.141123 loss) | |
I0407 15:41:32.028053 1004 solver.cpp:245] Train net output #27: loss/loss06 = 1.80327 (* 0.0454545 = 0.0819668 loss) | |
I0407 15:41:32.028067 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.741545 (* 0.0454545 = 0.0337066 loss) | |
I0407 15:41:32.028081 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.400733 (* 0.0454545 = 0.0182152 loss) | |
I0407 15:41:32.028095 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.398378 (* 0.0454545 = 0.0181081 loss) | |
I0407 15:41:32.028110 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0218711 (* 0.0454545 = 0.000994141 loss) | |
I0407 15:41:32.028123 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000605766 (* 0.0454545 = 2.75348e-05 loss) | |
I0407 15:41:32.028138 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000621386 (* 0.0454545 = 2.82448e-05 loss) | |
I0407 15:41:32.028152 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000612837 (* 0.0454545 = 2.78562e-05 loss) | |
I0407 15:41:32.028167 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000640985 (* 0.0454545 = 2.91357e-05 loss) | |
I0407 15:41:32.028182 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000655398 (* 0.0454545 = 2.97908e-05 loss) | |
I0407 15:41:32.028195 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000591966 (* 0.0454545 = 2.69076e-05 loss) | |
I0407 15:41:32.028209 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000636775 (* 0.0454545 = 2.89443e-05 loss) | |
I0407 15:41:32.028240 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000633585 (* 0.0454545 = 2.87993e-05 loss) | |
I0407 15:41:32.028255 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000619527 (* 0.0454545 = 2.81603e-05 loss) | |
I0407 15:41:32.028270 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000615565 (* 0.0454545 = 2.79802e-05 loss) | |
I0407 15:41:32.028285 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000562908 (* 0.0454545 = 2.55867e-05 loss) | |
I0407 15:41:32.028298 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00059083 (* 0.0454545 = 2.68559e-05 loss) | |
I0407 15:41:32.028311 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:41:32.028321 1004 solver.cpp:245] Train net output #45: total_confidence = 2.2508e-05 | |
I0407 15:41:32.028334 1004 sgd_solver.cpp:106] Iteration 20500, lr = 0.000959 | |
I0407 15:42:10.368573 1004 solver.cpp:229] Iteration 21000, loss = 1.08763 | |
I0407 15:42:10.368705 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:42:10.368724 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:42:10.368737 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:42:10.368749 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 15:42:10.368762 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0 | |
I0407 15:42:10.368772 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 15:42:10.368785 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 15:42:10.368796 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 15:42:10.368808 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:42:10.368824 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:42:10.368835 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:42:10.368847 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:42:10.368859 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:42:10.368870 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:42:10.368881 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:42:10.368892 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:42:10.368904 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:42:10.368916 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:42:10.368927 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:42:10.368938 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:42:10.368949 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:42:10.368960 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:42:10.368976 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.52598 (* 0.0454545 = 0.160272 loss) | |
I0407 15:42:10.368990 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.62313 (* 0.0454545 = 0.164688 loss) | |
I0407 15:42:10.369004 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.85968 (* 0.0454545 = 0.17544 loss) | |
I0407 15:42:10.369019 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.70942 (* 0.0454545 = 0.16861 loss) | |
I0407 15:42:10.369032 1004 solver.cpp:245] Train net output #26: loss/loss05 = 4.05471 (* 0.0454545 = 0.184305 loss) | |
I0407 15:42:10.369045 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.97538 (* 0.0454545 = 0.135244 loss) | |
I0407 15:42:10.369060 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.43355 (* 0.0454545 = 0.0651615 loss) | |
I0407 15:42:10.369076 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.482961 (* 0.0454545 = 0.0219528 loss) | |
I0407 15:42:10.369091 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0720939 (* 0.0454545 = 0.003277 loss) | |
I0407 15:42:10.369104 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0358988 (* 0.0454545 = 0.00163176 loss) | |
I0407 15:42:10.369118 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000729807 (* 0.0454545 = 3.3173e-05 loss) | |
I0407 15:42:10.369132 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000726456 (* 0.0454545 = 3.30207e-05 loss) | |
I0407 15:42:10.369146 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000727806 (* 0.0454545 = 3.30821e-05 loss) | |
I0407 15:42:10.369165 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000741145 (* 0.0454545 = 3.36884e-05 loss) | |
I0407 15:42:10.369194 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000744749 (* 0.0454545 = 3.38522e-05 loss) | |
I0407 15:42:10.369215 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000709213 (* 0.0454545 = 3.22369e-05 loss) | |
I0407 15:42:10.369230 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000697183 (* 0.0454545 = 3.16901e-05 loss) | |
I0407 15:42:10.369272 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000707928 (* 0.0454545 = 3.21785e-05 loss) | |
I0407 15:42:10.369289 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000704863 (* 0.0454545 = 3.20392e-05 loss) | |
I0407 15:42:10.369303 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000721039 (* 0.0454545 = 3.27745e-05 loss) | |
I0407 15:42:10.369318 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000709627 (* 0.0454545 = 3.22558e-05 loss) | |
I0407 15:42:10.369331 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000716841 (* 0.0454545 = 3.25837e-05 loss) | |
I0407 15:42:10.369343 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:42:10.369355 1004 solver.cpp:245] Train net output #45: total_confidence = 8.50067e-07 | |
I0407 15:42:10.369369 1004 sgd_solver.cpp:106] Iteration 21000, lr = 0.000958 | |
I0407 15:42:48.509271 1004 solver.cpp:229] Iteration 21500, loss = 1.08965 | |
I0407 15:42:48.509383 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 15:42:48.509403 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.1875 | |
I0407 15:42:48.509416 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:42:48.509429 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 15:42:48.509441 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 15:42:48.509454 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 15:42:48.509466 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 15:42:48.509479 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 15:42:48.509490 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:42:48.509502 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:42:48.509515 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:42:48.509526 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:42:48.509537 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:42:48.509549 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:42:48.509560 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:42:48.509572 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:42:48.509583 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:42:48.509595 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:42:48.509606 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:42:48.509618 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:42:48.509630 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:42:48.509641 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:42:48.509657 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.64795 (* 0.0454545 = 0.165816 loss) | |
I0407 15:42:48.509671 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.50048 (* 0.0454545 = 0.159113 loss) | |
I0407 15:42:48.509685 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.85244 (* 0.0454545 = 0.175111 loss) | |
I0407 15:42:48.509699 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.54343 (* 0.0454545 = 0.161065 loss) | |
I0407 15:42:48.509713 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.16136 (* 0.0454545 = 0.143698 loss) | |
I0407 15:42:48.509727 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.13915 (* 0.0454545 = 0.142689 loss) | |
I0407 15:42:48.509742 1004 solver.cpp:245] Train net output #28: loss/loss07 = 2.28123 (* 0.0454545 = 0.103692 loss) | |
I0407 15:42:48.509755 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.08867 (* 0.0454545 = 0.0494848 loss) | |
I0407 15:42:48.509769 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.454725 (* 0.0454545 = 0.0206693 loss) | |
I0407 15:42:48.509783 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0106964 (* 0.0454545 = 0.000486198 loss) | |
I0407 15:42:48.509799 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000172531 (* 0.0454545 = 7.84231e-06 loss) | |
I0407 15:42:48.509812 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000169875 (* 0.0454545 = 7.72158e-06 loss) | |
I0407 15:42:48.509826 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000165751 (* 0.0454545 = 7.53415e-06 loss) | |
I0407 15:42:48.509840 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000160479 (* 0.0454545 = 7.29448e-06 loss) | |
I0407 15:42:48.509855 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000160129 (* 0.0454545 = 7.27857e-06 loss) | |
I0407 15:42:48.509868 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000164388 (* 0.0454545 = 7.4722e-06 loss) | |
I0407 15:42:48.509883 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000160599 (* 0.0454545 = 7.29994e-06 loss) | |
I0407 15:42:48.509913 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000158724 (* 0.0454545 = 7.21471e-06 loss) | |
I0407 15:42:48.509932 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00015106 (* 0.0454545 = 6.86638e-06 loss) | |
I0407 15:42:48.509946 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000153371 (* 0.0454545 = 6.97141e-06 loss) | |
I0407 15:42:48.509960 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000155495 (* 0.0454545 = 7.06797e-06 loss) | |
I0407 15:42:48.509974 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000166304 (* 0.0454545 = 7.55929e-06 loss) | |
I0407 15:42:48.509986 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:42:48.509997 1004 solver.cpp:245] Train net output #45: total_confidence = 3.07369e-05 | |
I0407 15:42:48.510011 1004 sgd_solver.cpp:106] Iteration 21500, lr = 0.000957 | |
I0407 15:43:26.552251 1004 solver.cpp:229] Iteration 22000, loss = 1.08334 | |
I0407 15:43:26.552378 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:43:26.552398 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:43:26.552412 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:43:26.552423 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 15:43:26.552435 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 15:43:26.552448 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 15:43:26.552459 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 15:43:26.552471 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 15:43:26.552484 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:43:26.552495 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:43:26.552506 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:43:26.552518 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:43:26.552530 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:43:26.552541 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:43:26.552553 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:43:26.552564 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:43:26.552575 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:43:26.552587 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:43:26.552598 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:43:26.552610 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:43:26.552621 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:43:26.552634 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:43:26.552649 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.31518 (* 0.0454545 = 0.15069 loss) | |
I0407 15:43:26.552664 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.61961 (* 0.0454545 = 0.164528 loss) | |
I0407 15:43:26.552677 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.65201 (* 0.0454545 = 0.166001 loss) | |
I0407 15:43:26.552691 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.34642 (* 0.0454545 = 0.15211 loss) | |
I0407 15:43:26.552706 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.10608 (* 0.0454545 = 0.141186 loss) | |
I0407 15:43:26.552718 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.46291 (* 0.0454545 = 0.11195 loss) | |
I0407 15:43:26.552732 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.25644 (* 0.0454545 = 0.0571108 loss) | |
I0407 15:43:26.552747 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.816105 (* 0.0454545 = 0.0370957 loss) | |
I0407 15:43:26.552760 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.112705 (* 0.0454545 = 0.00512293 loss) | |
I0407 15:43:26.552774 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0806711 (* 0.0454545 = 0.00366687 loss) | |
I0407 15:43:26.552788 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.0275626 (* 0.0454545 = 0.00125284 loss) | |
I0407 15:43:26.552803 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.0284023 (* 0.0454545 = 0.00129101 loss) | |
I0407 15:43:26.552816 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.0271624 (* 0.0454545 = 0.00123465 loss) | |
I0407 15:43:26.552830 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.0278031 (* 0.0454545 = 0.00126378 loss) | |
I0407 15:43:26.552845 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.028676 (* 0.0454545 = 0.00130345 loss) | |
I0407 15:43:26.552858 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.0271057 (* 0.0454545 = 0.00123208 loss) | |
I0407 15:43:26.552872 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.0274713 (* 0.0454545 = 0.0012487 loss) | |
I0407 15:43:26.553104 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.0278587 (* 0.0454545 = 0.00126631 loss) | |
I0407 15:43:26.553122 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.0274615 (* 0.0454545 = 0.00124825 loss) | |
I0407 15:43:26.553135 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.027672 (* 0.0454545 = 0.00125782 loss) | |
I0407 15:43:26.553150 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.0281047 (* 0.0454545 = 0.00127749 loss) | |
I0407 15:43:26.553164 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.0279586 (* 0.0454545 = 0.00127085 loss) | |
I0407 15:43:26.553176 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:43:26.553187 1004 solver.cpp:245] Train net output #45: total_confidence = 4.10539e-05 | |
I0407 15:43:26.553201 1004 sgd_solver.cpp:106] Iteration 22000, lr = 0.000956 | |
I0407 15:44:04.693419 1004 solver.cpp:229] Iteration 22500, loss = 1.07468 | |
I0407 15:44:04.693542 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:44:04.693563 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:44:04.693577 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:44:04.693588 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 15:44:04.693600 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 15:44:04.693613 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 15:44:04.693624 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 15:44:04.693636 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 15:44:04.693648 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:44:04.693660 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:44:04.693672 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:44:04.693683 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:44:04.693696 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:44:04.693706 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:44:04.693718 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:44:04.693730 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:44:04.693742 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:44:04.693753 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:44:04.693764 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:44:04.693775 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:44:04.693788 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:44:04.693799 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:44:04.693814 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.62868 (* 0.0454545 = 0.16494 loss) | |
I0407 15:44:04.693830 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.88757 (* 0.0454545 = 0.176708 loss) | |
I0407 15:44:04.693843 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.84 (* 0.0454545 = 0.174546 loss) | |
I0407 15:44:04.693858 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.75873 (* 0.0454545 = 0.170851 loss) | |
I0407 15:44:04.693871 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.46444 (* 0.0454545 = 0.157475 loss) | |
I0407 15:44:04.693886 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.84553 (* 0.0454545 = 0.129342 loss) | |
I0407 15:44:04.693899 1004 solver.cpp:245] Train net output #28: loss/loss07 = 2.02099 (* 0.0454545 = 0.091863 loss) | |
I0407 15:44:04.693913 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.425595 (* 0.0454545 = 0.0193452 loss) | |
I0407 15:44:04.693930 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.054357 (* 0.0454545 = 0.00247077 loss) | |
I0407 15:44:04.693944 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0195722 (* 0.0454545 = 0.000889644 loss) | |
I0407 15:44:04.693959 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000580519 (* 0.0454545 = 2.63872e-05 loss) | |
I0407 15:44:04.693974 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000560732 (* 0.0454545 = 2.54878e-05 loss) | |
I0407 15:44:04.693987 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.00056432 (* 0.0454545 = 2.56509e-05 loss) | |
I0407 15:44:04.694001 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000563121 (* 0.0454545 = 2.55964e-05 loss) | |
I0407 15:44:04.694015 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000589107 (* 0.0454545 = 2.67776e-05 loss) | |
I0407 15:44:04.694030 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000576552 (* 0.0454545 = 2.62069e-05 loss) | |
I0407 15:44:04.694043 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000552784 (* 0.0454545 = 2.51265e-05 loss) | |
I0407 15:44:04.694074 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000572945 (* 0.0454545 = 2.60429e-05 loss) | |
I0407 15:44:04.694090 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000573075 (* 0.0454545 = 2.60489e-05 loss) | |
I0407 15:44:04.694104 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000563499 (* 0.0454545 = 2.56136e-05 loss) | |
I0407 15:44:04.694118 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000557973 (* 0.0454545 = 2.53624e-05 loss) | |
I0407 15:44:04.694133 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000559117 (* 0.0454545 = 2.54144e-05 loss) | |
I0407 15:44:04.694144 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:44:04.694155 1004 solver.cpp:245] Train net output #45: total_confidence = 2.42567e-06 | |
I0407 15:44:04.694169 1004 sgd_solver.cpp:106] Iteration 22500, lr = 0.000955 | |
I0407 15:44:42.976872 1004 solver.cpp:229] Iteration 23000, loss = 1.07296 | |
I0407 15:44:42.977010 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 15:44:42.977030 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 15:44:42.977043 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:44:42.977056 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:44:42.977067 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 15:44:42.977083 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 15:44:42.977095 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 15:44:42.977108 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 15:44:42.977119 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0407 15:44:42.977131 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 15:44:42.977144 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:44:42.977155 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:44:42.977167 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:44:42.977179 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:44:42.977190 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:44:42.977202 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:44:42.977213 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:44:42.977226 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:44:42.977236 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:44:42.977248 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:44:42.977260 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:44:42.977272 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:44:42.977288 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.77118 (* 0.0454545 = 0.171417 loss) | |
I0407 15:44:42.977303 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.93941 (* 0.0454545 = 0.179064 loss) | |
I0407 15:44:42.977318 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.53814 (* 0.0454545 = 0.160824 loss) | |
I0407 15:44:42.977331 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.85825 (* 0.0454545 = 0.175375 loss) | |
I0407 15:44:42.977344 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.52811 (* 0.0454545 = 0.160368 loss) | |
I0407 15:44:42.977360 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.68377 (* 0.0454545 = 0.12199 loss) | |
I0407 15:44:42.977373 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.69377 (* 0.0454545 = 0.0769898 loss) | |
I0407 15:44:42.977386 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.07924 (* 0.0454545 = 0.0490565 loss) | |
I0407 15:44:42.977401 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.723469 (* 0.0454545 = 0.032885 loss) | |
I0407 15:44:42.977414 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.438806 (* 0.0454545 = 0.0199457 loss) | |
I0407 15:44:42.977429 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000754934 (* 0.0454545 = 3.43152e-05 loss) | |
I0407 15:44:42.977443 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00076484 (* 0.0454545 = 3.47655e-05 loss) | |
I0407 15:44:42.977458 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000742242 (* 0.0454545 = 3.37383e-05 loss) | |
I0407 15:44:42.977471 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000776376 (* 0.0454545 = 3.52898e-05 loss) | |
I0407 15:44:42.977486 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000745308 (* 0.0454545 = 3.38776e-05 loss) | |
I0407 15:44:42.977500 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000751012 (* 0.0454545 = 3.41369e-05 loss) | |
I0407 15:44:42.977514 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000714805 (* 0.0454545 = 3.24911e-05 loss) | |
I0407 15:44:42.977541 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.00073006 (* 0.0454545 = 3.31845e-05 loss) | |
I0407 15:44:42.977556 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000769827 (* 0.0454545 = 3.49922e-05 loss) | |
I0407 15:44:42.977571 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000755422 (* 0.0454545 = 3.43374e-05 loss) | |
I0407 15:44:42.977586 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000689701 (* 0.0454545 = 3.135e-05 loss) | |
I0407 15:44:42.977599 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000701869 (* 0.0454545 = 3.19031e-05 loss) | |
I0407 15:44:42.977612 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:44:42.977623 1004 solver.cpp:245] Train net output #45: total_confidence = 3.77891e-06 | |
I0407 15:44:42.977637 1004 sgd_solver.cpp:106] Iteration 23000, lr = 0.000954 | |
I0407 15:45:21.169178 1004 solver.cpp:229] Iteration 23500, loss = 1.07605 | |
I0407 15:45:21.169379 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 15:45:21.169400 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:45:21.169414 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 15:45:21.169426 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:45:21.169438 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 15:45:21.169450 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 15:45:21.169462 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 15:45:21.169474 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 15:45:21.169486 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:45:21.169498 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 15:45:21.169510 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:45:21.169523 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:45:21.169534 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:45:21.169546 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:45:21.169558 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:45:21.169569 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:45:21.169581 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:45:21.169594 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:45:21.169605 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:45:21.169616 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:45:21.169628 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:45:21.169639 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:45:21.169656 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.35174 (* 0.0454545 = 0.152352 loss) | |
I0407 15:45:21.169669 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.54718 (* 0.0454545 = 0.161235 loss) | |
I0407 15:45:21.169683 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.68402 (* 0.0454545 = 0.167455 loss) | |
I0407 15:45:21.169698 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.55728 (* 0.0454545 = 0.161695 loss) | |
I0407 15:45:21.169713 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.2658 (* 0.0454545 = 0.148445 loss) | |
I0407 15:45:21.169726 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.95821 (* 0.0454545 = 0.134464 loss) | |
I0407 15:45:21.169740 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.55368 (* 0.0454545 = 0.070622 loss) | |
I0407 15:45:21.169754 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.640817 (* 0.0454545 = 0.029128 loss) | |
I0407 15:45:21.169767 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.366021 (* 0.0454545 = 0.0166373 loss) | |
I0407 15:45:21.169781 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.406131 (* 0.0454545 = 0.0184605 loss) | |
I0407 15:45:21.169796 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.00143234 (* 0.0454545 = 6.51065e-05 loss) | |
I0407 15:45:21.169811 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00144089 (* 0.0454545 = 6.54949e-05 loss) | |
I0407 15:45:21.169826 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.001459 (* 0.0454545 = 6.6318e-05 loss) | |
I0407 15:45:21.169839 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00131343 (* 0.0454545 = 5.97012e-05 loss) | |
I0407 15:45:21.169853 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.00133136 (* 0.0454545 = 6.05165e-05 loss) | |
I0407 15:45:21.169868 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.00139187 (* 0.0454545 = 6.32668e-05 loss) | |
I0407 15:45:21.169883 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.00137941 (* 0.0454545 = 6.27003e-05 loss) | |
I0407 15:45:21.169914 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.00134327 (* 0.0454545 = 6.10576e-05 loss) | |
I0407 15:45:21.169932 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00134008 (* 0.0454545 = 6.09129e-05 loss) | |
I0407 15:45:21.169947 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.00139226 (* 0.0454545 = 6.32847e-05 loss) | |
I0407 15:45:21.169961 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00133491 (* 0.0454545 = 6.06775e-05 loss) | |
I0407 15:45:21.169975 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00132557 (* 0.0454545 = 6.02534e-05 loss) | |
I0407 15:45:21.169987 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:45:21.169999 1004 solver.cpp:245] Train net output #45: total_confidence = 2.79743e-06 | |
I0407 15:45:21.170012 1004 sgd_solver.cpp:106] Iteration 23500, lr = 0.000953 | |
I0407 15:45:59.563704 1004 solver.cpp:229] Iteration 24000, loss = 1.07627 | |
I0407 15:45:59.563827 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:45:59.563856 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:45:59.563879 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:45:59.563900 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 15:45:59.563927 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 15:45:59.563951 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 15:45:59.563971 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 15:45:59.563992 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 15:45:59.564013 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:45:59.564033 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:45:59.564055 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:45:59.564076 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:45:59.564097 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:45:59.564117 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:45:59.564138 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:45:59.564159 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:45:59.564179 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:45:59.564200 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:45:59.564220 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:45:59.564242 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:45:59.564265 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:45:59.564286 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:45:59.564312 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.80347 (* 0.0454545 = 0.172885 loss) | |
I0407 15:45:59.564339 1004 solver.cpp:245] Train net output #23: loss/loss02 = 4.0081 (* 0.0454545 = 0.182186 loss) | |
I0407 15:45:59.564364 1004 solver.cpp:245] Train net output #24: loss/loss03 = 4.08794 (* 0.0454545 = 0.185815 loss) | |
I0407 15:45:59.564389 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.76314 (* 0.0454545 = 0.171052 loss) | |
I0407 15:45:59.564414 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.50635 (* 0.0454545 = 0.15938 loss) | |
I0407 15:45:59.564441 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.80167 (* 0.0454545 = 0.127349 loss) | |
I0407 15:45:59.564467 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.6644 (* 0.0454545 = 0.0756546 loss) | |
I0407 15:45:59.564492 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.781481 (* 0.0454545 = 0.0355219 loss) | |
I0407 15:45:59.564519 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0203998 (* 0.0454545 = 0.000927266 loss) | |
I0407 15:45:59.564548 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.00654289 (* 0.0454545 = 0.000297404 loss) | |
I0407 15:45:59.564574 1004 solver.cpp:245] Train net output #32: loss/loss11 = 4.99445e-05 (* 0.0454545 = 2.27021e-06 loss) | |
I0407 15:45:59.564599 1004 solver.cpp:245] Train net output #33: loss/loss12 = 4.94153e-05 (* 0.0454545 = 2.24615e-06 loss) | |
I0407 15:45:59.564625 1004 solver.cpp:245] Train net output #34: loss/loss13 = 4.97103e-05 (* 0.0454545 = 2.25956e-06 loss) | |
I0407 15:45:59.564651 1004 solver.cpp:245] Train net output #35: loss/loss14 = 4.97283e-05 (* 0.0454545 = 2.26038e-06 loss) | |
I0407 15:45:59.564676 1004 solver.cpp:245] Train net output #36: loss/loss15 = 5.12005e-05 (* 0.0454545 = 2.3273e-06 loss) | |
I0407 15:45:59.564700 1004 solver.cpp:245] Train net output #37: loss/loss16 = 4.76038e-05 (* 0.0454545 = 2.16381e-06 loss) | |
I0407 15:45:59.564725 1004 solver.cpp:245] Train net output #38: loss/loss17 = 4.9684e-05 (* 0.0454545 = 2.25836e-06 loss) | |
I0407 15:45:59.564771 1004 solver.cpp:245] Train net output #39: loss/loss18 = 4.76786e-05 (* 0.0454545 = 2.16721e-06 loss) | |
I0407 15:45:59.564797 1004 solver.cpp:245] Train net output #40: loss/loss19 = 4.87523e-05 (* 0.0454545 = 2.21601e-06 loss) | |
I0407 15:45:59.564823 1004 solver.cpp:245] Train net output #41: loss/loss20 = 4.57522e-05 (* 0.0454545 = 2.07964e-06 loss) | |
I0407 15:45:59.564852 1004 solver.cpp:245] Train net output #42: loss/loss21 = 4.65087e-05 (* 0.0454545 = 2.11403e-06 loss) | |
I0407 15:45:59.564878 1004 solver.cpp:245] Train net output #43: loss/loss22 = 4.74139e-05 (* 0.0454545 = 2.15518e-06 loss) | |
I0407 15:45:59.564903 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:45:59.564924 1004 solver.cpp:245] Train net output #45: total_confidence = 1.14511e-05 | |
I0407 15:45:59.564945 1004 sgd_solver.cpp:106] Iteration 24000, lr = 0.000952 | |
I0407 15:46:37.875738 1004 solver.cpp:229] Iteration 24500, loss = 1.08052 | |
I0407 15:46:37.875851 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 15:46:37.875880 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:46:37.875902 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:46:37.875923 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:46:37.875946 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 15:46:37.875967 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 15:46:37.875989 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875 | |
I0407 15:46:37.876011 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 15:46:37.876032 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:46:37.876054 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:46:37.876077 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:46:37.876098 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:46:37.876119 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:46:37.876142 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:46:37.876163 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:46:37.876183 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:46:37.876204 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:46:37.876225 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:46:37.876245 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:46:37.876266 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:46:37.876286 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:46:37.876307 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:46:37.876333 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.48335 (* 0.0454545 = 0.158334 loss) | |
I0407 15:46:37.876363 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.59668 (* 0.0454545 = 0.163486 loss) | |
I0407 15:46:37.876389 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.784 (* 0.0454545 = 0.172 loss) | |
I0407 15:46:37.876415 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.62248 (* 0.0454545 = 0.164658 loss) | |
I0407 15:46:37.876440 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.24361 (* 0.0454545 = 0.147437 loss) | |
I0407 15:46:37.876464 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.58142 (* 0.0454545 = 0.117337 loss) | |
I0407 15:46:37.876489 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.87465 (* 0.0454545 = 0.0397568 loss) | |
I0407 15:46:37.876515 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.735542 (* 0.0454545 = 0.0334338 loss) | |
I0407 15:46:37.876541 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.346617 (* 0.0454545 = 0.0157553 loss) | |
I0407 15:46:37.876566 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0258701 (* 0.0454545 = 0.00117591 loss) | |
I0407 15:46:37.876593 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000541405 (* 0.0454545 = 2.46093e-05 loss) | |
I0407 15:46:37.876619 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000548751 (* 0.0454545 = 2.49432e-05 loss) | |
I0407 15:46:37.876646 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000583048 (* 0.0454545 = 2.65022e-05 loss) | |
I0407 15:46:37.876673 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000547886 (* 0.0454545 = 2.49039e-05 loss) | |
I0407 15:46:37.876698 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000543503 (* 0.0454545 = 2.47047e-05 loss) | |
I0407 15:46:37.876724 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000562911 (* 0.0454545 = 2.55868e-05 loss) | |
I0407 15:46:37.876749 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000523963 (* 0.0454545 = 2.38165e-05 loss) | |
I0407 15:46:37.876796 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000545291 (* 0.0454545 = 2.47859e-05 loss) | |
I0407 15:46:37.876822 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000556424 (* 0.0454545 = 2.5292e-05 loss) | |
I0407 15:46:37.876852 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000540928 (* 0.0454545 = 2.45876e-05 loss) | |
I0407 15:46:37.876878 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000544122 (* 0.0454545 = 2.47328e-05 loss) | |
I0407 15:46:37.876904 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000550584 (* 0.0454545 = 2.50265e-05 loss) | |
I0407 15:46:37.876926 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:46:37.876946 1004 solver.cpp:245] Train net output #45: total_confidence = 4.36404e-05 | |
I0407 15:46:37.876968 1004 sgd_solver.cpp:106] Iteration 24500, lr = 0.000951 | |
I0407 15:47:17.017858 1004 solver.cpp:338] Iteration 25000, Testing net (#0) | |
I0407 15:47:25.013375 1004 solver.cpp:393] Test loss: 0.968098 | |
I0407 15:47:25.013420 1004 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.003 | |
I0407 15:47:25.013437 1004 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.06 | |
I0407 15:47:25.013452 1004 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.062 | |
I0407 15:47:25.013463 1004 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.086 | |
I0407 15:47:25.013475 1004 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.212 | |
I0407 15:47:25.013487 1004 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.501 | |
I0407 15:47:25.013499 1004 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0407 15:47:25.013510 1004 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 15:47:25.013522 1004 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 15:47:25.013533 1004 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 15:47:25.013545 1004 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 15:47:25.013557 1004 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 15:47:25.013568 1004 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 15:47:25.013579 1004 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 15:47:25.013591 1004 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 15:47:25.013602 1004 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 15:47:25.013612 1004 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 15:47:25.013623 1004 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 15:47:25.013635 1004 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 15:47:25.013646 1004 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 15:47:25.013658 1004 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 15:47:25.013669 1004 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 15:47:25.013684 1004 solver.cpp:406] Test net output #22: loss/loss01 = 3.28973 (* 0.0454545 = 0.149533 loss) | |
I0407 15:47:25.013698 1004 solver.cpp:406] Test net output #23: loss/loss02 = 3.47497 (* 0.0454545 = 0.157953 loss) | |
I0407 15:47:25.013712 1004 solver.cpp:406] Test net output #24: loss/loss03 = 3.56847 (* 0.0454545 = 0.162203 loss) | |
I0407 15:47:25.013725 1004 solver.cpp:406] Test net output #25: loss/loss04 = 3.54119 (* 0.0454545 = 0.160963 loss) | |
I0407 15:47:25.013739 1004 solver.cpp:406] Test net output #26: loss/loss05 = 3.43827 (* 0.0454545 = 0.156285 loss) | |
I0407 15:47:25.013752 1004 solver.cpp:406] Test net output #27: loss/loss06 = 2.53284 (* 0.0454545 = 0.115129 loss) | |
I0407 15:47:25.013767 1004 solver.cpp:406] Test net output #28: loss/loss07 = 0.927547 (* 0.0454545 = 0.0421612 loss) | |
I0407 15:47:25.013780 1004 solver.cpp:406] Test net output #29: loss/loss08 = 0.324068 (* 0.0454545 = 0.0147304 loss) | |
I0407 15:47:25.013794 1004 solver.cpp:406] Test net output #30: loss/loss09 = 0.0915884 (* 0.0454545 = 0.00416311 loss) | |
I0407 15:47:25.013808 1004 solver.cpp:406] Test net output #31: loss/loss10 = 0.0412606 (* 0.0454545 = 0.00187548 loss) | |
I0407 15:47:25.013823 1004 solver.cpp:406] Test net output #32: loss/loss11 = 0.00570668 (* 0.0454545 = 0.000259395 loss) | |
I0407 15:47:25.013836 1004 solver.cpp:406] Test net output #33: loss/loss12 = 0.00569283 (* 0.0454545 = 0.000258765 loss) | |
I0407 15:47:25.013850 1004 solver.cpp:406] Test net output #34: loss/loss13 = 0.00569165 (* 0.0454545 = 0.000258712 loss) | |
I0407 15:47:25.013864 1004 solver.cpp:406] Test net output #35: loss/loss14 = 0.00568742 (* 0.0454545 = 0.000258519 loss) | |
I0407 15:47:25.013878 1004 solver.cpp:406] Test net output #36: loss/loss15 = 0.00569248 (* 0.0454545 = 0.000258749 loss) | |
I0407 15:47:25.013892 1004 solver.cpp:406] Test net output #37: loss/loss16 = 0.00568401 (* 0.0454545 = 0.000258364 loss) | |
I0407 15:47:25.013906 1004 solver.cpp:406] Test net output #38: loss/loss17 = 0.00567791 (* 0.0454545 = 0.000258087 loss) | |
I0407 15:47:25.013959 1004 solver.cpp:406] Test net output #39: loss/loss18 = 0.00567857 (* 0.0454545 = 0.000258117 loss) | |
I0407 15:47:25.013975 1004 solver.cpp:406] Test net output #40: loss/loss19 = 0.0056799 (* 0.0454545 = 0.000258177 loss) | |
I0407 15:47:25.013989 1004 solver.cpp:406] Test net output #41: loss/loss20 = 0.00568113 (* 0.0454545 = 0.000258233 loss) | |
I0407 15:47:25.014010 1004 solver.cpp:406] Test net output #42: loss/loss21 = 0.00567363 (* 0.0454545 = 0.000257892 loss) | |
I0407 15:47:25.014041 1004 solver.cpp:406] Test net output #43: loss/loss22 = 0.00566655 (* 0.0454545 = 0.00025757 loss) | |
I0407 15:47:25.014060 1004 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0407 15:47:25.014073 1004 solver.cpp:406] Test net output #45: total_confidence = 3.1303e-06 | |
I0407 15:47:25.036334 1004 solver.cpp:229] Iteration 25000, loss = 1.0772 | |
I0407 15:47:25.036370 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:47:25.036387 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:47:25.036401 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875 | |
I0407 15:47:25.036413 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 15:47:25.036425 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 15:47:25.036437 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 15:47:25.036449 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 15:47:25.036460 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 15:47:25.036478 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:47:25.036489 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:47:25.036501 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:47:25.036512 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:47:25.036525 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:47:25.036535 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:47:25.036547 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:47:25.036559 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:47:25.036571 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:47:25.036582 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:47:25.036593 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:47:25.036605 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:47:25.036617 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:47:25.036628 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:47:25.036643 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.41838 (* 0.0454545 = 0.155381 loss) | |
I0407 15:47:25.036658 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.69567 (* 0.0454545 = 0.167985 loss) | |
I0407 15:47:25.036675 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.5466 (* 0.0454545 = 0.161209 loss) | |
I0407 15:47:25.036701 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.40921 (* 0.0454545 = 0.154964 loss) | |
I0407 15:47:25.036717 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.19196 (* 0.0454545 = 0.145089 loss) | |
I0407 15:47:25.036731 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.50108 (* 0.0454545 = 0.113686 loss) | |
I0407 15:47:25.036746 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.51173 (* 0.0454545 = 0.0687149 loss) | |
I0407 15:47:25.036759 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.132525 (* 0.0454545 = 0.00602388 loss) | |
I0407 15:47:25.036773 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0606421 (* 0.0454545 = 0.00275646 loss) | |
I0407 15:47:25.036788 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0218244 (* 0.0454545 = 0.000992017 loss) | |
I0407 15:47:25.036819 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000612348 (* 0.0454545 = 2.7834e-05 loss) | |
I0407 15:47:25.036835 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000598445 (* 0.0454545 = 2.7202e-05 loss) | |
I0407 15:47:25.036850 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000571183 (* 0.0454545 = 2.59629e-05 loss) | |
I0407 15:47:25.036864 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00057768 (* 0.0454545 = 2.62582e-05 loss) | |
I0407 15:47:25.036878 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000619239 (* 0.0454545 = 2.81472e-05 loss) | |
I0407 15:47:25.036892 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.00055603 (* 0.0454545 = 2.52741e-05 loss) | |
I0407 15:47:25.036906 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000583352 (* 0.0454545 = 2.6516e-05 loss) | |
I0407 15:47:25.036921 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000580719 (* 0.0454545 = 2.63963e-05 loss) | |
I0407 15:47:25.036938 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000580807 (* 0.0454545 = 2.64003e-05 loss) | |
I0407 15:47:25.036952 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000566349 (* 0.0454545 = 2.57431e-05 loss) | |
I0407 15:47:25.036967 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000580741 (* 0.0454545 = 2.63973e-05 loss) | |
I0407 15:47:25.036980 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00055493 (* 0.0454545 = 2.52241e-05 loss) | |
I0407 15:47:25.036993 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:47:25.037004 1004 solver.cpp:245] Train net output #45: total_confidence = 3.14641e-06 | |
I0407 15:47:25.037019 1004 sgd_solver.cpp:106] Iteration 25000, lr = 0.00095 | |
I0407 15:48:02.925506 1004 solver.cpp:229] Iteration 25500, loss = 1.08308 | |
I0407 15:48:02.925662 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0407 15:48:02.925689 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 15:48:02.925710 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 15:48:02.925731 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 15:48:02.925751 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 15:48:02.925772 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 15:48:02.925794 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 15:48:02.925814 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 15:48:02.925835 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:48:02.925856 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:48:02.925876 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:48:02.925896 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:48:02.925916 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:48:02.925941 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:48:02.925961 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:48:02.925982 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:48:02.926002 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:48:02.926023 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:48:02.926045 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:48:02.926069 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:48:02.926089 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:48:02.926108 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:48:02.926136 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.61736 (* 0.0454545 = 0.164425 loss) | |
I0407 15:48:02.926162 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.7802 (* 0.0454545 = 0.171827 loss) | |
I0407 15:48:02.926187 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.71409 (* 0.0454545 = 0.168822 loss) | |
I0407 15:48:02.926213 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.70596 (* 0.0454545 = 0.168453 loss) | |
I0407 15:48:02.926239 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.53156 (* 0.0454545 = 0.160525 loss) | |
I0407 15:48:02.926264 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.81591 (* 0.0454545 = 0.127996 loss) | |
I0407 15:48:02.926288 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.93253 (* 0.0454545 = 0.0878422 loss) | |
I0407 15:48:02.926314 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.149907 (* 0.0454545 = 0.00681394 loss) | |
I0407 15:48:02.926340 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0470761 (* 0.0454545 = 0.00213982 loss) | |
I0407 15:48:02.926367 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0186234 (* 0.0454545 = 0.000846518 loss) | |
I0407 15:48:02.926394 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000622699 (* 0.0454545 = 2.83045e-05 loss) | |
I0407 15:48:02.926420 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000587968 (* 0.0454545 = 2.67258e-05 loss) | |
I0407 15:48:02.926447 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000553317 (* 0.0454545 = 2.51508e-05 loss) | |
I0407 15:48:02.926472 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000594298 (* 0.0454545 = 2.70135e-05 loss) | |
I0407 15:48:02.926498 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000588579 (* 0.0454545 = 2.67536e-05 loss) | |
I0407 15:48:02.926524 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000586954 (* 0.0454545 = 2.66797e-05 loss) | |
I0407 15:48:02.926549 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000560859 (* 0.0454545 = 2.54936e-05 loss) | |
I0407 15:48:02.926599 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000571326 (* 0.0454545 = 2.59693e-05 loss) | |
I0407 15:48:02.926625 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000565664 (* 0.0454545 = 2.5712e-05 loss) | |
I0407 15:48:02.926651 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000577629 (* 0.0454545 = 2.62559e-05 loss) | |
I0407 15:48:02.926681 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000583188 (* 0.0454545 = 2.65086e-05 loss) | |
I0407 15:48:02.926707 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000581304 (* 0.0454545 = 2.64229e-05 loss) | |
I0407 15:48:02.926728 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:48:02.926749 1004 solver.cpp:245] Train net output #45: total_confidence = 2.90867e-06 | |
I0407 15:48:02.926774 1004 sgd_solver.cpp:106] Iteration 25500, lr = 0.000949 | |
I0407 15:48:41.348312 1004 solver.cpp:229] Iteration 26000, loss = 1.08503 | |
I0407 15:48:41.348445 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:48:41.348474 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:48:41.348489 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:48:41.348500 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:48:41.348512 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0407 15:48:41.348531 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.1875 | |
I0407 15:48:41.348543 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 15:48:41.348556 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 15:48:41.348567 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0407 15:48:41.348579 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 15:48:41.348592 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:48:41.348603 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:48:41.348613 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:48:41.348625 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:48:41.348636 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:48:41.348649 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:48:41.348660 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:48:41.348680 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:48:41.348691 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:48:41.348703 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:48:41.348714 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:48:41.348726 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:48:41.348742 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.66266 (* 0.0454545 = 0.166485 loss) | |
I0407 15:48:41.348755 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.81361 (* 0.0454545 = 0.173346 loss) | |
I0407 15:48:41.348778 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.86028 (* 0.0454545 = 0.175467 loss) | |
I0407 15:48:41.348791 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.76582 (* 0.0454545 = 0.171174 loss) | |
I0407 15:48:41.348805 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.8243 (* 0.0454545 = 0.173832 loss) | |
I0407 15:48:41.348819 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.50203 (* 0.0454545 = 0.159183 loss) | |
I0407 15:48:41.348832 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.74874 (* 0.0454545 = 0.079488 loss) | |
I0407 15:48:41.348846 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.11549 (* 0.0454545 = 0.0507042 loss) | |
I0407 15:48:41.348860 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.790862 (* 0.0454545 = 0.0359483 loss) | |
I0407 15:48:41.348875 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.379572 (* 0.0454545 = 0.0172533 loss) | |
I0407 15:48:41.348891 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000950176 (* 0.0454545 = 4.31898e-05 loss) | |
I0407 15:48:41.348904 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000945817 (* 0.0454545 = 4.29917e-05 loss) | |
I0407 15:48:41.348920 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.0010135 (* 0.0454545 = 4.60681e-05 loss) | |
I0407 15:48:41.348935 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000982928 (* 0.0454545 = 4.46786e-05 loss) | |
I0407 15:48:41.348953 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000951187 (* 0.0454545 = 4.32358e-05 loss) | |
I0407 15:48:41.348968 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.00102914 (* 0.0454545 = 4.6779e-05 loss) | |
I0407 15:48:41.348981 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000968186 (* 0.0454545 = 4.40085e-05 loss) | |
I0407 15:48:41.349014 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000974301 (* 0.0454545 = 4.42864e-05 loss) | |
I0407 15:48:41.349030 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00104701 (* 0.0454545 = 4.75913e-05 loss) | |
I0407 15:48:41.349043 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000925128 (* 0.0454545 = 4.20513e-05 loss) | |
I0407 15:48:41.349057 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000980245 (* 0.0454545 = 4.45566e-05 loss) | |
I0407 15:48:41.349078 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000980843 (* 0.0454545 = 4.45838e-05 loss) | |
I0407 15:48:41.349091 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:48:41.349102 1004 solver.cpp:245] Train net output #45: total_confidence = 1.86583e-06 | |
I0407 15:48:41.349115 1004 sgd_solver.cpp:106] Iteration 26000, lr = 0.000948 | |
I0407 15:49:20.034112 1004 solver.cpp:229] Iteration 26500, loss = 1.0794 | |
I0407 15:49:20.034247 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:49:20.034266 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:49:20.034281 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:49:20.034292 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:49:20.034306 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 15:49:20.034317 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 15:49:20.034329 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 15:49:20.034342 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 15:49:20.034353 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:49:20.034365 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 15:49:20.034378 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:49:20.034389 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:49:20.034401 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:49:20.034412 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:49:20.034425 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:49:20.034436 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:49:20.034448 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:49:20.034461 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:49:20.034472 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:49:20.034483 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:49:20.034495 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:49:20.034507 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:49:20.034523 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.7742 (* 0.0454545 = 0.171555 loss) | |
I0407 15:49:20.034538 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.51582 (* 0.0454545 = 0.15981 loss) | |
I0407 15:49:20.034553 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.7866 (* 0.0454545 = 0.172118 loss) | |
I0407 15:49:20.034566 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.85961 (* 0.0454545 = 0.175437 loss) | |
I0407 15:49:20.034580 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.32694 (* 0.0454545 = 0.151224 loss) | |
I0407 15:49:20.034595 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.25468 (* 0.0454545 = 0.102486 loss) | |
I0407 15:49:20.034608 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.93959 (* 0.0454545 = 0.088163 loss) | |
I0407 15:49:20.034622 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.36235 (* 0.0454545 = 0.0164705 loss) | |
I0407 15:49:20.034636 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.324585 (* 0.0454545 = 0.0147539 loss) | |
I0407 15:49:20.034651 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.350881 (* 0.0454545 = 0.0159491 loss) | |
I0407 15:49:20.034664 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000618093 (* 0.0454545 = 2.80951e-05 loss) | |
I0407 15:49:20.034678 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00061535 (* 0.0454545 = 2.79705e-05 loss) | |
I0407 15:49:20.034693 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000638192 (* 0.0454545 = 2.90087e-05 loss) | |
I0407 15:49:20.034708 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00065078 (* 0.0454545 = 2.95809e-05 loss) | |
I0407 15:49:20.034723 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000635536 (* 0.0454545 = 2.8888e-05 loss) | |
I0407 15:49:20.034736 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000654598 (* 0.0454545 = 2.97545e-05 loss) | |
I0407 15:49:20.034750 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000667004 (* 0.0454545 = 3.03184e-05 loss) | |
I0407 15:49:20.034777 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000611089 (* 0.0454545 = 2.77768e-05 loss) | |
I0407 15:49:20.034793 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000662034 (* 0.0454545 = 3.00924e-05 loss) | |
I0407 15:49:20.034807 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000598642 (* 0.0454545 = 2.7211e-05 loss) | |
I0407 15:49:20.034821 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000624105 (* 0.0454545 = 2.83684e-05 loss) | |
I0407 15:49:20.034845 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000638698 (* 0.0454545 = 2.90317e-05 loss) | |
I0407 15:49:20.034868 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:49:20.034881 1004 solver.cpp:245] Train net output #45: total_confidence = 1.08153e-05 | |
I0407 15:49:20.034895 1004 sgd_solver.cpp:106] Iteration 26500, lr = 0.000947 | |
I0407 15:49:58.436386 1004 solver.cpp:229] Iteration 27000, loss = 1.0741 | |
I0407 15:49:58.436535 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 15:49:58.436554 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:49:58.436569 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:49:58.436581 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 15:49:58.436594 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 15:49:58.436606 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 15:49:58.436619 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 15:49:58.436630 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 15:49:58.436642 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:49:58.436655 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:49:58.436666 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:49:58.436678 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:49:58.436691 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:49:58.436702 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:49:58.436713 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:49:58.436725 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:49:58.436738 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:49:58.436748 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:49:58.436760 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:49:58.436772 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:49:58.436784 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:49:58.436795 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:49:58.436811 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.61563 (* 0.0454545 = 0.164347 loss) | |
I0407 15:49:58.436826 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.87796 (* 0.0454545 = 0.176271 loss) | |
I0407 15:49:58.436841 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.69622 (* 0.0454545 = 0.16801 loss) | |
I0407 15:49:58.436854 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.6385 (* 0.0454545 = 0.165387 loss) | |
I0407 15:49:58.436868 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.28264 (* 0.0454545 = 0.149211 loss) | |
I0407 15:49:58.436882 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.88318 (* 0.0454545 = 0.131054 loss) | |
I0407 15:49:58.436898 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.29237 (* 0.0454545 = 0.0587441 loss) | |
I0407 15:49:58.436913 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.183114 (* 0.0454545 = 0.00832337 loss) | |
I0407 15:49:58.436930 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0775274 (* 0.0454545 = 0.00352397 loss) | |
I0407 15:49:58.436944 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0354426 (* 0.0454545 = 0.00161103 loss) | |
I0407 15:49:58.436959 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000985108 (* 0.0454545 = 4.47776e-05 loss) | |
I0407 15:49:58.436974 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00101112 (* 0.0454545 = 4.59598e-05 loss) | |
I0407 15:49:58.436987 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.00100881 (* 0.0454545 = 4.58552e-05 loss) | |
I0407 15:49:58.437001 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00100095 (* 0.0454545 = 4.54976e-05 loss) | |
I0407 15:49:58.437016 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.00098528 (* 0.0454545 = 4.47855e-05 loss) | |
I0407 15:49:58.437031 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.00105102 (* 0.0454545 = 4.77736e-05 loss) | |
I0407 15:49:58.437044 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000987604 (* 0.0454545 = 4.48911e-05 loss) | |
I0407 15:49:58.437078 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000976225 (* 0.0454545 = 4.43739e-05 loss) | |
I0407 15:49:58.437094 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00103221 (* 0.0454545 = 4.69186e-05 loss) | |
I0407 15:49:58.437108 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.00107591 (* 0.0454545 = 4.8905e-05 loss) | |
I0407 15:49:58.437124 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000978223 (* 0.0454545 = 4.44647e-05 loss) | |
I0407 15:49:58.437137 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00101525 (* 0.0454545 = 4.61476e-05 loss) | |
I0407 15:49:58.437150 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:49:58.437161 1004 solver.cpp:245] Train net output #45: total_confidence = 4.97174e-06 | |
I0407 15:49:58.437176 1004 sgd_solver.cpp:106] Iteration 27000, lr = 0.000946 | |
I0407 15:50:37.821167 1004 solver.cpp:229] Iteration 27500, loss = 1.0761 | |
I0407 15:50:37.821279 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 15:50:37.821297 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.1875 | |
I0407 15:50:37.821310 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:50:37.821322 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:50:37.821334 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 15:50:37.821347 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 15:50:37.821359 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 15:50:37.821370 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 15:50:37.821383 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:50:37.821396 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 15:50:37.821408 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:50:37.821419 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:50:37.821431 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:50:37.821442 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:50:37.821454 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:50:37.821465 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:50:37.821476 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:50:37.821487 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:50:37.821499 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:50:37.821511 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:50:37.821522 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:50:37.821534 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:50:37.821550 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.66109 (* 0.0454545 = 0.166413 loss) | |
I0407 15:50:37.821565 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.63323 (* 0.0454545 = 0.165147 loss) | |
I0407 15:50:37.821579 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.93549 (* 0.0454545 = 0.178886 loss) | |
I0407 15:50:37.821593 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.7094 (* 0.0454545 = 0.168609 loss) | |
I0407 15:50:37.821607 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.75058 (* 0.0454545 = 0.170481 loss) | |
I0407 15:50:37.821620 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.22948 (* 0.0454545 = 0.146795 loss) | |
I0407 15:50:37.821635 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.19307 (* 0.0454545 = 0.0542303 loss) | |
I0407 15:50:37.821648 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.98937 (* 0.0454545 = 0.0449713 loss) | |
I0407 15:50:37.821661 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.617438 (* 0.0454545 = 0.0280654 loss) | |
I0407 15:50:37.821676 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.759766 (* 0.0454545 = 0.0345348 loss) | |
I0407 15:50:37.821689 1004 solver.cpp:245] Train net output #32: loss/loss11 = 6.20223e-05 (* 0.0454545 = 2.8192e-06 loss) | |
I0407 15:50:37.821703 1004 solver.cpp:245] Train net output #33: loss/loss12 = 6.15756e-05 (* 0.0454545 = 2.79889e-06 loss) | |
I0407 15:50:37.821722 1004 solver.cpp:245] Train net output #34: loss/loss13 = 6.10163e-05 (* 0.0454545 = 2.77347e-06 loss) | |
I0407 15:50:37.821751 1004 solver.cpp:245] Train net output #35: loss/loss14 = 5.94881e-05 (* 0.0454545 = 2.70401e-06 loss) | |
I0407 15:50:37.821774 1004 solver.cpp:245] Train net output #36: loss/loss15 = 6.1195e-05 (* 0.0454545 = 2.78159e-06 loss) | |
I0407 15:50:37.821789 1004 solver.cpp:245] Train net output #37: loss/loss16 = 5.99802e-05 (* 0.0454545 = 2.72637e-06 loss) | |
I0407 15:50:37.821802 1004 solver.cpp:245] Train net output #38: loss/loss17 = 6.15084e-05 (* 0.0454545 = 2.79584e-06 loss) | |
I0407 15:50:37.821835 1004 solver.cpp:245] Train net output #39: loss/loss18 = 5.83479e-05 (* 0.0454545 = 2.65218e-06 loss) | |
I0407 15:50:37.821851 1004 solver.cpp:245] Train net output #40: loss/loss19 = 5.75016e-05 (* 0.0454545 = 2.61371e-06 loss) | |
I0407 15:50:37.821864 1004 solver.cpp:245] Train net output #41: loss/loss20 = 5.68756e-05 (* 0.0454545 = 2.58526e-06 loss) | |
I0407 15:50:37.821878 1004 solver.cpp:245] Train net output #42: loss/loss21 = 6.12324e-05 (* 0.0454545 = 2.78329e-06 loss) | |
I0407 15:50:37.821892 1004 solver.cpp:245] Train net output #43: loss/loss22 = 5.92012e-05 (* 0.0454545 = 2.69097e-06 loss) | |
I0407 15:50:37.821904 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:50:37.821916 1004 solver.cpp:245] Train net output #45: total_confidence = 6.80012e-05 | |
I0407 15:50:37.821929 1004 sgd_solver.cpp:106] Iteration 27500, lr = 0.000945 | |
I0407 15:51:16.969310 1004 solver.cpp:229] Iteration 28000, loss = 1.07111 | |
I0407 15:51:16.969451 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 15:51:16.969471 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:51:16.969485 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:51:16.969497 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 15:51:16.969509 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 15:51:16.969522 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 15:51:16.969534 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 15:51:16.969547 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 15:51:16.969558 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:51:16.969570 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:51:16.969583 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:51:16.969594 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:51:16.969605 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:51:16.969617 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:51:16.969629 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:51:16.969640 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:51:16.969652 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:51:16.969665 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:51:16.969676 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:51:16.969687 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:51:16.969698 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:51:16.969710 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:51:16.969727 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.54415 (* 0.0454545 = 0.161098 loss) | |
I0407 15:51:16.969741 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.92101 (* 0.0454545 = 0.178228 loss) | |
I0407 15:51:16.969755 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.62246 (* 0.0454545 = 0.164657 loss) | |
I0407 15:51:16.969769 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.41077 (* 0.0454545 = 0.155035 loss) | |
I0407 15:51:16.969784 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.24128 (* 0.0454545 = 0.147331 loss) | |
I0407 15:51:16.969796 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.9561 (* 0.0454545 = 0.134368 loss) | |
I0407 15:51:16.969810 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.84052 (* 0.0454545 = 0.0836601 loss) | |
I0407 15:51:16.969825 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.574834 (* 0.0454545 = 0.0261288 loss) | |
I0407 15:51:16.969840 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0241779 (* 0.0454545 = 0.001099 loss) | |
I0407 15:51:16.969853 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.00842603 (* 0.0454545 = 0.000383001 loss) | |
I0407 15:51:16.969868 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000214212 (* 0.0454545 = 9.73692e-06 loss) | |
I0407 15:51:16.969882 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00022238 (* 0.0454545 = 1.01082e-05 loss) | |
I0407 15:51:16.969897 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000213872 (* 0.0454545 = 9.72146e-06 loss) | |
I0407 15:51:16.969912 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000203484 (* 0.0454545 = 9.24928e-06 loss) | |
I0407 15:51:16.969928 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000207945 (* 0.0454545 = 9.45203e-06 loss) | |
I0407 15:51:16.969944 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000206369 (* 0.0454545 = 9.38043e-06 loss) | |
I0407 15:51:16.969957 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000211068 (* 0.0454545 = 9.59401e-06 loss) | |
I0407 15:51:16.969988 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000203884 (* 0.0454545 = 9.26745e-06 loss) | |
I0407 15:51:16.970005 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000206967 (* 0.0454545 = 9.40758e-06 loss) | |
I0407 15:51:16.970018 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000202959 (* 0.0454545 = 9.22542e-06 loss) | |
I0407 15:51:16.970032 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000188968 (* 0.0454545 = 8.58947e-06 loss) | |
I0407 15:51:16.970046 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000177463 (* 0.0454545 = 8.06649e-06 loss) | |
I0407 15:51:16.970058 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:51:16.970069 1004 solver.cpp:245] Train net output #45: total_confidence = 9.88628e-05 | |
I0407 15:51:16.970084 1004 sgd_solver.cpp:106] Iteration 28000, lr = 0.000944 | |
I0407 15:51:55.759666 1004 solver.cpp:229] Iteration 28500, loss = 1.0723 | |
I0407 15:51:55.759794 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:51:55.759814 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:51:55.759827 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 15:51:55.759840 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 15:51:55.759852 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 15:51:55.759865 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 15:51:55.759877 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 15:51:55.759889 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 15:51:55.759902 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:51:55.759912 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:51:55.759928 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:51:55.759940 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:51:55.759953 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:51:55.759963 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:51:55.759975 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:51:55.759987 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:51:55.759999 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:51:55.760010 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:51:55.760022 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:51:55.760035 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:51:55.760046 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:51:55.760058 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:51:55.760074 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.59393 (* 0.0454545 = 0.16336 loss) | |
I0407 15:51:55.760089 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.53685 (* 0.0454545 = 0.160766 loss) | |
I0407 15:51:55.760102 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.43331 (* 0.0454545 = 0.15606 loss) | |
I0407 15:51:55.760116 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.61531 (* 0.0454545 = 0.164332 loss) | |
I0407 15:51:55.760130 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.05235 (* 0.0454545 = 0.138743 loss) | |
I0407 15:51:55.760143 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.10563 (* 0.0454545 = 0.141165 loss) | |
I0407 15:51:55.760157 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.49173 (* 0.0454545 = 0.0678058 loss) | |
I0407 15:51:55.760171 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.0846963 (* 0.0454545 = 0.00384983 loss) | |
I0407 15:51:55.760185 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0239224 (* 0.0454545 = 0.00108738 loss) | |
I0407 15:51:55.760200 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.00896385 (* 0.0454545 = 0.000407448 loss) | |
I0407 15:51:55.760220 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000139403 (* 0.0454545 = 6.3365e-06 loss) | |
I0407 15:51:55.760248 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000142494 (* 0.0454545 = 6.47701e-06 loss) | |
I0407 15:51:55.760265 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000135601 (* 0.0454545 = 6.16367e-06 loss) | |
I0407 15:51:55.760287 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000149858 (* 0.0454545 = 6.81171e-06 loss) | |
I0407 15:51:55.760310 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000141047 (* 0.0454545 = 6.41123e-06 loss) | |
I0407 15:51:55.760325 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000134392 (* 0.0454545 = 6.10871e-06 loss) | |
I0407 15:51:55.760339 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000150333 (* 0.0454545 = 6.83332e-06 loss) | |
I0407 15:51:55.760367 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000135689 (* 0.0454545 = 6.16767e-06 loss) | |
I0407 15:51:55.760382 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000130004 (* 0.0454545 = 5.90927e-06 loss) | |
I0407 15:51:55.760396 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000130616 (* 0.0454545 = 5.93709e-06 loss) | |
I0407 15:51:55.760411 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00014402 (* 0.0454545 = 6.54635e-06 loss) | |
I0407 15:51:55.760424 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000146535 (* 0.0454545 = 6.66069e-06 loss) | |
I0407 15:51:55.760437 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:51:55.760448 1004 solver.cpp:245] Train net output #45: total_confidence = 3.16581e-05 | |
I0407 15:51:55.760462 1004 sgd_solver.cpp:106] Iteration 28500, lr = 0.000943 | |
I0407 15:52:33.957574 1004 solver.cpp:229] Iteration 29000, loss = 1.08307 | |
I0407 15:52:33.957684 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:52:33.957705 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:52:33.957717 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:52:33.957729 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:52:33.957742 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 15:52:33.957754 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 15:52:33.957767 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 15:52:33.957778 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 15:52:33.957790 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:52:33.957803 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:52:33.957814 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:52:33.957825 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:52:33.957837 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:52:33.957849 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:52:33.957860 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:52:33.957872 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:52:33.957885 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:52:33.957896 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:52:33.957908 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:52:33.957922 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:52:33.957934 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:52:33.957947 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:52:33.957962 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.55558 (* 0.0454545 = 0.161617 loss) | |
I0407 15:52:33.957976 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.84579 (* 0.0454545 = 0.174809 loss) | |
I0407 15:52:33.957990 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.93628 (* 0.0454545 = 0.178922 loss) | |
I0407 15:52:33.958004 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.89353 (* 0.0454545 = 0.176979 loss) | |
I0407 15:52:33.958019 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.75289 (* 0.0454545 = 0.170586 loss) | |
I0407 15:52:33.958032 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.60895 (* 0.0454545 = 0.164043 loss) | |
I0407 15:52:33.958045 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.96357 (* 0.0454545 = 0.0892533 loss) | |
I0407 15:52:33.958060 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.45765 (* 0.0454545 = 0.0662569 loss) | |
I0407 15:52:33.958073 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0538652 (* 0.0454545 = 0.00244842 loss) | |
I0407 15:52:33.958088 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0268348 (* 0.0454545 = 0.00121976 loss) | |
I0407 15:52:33.958102 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.00128294 (* 0.0454545 = 5.83154e-05 loss) | |
I0407 15:52:33.958117 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00133336 (* 0.0454545 = 6.06073e-05 loss) | |
I0407 15:52:33.958132 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.0012607 (* 0.0454545 = 5.73043e-05 loss) | |
I0407 15:52:33.958145 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00121027 (* 0.0454545 = 5.50123e-05 loss) | |
I0407 15:52:33.958160 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.00126827 (* 0.0454545 = 5.76485e-05 loss) | |
I0407 15:52:33.958175 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.00122201 (* 0.0454545 = 5.55459e-05 loss) | |
I0407 15:52:33.958189 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.0012319 (* 0.0454545 = 5.59953e-05 loss) | |
I0407 15:52:33.958220 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.00122176 (* 0.0454545 = 5.55344e-05 loss) | |
I0407 15:52:33.958236 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00120366 (* 0.0454545 = 5.47117e-05 loss) | |
I0407 15:52:33.958250 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.00130164 (* 0.0454545 = 5.91653e-05 loss) | |
I0407 15:52:33.958264 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00118457 (* 0.0454545 = 5.38439e-05 loss) | |
I0407 15:52:33.958278 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.0011809 (* 0.0454545 = 5.36772e-05 loss) | |
I0407 15:52:33.958292 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:52:33.958302 1004 solver.cpp:245] Train net output #45: total_confidence = 1.42784e-05 | |
I0407 15:52:33.958315 1004 sgd_solver.cpp:106] Iteration 29000, lr = 0.000942 | |
I0407 15:53:12.268633 1004 solver.cpp:229] Iteration 29500, loss = 1.0764 | |
I0407 15:53:12.268746 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 15:53:12.268766 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:53:12.268780 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 15:53:12.268792 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 15:53:12.268805 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 15:53:12.268817 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 15:53:12.268828 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 15:53:12.268841 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 15:53:12.268853 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.8125 | |
I0407 15:53:12.268865 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 15:53:12.268877 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:53:12.268888 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:53:12.268900 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:53:12.268911 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:53:12.268926 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:53:12.268939 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:53:12.268950 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:53:12.268962 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:53:12.268973 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:53:12.268985 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:53:12.268997 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:53:12.269008 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:53:12.269024 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.33202 (* 0.0454545 = 0.151455 loss) | |
I0407 15:53:12.269038 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.64571 (* 0.0454545 = 0.165714 loss) | |
I0407 15:53:12.269052 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.47447 (* 0.0454545 = 0.157931 loss) | |
I0407 15:53:12.269067 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.56805 (* 0.0454545 = 0.162184 loss) | |
I0407 15:53:12.269080 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.40255 (* 0.0454545 = 0.154661 loss) | |
I0407 15:53:12.269094 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.17219 (* 0.0454545 = 0.0987357 loss) | |
I0407 15:53:12.269109 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.99714 (* 0.0454545 = 0.0907791 loss) | |
I0407 15:53:12.269122 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.08808 (* 0.0454545 = 0.0494583 loss) | |
I0407 15:53:12.269136 1004 solver.cpp:245] Train net output #30: loss/loss09 = 1.16633 (* 0.0454545 = 0.053015 loss) | |
I0407 15:53:12.269150 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.502094 (* 0.0454545 = 0.0228224 loss) | |
I0407 15:53:12.269165 1004 solver.cpp:245] Train net output #32: loss/loss11 = 4.94509e-05 (* 0.0454545 = 2.24777e-06 loss) | |
I0407 15:53:12.269179 1004 solver.cpp:245] Train net output #33: loss/loss12 = 4.71698e-05 (* 0.0454545 = 2.14408e-06 loss) | |
I0407 15:53:12.269194 1004 solver.cpp:245] Train net output #34: loss/loss13 = 5.10949e-05 (* 0.0454545 = 2.3225e-06 loss) | |
I0407 15:53:12.269208 1004 solver.cpp:245] Train net output #35: loss/loss14 = 4.73114e-05 (* 0.0454545 = 2.15052e-06 loss) | |
I0407 15:53:12.269222 1004 solver.cpp:245] Train net output #36: loss/loss15 = 4.87725e-05 (* 0.0454545 = 2.21693e-06 loss) | |
I0407 15:53:12.269237 1004 solver.cpp:245] Train net output #37: loss/loss16 = 4.65251e-05 (* 0.0454545 = 2.11478e-06 loss) | |
I0407 15:53:12.269251 1004 solver.cpp:245] Train net output #38: loss/loss17 = 4.43187e-05 (* 0.0454545 = 2.01448e-06 loss) | |
I0407 15:53:12.269282 1004 solver.cpp:245] Train net output #39: loss/loss18 = 4.77141e-05 (* 0.0454545 = 2.16882e-06 loss) | |
I0407 15:53:12.269299 1004 solver.cpp:245] Train net output #40: loss/loss19 = 4.84745e-05 (* 0.0454545 = 2.20339e-06 loss) | |
I0407 15:53:12.269312 1004 solver.cpp:245] Train net output #41: loss/loss20 = 4.46619e-05 (* 0.0454545 = 2.03008e-06 loss) | |
I0407 15:53:12.269326 1004 solver.cpp:245] Train net output #42: loss/loss21 = 4.73643e-05 (* 0.0454545 = 2.15292e-06 loss) | |
I0407 15:53:12.269340 1004 solver.cpp:245] Train net output #43: loss/loss22 = 4.41923e-05 (* 0.0454545 = 2.00874e-06 loss) | |
I0407 15:53:12.269352 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:53:12.269364 1004 solver.cpp:245] Train net output #45: total_confidence = 3.51629e-05 | |
I0407 15:53:12.269377 1004 sgd_solver.cpp:106] Iteration 29500, lr = 0.000941 | |
I0407 15:53:50.383518 1004 solver.cpp:338] Iteration 30000, Testing net (#0) | |
I0407 15:53:58.329470 1004 solver.cpp:393] Test loss: 0.994279 | |
I0407 15:53:58.329516 1004 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.083 | |
I0407 15:53:58.329533 1004 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.122 | |
I0407 15:53:58.329546 1004 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.068 | |
I0407 15:53:58.329558 1004 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.086 | |
I0407 15:53:58.329571 1004 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.212 | |
I0407 15:53:58.329582 1004 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.501 | |
I0407 15:53:58.329593 1004 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.893 | |
I0407 15:53:58.329604 1004 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 15:53:58.329617 1004 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 15:53:58.329628 1004 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 15:53:58.329639 1004 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 15:53:58.329651 1004 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 15:53:58.329663 1004 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 15:53:58.329674 1004 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 15:53:58.329684 1004 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 15:53:58.329695 1004 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 15:53:58.329706 1004 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 15:53:58.329718 1004 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 15:53:58.329730 1004 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 15:53:58.329741 1004 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 15:53:58.329751 1004 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 15:53:58.329762 1004 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 15:53:58.329777 1004 solver.cpp:406] Test net output #22: loss/loss01 = 3.34025 (* 0.0454545 = 0.15183 loss) | |
I0407 15:53:58.329792 1004 solver.cpp:406] Test net output #23: loss/loss02 = 3.55437 (* 0.0454545 = 0.161562 loss) | |
I0407 15:53:58.329805 1004 solver.cpp:406] Test net output #24: loss/loss03 = 3.60363 (* 0.0454545 = 0.163801 loss) | |
I0407 15:53:58.329819 1004 solver.cpp:406] Test net output #25: loss/loss04 = 3.6025 (* 0.0454545 = 0.16375 loss) | |
I0407 15:53:58.329833 1004 solver.cpp:406] Test net output #26: loss/loss05 = 3.4951 (* 0.0454545 = 0.158868 loss) | |
I0407 15:53:58.329846 1004 solver.cpp:406] Test net output #27: loss/loss06 = 2.59549 (* 0.0454545 = 0.117977 loss) | |
I0407 15:53:58.329859 1004 solver.cpp:406] Test net output #28: loss/loss07 = 1.03341 (* 0.0454545 = 0.0469731 loss) | |
I0407 15:53:58.329874 1004 solver.cpp:406] Test net output #29: loss/loss08 = 0.40305 (* 0.0454545 = 0.0183205 loss) | |
I0407 15:53:58.329887 1004 solver.cpp:406] Test net output #30: loss/loss09 = 0.1158 (* 0.0454545 = 0.00526364 loss) | |
I0407 15:53:58.329900 1004 solver.cpp:406] Test net output #31: loss/loss10 = 0.0637421 (* 0.0454545 = 0.00289737 loss) | |
I0407 15:53:58.329916 1004 solver.cpp:406] Test net output #32: loss/loss11 = 0.00560316 (* 0.0454545 = 0.000254689 loss) | |
I0407 15:53:58.329932 1004 solver.cpp:406] Test net output #33: loss/loss12 = 0.0055698 (* 0.0454545 = 0.000253173 loss) | |
I0407 15:53:58.329946 1004 solver.cpp:406] Test net output #34: loss/loss13 = 0.00556227 (* 0.0454545 = 0.000252831 loss) | |
I0407 15:53:58.329959 1004 solver.cpp:406] Test net output #35: loss/loss14 = 0.00557859 (* 0.0454545 = 0.000253572 loss) | |
I0407 15:53:58.329973 1004 solver.cpp:406] Test net output #36: loss/loss15 = 0.00558409 (* 0.0454545 = 0.000253822 loss) | |
I0407 15:53:58.329988 1004 solver.cpp:406] Test net output #37: loss/loss16 = 0.00555049 (* 0.0454545 = 0.000252295 loss) | |
I0407 15:53:58.330000 1004 solver.cpp:406] Test net output #38: loss/loss17 = 0.00557179 (* 0.0454545 = 0.000253263 loss) | |
I0407 15:53:58.330047 1004 solver.cpp:406] Test net output #39: loss/loss18 = 0.00555696 (* 0.0454545 = 0.000252589 loss) | |
I0407 15:53:58.330062 1004 solver.cpp:406] Test net output #40: loss/loss19 = 0.00554077 (* 0.0454545 = 0.000251853 loss) | |
I0407 15:53:58.330076 1004 solver.cpp:406] Test net output #41: loss/loss20 = 0.00556886 (* 0.0454545 = 0.00025313 loss) | |
I0407 15:53:58.330090 1004 solver.cpp:406] Test net output #42: loss/loss21 = 0.00556194 (* 0.0454545 = 0.000252815 loss) | |
I0407 15:53:58.330104 1004 solver.cpp:406] Test net output #43: loss/loss22 = 0.00556013 (* 0.0454545 = 0.000252733 loss) | |
I0407 15:53:58.330116 1004 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0407 15:53:58.330128 1004 solver.cpp:406] Test net output #45: total_confidence = 5.26761e-06 | |
I0407 15:53:58.352155 1004 solver.cpp:229] Iteration 30000, loss = 1.07189 | |
I0407 15:53:58.352191 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0407 15:53:58.352208 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:53:58.352221 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:53:58.352233 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 15:53:58.352246 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 15:53:58.352257 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 15:53:58.352269 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.5625 | |
I0407 15:53:58.352282 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 15:53:58.352294 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:53:58.352306 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:53:58.352319 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:53:58.352330 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:53:58.352341 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:53:58.352352 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:53:58.352365 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:53:58.352376 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:53:58.352387 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:53:58.352399 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:53:58.352411 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:53:58.352426 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:53:58.352437 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:53:58.352448 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:53:58.352463 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.22551 (* 0.0454545 = 0.146614 loss) | |
I0407 15:53:58.352478 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.51585 (* 0.0454545 = 0.159811 loss) | |
I0407 15:53:58.352491 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.57602 (* 0.0454545 = 0.162546 loss) | |
I0407 15:53:58.352505 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.54169 (* 0.0454545 = 0.160986 loss) | |
I0407 15:53:58.352519 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.2083 (* 0.0454545 = 0.145832 loss) | |
I0407 15:53:58.352533 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.66217 (* 0.0454545 = 0.121008 loss) | |
I0407 15:53:58.352546 1004 solver.cpp:245] Train net output #28: loss/loss07 = 2.19758 (* 0.0454545 = 0.09989 loss) | |
I0407 15:53:58.352560 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.04029 (* 0.0454545 = 0.0472861 loss) | |
I0407 15:53:58.352574 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.408326 (* 0.0454545 = 0.0185603 loss) | |
I0407 15:53:58.352588 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0455885 (* 0.0454545 = 0.0020722 loss) | |
I0407 15:53:58.352619 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.00170861 (* 0.0454545 = 7.76641e-05 loss) | |
I0407 15:53:58.352635 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00172633 (* 0.0454545 = 7.84695e-05 loss) | |
I0407 15:53:58.352650 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.00166014 (* 0.0454545 = 7.54608e-05 loss) | |
I0407 15:53:58.352664 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00166684 (* 0.0454545 = 7.57655e-05 loss) | |
I0407 15:53:58.352679 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.00175873 (* 0.0454545 = 7.99421e-05 loss) | |
I0407 15:53:58.352694 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.00177878 (* 0.0454545 = 8.08534e-05 loss) | |
I0407 15:53:58.352707 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.00165501 (* 0.0454545 = 7.52276e-05 loss) | |
I0407 15:53:58.352721 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.00169914 (* 0.0454545 = 7.72335e-05 loss) | |
I0407 15:53:58.352735 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00163482 (* 0.0454545 = 7.43101e-05 loss) | |
I0407 15:53:58.352749 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.0016204 (* 0.0454545 = 7.36547e-05 loss) | |
I0407 15:53:58.352763 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00165812 (* 0.0454545 = 7.53691e-05 loss) | |
I0407 15:53:58.352778 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00176593 (* 0.0454545 = 8.02697e-05 loss) | |
I0407 15:53:58.352790 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:53:58.352802 1004 solver.cpp:245] Train net output #45: total_confidence = 1.73855e-06 | |
I0407 15:53:58.352816 1004 sgd_solver.cpp:106] Iteration 30000, lr = 0.00094 | |
I0407 15:54:36.321979 1004 solver.cpp:229] Iteration 30500, loss = 1.08251 | |
I0407 15:54:36.322129 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 15:54:36.322149 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:54:36.322161 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:54:36.322173 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 15:54:36.322185 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0407 15:54:36.322199 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 15:54:36.322211 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.5625 | |
I0407 15:54:36.322224 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 15:54:36.322237 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0407 15:54:36.322248 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 15:54:36.322260 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:54:36.322271 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:54:36.322283 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:54:36.322295 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:54:36.322306 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:54:36.322319 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:54:36.322330 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:54:36.322341 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:54:36.322353 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:54:36.322365 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:54:36.322376 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:54:36.322387 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:54:36.322403 1004 solver.cpp:245] Train net output #22: loss/loss01 = 4.00713 (* 0.0454545 = 0.182142 loss) | |
I0407 15:54:36.322417 1004 solver.cpp:245] Train net output #23: loss/loss02 = 4.00183 (* 0.0454545 = 0.181901 loss) | |
I0407 15:54:36.322432 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.98707 (* 0.0454545 = 0.181231 loss) | |
I0407 15:54:36.322445 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.92972 (* 0.0454545 = 0.178623 loss) | |
I0407 15:54:36.322459 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.87582 (* 0.0454545 = 0.176174 loss) | |
I0407 15:54:36.322474 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.18558 (* 0.0454545 = 0.144799 loss) | |
I0407 15:54:36.322487 1004 solver.cpp:245] Train net output #28: loss/loss07 = 2.61361 (* 0.0454545 = 0.118801 loss) | |
I0407 15:54:36.322501 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.750627 (* 0.0454545 = 0.0341194 loss) | |
I0407 15:54:36.322515 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.714739 (* 0.0454545 = 0.0324881 loss) | |
I0407 15:54:36.322530 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.376059 (* 0.0454545 = 0.0170936 loss) | |
I0407 15:54:36.322543 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.00106519 (* 0.0454545 = 4.84175e-05 loss) | |
I0407 15:54:36.322557 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00104049 (* 0.0454545 = 4.72951e-05 loss) | |
I0407 15:54:36.322572 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.00102134 (* 0.0454545 = 4.64244e-05 loss) | |
I0407 15:54:36.322587 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00102372 (* 0.0454545 = 4.65326e-05 loss) | |
I0407 15:54:36.322600 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.00105694 (* 0.0454545 = 4.80429e-05 loss) | |
I0407 15:54:36.322614 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.00105928 (* 0.0454545 = 4.8149e-05 loss) | |
I0407 15:54:36.322628 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.00109846 (* 0.0454545 = 4.99301e-05 loss) | |
I0407 15:54:36.322656 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.00109195 (* 0.0454545 = 4.96342e-05 loss) | |
I0407 15:54:36.322671 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00103023 (* 0.0454545 = 4.68284e-05 loss) | |
I0407 15:54:36.322686 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.00103263 (* 0.0454545 = 4.69378e-05 loss) | |
I0407 15:54:36.322700 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00107275 (* 0.0454545 = 4.87614e-05 loss) | |
I0407 15:54:36.322715 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00108264 (* 0.0454545 = 4.92111e-05 loss) | |
I0407 15:54:36.322739 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:54:36.322752 1004 solver.cpp:245] Train net output #45: total_confidence = 5.96634e-07 | |
I0407 15:54:36.322767 1004 sgd_solver.cpp:106] Iteration 30500, lr = 0.000939 | |
I0407 15:55:14.930878 1004 solver.cpp:229] Iteration 31000, loss = 1.0714 | |
I0407 15:55:14.931049 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:55:14.931069 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:55:14.931085 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:55:14.931097 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:55:14.931109 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.5 | |
I0407 15:55:14.931123 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625 | |
I0407 15:55:14.931134 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 15:55:14.931145 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 15:55:14.931157 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:55:14.931169 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:55:14.931180 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:55:14.931192 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:55:14.931203 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:55:14.931216 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:55:14.931226 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:55:14.931238 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:55:14.931249 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:55:14.931262 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:55:14.931272 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:55:14.931284 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:55:14.931295 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:55:14.931308 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:55:14.931340 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.12228 (* 0.0454545 = 0.141922 loss) | |
I0407 15:55:14.931356 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.45282 (* 0.0454545 = 0.156946 loss) | |
I0407 15:55:14.931371 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.54739 (* 0.0454545 = 0.161245 loss) | |
I0407 15:55:14.931385 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.42582 (* 0.0454545 = 0.155719 loss) | |
I0407 15:55:14.931399 1004 solver.cpp:245] Train net output #26: loss/loss05 = 2.54768 (* 0.0454545 = 0.115804 loss) | |
I0407 15:55:14.931413 1004 solver.cpp:245] Train net output #27: loss/loss06 = 1.97001 (* 0.0454545 = 0.089546 loss) | |
I0407 15:55:14.931427 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.959494 (* 0.0454545 = 0.0436134 loss) | |
I0407 15:55:14.931442 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.0963315 (* 0.0454545 = 0.0043787 loss) | |
I0407 15:55:14.931457 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0317472 (* 0.0454545 = 0.00144305 loss) | |
I0407 15:55:14.931470 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0132458 (* 0.0454545 = 0.00060208 loss) | |
I0407 15:55:14.931484 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000261163 (* 0.0454545 = 1.18711e-05 loss) | |
I0407 15:55:14.931499 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000255931 (* 0.0454545 = 1.16332e-05 loss) | |
I0407 15:55:14.931514 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000258018 (* 0.0454545 = 1.17281e-05 loss) | |
I0407 15:55:14.931527 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000237045 (* 0.0454545 = 1.07748e-05 loss) | |
I0407 15:55:14.931541 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000258377 (* 0.0454545 = 1.17444e-05 loss) | |
I0407 15:55:14.931555 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000260707 (* 0.0454545 = 1.18503e-05 loss) | |
I0407 15:55:14.931571 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000257758 (* 0.0454545 = 1.17163e-05 loss) | |
I0407 15:55:14.931602 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000249825 (* 0.0454545 = 1.13557e-05 loss) | |
I0407 15:55:14.931617 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000240177 (* 0.0454545 = 1.09171e-05 loss) | |
I0407 15:55:14.931632 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000254811 (* 0.0454545 = 1.15823e-05 loss) | |
I0407 15:55:14.931645 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00025305 (* 0.0454545 = 1.15023e-05 loss) | |
I0407 15:55:14.931659 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000250898 (* 0.0454545 = 1.14044e-05 loss) | |
I0407 15:55:14.931671 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:55:14.931684 1004 solver.cpp:245] Train net output #45: total_confidence = 6.49183e-06 | |
I0407 15:55:14.931696 1004 sgd_solver.cpp:106] Iteration 31000, lr = 0.000938 | |
I0407 15:55:53.399649 1004 solver.cpp:229] Iteration 31500, loss = 1.07585 | |
I0407 15:55:53.399786 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:55:53.399806 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:55:53.399819 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:55:53.399832 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:55:53.399843 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 15:55:53.399855 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 15:55:53.399868 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 15:55:53.399879 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 15:55:53.399891 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:55:53.399904 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:55:53.399915 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:55:53.399930 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:55:53.399941 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:55:53.399953 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:55:53.399966 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:55:53.399976 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:55:53.399988 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:55:53.400001 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:55:53.400012 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:55:53.400023 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:55:53.400034 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:55:53.400046 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:55:53.400061 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.67071 (* 0.0454545 = 0.16685 loss) | |
I0407 15:55:53.400076 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.68787 (* 0.0454545 = 0.167631 loss) | |
I0407 15:55:53.400090 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.6813 (* 0.0454545 = 0.167332 loss) | |
I0407 15:55:53.400104 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.59748 (* 0.0454545 = 0.163522 loss) | |
I0407 15:55:53.400117 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.4063 (* 0.0454545 = 0.154832 loss) | |
I0407 15:55:53.400131 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.15997 (* 0.0454545 = 0.143635 loss) | |
I0407 15:55:53.400146 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.41375 (* 0.0454545 = 0.0642612 loss) | |
I0407 15:55:53.400159 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.826993 (* 0.0454545 = 0.0375906 loss) | |
I0407 15:55:53.400173 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.45899 (* 0.0454545 = 0.0208632 loss) | |
I0407 15:55:53.400187 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.00135484 (* 0.0454545 = 6.15836e-05 loss) | |
I0407 15:55:53.400202 1004 solver.cpp:245] Train net output #32: loss/loss11 = 1.36346e-06 (* 0.0454545 = 6.19754e-08 loss) | |
I0407 15:55:53.400216 1004 solver.cpp:245] Train net output #33: loss/loss12 = 1.34856e-06 (* 0.0454545 = 6.12981e-08 loss) | |
I0407 15:55:53.400230 1004 solver.cpp:245] Train net output #34: loss/loss13 = 1.37836e-06 (* 0.0454545 = 6.26528e-08 loss) | |
I0407 15:55:53.400244 1004 solver.cpp:245] Train net output #35: loss/loss14 = 1.25915e-06 (* 0.0454545 = 5.72341e-08 loss) | |
I0407 15:55:53.400259 1004 solver.cpp:245] Train net output #36: loss/loss15 = 1.33366e-06 (* 0.0454545 = 6.06208e-08 loss) | |
I0407 15:55:53.400272 1004 solver.cpp:245] Train net output #37: loss/loss16 = 1.2219e-06 (* 0.0454545 = 5.55408e-08 loss) | |
I0407 15:55:53.400286 1004 solver.cpp:245] Train net output #38: loss/loss17 = 1.32621e-06 (* 0.0454545 = 6.02821e-08 loss) | |
I0407 15:55:53.400318 1004 solver.cpp:245] Train net output #39: loss/loss18 = 1.32621e-06 (* 0.0454545 = 6.02821e-08 loss) | |
I0407 15:55:53.400333 1004 solver.cpp:245] Train net output #40: loss/loss19 = 1.18465e-06 (* 0.0454545 = 5.38475e-08 loss) | |
I0407 15:55:53.400347 1004 solver.cpp:245] Train net output #41: loss/loss20 = 1.24425e-06 (* 0.0454545 = 5.65568e-08 loss) | |
I0407 15:55:53.400362 1004 solver.cpp:245] Train net output #42: loss/loss21 = 1.21445e-06 (* 0.0454545 = 5.52022e-08 loss) | |
I0407 15:55:53.400375 1004 solver.cpp:245] Train net output #43: loss/loss22 = 1.31131e-06 (* 0.0454545 = 5.96048e-08 loss) | |
I0407 15:55:53.400388 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:55:53.400399 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000427293 | |
I0407 15:55:53.400413 1004 sgd_solver.cpp:106] Iteration 31500, lr = 0.000937 | |
I0407 15:56:31.685160 1004 solver.cpp:229] Iteration 32000, loss = 1.07593 | |
I0407 15:56:31.685302 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0407 15:56:31.685322 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:56:31.685335 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 15:56:31.685348 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:56:31.685360 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 15:56:31.685372 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 15:56:31.685385 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 15:56:31.685397 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 15:56:31.685410 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:56:31.685421 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 15:56:31.685433 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:56:31.685444 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:56:31.685456 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:56:31.685468 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:56:31.685479 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:56:31.685492 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:56:31.685503 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:56:31.685515 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:56:31.685526 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:56:31.685539 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:56:31.685550 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:56:31.685562 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:56:31.685577 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.71415 (* 0.0454545 = 0.168825 loss) | |
I0407 15:56:31.685592 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.91644 (* 0.0454545 = 0.17802 loss) | |
I0407 15:56:31.685606 1004 solver.cpp:245] Train net output #24: loss/loss03 = 4.00272 (* 0.0454545 = 0.181942 loss) | |
I0407 15:56:31.685621 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.81215 (* 0.0454545 = 0.173279 loss) | |
I0407 15:56:31.685634 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.44191 (* 0.0454545 = 0.15645 loss) | |
I0407 15:56:31.685648 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.72917 (* 0.0454545 = 0.124053 loss) | |
I0407 15:56:31.685662 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.27248 (* 0.0454545 = 0.0578401 loss) | |
I0407 15:56:31.685677 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.07812 (* 0.0454545 = 0.0490054 loss) | |
I0407 15:56:31.685691 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.380127 (* 0.0454545 = 0.0172785 loss) | |
I0407 15:56:31.685706 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.367777 (* 0.0454545 = 0.0167171 loss) | |
I0407 15:56:31.685720 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000483402 (* 0.0454545 = 2.19728e-05 loss) | |
I0407 15:56:31.685735 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000507275 (* 0.0454545 = 2.3058e-05 loss) | |
I0407 15:56:31.685750 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000487998 (* 0.0454545 = 2.21817e-05 loss) | |
I0407 15:56:31.685763 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000531118 (* 0.0454545 = 2.41417e-05 loss) | |
I0407 15:56:31.685778 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000502196 (* 0.0454545 = 2.28271e-05 loss) | |
I0407 15:56:31.685792 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000505707 (* 0.0454545 = 2.29867e-05 loss) | |
I0407 15:56:31.685806 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000525503 (* 0.0454545 = 2.38865e-05 loss) | |
I0407 15:56:31.685834 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000527925 (* 0.0454545 = 2.39966e-05 loss) | |
I0407 15:56:31.685849 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000497244 (* 0.0454545 = 2.2602e-05 loss) | |
I0407 15:56:31.685863 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000490866 (* 0.0454545 = 2.23121e-05 loss) | |
I0407 15:56:31.685878 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000533428 (* 0.0454545 = 2.42467e-05 loss) | |
I0407 15:56:31.685891 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000538928 (* 0.0454545 = 2.44967e-05 loss) | |
I0407 15:56:31.685904 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:56:31.685920 1004 solver.cpp:245] Train net output #45: total_confidence = 6.23467e-05 | |
I0407 15:56:31.685936 1004 sgd_solver.cpp:106] Iteration 32000, lr = 0.000936 | |
I0407 15:57:09.868158 1004 solver.cpp:229] Iteration 32500, loss = 1.07422 | |
I0407 15:57:09.868278 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 15:57:09.868297 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:57:09.868310 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 15:57:09.868324 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:57:09.868336 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 15:57:09.868350 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 15:57:09.868361 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 15:57:09.868373 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 15:57:09.868386 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:57:09.868397 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:57:09.868408 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:57:09.868420 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:57:09.868432 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:57:09.868443 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:57:09.868455 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:57:09.868468 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:57:09.868479 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:57:09.868491 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:57:09.868502 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:57:09.868515 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:57:09.868525 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:57:09.868537 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:57:09.868553 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.35797 (* 0.0454545 = 0.152635 loss) | |
I0407 15:57:09.868568 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.40078 (* 0.0454545 = 0.154581 loss) | |
I0407 15:57:09.868582 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.52943 (* 0.0454545 = 0.160428 loss) | |
I0407 15:57:09.868597 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.38513 (* 0.0454545 = 0.15387 loss) | |
I0407 15:57:09.868612 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.13473 (* 0.0454545 = 0.142488 loss) | |
I0407 15:57:09.868625 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.06923 (* 0.0454545 = 0.0940559 loss) | |
I0407 15:57:09.868638 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.63105 (* 0.0454545 = 0.0741387 loss) | |
I0407 15:57:09.868652 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.334254 (* 0.0454545 = 0.0151934 loss) | |
I0407 15:57:09.868667 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0181232 (* 0.0454545 = 0.000823784 loss) | |
I0407 15:57:09.868681 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.00534685 (* 0.0454545 = 0.000243039 loss) | |
I0407 15:57:09.868696 1004 solver.cpp:245] Train net output #32: loss/loss11 = 1.67271e-05 (* 0.0454545 = 7.60322e-07 loss) | |
I0407 15:57:09.868710 1004 solver.cpp:245] Train net output #33: loss/loss12 = 1.67271e-05 (* 0.0454545 = 7.60322e-07 loss) | |
I0407 15:57:09.868724 1004 solver.cpp:245] Train net output #34: loss/loss13 = 1.70028e-05 (* 0.0454545 = 7.72853e-07 loss) | |
I0407 15:57:09.868738 1004 solver.cpp:245] Train net output #35: loss/loss14 = 1.55796e-05 (* 0.0454545 = 7.08164e-07 loss) | |
I0407 15:57:09.868752 1004 solver.cpp:245] Train net output #36: loss/loss15 = 1.67941e-05 (* 0.0454545 = 7.6337e-07 loss) | |
I0407 15:57:09.868767 1004 solver.cpp:245] Train net output #37: loss/loss16 = 1.61459e-05 (* 0.0454545 = 7.33905e-07 loss) | |
I0407 15:57:09.868782 1004 solver.cpp:245] Train net output #38: loss/loss17 = 1.64141e-05 (* 0.0454545 = 7.46097e-07 loss) | |
I0407 15:57:09.868813 1004 solver.cpp:245] Train net output #39: loss/loss18 = 1.58404e-05 (* 0.0454545 = 7.20019e-07 loss) | |
I0407 15:57:09.868829 1004 solver.cpp:245] Train net output #40: loss/loss19 = 1.62875e-05 (* 0.0454545 = 7.40339e-07 loss) | |
I0407 15:57:09.868842 1004 solver.cpp:245] Train net output #41: loss/loss20 = 1.80013e-05 (* 0.0454545 = 8.18239e-07 loss) | |
I0407 15:57:09.868856 1004 solver.cpp:245] Train net output #42: loss/loss21 = 1.61981e-05 (* 0.0454545 = 7.36276e-07 loss) | |
I0407 15:57:09.868870 1004 solver.cpp:245] Train net output #43: loss/loss22 = 1.68835e-05 (* 0.0454545 = 7.67434e-07 loss) | |
I0407 15:57:09.868882 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:57:09.868894 1004 solver.cpp:245] Train net output #45: total_confidence = 7.90301e-05 | |
I0407 15:57:09.868907 1004 sgd_solver.cpp:106] Iteration 32500, lr = 0.000935 | |
I0407 15:57:48.126260 1004 solver.cpp:229] Iteration 33000, loss = 1.06462 | |
I0407 15:57:48.126366 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 15:57:48.126387 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:57:48.126411 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:57:48.126435 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 15:57:48.126449 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 15:57:48.126462 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 15:57:48.126476 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 15:57:48.126487 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 15:57:48.126498 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:57:48.126510 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:57:48.126521 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:57:48.126533 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:57:48.126544 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:57:48.126555 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:57:48.126567 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:57:48.126579 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:57:48.126590 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:57:48.126601 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:57:48.126613 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:57:48.126624 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:57:48.126636 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:57:48.126647 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:57:48.126662 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.5795 (* 0.0454545 = 0.162704 loss) | |
I0407 15:57:48.126677 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.9684 (* 0.0454545 = 0.180382 loss) | |
I0407 15:57:48.126691 1004 solver.cpp:245] Train net output #24: loss/loss03 = 4.00917 (* 0.0454545 = 0.182235 loss) | |
I0407 15:57:48.126705 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.83143 (* 0.0454545 = 0.174156 loss) | |
I0407 15:57:48.126719 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.97016 (* 0.0454545 = 0.180462 loss) | |
I0407 15:57:48.126734 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.07964 (* 0.0454545 = 0.139984 loss) | |
I0407 15:57:48.126746 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.72879 (* 0.0454545 = 0.0785812 loss) | |
I0407 15:57:48.126761 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.100331 (* 0.0454545 = 0.00456048 loss) | |
I0407 15:57:48.126775 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.036329 (* 0.0454545 = 0.00165132 loss) | |
I0407 15:57:48.126791 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0140389 (* 0.0454545 = 0.000638131 loss) | |
I0407 15:57:48.126804 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000156272 (* 0.0454545 = 7.10329e-06 loss) | |
I0407 15:57:48.126818 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000165019 (* 0.0454545 = 7.50086e-06 loss) | |
I0407 15:57:48.126832 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000156404 (* 0.0454545 = 7.10927e-06 loss) | |
I0407 15:57:48.126847 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000148324 (* 0.0454545 = 6.74199e-06 loss) | |
I0407 15:57:48.126862 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000151868 (* 0.0454545 = 6.90311e-06 loss) | |
I0407 15:57:48.126875 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000155407 (* 0.0454545 = 7.06397e-06 loss) | |
I0407 15:57:48.126889 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000151685 (* 0.0454545 = 6.89479e-06 loss) | |
I0407 15:57:48.126924 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000155654 (* 0.0454545 = 7.07518e-06 loss) | |
I0407 15:57:48.126940 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000149166 (* 0.0454545 = 6.78029e-06 loss) | |
I0407 15:57:48.126955 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.00016041 (* 0.0454545 = 7.29138e-06 loss) | |
I0407 15:57:48.126968 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000154868 (* 0.0454545 = 7.03947e-06 loss) | |
I0407 15:57:48.126982 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000143431 (* 0.0454545 = 6.51957e-06 loss) | |
I0407 15:57:48.126994 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:57:48.127005 1004 solver.cpp:245] Train net output #45: total_confidence = 1.42146e-06 | |
I0407 15:57:48.127018 1004 sgd_solver.cpp:106] Iteration 33000, lr = 0.000934 | |
I0407 15:58:27.031088 1004 solver.cpp:229] Iteration 33500, loss = 1.07802 | |
I0407 15:58:27.031208 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 15:58:27.031225 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:58:27.031237 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:58:27.031250 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 15:58:27.031260 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0407 15:58:27.031273 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.1875 | |
I0407 15:58:27.031286 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.5625 | |
I0407 15:58:27.031297 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 15:58:27.031308 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:58:27.031321 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:58:27.031332 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:58:27.031358 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:58:27.031370 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:58:27.031381 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:58:27.031394 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:58:27.031404 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:58:27.031416 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:58:27.031427 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:58:27.031440 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:58:27.031450 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:58:27.031462 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:58:27.031473 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:58:27.031489 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.66791 (* 0.0454545 = 0.166723 loss) | |
I0407 15:58:27.031503 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.66495 (* 0.0454545 = 0.166589 loss) | |
I0407 15:58:27.031517 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.79055 (* 0.0454545 = 0.172298 loss) | |
I0407 15:58:27.031532 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.69751 (* 0.0454545 = 0.168069 loss) | |
I0407 15:58:27.031544 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.74404 (* 0.0454545 = 0.170184 loss) | |
I0407 15:58:27.031558 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.44804 (* 0.0454545 = 0.156729 loss) | |
I0407 15:58:27.031572 1004 solver.cpp:245] Train net output #28: loss/loss07 = 2.29003 (* 0.0454545 = 0.104092 loss) | |
I0407 15:58:27.031586 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.479252 (* 0.0454545 = 0.0217842 loss) | |
I0407 15:58:27.031600 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.101969 (* 0.0454545 = 0.00463494 loss) | |
I0407 15:58:27.031615 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0510948 (* 0.0454545 = 0.00232249 loss) | |
I0407 15:58:27.031628 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.00176135 (* 0.0454545 = 8.00613e-05 loss) | |
I0407 15:58:27.031642 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00170982 (* 0.0454545 = 7.77189e-05 loss) | |
I0407 15:58:27.031657 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.00159607 (* 0.0454545 = 7.25484e-05 loss) | |
I0407 15:58:27.031672 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00162965 (* 0.0454545 = 7.40751e-05 loss) | |
I0407 15:58:27.031685 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.00165447 (* 0.0454545 = 7.52034e-05 loss) | |
I0407 15:58:27.031699 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.0016273 (* 0.0454545 = 7.39682e-05 loss) | |
I0407 15:58:27.031713 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.00161839 (* 0.0454545 = 7.35631e-05 loss) | |
I0407 15:58:27.031975 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.00160402 (* 0.0454545 = 7.29102e-05 loss) | |
I0407 15:58:27.031991 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00150534 (* 0.0454545 = 6.84246e-05 loss) | |
I0407 15:58:27.032006 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.00160292 (* 0.0454545 = 7.28598e-05 loss) | |
I0407 15:58:27.032019 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00160107 (* 0.0454545 = 7.27757e-05 loss) | |
I0407 15:58:27.032033 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00162796 (* 0.0454545 = 7.3998e-05 loss) | |
I0407 15:58:27.032045 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:58:27.032058 1004 solver.cpp:245] Train net output #45: total_confidence = 7.10858e-06 | |
I0407 15:58:27.032070 1004 sgd_solver.cpp:106] Iteration 33500, lr = 0.000933 | |
I0407 15:59:05.386404 1004 solver.cpp:229] Iteration 34000, loss = 1.0703 | |
I0407 15:59:05.386575 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 15:59:05.386595 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 15:59:05.386610 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:59:05.386621 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 15:59:05.386633 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 15:59:05.386646 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 15:59:05.386658 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 15:59:05.386669 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 15:59:05.386682 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:59:05.386693 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 15:59:05.386705 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:59:05.386716 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:59:05.386729 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:59:05.386739 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:59:05.386751 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:59:05.386762 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:59:05.386775 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:59:05.386786 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:59:05.386797 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:59:05.386808 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:59:05.386821 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:59:05.386832 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:59:05.386847 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.50474 (* 0.0454545 = 0.159307 loss) | |
I0407 15:59:05.386862 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.66708 (* 0.0454545 = 0.166685 loss) | |
I0407 15:59:05.386876 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.70671 (* 0.0454545 = 0.168487 loss) | |
I0407 15:59:05.386889 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.77804 (* 0.0454545 = 0.171729 loss) | |
I0407 15:59:05.386904 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.37317 (* 0.0454545 = 0.153326 loss) | |
I0407 15:59:05.386919 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.06722 (* 0.0454545 = 0.139419 loss) | |
I0407 15:59:05.386934 1004 solver.cpp:245] Train net output #28: loss/loss07 = 2.11784 (* 0.0454545 = 0.0962653 loss) | |
I0407 15:59:05.386948 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.877739 (* 0.0454545 = 0.0398972 loss) | |
I0407 15:59:05.386962 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.417094 (* 0.0454545 = 0.0189588 loss) | |
I0407 15:59:05.386976 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.439281 (* 0.0454545 = 0.0199673 loss) | |
I0407 15:59:05.386991 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000193973 (* 0.0454545 = 8.81696e-06 loss) | |
I0407 15:59:05.387004 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000163731 (* 0.0454545 = 7.44233e-06 loss) | |
I0407 15:59:05.387018 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000188717 (* 0.0454545 = 8.57805e-06 loss) | |
I0407 15:59:05.387032 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000183507 (* 0.0454545 = 8.34124e-06 loss) | |
I0407 15:59:05.387048 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000179931 (* 0.0454545 = 8.17866e-06 loss) | |
I0407 15:59:05.387061 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000153314 (* 0.0454545 = 6.96881e-06 loss) | |
I0407 15:59:05.387079 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000166869 (* 0.0454545 = 7.58497e-06 loss) | |
I0407 15:59:05.387106 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.00016571 (* 0.0454545 = 7.53228e-06 loss) | |
I0407 15:59:05.387122 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000162508 (* 0.0454545 = 7.38671e-06 loss) | |
I0407 15:59:05.387136 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000146992 (* 0.0454545 = 6.68146e-06 loss) | |
I0407 15:59:05.387151 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000156281 (* 0.0454545 = 7.1037e-06 loss) | |
I0407 15:59:05.387164 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000165958 (* 0.0454545 = 7.54353e-06 loss) | |
I0407 15:59:05.387176 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:59:05.387188 1004 solver.cpp:245] Train net output #45: total_confidence = 2.8937e-05 | |
I0407 15:59:05.387202 1004 sgd_solver.cpp:106] Iteration 34000, lr = 0.000932 | |
I0407 15:59:43.878914 1004 solver.cpp:229] Iteration 34500, loss = 1.06259 | |
I0407 15:59:43.879067 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 15:59:43.879088 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:59:43.879102 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 15:59:43.879114 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 15:59:43.879127 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0407 15:59:43.879138 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 15:59:43.879150 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 15:59:43.879163 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 15:59:43.879174 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:59:43.879186 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:59:43.879197 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:59:43.879209 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:59:43.879220 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:59:43.879231 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:59:43.879243 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:59:43.879254 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:59:43.879266 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:59:43.879277 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:59:43.879288 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:59:43.879299 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:59:43.879312 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:59:43.879343 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:59:43.879361 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.6249 (* 0.0454545 = 0.164768 loss) | |
I0407 15:59:43.879376 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.6807 (* 0.0454545 = 0.167305 loss) | |
I0407 15:59:43.879390 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.57676 (* 0.0454545 = 0.16258 loss) | |
I0407 15:59:43.879405 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.6113 (* 0.0454545 = 0.16415 loss) | |
I0407 15:59:43.879417 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.79806 (* 0.0454545 = 0.172639 loss) | |
I0407 15:59:43.879431 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.48654 (* 0.0454545 = 0.113025 loss) | |
I0407 15:59:43.879446 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.05969 (* 0.0454545 = 0.0481679 loss) | |
I0407 15:59:43.879459 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.17528 (* 0.0454545 = 0.0534217 loss) | |
I0407 15:59:43.879473 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0354374 (* 0.0454545 = 0.00161079 loss) | |
I0407 15:59:43.879487 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.013778 (* 0.0454545 = 0.000626272 loss) | |
I0407 15:59:43.879501 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000149635 (* 0.0454545 = 6.80158e-06 loss) | |
I0407 15:59:43.879515 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000144287 (* 0.0454545 = 6.55852e-06 loss) | |
I0407 15:59:43.879529 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000142489 (* 0.0454545 = 6.47677e-06 loss) | |
I0407 15:59:43.879544 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000145672 (* 0.0454545 = 6.62146e-06 loss) | |
I0407 15:59:43.879557 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000148105 (* 0.0454545 = 6.73204e-06 loss) | |
I0407 15:59:43.879572 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000133622 (* 0.0454545 = 6.07371e-06 loss) | |
I0407 15:59:43.879586 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000144 (* 0.0454545 = 6.54548e-06 loss) | |
I0407 15:59:43.879618 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000148306 (* 0.0454545 = 6.74118e-06 loss) | |
I0407 15:59:43.879634 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000141236 (* 0.0454545 = 6.41982e-06 loss) | |
I0407 15:59:43.879647 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000143889 (* 0.0454545 = 6.54041e-06 loss) | |
I0407 15:59:43.879662 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00014324 (* 0.0454545 = 6.51091e-06 loss) | |
I0407 15:59:43.879675 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000153955 (* 0.0454545 = 6.99795e-06 loss) | |
I0407 15:59:43.879688 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:59:43.879699 1004 solver.cpp:245] Train net output #45: total_confidence = 7.19492e-06 | |
I0407 15:59:43.879712 1004 sgd_solver.cpp:106] Iteration 34500, lr = 0.000931 | |
I0407 16:00:22.789160 1004 solver.cpp:338] Iteration 35000, Testing net (#0) | |
I0407 16:00:30.796301 1004 solver.cpp:393] Test loss: 0.95736 | |
I0407 16:00:30.796352 1004 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.098 | |
I0407 16:00:30.796370 1004 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.061 | |
I0407 16:00:30.796382 1004 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.068 | |
I0407 16:00:30.796393 1004 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.09 | |
I0407 16:00:30.796406 1004 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.212 | |
I0407 16:00:30.796417 1004 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.501 | |
I0407 16:00:30.796429 1004 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0407 16:00:30.796440 1004 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 16:00:30.796452 1004 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 16:00:30.796463 1004 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 16:00:30.796475 1004 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 16:00:30.796486 1004 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 16:00:30.796497 1004 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 16:00:30.796509 1004 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 16:00:30.796519 1004 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 16:00:30.796530 1004 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 16:00:30.796541 1004 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 16:00:30.796552 1004 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 16:00:30.796563 1004 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 16:00:30.796574 1004 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 16:00:30.796586 1004 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 16:00:30.796597 1004 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 16:00:30.796610 1004 solver.cpp:406] Test net output #22: loss/loss01 = 3.21739 (* 0.0454545 = 0.146245 loss) | |
I0407 16:00:30.796624 1004 solver.cpp:406] Test net output #23: loss/loss02 = 3.49017 (* 0.0454545 = 0.158644 loss) | |
I0407 16:00:30.796638 1004 solver.cpp:406] Test net output #24: loss/loss03 = 3.56637 (* 0.0454545 = 0.162108 loss) | |
I0407 16:00:30.796653 1004 solver.cpp:406] Test net output #25: loss/loss04 = 3.53138 (* 0.0454545 = 0.160517 loss) | |
I0407 16:00:30.796665 1004 solver.cpp:406] Test net output #26: loss/loss05 = 3.45855 (* 0.0454545 = 0.157207 loss) | |
I0407 16:00:30.796679 1004 solver.cpp:406] Test net output #27: loss/loss06 = 2.48328 (* 0.0454545 = 0.112876 loss) | |
I0407 16:00:30.796694 1004 solver.cpp:406] Test net output #28: loss/loss07 = 0.883549 (* 0.0454545 = 0.0401613 loss) | |
I0407 16:00:30.796707 1004 solver.cpp:406] Test net output #29: loss/loss08 = 0.321354 (* 0.0454545 = 0.014607 loss) | |
I0407 16:00:30.796720 1004 solver.cpp:406] Test net output #30: loss/loss09 = 0.069154 (* 0.0454545 = 0.00314336 loss) | |
I0407 16:00:30.796735 1004 solver.cpp:406] Test net output #31: loss/loss10 = 0.0323339 (* 0.0454545 = 0.00146972 loss) | |
I0407 16:00:30.796748 1004 solver.cpp:406] Test net output #32: loss/loss11 = 0.00071833 (* 0.0454545 = 3.26514e-05 loss) | |
I0407 16:00:30.796762 1004 solver.cpp:406] Test net output #33: loss/loss12 = 0.000706482 (* 0.0454545 = 3.21128e-05 loss) | |
I0407 16:00:30.796777 1004 solver.cpp:406] Test net output #34: loss/loss13 = 0.000701346 (* 0.0454545 = 3.18794e-05 loss) | |
I0407 16:00:30.796790 1004 solver.cpp:406] Test net output #35: loss/loss14 = 0.000703998 (* 0.0454545 = 3.19999e-05 loss) | |
I0407 16:00:30.796803 1004 solver.cpp:406] Test net output #36: loss/loss15 = 0.000710559 (* 0.0454545 = 3.22982e-05 loss) | |
I0407 16:00:30.796818 1004 solver.cpp:406] Test net output #37: loss/loss16 = 0.00069334 (* 0.0454545 = 3.15155e-05 loss) | |
I0407 16:00:30.796831 1004 solver.cpp:406] Test net output #38: loss/loss17 = 0.000698 (* 0.0454545 = 3.17273e-05 loss) | |
I0407 16:00:30.796880 1004 solver.cpp:406] Test net output #39: loss/loss18 = 0.00070041 (* 0.0454545 = 3.18368e-05 loss) | |
I0407 16:00:30.796896 1004 solver.cpp:406] Test net output #40: loss/loss19 = 0.000686329 (* 0.0454545 = 3.11968e-05 loss) | |
I0407 16:00:30.796911 1004 solver.cpp:406] Test net output #41: loss/loss20 = 0.000695966 (* 0.0454545 = 3.16348e-05 loss) | |
I0407 16:00:30.796927 1004 solver.cpp:406] Test net output #42: loss/loss21 = 0.000698768 (* 0.0454545 = 3.17622e-05 loss) | |
I0407 16:00:30.796941 1004 solver.cpp:406] Test net output #43: loss/loss22 = 0.000700695 (* 0.0454545 = 3.18498e-05 loss) | |
I0407 16:00:30.796953 1004 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0407 16:00:30.796964 1004 solver.cpp:406] Test net output #45: total_confidence = 3.80663e-05 | |
I0407 16:00:30.819453 1004 solver.cpp:229] Iteration 35000, loss = 1.07644 | |
I0407 16:00:30.819489 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0407 16:00:30.819504 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:00:30.819517 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 16:00:30.819530 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 16:00:30.819541 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 16:00:30.819553 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 16:00:30.819564 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875 | |
I0407 16:00:30.819576 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 16:00:30.819588 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:00:30.819600 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:00:30.819612 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:00:30.819622 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:00:30.819633 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:00:30.819645 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:00:30.819656 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:00:30.819667 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:00:30.819679 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:00:30.819690 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:00:30.819706 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:00:30.819718 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:00:30.819730 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:00:30.819741 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:00:30.819756 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.40883 (* 0.0454545 = 0.154947 loss) | |
I0407 16:00:30.819771 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.96604 (* 0.0454545 = 0.180275 loss) | |
I0407 16:00:30.819783 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.6224 (* 0.0454545 = 0.164655 loss) | |
I0407 16:00:30.819797 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.83809 (* 0.0454545 = 0.174459 loss) | |
I0407 16:00:30.819811 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.33461 (* 0.0454545 = 0.151573 loss) | |
I0407 16:00:30.819825 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.34686 (* 0.0454545 = 0.106675 loss) | |
I0407 16:00:30.819839 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.735187 (* 0.0454545 = 0.0334176 loss) | |
I0407 16:00:30.819851 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.744243 (* 0.0454545 = 0.0338292 loss) | |
I0407 16:00:30.819865 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.46134 (* 0.0454545 = 0.02097 loss) | |
I0407 16:00:30.819880 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.00598256 (* 0.0454545 = 0.000271934 loss) | |
I0407 16:00:30.819911 1004 solver.cpp:245] Train net output #32: loss/loss11 = 3.46396e-05 (* 0.0454545 = 1.57453e-06 loss) | |
I0407 16:00:30.819926 1004 solver.cpp:245] Train net output #33: loss/loss12 = 3.69653e-05 (* 0.0454545 = 1.68024e-06 loss) | |
I0407 16:00:30.819939 1004 solver.cpp:245] Train net output #34: loss/loss13 = 3.39169e-05 (* 0.0454545 = 1.54168e-06 loss) | |
I0407 16:00:30.819953 1004 solver.cpp:245] Train net output #35: loss/loss14 = 3.49979e-05 (* 0.0454545 = 1.59081e-06 loss) | |
I0407 16:00:30.819967 1004 solver.cpp:245] Train net output #36: loss/loss15 = 3.89146e-05 (* 0.0454545 = 1.76884e-06 loss) | |
I0407 16:00:30.819982 1004 solver.cpp:245] Train net output #37: loss/loss16 = 3.79681e-05 (* 0.0454545 = 1.72582e-06 loss) | |
I0407 16:00:30.819995 1004 solver.cpp:245] Train net output #38: loss/loss17 = 3.43271e-05 (* 0.0454545 = 1.56032e-06 loss) | |
I0407 16:00:30.820009 1004 solver.cpp:245] Train net output #39: loss/loss18 = 3.51168e-05 (* 0.0454545 = 1.59622e-06 loss) | |
I0407 16:00:30.820022 1004 solver.cpp:245] Train net output #40: loss/loss19 = 3.56241e-05 (* 0.0454545 = 1.61928e-06 loss) | |
I0407 16:00:30.820036 1004 solver.cpp:245] Train net output #41: loss/loss20 = 3.63619e-05 (* 0.0454545 = 1.65281e-06 loss) | |
I0407 16:00:30.820050 1004 solver.cpp:245] Train net output #42: loss/loss21 = 3.48487e-05 (* 0.0454545 = 1.58403e-06 loss) | |
I0407 16:00:30.820063 1004 solver.cpp:245] Train net output #43: loss/loss22 = 3.80278e-05 (* 0.0454545 = 1.72854e-06 loss) | |
I0407 16:00:30.820078 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:00:30.820091 1004 solver.cpp:245] Train net output #45: total_confidence = 1.67611e-05 | |
I0407 16:00:30.820106 1004 sgd_solver.cpp:106] Iteration 35000, lr = 0.00093 | |
I0407 16:01:08.781437 1004 solver.cpp:229] Iteration 35500, loss = 1.07319 | |
I0407 16:01:08.781599 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:01:08.781621 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:01:08.781635 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 16:01:08.781647 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 16:01:08.781659 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 16:01:08.781672 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.1875 | |
I0407 16:01:08.781683 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.5625 | |
I0407 16:01:08.781695 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 16:01:08.781708 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0407 16:01:08.781719 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 16:01:08.781731 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:01:08.781743 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:01:08.781754 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:01:08.781766 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:01:08.781777 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:01:08.781790 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:01:08.781801 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:01:08.781813 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:01:08.781824 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:01:08.781836 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:01:08.781847 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:01:08.781858 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:01:08.781874 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.61963 (* 0.0454545 = 0.164529 loss) | |
I0407 16:01:08.781888 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.73845 (* 0.0454545 = 0.169929 loss) | |
I0407 16:01:08.781903 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.7416 (* 0.0454545 = 0.170073 loss) | |
I0407 16:01:08.781916 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.72878 (* 0.0454545 = 0.16949 loss) | |
I0407 16:01:08.781934 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.58579 (* 0.0454545 = 0.162991 loss) | |
I0407 16:01:08.781947 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.49722 (* 0.0454545 = 0.158965 loss) | |
I0407 16:01:08.781961 1004 solver.cpp:245] Train net output #28: loss/loss07 = 2.16429 (* 0.0454545 = 0.0983766 loss) | |
I0407 16:01:08.781975 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.701459 (* 0.0454545 = 0.0318845 loss) | |
I0407 16:01:08.781990 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.857992 (* 0.0454545 = 0.0389996 loss) | |
I0407 16:01:08.782002 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.454029 (* 0.0454545 = 0.0206377 loss) | |
I0407 16:01:08.782017 1004 solver.cpp:245] Train net output #32: loss/loss11 = 6.13262e-05 (* 0.0454545 = 2.78755e-06 loss) | |
I0407 16:01:08.782032 1004 solver.cpp:245] Train net output #33: loss/loss12 = 5.91051e-05 (* 0.0454545 = 2.6866e-06 loss) | |
I0407 16:01:08.782047 1004 solver.cpp:245] Train net output #34: loss/loss13 = 5.81736e-05 (* 0.0454545 = 2.64426e-06 loss) | |
I0407 16:01:08.782060 1004 solver.cpp:245] Train net output #35: loss/loss14 = 6.09383e-05 (* 0.0454545 = 2.76992e-06 loss) | |
I0407 16:01:08.782074 1004 solver.cpp:245] Train net output #36: loss/loss15 = 5.84718e-05 (* 0.0454545 = 2.65781e-06 loss) | |
I0407 16:01:08.782088 1004 solver.cpp:245] Train net output #37: loss/loss16 = 5.63925e-05 (* 0.0454545 = 2.5633e-06 loss) | |
I0407 16:01:08.782102 1004 solver.cpp:245] Train net output #38: loss/loss17 = 5.67836e-05 (* 0.0454545 = 2.58107e-06 loss) | |
I0407 16:01:08.782130 1004 solver.cpp:245] Train net output #39: loss/loss18 = 5.91424e-05 (* 0.0454545 = 2.68829e-06 loss) | |
I0407 16:01:08.782146 1004 solver.cpp:245] Train net output #40: loss/loss19 = 6.02566e-05 (* 0.0454545 = 2.73894e-06 loss) | |
I0407 16:01:08.782160 1004 solver.cpp:245] Train net output #41: loss/loss20 = 5.99662e-05 (* 0.0454545 = 2.72574e-06 loss) | |
I0407 16:01:08.782174 1004 solver.cpp:245] Train net output #42: loss/loss21 = 5.6903e-05 (* 0.0454545 = 2.5865e-06 loss) | |
I0407 16:01:08.782189 1004 solver.cpp:245] Train net output #43: loss/loss22 = 5.65301e-05 (* 0.0454545 = 2.56955e-06 loss) | |
I0407 16:01:08.782202 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:01:08.782213 1004 solver.cpp:245] Train net output #45: total_confidence = 1.13339e-05 | |
I0407 16:01:08.782227 1004 sgd_solver.cpp:106] Iteration 35500, lr = 0.000929 | |
I0407 16:01:47.479817 1004 solver.cpp:229] Iteration 36000, loss = 1.06957 | |
I0407 16:01:47.479957 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:01:47.479979 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:01:47.479991 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:01:47.480005 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.25 | |
I0407 16:01:47.480016 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 16:01:47.480028 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 16:01:47.480041 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 16:01:47.480052 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 16:01:47.480064 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0407 16:01:47.480077 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 16:01:47.480088 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:01:47.480100 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:01:47.480113 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:01:47.480124 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:01:47.480135 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:01:47.480147 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:01:47.480159 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:01:47.480170 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:01:47.480182 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:01:47.480193 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:01:47.480209 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:01:47.480221 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:01:47.480237 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.35107 (* 0.0454545 = 0.152321 loss) | |
I0407 16:01:47.480252 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.4982 (* 0.0454545 = 0.159009 loss) | |
I0407 16:01:47.480267 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.6186 (* 0.0454545 = 0.164482 loss) | |
I0407 16:01:47.480280 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.32253 (* 0.0454545 = 0.151024 loss) | |
I0407 16:01:47.480293 1004 solver.cpp:245] Train net output #26: loss/loss05 = 2.99503 (* 0.0454545 = 0.136138 loss) | |
I0407 16:01:47.480309 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.42095 (* 0.0454545 = 0.110043 loss) | |
I0407 16:01:47.480322 1004 solver.cpp:245] Train net output #28: loss/loss07 = 2.05899 (* 0.0454545 = 0.0935902 loss) | |
I0407 16:01:47.480336 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.916541 (* 0.0454545 = 0.041661 loss) | |
I0407 16:01:47.480350 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.980466 (* 0.0454545 = 0.0445666 loss) | |
I0407 16:01:47.480365 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.330707 (* 0.0454545 = 0.0150321 loss) | |
I0407 16:01:47.480378 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000527381 (* 0.0454545 = 2.39719e-05 loss) | |
I0407 16:01:47.480393 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000528911 (* 0.0454545 = 2.40414e-05 loss) | |
I0407 16:01:47.480407 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.00049466 (* 0.0454545 = 2.24845e-05 loss) | |
I0407 16:01:47.480422 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00050295 (* 0.0454545 = 2.28614e-05 loss) | |
I0407 16:01:47.480435 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000520558 (* 0.0454545 = 2.36617e-05 loss) | |
I0407 16:01:47.480449 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000451005 (* 0.0454545 = 2.05002e-05 loss) | |
I0407 16:01:47.480463 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000472989 (* 0.0454545 = 2.14995e-05 loss) | |
I0407 16:01:47.480494 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000478207 (* 0.0454545 = 2.17367e-05 loss) | |
I0407 16:01:47.480509 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000476372 (* 0.0454545 = 2.16533e-05 loss) | |
I0407 16:01:47.480525 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000481872 (* 0.0454545 = 2.19033e-05 loss) | |
I0407 16:01:47.480538 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000475384 (* 0.0454545 = 2.16083e-05 loss) | |
I0407 16:01:47.480552 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000500647 (* 0.0454545 = 2.27567e-05 loss) | |
I0407 16:01:47.480564 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:01:47.480576 1004 solver.cpp:245] Train net output #45: total_confidence = 2.44729e-05 | |
I0407 16:01:47.480590 1004 sgd_solver.cpp:106] Iteration 36000, lr = 0.000928 | |
I0407 16:02:25.781113 1004 solver.cpp:229] Iteration 36500, loss = 1.0704 | |
I0407 16:02:25.781213 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:02:25.781232 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:02:25.781245 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:02:25.781257 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 16:02:25.781270 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 16:02:25.781281 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 16:02:25.781293 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 16:02:25.781311 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.75 | |
I0407 16:02:25.781323 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:02:25.781335 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 16:02:25.781347 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:02:25.781358 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:02:25.781370 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:02:25.781381 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:02:25.781394 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:02:25.781404 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:02:25.781415 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:02:25.781427 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:02:25.781440 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:02:25.781450 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:02:25.781462 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:02:25.781473 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:02:25.781488 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.4227 (* 0.0454545 = 0.155577 loss) | |
I0407 16:02:25.781503 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.89716 (* 0.0454545 = 0.177144 loss) | |
I0407 16:02:25.781517 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.79062 (* 0.0454545 = 0.172301 loss) | |
I0407 16:02:25.781532 1004 solver.cpp:245] Train net output #25: loss/loss04 = 4.01895 (* 0.0454545 = 0.18268 loss) | |
I0407 16:02:25.781546 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.37214 (* 0.0454545 = 0.153279 loss) | |
I0407 16:02:25.781560 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.82213 (* 0.0454545 = 0.128279 loss) | |
I0407 16:02:25.781574 1004 solver.cpp:245] Train net output #28: loss/loss07 = 2.11171 (* 0.0454545 = 0.0959867 loss) | |
I0407 16:02:25.781587 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.43358 (* 0.0454545 = 0.065163 loss) | |
I0407 16:02:25.781600 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.501035 (* 0.0454545 = 0.0227743 loss) | |
I0407 16:02:25.781615 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.575695 (* 0.0454545 = 0.026168 loss) | |
I0407 16:02:25.781628 1004 solver.cpp:245] Train net output #32: loss/loss11 = 6.89812e-05 (* 0.0454545 = 3.13551e-06 loss) | |
I0407 16:02:25.781643 1004 solver.cpp:245] Train net output #33: loss/loss12 = 7.05581e-05 (* 0.0454545 = 3.20719e-06 loss) | |
I0407 16:02:25.781657 1004 solver.cpp:245] Train net output #34: loss/loss13 = 7.10164e-05 (* 0.0454545 = 3.22802e-06 loss) | |
I0407 16:02:25.781672 1004 solver.cpp:245] Train net output #35: loss/loss14 = 6.98092e-05 (* 0.0454545 = 3.17314e-06 loss) | |
I0407 16:02:25.781685 1004 solver.cpp:245] Train net output #36: loss/loss15 = 6.69948e-05 (* 0.0454545 = 3.04522e-06 loss) | |
I0407 16:02:25.781699 1004 solver.cpp:245] Train net output #37: loss/loss16 = 6.82405e-05 (* 0.0454545 = 3.10184e-06 loss) | |
I0407 16:02:25.781713 1004 solver.cpp:245] Train net output #38: loss/loss17 = 6.57243e-05 (* 0.0454545 = 2.98747e-06 loss) | |
I0407 16:02:25.781744 1004 solver.cpp:245] Train net output #39: loss/loss18 = 7.01816e-05 (* 0.0454545 = 3.19007e-06 loss) | |
I0407 16:02:25.781759 1004 solver.cpp:245] Train net output #40: loss/loss19 = 6.42002e-05 (* 0.0454545 = 2.91819e-06 loss) | |
I0407 16:02:25.781774 1004 solver.cpp:245] Train net output #41: loss/loss20 = 6.60302e-05 (* 0.0454545 = 3.00137e-06 loss) | |
I0407 16:02:25.781787 1004 solver.cpp:245] Train net output #42: loss/loss21 = 6.64808e-05 (* 0.0454545 = 3.02185e-06 loss) | |
I0407 16:02:25.781801 1004 solver.cpp:245] Train net output #43: loss/loss22 = 7.20591e-05 (* 0.0454545 = 3.27541e-06 loss) | |
I0407 16:02:25.781813 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:02:25.781824 1004 solver.cpp:245] Train net output #45: total_confidence = 6.1039e-06 | |
I0407 16:02:25.781838 1004 sgd_solver.cpp:106] Iteration 36500, lr = 0.000927 | |
I0407 16:03:04.271193 1004 solver.cpp:229] Iteration 37000, loss = 1.07532 | |
I0407 16:03:04.271334 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:03:04.271354 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 16:03:04.271368 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:03:04.271380 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 16:03:04.271392 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 16:03:04.271404 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 16:03:04.271416 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 16:03:04.271428 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 16:03:04.271440 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:03:04.271451 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:03:04.271462 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:03:04.271474 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:03:04.271486 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:03:04.271497 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:03:04.271508 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:03:04.271520 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:03:04.271531 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:03:04.271543 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:03:04.271555 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:03:04.271566 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:03:04.271579 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:03:04.271589 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:03:04.271605 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.69983 (* 0.0454545 = 0.168174 loss) | |
I0407 16:03:04.271620 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.56435 (* 0.0454545 = 0.162016 loss) | |
I0407 16:03:04.271634 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.69629 (* 0.0454545 = 0.168013 loss) | |
I0407 16:03:04.271647 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.9403 (* 0.0454545 = 0.179105 loss) | |
I0407 16:03:04.271661 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.71244 (* 0.0454545 = 0.168747 loss) | |
I0407 16:03:04.271675 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.21088 (* 0.0454545 = 0.145949 loss) | |
I0407 16:03:04.271689 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.22517 (* 0.0454545 = 0.0556895 loss) | |
I0407 16:03:04.271703 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.0887921 (* 0.0454545 = 0.004036 loss) | |
I0407 16:03:04.271718 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0271758 (* 0.0454545 = 0.00123526 loss) | |
I0407 16:03:04.271731 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0104897 (* 0.0454545 = 0.000476806 loss) | |
I0407 16:03:04.271745 1004 solver.cpp:245] Train net output #32: loss/loss11 = 8.99646e-05 (* 0.0454545 = 4.0893e-06 loss) | |
I0407 16:03:04.271760 1004 solver.cpp:245] Train net output #33: loss/loss12 = 8.67441e-05 (* 0.0454545 = 3.94291e-06 loss) | |
I0407 16:03:04.271775 1004 solver.cpp:245] Train net output #34: loss/loss13 = 9.0617e-05 (* 0.0454545 = 4.11895e-06 loss) | |
I0407 16:03:04.271788 1004 solver.cpp:245] Train net output #35: loss/loss14 = 8.62411e-05 (* 0.0454545 = 3.92005e-06 loss) | |
I0407 16:03:04.271802 1004 solver.cpp:245] Train net output #36: loss/loss15 = 8.90103e-05 (* 0.0454545 = 4.04592e-06 loss) | |
I0407 16:03:04.271816 1004 solver.cpp:245] Train net output #37: loss/loss16 = 8.43326e-05 (* 0.0454545 = 3.8333e-06 loss) | |
I0407 16:03:04.271831 1004 solver.cpp:245] Train net output #38: loss/loss17 = 8.09221e-05 (* 0.0454545 = 3.67828e-06 loss) | |
I0407 16:03:04.271863 1004 solver.cpp:245] Train net output #39: loss/loss18 = 8.43255e-05 (* 0.0454545 = 3.83298e-06 loss) | |
I0407 16:03:04.271878 1004 solver.cpp:245] Train net output #40: loss/loss19 = 7.95242e-05 (* 0.0454545 = 3.61473e-06 loss) | |
I0407 16:03:04.271893 1004 solver.cpp:245] Train net output #41: loss/loss20 = 8.17947e-05 (* 0.0454545 = 3.71794e-06 loss) | |
I0407 16:03:04.271906 1004 solver.cpp:245] Train net output #42: loss/loss21 = 8.14441e-05 (* 0.0454545 = 3.702e-06 loss) | |
I0407 16:03:04.271924 1004 solver.cpp:245] Train net output #43: loss/loss22 = 8.99716e-05 (* 0.0454545 = 4.08962e-06 loss) | |
I0407 16:03:04.271936 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:03:04.271949 1004 solver.cpp:245] Train net output #45: total_confidence = 9.89308e-06 | |
I0407 16:03:04.271962 1004 sgd_solver.cpp:106] Iteration 37000, lr = 0.000926 | |
I0407 16:03:43.050057 1004 solver.cpp:229] Iteration 37500, loss = 1.06792 | |
I0407 16:03:43.050225 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:03:43.050245 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:03:43.050258 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 16:03:43.050271 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 16:03:43.050282 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 16:03:43.050294 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 16:03:43.050307 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 16:03:43.050319 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 16:03:43.050333 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:03:43.050343 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:03:43.050355 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:03:43.050367 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:03:43.050379 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:03:43.050390 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:03:43.050402 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:03:43.050415 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:03:43.050426 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:03:43.050437 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:03:43.050449 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:03:43.050460 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:03:43.050472 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:03:43.050484 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:03:43.050500 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.96255 (* 0.0454545 = 0.180116 loss) | |
I0407 16:03:43.050514 1004 solver.cpp:245] Train net output #23: loss/loss02 = 4.01379 (* 0.0454545 = 0.182445 loss) | |
I0407 16:03:43.050529 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.93083 (* 0.0454545 = 0.178674 loss) | |
I0407 16:03:43.050542 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.69413 (* 0.0454545 = 0.167915 loss) | |
I0407 16:03:43.050556 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.52237 (* 0.0454545 = 0.160108 loss) | |
I0407 16:03:43.050570 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.67799 (* 0.0454545 = 0.121727 loss) | |
I0407 16:03:43.050585 1004 solver.cpp:245] Train net output #28: loss/loss07 = 2.32817 (* 0.0454545 = 0.105826 loss) | |
I0407 16:03:43.050598 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.95145 (* 0.0454545 = 0.0887024 loss) | |
I0407 16:03:43.050612 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0350969 (* 0.0454545 = 0.00159531 loss) | |
I0407 16:03:43.050627 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0133475 (* 0.0454545 = 0.000606704 loss) | |
I0407 16:03:43.050642 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000163269 (* 0.0454545 = 7.4213e-06 loss) | |
I0407 16:03:43.050657 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000159162 (* 0.0454545 = 7.23463e-06 loss) | |
I0407 16:03:43.050670 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000166208 (* 0.0454545 = 7.55491e-06 loss) | |
I0407 16:03:43.050684 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000157548 (* 0.0454545 = 7.16127e-06 loss) | |
I0407 16:03:43.050698 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000169429 (* 0.0454545 = 7.70134e-06 loss) | |
I0407 16:03:43.050714 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000160309 (* 0.0454545 = 7.28676e-06 loss) | |
I0407 16:03:43.050727 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000163114 (* 0.0454545 = 7.41426e-06 loss) | |
I0407 16:03:43.050755 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000151908 (* 0.0454545 = 6.90492e-06 loss) | |
I0407 16:03:43.050770 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000154049 (* 0.0454545 = 7.00224e-06 loss) | |
I0407 16:03:43.050784 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000167848 (* 0.0454545 = 7.62946e-06 loss) | |
I0407 16:03:43.050798 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000153796 (* 0.0454545 = 6.99073e-06 loss) | |
I0407 16:03:43.050812 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000149478 (* 0.0454545 = 6.79443e-06 loss) | |
I0407 16:03:43.050824 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:03:43.050837 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000632564 | |
I0407 16:03:43.050849 1004 sgd_solver.cpp:106] Iteration 37500, lr = 0.000925 | |
I0407 16:04:22.870689 1004 solver.cpp:229] Iteration 38000, loss = 1.05927 | |
I0407 16:04:22.870813 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 16:04:22.870832 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:04:22.870846 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:04:22.870857 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 16:04:22.870868 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 16:04:22.870882 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 16:04:22.870894 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 16:04:22.870905 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 16:04:22.870920 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:04:22.870932 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:04:22.870944 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:04:22.870956 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:04:22.870968 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:04:22.870980 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:04:22.870991 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:04:22.871003 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:04:22.871014 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:04:22.871026 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:04:22.871037 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:04:22.871048 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:04:22.871060 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:04:22.871073 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:04:22.871088 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.7483 (* 0.0454545 = 0.170377 loss) | |
I0407 16:04:22.871103 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.80805 (* 0.0454545 = 0.173093 loss) | |
I0407 16:04:22.871117 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.76246 (* 0.0454545 = 0.171021 loss) | |
I0407 16:04:22.871131 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.89829 (* 0.0454545 = 0.177195 loss) | |
I0407 16:04:22.871145 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.30599 (* 0.0454545 = 0.150272 loss) | |
I0407 16:04:22.871158 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.89032 (* 0.0454545 = 0.131378 loss) | |
I0407 16:04:22.871172 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.80525 (* 0.0454545 = 0.082057 loss) | |
I0407 16:04:22.871186 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.650895 (* 0.0454545 = 0.0295861 loss) | |
I0407 16:04:22.871199 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.33856 (* 0.0454545 = 0.0153891 loss) | |
I0407 16:04:22.871213 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0254676 (* 0.0454545 = 0.00115762 loss) | |
I0407 16:04:22.871228 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000282918 (* 0.0454545 = 1.28599e-05 loss) | |
I0407 16:04:22.871243 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000272587 (* 0.0454545 = 1.23903e-05 loss) | |
I0407 16:04:22.871258 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000275957 (* 0.0454545 = 1.25435e-05 loss) | |
I0407 16:04:22.871271 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000276871 (* 0.0454545 = 1.25851e-05 loss) | |
I0407 16:04:22.871296 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000254841 (* 0.0454545 = 1.15837e-05 loss) | |
I0407 16:04:22.871345 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000266802 (* 0.0454545 = 1.21274e-05 loss) | |
I0407 16:04:22.871362 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.00026762 (* 0.0454545 = 1.21646e-05 loss) | |
I0407 16:04:22.871618 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000269743 (* 0.0454545 = 1.2261e-05 loss) | |
I0407 16:04:22.871634 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000262552 (* 0.0454545 = 1.19342e-05 loss) | |
I0407 16:04:22.871649 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000271711 (* 0.0454545 = 1.23505e-05 loss) | |
I0407 16:04:22.871664 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000274312 (* 0.0454545 = 1.24687e-05 loss) | |
I0407 16:04:22.871677 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000272627 (* 0.0454545 = 1.23921e-05 loss) | |
I0407 16:04:22.871690 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:04:22.871701 1004 solver.cpp:245] Train net output #45: total_confidence = 1.69649e-05 | |
I0407 16:04:22.871716 1004 sgd_solver.cpp:106] Iteration 38000, lr = 0.000924 | |
I0407 16:05:01.672406 1004 solver.cpp:229] Iteration 38500, loss = 1.07025 | |
I0407 16:05:01.672608 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 16:05:01.672629 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:05:01.672646 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:05:01.672659 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 16:05:01.672670 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 16:05:01.672683 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 16:05:01.672695 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 16:05:01.672706 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:05:01.672719 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:05:01.672730 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:05:01.672741 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:05:01.672754 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:05:01.672765 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:05:01.672776 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:05:01.672787 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:05:01.672799 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:05:01.672811 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:05:01.672821 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:05:01.672833 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:05:01.672844 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:05:01.672857 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:05:01.672868 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:05:01.672883 1004 solver.cpp:245] Train net output #22: loss/loss01 = 4.32815 (* 0.0454545 = 0.196734 loss) | |
I0407 16:05:01.672897 1004 solver.cpp:245] Train net output #23: loss/loss02 = 4.14833 (* 0.0454545 = 0.188561 loss) | |
I0407 16:05:01.672911 1004 solver.cpp:245] Train net output #24: loss/loss03 = 4.12589 (* 0.0454545 = 0.18754 loss) | |
I0407 16:05:01.672925 1004 solver.cpp:245] Train net output #25: loss/loss04 = 4.04115 (* 0.0454545 = 0.183688 loss) | |
I0407 16:05:01.672938 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.68495 (* 0.0454545 = 0.167498 loss) | |
I0407 16:05:01.672952 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.82666 (* 0.0454545 = 0.128484 loss) | |
I0407 16:05:01.672966 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.69564 (* 0.0454545 = 0.0770745 loss) | |
I0407 16:05:01.672979 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.592927 (* 0.0454545 = 0.0269512 loss) | |
I0407 16:05:01.672994 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0353696 (* 0.0454545 = 0.00160771 loss) | |
I0407 16:05:01.673008 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0111786 (* 0.0454545 = 0.00050812 loss) | |
I0407 16:05:01.673022 1004 solver.cpp:245] Train net output #32: loss/loss11 = 5.69299e-05 (* 0.0454545 = 2.58772e-06 loss) | |
I0407 16:05:01.673038 1004 solver.cpp:245] Train net output #33: loss/loss12 = 5.92631e-05 (* 0.0454545 = 2.69378e-06 loss) | |
I0407 16:05:01.673051 1004 solver.cpp:245] Train net output #34: loss/loss13 = 5.76159e-05 (* 0.0454545 = 2.61891e-06 loss) | |
I0407 16:05:01.673065 1004 solver.cpp:245] Train net output #35: loss/loss14 = 5.8212e-05 (* 0.0454545 = 2.646e-06 loss) | |
I0407 16:05:01.673082 1004 solver.cpp:245] Train net output #36: loss/loss15 = 6.02878e-05 (* 0.0454545 = 2.74035e-06 loss) | |
I0407 16:05:01.673096 1004 solver.cpp:245] Train net output #37: loss/loss16 = 5.41205e-05 (* 0.0454545 = 2.46002e-06 loss) | |
I0407 16:05:01.673110 1004 solver.cpp:245] Train net output #38: loss/loss17 = 6.03106e-05 (* 0.0454545 = 2.74139e-06 loss) | |
I0407 16:05:01.673143 1004 solver.cpp:245] Train net output #39: loss/loss18 = 6.05044e-05 (* 0.0454545 = 2.7502e-06 loss) | |
I0407 16:05:01.673158 1004 solver.cpp:245] Train net output #40: loss/loss19 = 5.82125e-05 (* 0.0454545 = 2.64602e-06 loss) | |
I0407 16:05:01.673172 1004 solver.cpp:245] Train net output #41: loss/loss20 = 5.5611e-05 (* 0.0454545 = 2.52777e-06 loss) | |
I0407 16:05:01.673187 1004 solver.cpp:245] Train net output #42: loss/loss21 = 5.69009e-05 (* 0.0454545 = 2.5864e-06 loss) | |
I0407 16:05:01.673200 1004 solver.cpp:245] Train net output #43: loss/loss22 = 5.50002e-05 (* 0.0454545 = 2.50001e-06 loss) | |
I0407 16:05:01.673213 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:05:01.673224 1004 solver.cpp:245] Train net output #45: total_confidence = 2.14057e-05 | |
I0407 16:05:01.673238 1004 sgd_solver.cpp:106] Iteration 38500, lr = 0.000923 | |
I0407 16:05:40.713317 1004 solver.cpp:229] Iteration 39000, loss = 1.06893 | |
I0407 16:05:40.713433 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:05:40.713454 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:05:40.713467 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:05:40.713480 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 16:05:40.713492 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 16:05:40.713505 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 16:05:40.713517 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 16:05:40.713529 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 16:05:40.713541 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:05:40.713553 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:05:40.713565 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:05:40.713577 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:05:40.713588 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:05:40.713600 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:05:40.713611 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:05:40.713624 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:05:40.713634 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:05:40.713646 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:05:40.713659 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:05:40.713671 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:05:40.713682 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:05:40.713695 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:05:40.713709 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.7047 (* 0.0454545 = 0.168396 loss) | |
I0407 16:05:40.713723 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.86313 (* 0.0454545 = 0.175597 loss) | |
I0407 16:05:40.713737 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.92121 (* 0.0454545 = 0.178237 loss) | |
I0407 16:05:40.713752 1004 solver.cpp:245] Train net output #25: loss/loss04 = 4.12071 (* 0.0454545 = 0.187305 loss) | |
I0407 16:05:40.713765 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.3211 (* 0.0454545 = 0.150959 loss) | |
I0407 16:05:40.713779 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.6256 (* 0.0454545 = 0.119346 loss) | |
I0407 16:05:40.713793 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.56828 (* 0.0454545 = 0.0712855 loss) | |
I0407 16:05:40.713806 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.43282 (* 0.0454545 = 0.0651281 loss) | |
I0407 16:05:40.713820 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.804228 (* 0.0454545 = 0.0365558 loss) | |
I0407 16:05:40.713835 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0217734 (* 0.0454545 = 0.000989699 loss) | |
I0407 16:05:40.713850 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000154827 (* 0.0454545 = 7.03761e-06 loss) | |
I0407 16:05:40.713863 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000155642 (* 0.0454545 = 7.07463e-06 loss) | |
I0407 16:05:40.713877 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000156319 (* 0.0454545 = 7.10543e-06 loss) | |
I0407 16:05:40.713891 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000146421 (* 0.0454545 = 6.6555e-06 loss) | |
I0407 16:05:40.713906 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000162729 (* 0.0454545 = 7.39677e-06 loss) | |
I0407 16:05:40.713922 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000153643 (* 0.0454545 = 6.98379e-06 loss) | |
I0407 16:05:40.713937 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000147856 (* 0.0454545 = 6.72074e-06 loss) | |
I0407 16:05:40.713968 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000150573 (* 0.0454545 = 6.84421e-06 loss) | |
I0407 16:05:40.713984 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000154437 (* 0.0454545 = 7.01988e-06 loss) | |
I0407 16:05:40.713997 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000148991 (* 0.0454545 = 6.77233e-06 loss) | |
I0407 16:05:40.714011 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000161085 (* 0.0454545 = 7.32204e-06 loss) | |
I0407 16:05:40.714025 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000156292 (* 0.0454545 = 7.10418e-06 loss) | |
I0407 16:05:40.714037 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:05:40.714049 1004 solver.cpp:245] Train net output #45: total_confidence = 1.30095e-05 | |
I0407 16:05:40.714062 1004 sgd_solver.cpp:106] Iteration 39000, lr = 0.000922 | |
I0407 16:06:19.355815 1004 solver.cpp:229] Iteration 39500, loss = 1.06295 | |
I0407 16:06:19.355947 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0407 16:06:19.355965 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:06:19.355979 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:06:19.355991 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 16:06:19.356004 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 16:06:19.356016 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 16:06:19.356029 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.5625 | |
I0407 16:06:19.356040 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.75 | |
I0407 16:06:19.356053 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.8125 | |
I0407 16:06:19.356065 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.875 | |
I0407 16:06:19.356076 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:06:19.356088 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:06:19.356101 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:06:19.356112 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:06:19.356122 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:06:19.356134 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:06:19.356145 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:06:19.356158 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:06:19.356168 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:06:19.356180 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:06:19.356191 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:06:19.356204 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:06:19.356218 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.38575 (* 0.0454545 = 0.153898 loss) | |
I0407 16:06:19.356233 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.53227 (* 0.0454545 = 0.160558 loss) | |
I0407 16:06:19.356247 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.46955 (* 0.0454545 = 0.157707 loss) | |
I0407 16:06:19.356261 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.67046 (* 0.0454545 = 0.166839 loss) | |
I0407 16:06:19.356274 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.25127 (* 0.0454545 = 0.147785 loss) | |
I0407 16:06:19.356288 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.67588 (* 0.0454545 = 0.121631 loss) | |
I0407 16:06:19.356302 1004 solver.cpp:245] Train net output #28: loss/loss07 = 2.21219 (* 0.0454545 = 0.100554 loss) | |
I0407 16:06:19.356315 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.22579 (* 0.0454545 = 0.0557178 loss) | |
I0407 16:06:19.356329 1004 solver.cpp:245] Train net output #30: loss/loss09 = 1.07351 (* 0.0454545 = 0.0487961 loss) | |
I0407 16:06:19.356343 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.758591 (* 0.0454545 = 0.0344814 loss) | |
I0407 16:06:19.356358 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000124926 (* 0.0454545 = 5.67844e-06 loss) | |
I0407 16:06:19.356371 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000127787 (* 0.0454545 = 5.80852e-06 loss) | |
I0407 16:06:19.356386 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000123442 (* 0.0454545 = 5.61099e-06 loss) | |
I0407 16:06:19.356400 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000123024 (* 0.0454545 = 5.592e-06 loss) | |
I0407 16:06:19.356415 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000132108 (* 0.0454545 = 6.0049e-06 loss) | |
I0407 16:06:19.356429 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000119654 (* 0.0454545 = 5.43881e-06 loss) | |
I0407 16:06:19.356443 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000125204 (* 0.0454545 = 5.69111e-06 loss) | |
I0407 16:06:19.356472 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000129486 (* 0.0454545 = 5.88573e-06 loss) | |
I0407 16:06:19.356487 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000118413 (* 0.0454545 = 5.3824e-06 loss) | |
I0407 16:06:19.356500 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000123289 (* 0.0454545 = 5.60407e-06 loss) | |
I0407 16:06:19.356514 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000130508 (* 0.0454545 = 5.93217e-06 loss) | |
I0407 16:06:19.356528 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000124654 (* 0.0454545 = 5.66611e-06 loss) | |
I0407 16:06:19.356540 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:06:19.356552 1004 solver.cpp:245] Train net output #45: total_confidence = 2.657e-05 | |
I0407 16:06:19.356565 1004 sgd_solver.cpp:106] Iteration 39500, lr = 0.000921 | |
I0407 16:06:58.203783 1004 solver.cpp:338] Iteration 40000, Testing net (#0) | |
I0407 16:07:06.180579 1004 solver.cpp:393] Test loss: 0.939431 | |
I0407 16:07:06.180631 1004 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.317 | |
I0407 16:07:06.180649 1004 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.085 | |
I0407 16:07:06.180661 1004 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.028 | |
I0407 16:07:06.180673 1004 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.084 | |
I0407 16:07:06.180685 1004 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.212 | |
I0407 16:07:06.180696 1004 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.5 | |
I0407 16:07:06.180708 1004 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.893 | |
I0407 16:07:06.180719 1004 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 16:07:06.180730 1004 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 16:07:06.180742 1004 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 16:07:06.180752 1004 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 16:07:06.180764 1004 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 16:07:06.180776 1004 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 16:07:06.180788 1004 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 16:07:06.180799 1004 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 16:07:06.180809 1004 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 16:07:06.180820 1004 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 16:07:06.180830 1004 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 16:07:06.180842 1004 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 16:07:06.180853 1004 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 16:07:06.180865 1004 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 16:07:06.180876 1004 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 16:07:06.180889 1004 solver.cpp:406] Test net output #22: loss/loss01 = 3.14004 (* 0.0454545 = 0.142729 loss) | |
I0407 16:07:06.180903 1004 solver.cpp:406] Test net output #23: loss/loss02 = 3.38375 (* 0.0454545 = 0.153807 loss) | |
I0407 16:07:06.180919 1004 solver.cpp:406] Test net output #24: loss/loss03 = 3.51855 (* 0.0454545 = 0.159934 loss) | |
I0407 16:07:06.180934 1004 solver.cpp:406] Test net output #25: loss/loss04 = 3.46958 (* 0.0454545 = 0.157708 loss) | |
I0407 16:07:06.180948 1004 solver.cpp:406] Test net output #26: loss/loss05 = 3.39204 (* 0.0454545 = 0.154184 loss) | |
I0407 16:07:06.180961 1004 solver.cpp:406] Test net output #27: loss/loss06 = 2.44867 (* 0.0454545 = 0.111303 loss) | |
I0407 16:07:06.180974 1004 solver.cpp:406] Test net output #28: loss/loss07 = 0.859365 (* 0.0454545 = 0.0390621 loss) | |
I0407 16:07:06.180989 1004 solver.cpp:406] Test net output #29: loss/loss08 = 0.301124 (* 0.0454545 = 0.0136874 loss) | |
I0407 16:07:06.181001 1004 solver.cpp:406] Test net output #30: loss/loss09 = 0.0667845 (* 0.0454545 = 0.00303566 loss) | |
I0407 16:07:06.181015 1004 solver.cpp:406] Test net output #31: loss/loss10 = 0.0329036 (* 0.0454545 = 0.00149562 loss) | |
I0407 16:07:06.181030 1004 solver.cpp:406] Test net output #32: loss/loss11 = 0.00457309 (* 0.0454545 = 0.000207868 loss) | |
I0407 16:07:06.181043 1004 solver.cpp:406] Test net output #33: loss/loss12 = 0.00456071 (* 0.0454545 = 0.000207305 loss) | |
I0407 16:07:06.181056 1004 solver.cpp:406] Test net output #34: loss/loss13 = 0.00456978 (* 0.0454545 = 0.000207717 loss) | |
I0407 16:07:06.181071 1004 solver.cpp:406] Test net output #35: loss/loss14 = 0.00455632 (* 0.0454545 = 0.000207105 loss) | |
I0407 16:07:06.181084 1004 solver.cpp:406] Test net output #36: loss/loss15 = 0.00457842 (* 0.0454545 = 0.00020811 loss) | |
I0407 16:07:06.181097 1004 solver.cpp:406] Test net output #37: loss/loss16 = 0.00452361 (* 0.0454545 = 0.000205618 loss) | |
I0407 16:07:06.181112 1004 solver.cpp:406] Test net output #38: loss/loss17 = 0.00455762 (* 0.0454545 = 0.000207165 loss) | |
I0407 16:07:06.181162 1004 solver.cpp:406] Test net output #39: loss/loss18 = 0.00454306 (* 0.0454545 = 0.000206503 loss) | |
I0407 16:07:06.181177 1004 solver.cpp:406] Test net output #40: loss/loss19 = 0.00453494 (* 0.0454545 = 0.000206134 loss) | |
I0407 16:07:06.181190 1004 solver.cpp:406] Test net output #41: loss/loss20 = 0.00456265 (* 0.0454545 = 0.000207393 loss) | |
I0407 16:07:06.181205 1004 solver.cpp:406] Test net output #42: loss/loss21 = 0.00456196 (* 0.0454545 = 0.000207362 loss) | |
I0407 16:07:06.181218 1004 solver.cpp:406] Test net output #43: loss/loss22 = 0.00455103 (* 0.0454545 = 0.000206865 loss) | |
I0407 16:07:06.181229 1004 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0407 16:07:06.181241 1004 solver.cpp:406] Test net output #45: total_confidence = 0.000257721 | |
I0407 16:07:06.203117 1004 solver.cpp:229] Iteration 40000, loss = 1.06022 | |
I0407 16:07:06.203155 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 16:07:06.203171 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:07:06.203183 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:07:06.203196 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 16:07:06.203207 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 16:07:06.203219 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 16:07:06.203232 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 16:07:06.203243 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:07:06.203254 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:07:06.203266 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:07:06.203277 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:07:06.203289 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:07:06.203327 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:07:06.203352 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:07:06.203368 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:07:06.203380 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:07:06.203392 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:07:06.203404 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:07:06.203415 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:07:06.203428 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:07:06.203438 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:07:06.203450 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:07:06.203465 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.65941 (* 0.0454545 = 0.166337 loss) | |
I0407 16:07:06.203480 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.58592 (* 0.0454545 = 0.162997 loss) | |
I0407 16:07:06.203493 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.67902 (* 0.0454545 = 0.167228 loss) | |
I0407 16:07:06.203506 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.73792 (* 0.0454545 = 0.169905 loss) | |
I0407 16:07:06.203521 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.16956 (* 0.0454545 = 0.144071 loss) | |
I0407 16:07:06.203534 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.79855 (* 0.0454545 = 0.127207 loss) | |
I0407 16:07:06.203548 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.929474 (* 0.0454545 = 0.0422488 loss) | |
I0407 16:07:06.203562 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.337123 (* 0.0454545 = 0.0153238 loss) | |
I0407 16:07:06.203577 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0462546 (* 0.0454545 = 0.00210248 loss) | |
I0407 16:07:06.203590 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0192038 (* 0.0454545 = 0.000872901 loss) | |
I0407 16:07:06.203622 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000301373 (* 0.0454545 = 1.36988e-05 loss) | |
I0407 16:07:06.203637 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000322732 (* 0.0454545 = 1.46696e-05 loss) | |
I0407 16:07:06.203651 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000318003 (* 0.0454545 = 1.44547e-05 loss) | |
I0407 16:07:06.203666 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000290362 (* 0.0454545 = 1.31983e-05 loss) | |
I0407 16:07:06.203680 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000312836 (* 0.0454545 = 1.42198e-05 loss) | |
I0407 16:07:06.203693 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000285979 (* 0.0454545 = 1.29991e-05 loss) | |
I0407 16:07:06.203708 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000314881 (* 0.0454545 = 1.43128e-05 loss) | |
I0407 16:07:06.203722 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000284317 (* 0.0454545 = 1.29235e-05 loss) | |
I0407 16:07:06.203737 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000292348 (* 0.0454545 = 1.32885e-05 loss) | |
I0407 16:07:06.203750 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000320764 (* 0.0454545 = 1.45802e-05 loss) | |
I0407 16:07:06.203776 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000300887 (* 0.0454545 = 1.36767e-05 loss) | |
I0407 16:07:06.203799 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000313816 (* 0.0454545 = 1.42644e-05 loss) | |
I0407 16:07:06.203811 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:07:06.203824 1004 solver.cpp:245] Train net output #45: total_confidence = 3.82984e-05 | |
I0407 16:07:06.203838 1004 sgd_solver.cpp:106] Iteration 40000, lr = 0.00092 | |
I0407 16:07:44.647320 1004 solver.cpp:229] Iteration 40500, loss = 1.06391 | |
I0407 16:07:44.647467 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:07:44.647488 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:07:44.647501 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:07:44.647513 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 16:07:44.647526 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 16:07:44.647537 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 16:07:44.647549 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 16:07:44.647562 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.75 | |
I0407 16:07:44.647572 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:07:44.647584 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:07:44.647596 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:07:44.647608 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:07:44.647619 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:07:44.647630 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:07:44.647642 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:07:44.647653 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:07:44.647665 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:07:44.647677 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:07:44.647688 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:07:44.647701 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:07:44.647711 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:07:44.647723 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:07:44.647739 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.64611 (* 0.0454545 = 0.165732 loss) | |
I0407 16:07:44.647753 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.55214 (* 0.0454545 = 0.161461 loss) | |
I0407 16:07:44.647768 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.64754 (* 0.0454545 = 0.165797 loss) | |
I0407 16:07:44.647781 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.44229 (* 0.0454545 = 0.156468 loss) | |
I0407 16:07:44.647794 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.39118 (* 0.0454545 = 0.154145 loss) | |
I0407 16:07:44.647809 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.25023 (* 0.0454545 = 0.147738 loss) | |
I0407 16:07:44.647822 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.66995 (* 0.0454545 = 0.0759069 loss) | |
I0407 16:07:44.647836 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.53455 (* 0.0454545 = 0.0697521 loss) | |
I0407 16:07:44.647850 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.196199 (* 0.0454545 = 0.00891812 loss) | |
I0407 16:07:44.647864 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.12236 (* 0.0454545 = 0.00556184 loss) | |
I0407 16:07:44.647879 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.00695313 (* 0.0454545 = 0.000316051 loss) | |
I0407 16:07:44.647893 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00701901 (* 0.0454545 = 0.000319046 loss) | |
I0407 16:07:44.647908 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.00688168 (* 0.0454545 = 0.000312803 loss) | |
I0407 16:07:44.647925 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00690719 (* 0.0454545 = 0.000313963 loss) | |
I0407 16:07:44.647940 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.00729464 (* 0.0454545 = 0.000331575 loss) | |
I0407 16:07:44.647955 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.00701626 (* 0.0454545 = 0.000318921 loss) | |
I0407 16:07:44.647969 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.00686801 (* 0.0454545 = 0.000312182 loss) | |
I0407 16:07:44.648000 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.00684125 (* 0.0454545 = 0.000310966 loss) | |
I0407 16:07:44.648015 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00700806 (* 0.0454545 = 0.000318548 loss) | |
I0407 16:07:44.648030 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.00697584 (* 0.0454545 = 0.000317084 loss) | |
I0407 16:07:44.648043 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00662426 (* 0.0454545 = 0.000301103 loss) | |
I0407 16:07:44.648057 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00700544 (* 0.0454545 = 0.000318429 loss) | |
I0407 16:07:44.648069 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:07:44.648082 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000141929 | |
I0407 16:07:44.648094 1004 sgd_solver.cpp:106] Iteration 40500, lr = 0.000919 | |
I0407 16:08:23.322471 1004 solver.cpp:229] Iteration 41000, loss = 1.06258 | |
I0407 16:08:23.322621 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0407 16:08:23.322643 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:08:23.322655 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:08:23.322667 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 16:08:23.322680 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 16:08:23.322692 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 16:08:23.322705 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.5625 | |
I0407 16:08:23.322716 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 16:08:23.322728 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0407 16:08:23.322741 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 16:08:23.322752 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:08:23.322764 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:08:23.322777 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:08:23.322788 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:08:23.322798 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:08:23.322810 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:08:23.322823 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:08:23.322834 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:08:23.322845 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:08:23.322856 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:08:23.322868 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:08:23.322880 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:08:23.322896 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.39499 (* 0.0454545 = 0.154318 loss) | |
I0407 16:08:23.322911 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.44165 (* 0.0454545 = 0.156439 loss) | |
I0407 16:08:23.322927 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.39879 (* 0.0454545 = 0.15449 loss) | |
I0407 16:08:23.322942 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.48506 (* 0.0454545 = 0.158412 loss) | |
I0407 16:08:23.322957 1004 solver.cpp:245] Train net output #26: loss/loss05 = 2.93749 (* 0.0454545 = 0.133522 loss) | |
I0407 16:08:23.322970 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.71821 (* 0.0454545 = 0.123555 loss) | |
I0407 16:08:23.322984 1004 solver.cpp:245] Train net output #28: loss/loss07 = 2.23014 (* 0.0454545 = 0.10137 loss) | |
I0407 16:08:23.322999 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.752962 (* 0.0454545 = 0.0342256 loss) | |
I0407 16:08:23.323011 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.78063 (* 0.0454545 = 0.0354832 loss) | |
I0407 16:08:23.323025 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.542277 (* 0.0454545 = 0.024649 loss) | |
I0407 16:08:23.323040 1004 solver.cpp:245] Train net output #32: loss/loss11 = 6.2866e-05 (* 0.0454545 = 2.85755e-06 loss) | |
I0407 16:08:23.323053 1004 solver.cpp:245] Train net output #33: loss/loss12 = 5.79395e-05 (* 0.0454545 = 2.63362e-06 loss) | |
I0407 16:08:23.323067 1004 solver.cpp:245] Train net output #34: loss/loss13 = 6.14047e-05 (* 0.0454545 = 2.79112e-06 loss) | |
I0407 16:08:23.323081 1004 solver.cpp:245] Train net output #35: loss/loss14 = 6.04802e-05 (* 0.0454545 = 2.7491e-06 loss) | |
I0407 16:08:23.323096 1004 solver.cpp:245] Train net output #36: loss/loss15 = 6.42263e-05 (* 0.0454545 = 2.91938e-06 loss) | |
I0407 16:08:23.323110 1004 solver.cpp:245] Train net output #37: loss/loss16 = 5.5759e-05 (* 0.0454545 = 2.5345e-06 loss) | |
I0407 16:08:23.323124 1004 solver.cpp:245] Train net output #38: loss/loss17 = 6.2706e-05 (* 0.0454545 = 2.85027e-06 loss) | |
I0407 16:08:23.323153 1004 solver.cpp:245] Train net output #39: loss/loss18 = 6.3093e-05 (* 0.0454545 = 2.86786e-06 loss) | |
I0407 16:08:23.323168 1004 solver.cpp:245] Train net output #40: loss/loss19 = 5.58782e-05 (* 0.0454545 = 2.53992e-06 loss) | |
I0407 16:08:23.323182 1004 solver.cpp:245] Train net output #41: loss/loss20 = 5.92807e-05 (* 0.0454545 = 2.69458e-06 loss) | |
I0407 16:08:23.323196 1004 solver.cpp:245] Train net output #42: loss/loss21 = 6.09655e-05 (* 0.0454545 = 2.77116e-06 loss) | |
I0407 16:08:23.323210 1004 solver.cpp:245] Train net output #43: loss/loss22 = 6.45161e-05 (* 0.0454545 = 2.93255e-06 loss) | |
I0407 16:08:23.323222 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:08:23.323233 1004 solver.cpp:245] Train net output #45: total_confidence = 9.37075e-05 | |
I0407 16:08:23.323247 1004 sgd_solver.cpp:106] Iteration 41000, lr = 0.000918 | |
I0407 16:09:01.847571 1004 solver.cpp:229] Iteration 41500, loss = 1.05284 | |
I0407 16:09:01.847707 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:09:01.847726 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:09:01.847740 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:09:01.847753 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 16:09:01.847764 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0407 16:09:01.847777 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 16:09:01.847790 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 16:09:01.847801 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 16:09:01.847812 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:09:01.847825 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:09:01.847836 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:09:01.847847 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:09:01.847858 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:09:01.847870 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:09:01.847882 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:09:01.847893 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:09:01.847905 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:09:01.847919 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:09:01.847931 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:09:01.847944 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:09:01.847955 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:09:01.847967 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:09:01.847983 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.28541 (* 0.0454545 = 0.149337 loss) | |
I0407 16:09:01.847997 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.63995 (* 0.0454545 = 0.165452 loss) | |
I0407 16:09:01.848012 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.63572 (* 0.0454545 = 0.16526 loss) | |
I0407 16:09:01.848026 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.60396 (* 0.0454545 = 0.163817 loss) | |
I0407 16:09:01.848039 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.73622 (* 0.0454545 = 0.169828 loss) | |
I0407 16:09:01.848053 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.14064 (* 0.0454545 = 0.142756 loss) | |
I0407 16:09:01.848067 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.20674 (* 0.0454545 = 0.0548516 loss) | |
I0407 16:09:01.848081 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.165798 (* 0.0454545 = 0.00753627 loss) | |
I0407 16:09:01.848095 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0687741 (* 0.0454545 = 0.00312609 loss) | |
I0407 16:09:01.848109 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0397439 (* 0.0454545 = 0.00180654 loss) | |
I0407 16:09:01.848124 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.00213319 (* 0.0454545 = 9.69631e-05 loss) | |
I0407 16:09:01.848139 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00213393 (* 0.0454545 = 9.69968e-05 loss) | |
I0407 16:09:01.848152 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.00220009 (* 0.0454545 = 0.000100004 loss) | |
I0407 16:09:01.848167 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.0020297 (* 0.0454545 = 9.2259e-05 loss) | |
I0407 16:09:01.848181 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.00210333 (* 0.0454545 = 9.5606e-05 loss) | |
I0407 16:09:01.848196 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.00200686 (* 0.0454545 = 9.1221e-05 loss) | |
I0407 16:09:01.848211 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.00202312 (* 0.0454545 = 9.19602e-05 loss) | |
I0407 16:09:01.848240 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.00209057 (* 0.0454545 = 9.5026e-05 loss) | |
I0407 16:09:01.848255 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00207808 (* 0.0454545 = 9.44583e-05 loss) | |
I0407 16:09:01.848269 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.00213473 (* 0.0454545 = 9.70332e-05 loss) | |
I0407 16:09:01.848284 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00195718 (* 0.0454545 = 8.89625e-05 loss) | |
I0407 16:09:01.848297 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00205691 (* 0.0454545 = 9.34957e-05 loss) | |
I0407 16:09:01.848309 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:09:01.848321 1004 solver.cpp:245] Train net output #45: total_confidence = 1.05152e-05 | |
I0407 16:09:01.848336 1004 sgd_solver.cpp:106] Iteration 41500, lr = 0.000917 | |
I0407 16:09:41.206471 1004 solver.cpp:229] Iteration 42000, loss = 1.05382 | |
I0407 16:09:41.206595 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:09:41.206624 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:09:41.206648 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:09:41.206671 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 16:09:41.206693 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0407 16:09:41.206714 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 16:09:41.206738 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 16:09:41.206761 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 16:09:41.206784 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:09:41.206806 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:09:41.206827 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:09:41.206850 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:09:41.206871 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:09:41.206892 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:09:41.206913 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:09:41.206939 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:09:41.206960 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:09:41.206982 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:09:41.207003 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:09:41.207023 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:09:41.207044 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:09:41.207065 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:09:41.207093 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.48232 (* 0.0454545 = 0.158287 loss) | |
I0407 16:09:41.207124 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.5852 (* 0.0454545 = 0.162964 loss) | |
I0407 16:09:41.207152 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.7465 (* 0.0454545 = 0.170296 loss) | |
I0407 16:09:41.207180 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.88831 (* 0.0454545 = 0.176741 loss) | |
I0407 16:09:41.207206 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.91228 (* 0.0454545 = 0.177831 loss) | |
I0407 16:09:41.207231 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.69577 (* 0.0454545 = 0.122535 loss) | |
I0407 16:09:41.207257 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.51086 (* 0.0454545 = 0.0686754 loss) | |
I0407 16:09:41.207283 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.753717 (* 0.0454545 = 0.0342599 loss) | |
I0407 16:09:41.207310 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.420035 (* 0.0454545 = 0.0190925 loss) | |
I0407 16:09:41.207357 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0038791 (* 0.0454545 = 0.000176323 loss) | |
I0407 16:09:41.207386 1004 solver.cpp:245] Train net output #32: loss/loss11 = 2.64498e-06 (* 0.0454545 = 1.20226e-07 loss) | |
I0407 16:09:41.207412 1004 solver.cpp:245] Train net output #33: loss/loss12 = 2.68223e-06 (* 0.0454545 = 1.21919e-07 loss) | |
I0407 16:09:41.207439 1004 solver.cpp:245] Train net output #34: loss/loss13 = 2.64498e-06 (* 0.0454545 = 1.20226e-07 loss) | |
I0407 16:09:41.207465 1004 solver.cpp:245] Train net output #35: loss/loss14 = 2.72693e-06 (* 0.0454545 = 1.23952e-07 loss) | |
I0407 16:09:41.207491 1004 solver.cpp:245] Train net output #36: loss/loss15 = 2.85359e-06 (* 0.0454545 = 1.29709e-07 loss) | |
I0407 16:09:41.207518 1004 solver.cpp:245] Train net output #37: loss/loss16 = 2.39165e-06 (* 0.0454545 = 1.08711e-07 loss) | |
I0407 16:09:41.207546 1004 solver.cpp:245] Train net output #38: loss/loss17 = 2.45126e-06 (* 0.0454545 = 1.11421e-07 loss) | |
I0407 16:09:41.207595 1004 solver.cpp:245] Train net output #39: loss/loss18 = 2.97281e-06 (* 0.0454545 = 1.35128e-07 loss) | |
I0407 16:09:41.207628 1004 solver.cpp:245] Train net output #40: loss/loss19 = 2.50341e-06 (* 0.0454545 = 1.13791e-07 loss) | |
I0407 16:09:41.207656 1004 solver.cpp:245] Train net output #41: loss/loss20 = 2.3693e-06 (* 0.0454545 = 1.07695e-07 loss) | |
I0407 16:09:41.207682 1004 solver.cpp:245] Train net output #42: loss/loss21 = 2.86105e-06 (* 0.0454545 = 1.30048e-07 loss) | |
I0407 16:09:41.207710 1004 solver.cpp:245] Train net output #43: loss/loss22 = 2.9281e-06 (* 0.0454545 = 1.33096e-07 loss) | |
I0407 16:09:41.207731 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:09:41.207753 1004 solver.cpp:245] Train net output #45: total_confidence = 3.33471e-06 | |
I0407 16:09:41.207777 1004 sgd_solver.cpp:106] Iteration 42000, lr = 0.000916 | |
I0407 16:10:20.026932 1004 solver.cpp:229] Iteration 42500, loss = 1.05689 | |
I0407 16:10:20.027055 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:10:20.027086 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:10:20.027110 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:10:20.027132 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 16:10:20.027154 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.4375 | |
I0407 16:10:20.027179 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 16:10:20.027204 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 16:10:20.027226 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:10:20.027248 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:10:20.027271 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:10:20.027292 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:10:20.027313 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:10:20.027354 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:10:20.027379 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:10:20.027400 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:10:20.027421 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:10:20.027442 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:10:20.027464 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:10:20.027487 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:10:20.027508 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:10:20.027529 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:10:20.027550 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:10:20.027580 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.53632 (* 0.0454545 = 0.160742 loss) | |
I0407 16:10:20.027611 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.49338 (* 0.0454545 = 0.15879 loss) | |
I0407 16:10:20.027638 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.66774 (* 0.0454545 = 0.166716 loss) | |
I0407 16:10:20.027664 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.45895 (* 0.0454545 = 0.157225 loss) | |
I0407 16:10:20.027691 1004 solver.cpp:245] Train net output #26: loss/loss05 = 2.7542 (* 0.0454545 = 0.125191 loss) | |
I0407 16:10:20.027717 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.40378 (* 0.0454545 = 0.109263 loss) | |
I0407 16:10:20.027743 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.39015 (* 0.0454545 = 0.0631886 loss) | |
I0407 16:10:20.027768 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.398589 (* 0.0454545 = 0.0181177 loss) | |
I0407 16:10:20.027796 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.340866 (* 0.0454545 = 0.0154939 loss) | |
I0407 16:10:20.027822 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0239878 (* 0.0454545 = 0.00109035 loss) | |
I0407 16:10:20.027848 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000231467 (* 0.0454545 = 1.05212e-05 loss) | |
I0407 16:10:20.027875 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000226229 (* 0.0454545 = 1.02831e-05 loss) | |
I0407 16:10:20.027901 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000231871 (* 0.0454545 = 1.05396e-05 loss) | |
I0407 16:10:20.027931 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000235726 (* 0.0454545 = 1.07148e-05 loss) | |
I0407 16:10:20.027959 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000266565 (* 0.0454545 = 1.21166e-05 loss) | |
I0407 16:10:20.027987 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000215614 (* 0.0454545 = 9.80065e-06 loss) | |
I0407 16:10:20.028013 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000233701 (* 0.0454545 = 1.06228e-05 loss) | |
I0407 16:10:20.028062 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000241707 (* 0.0454545 = 1.09867e-05 loss) | |
I0407 16:10:20.028095 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000214653 (* 0.0454545 = 9.75696e-06 loss) | |
I0407 16:10:20.028123 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000210813 (* 0.0454545 = 9.58241e-06 loss) | |
I0407 16:10:20.028149 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000250061 (* 0.0454545 = 1.13664e-05 loss) | |
I0407 16:10:20.028177 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000270089 (* 0.0454545 = 1.22768e-05 loss) | |
I0407 16:10:20.028198 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:10:20.028219 1004 solver.cpp:245] Train net output #45: total_confidence = 6.65449e-05 | |
I0407 16:10:20.028242 1004 sgd_solver.cpp:106] Iteration 42500, lr = 0.000915 | |
I0407 16:10:58.766822 1004 solver.cpp:229] Iteration 43000, loss = 1.0558 | |
I0407 16:10:58.766976 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:10:58.766998 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:10:58.767010 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:10:58.767022 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 16:10:58.767035 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 16:10:58.767047 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 16:10:58.767060 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 16:10:58.767071 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 16:10:58.767084 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:10:58.767096 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:10:58.767108 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:10:58.767120 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:10:58.767132 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:10:58.767149 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:10:58.767163 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:10:58.767174 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:10:58.767186 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:10:58.767199 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:10:58.767210 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:10:58.767221 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:10:58.767232 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:10:58.767244 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:10:58.767261 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.59235 (* 0.0454545 = 0.163289 loss) | |
I0407 16:10:58.767276 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.54408 (* 0.0454545 = 0.161094 loss) | |
I0407 16:10:58.767289 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.6483 (* 0.0454545 = 0.165832 loss) | |
I0407 16:10:58.767304 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.45882 (* 0.0454545 = 0.157219 loss) | |
I0407 16:10:58.767330 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.04205 (* 0.0454545 = 0.138275 loss) | |
I0407 16:10:58.767348 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.16017 (* 0.0454545 = 0.0981897 loss) | |
I0407 16:10:58.767362 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.75095 (* 0.0454545 = 0.0795885 loss) | |
I0407 16:10:58.767380 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.827179 (* 0.0454545 = 0.0375991 loss) | |
I0407 16:10:58.767395 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.423537 (* 0.0454545 = 0.0192517 loss) | |
I0407 16:10:58.767410 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.00347628 (* 0.0454545 = 0.000158013 loss) | |
I0407 16:10:58.767424 1004 solver.cpp:245] Train net output #32: loss/loss11 = 4.18729e-06 (* 0.0454545 = 1.90332e-07 loss) | |
I0407 16:10:58.767439 1004 solver.cpp:245] Train net output #33: loss/loss12 = 4.17239e-06 (* 0.0454545 = 1.89654e-07 loss) | |
I0407 16:10:58.767453 1004 solver.cpp:245] Train net output #34: loss/loss13 = 4.1873e-06 (* 0.0454545 = 1.90332e-07 loss) | |
I0407 16:10:58.767468 1004 solver.cpp:245] Train net output #35: loss/loss14 = 4.07553e-06 (* 0.0454545 = 1.85251e-07 loss) | |
I0407 16:10:58.767482 1004 solver.cpp:245] Train net output #36: loss/loss15 = 4.67905e-06 (* 0.0454545 = 2.12684e-07 loss) | |
I0407 16:10:58.767496 1004 solver.cpp:245] Train net output #37: loss/loss16 = 3.78495e-06 (* 0.0454545 = 1.72043e-07 loss) | |
I0407 16:10:58.767510 1004 solver.cpp:245] Train net output #38: loss/loss17 = 4.32141e-06 (* 0.0454545 = 1.96428e-07 loss) | |
I0407 16:10:58.767539 1004 solver.cpp:245] Train net output #39: loss/loss18 = 4.44807e-06 (* 0.0454545 = 2.02185e-07 loss) | |
I0407 16:10:58.767555 1004 solver.cpp:245] Train net output #40: loss/loss19 = 4.47043e-06 (* 0.0454545 = 2.03201e-07 loss) | |
I0407 16:10:58.767570 1004 solver.cpp:245] Train net output #41: loss/loss20 = 4.16494e-06 (* 0.0454545 = 1.89316e-07 loss) | |
I0407 16:10:58.767583 1004 solver.cpp:245] Train net output #42: loss/loss21 = 4.45552e-06 (* 0.0454545 = 2.02524e-07 loss) | |
I0407 16:10:58.767597 1004 solver.cpp:245] Train net output #43: loss/loss22 = 4.35121e-06 (* 0.0454545 = 1.97782e-07 loss) | |
I0407 16:10:58.767609 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:10:58.767621 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000192689 | |
I0407 16:10:58.767635 1004 sgd_solver.cpp:106] Iteration 43000, lr = 0.000914 | |
I0407 16:11:37.452505 1004 solver.cpp:229] Iteration 43500, loss = 1.05198 | |
I0407 16:11:37.452620 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:11:37.452641 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:11:37.452654 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:11:37.452666 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.3125 | |
I0407 16:11:37.452678 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 16:11:37.452690 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 16:11:37.452702 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875 | |
I0407 16:11:37.452713 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:11:37.452725 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:11:37.452738 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:11:37.452749 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:11:37.452760 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:11:37.452772 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:11:37.452783 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:11:37.452795 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:11:37.452807 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:11:37.452818 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:11:37.452831 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:11:37.452841 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:11:37.452853 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:11:37.452865 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:11:37.452877 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:11:37.452893 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.37129 (* 0.0454545 = 0.15324 loss) | |
I0407 16:11:37.452908 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.58186 (* 0.0454545 = 0.162812 loss) | |
I0407 16:11:37.452924 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.74873 (* 0.0454545 = 0.170397 loss) | |
I0407 16:11:37.452939 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.36071 (* 0.0454545 = 0.152759 loss) | |
I0407 16:11:37.452952 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.51069 (* 0.0454545 = 0.159577 loss) | |
I0407 16:11:37.452966 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.60938 (* 0.0454545 = 0.118608 loss) | |
I0407 16:11:37.452980 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.02015 (* 0.0454545 = 0.0463706 loss) | |
I0407 16:11:37.452994 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.500685 (* 0.0454545 = 0.0227584 loss) | |
I0407 16:11:37.453008 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0649112 (* 0.0454545 = 0.00295051 loss) | |
I0407 16:11:37.453022 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0273216 (* 0.0454545 = 0.00124189 loss) | |
I0407 16:11:37.453037 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000215966 (* 0.0454545 = 9.81665e-06 loss) | |
I0407 16:11:37.453052 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000204134 (* 0.0454545 = 9.27881e-06 loss) | |
I0407 16:11:37.453065 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000218668 (* 0.0454545 = 9.93946e-06 loss) | |
I0407 16:11:37.453079 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000218322 (* 0.0454545 = 9.92371e-06 loss) | |
I0407 16:11:37.453094 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000224756 (* 0.0454545 = 1.02162e-05 loss) | |
I0407 16:11:37.453107 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.0001913 (* 0.0454545 = 8.69543e-06 loss) | |
I0407 16:11:37.453122 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000202475 (* 0.0454545 = 9.20341e-06 loss) | |
I0407 16:11:37.453160 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000215676 (* 0.0454545 = 9.80345e-06 loss) | |
I0407 16:11:37.453176 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000213365 (* 0.0454545 = 9.69842e-06 loss) | |
I0407 16:11:37.453189 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000201688 (* 0.0454545 = 9.16765e-06 loss) | |
I0407 16:11:37.453203 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000209018 (* 0.0454545 = 9.50083e-06 loss) | |
I0407 16:11:37.453218 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000230077 (* 0.0454545 = 1.04581e-05 loss) | |
I0407 16:11:37.453230 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:11:37.453241 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000213645 | |
I0407 16:11:37.453255 1004 sgd_solver.cpp:106] Iteration 43500, lr = 0.000913 | |
I0407 16:12:15.861529 1004 solver.cpp:229] Iteration 44000, loss = 1.04971 | |
I0407 16:12:15.861632 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:12:15.861652 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:12:15.861665 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:12:15.861677 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 16:12:15.861690 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 16:12:15.861702 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.1875 | |
I0407 16:12:15.861713 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 16:12:15.861726 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 16:12:15.861738 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:12:15.861750 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:12:15.861762 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:12:15.861776 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:12:15.861789 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:12:15.861800 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:12:15.861812 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:12:15.861824 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:12:15.861835 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:12:15.861846 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:12:15.861858 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:12:15.861870 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:12:15.861881 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:12:15.861892 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:12:15.861908 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.79473 (* 0.0454545 = 0.172488 loss) | |
I0407 16:12:15.861922 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.35585 (* 0.0454545 = 0.152538 loss) | |
I0407 16:12:15.861937 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.31104 (* 0.0454545 = 0.150502 loss) | |
I0407 16:12:15.861951 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.36448 (* 0.0454545 = 0.152931 loss) | |
I0407 16:12:15.861965 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.64479 (* 0.0454545 = 0.165672 loss) | |
I0407 16:12:15.861979 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.9092 (* 0.0454545 = 0.177691 loss) | |
I0407 16:12:15.861994 1004 solver.cpp:245] Train net output #28: loss/loss07 = 2.36703 (* 0.0454545 = 0.107592 loss) | |
I0407 16:12:15.862007 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.897398 (* 0.0454545 = 0.0407908 loss) | |
I0407 16:12:15.862022 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0133532 (* 0.0454545 = 0.000606966 loss) | |
I0407 16:12:15.862036 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.00356786 (* 0.0454545 = 0.000162175 loss) | |
I0407 16:12:15.862051 1004 solver.cpp:245] Train net output #32: loss/loss11 = 3.76263e-06 (* 0.0454545 = 1.71029e-07 loss) | |
I0407 16:12:15.862066 1004 solver.cpp:245] Train net output #33: loss/loss12 = 4.45557e-06 (* 0.0454545 = 2.02526e-07 loss) | |
I0407 16:12:15.862082 1004 solver.cpp:245] Train net output #34: loss/loss13 = 4.00106e-06 (* 0.0454545 = 1.81866e-07 loss) | |
I0407 16:12:15.862097 1004 solver.cpp:245] Train net output #35: loss/loss14 = 3.97126e-06 (* 0.0454545 = 1.80512e-07 loss) | |
I0407 16:12:15.862110 1004 solver.cpp:245] Train net output #36: loss/loss15 = 4.05322e-06 (* 0.0454545 = 1.84237e-07 loss) | |
I0407 16:12:15.862125 1004 solver.cpp:245] Train net output #37: loss/loss16 = 3.70302e-06 (* 0.0454545 = 1.68319e-07 loss) | |
I0407 16:12:15.862138 1004 solver.cpp:245] Train net output #38: loss/loss17 = 3.79243e-06 (* 0.0454545 = 1.72383e-07 loss) | |
I0407 16:12:15.862169 1004 solver.cpp:245] Train net output #39: loss/loss18 = 4.40341e-06 (* 0.0454545 = 2.00155e-07 loss) | |
I0407 16:12:15.862185 1004 solver.cpp:245] Train net output #40: loss/loss19 = 3.92655e-06 (* 0.0454545 = 1.7848e-07 loss) | |
I0407 16:12:15.862200 1004 solver.cpp:245] Train net output #41: loss/loss20 = 3.58381e-06 (* 0.0454545 = 1.629e-07 loss) | |
I0407 16:12:15.862228 1004 solver.cpp:245] Train net output #42: loss/loss21 = 3.61361e-06 (* 0.0454545 = 1.64255e-07 loss) | |
I0407 16:12:15.862251 1004 solver.cpp:245] Train net output #43: loss/loss22 = 3.71792e-06 (* 0.0454545 = 1.68996e-07 loss) | |
I0407 16:12:15.862263 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:12:15.862274 1004 solver.cpp:245] Train net output #45: total_confidence = 0.00131379 | |
I0407 16:12:15.862288 1004 sgd_solver.cpp:106] Iteration 44000, lr = 0.000912 | |
I0407 16:12:54.354609 1004 solver.cpp:229] Iteration 44500, loss = 1.05391 | |
I0407 16:12:54.354727 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:12:54.354756 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:12:54.354780 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:12:54.354802 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 16:12:54.354825 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 16:12:54.354854 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 16:12:54.354882 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875 | |
I0407 16:12:54.354903 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:12:54.354926 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:12:54.354948 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:12:54.354969 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:12:54.354991 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:12:54.355012 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:12:54.355033 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:12:54.355054 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:12:54.355078 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:12:54.355100 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:12:54.355123 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:12:54.355144 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:12:54.355165 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:12:54.355186 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:12:54.355208 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:12:54.355237 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.25898 (* 0.0454545 = 0.148135 loss) | |
I0407 16:12:54.355265 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.5851 (* 0.0454545 = 0.162959 loss) | |
I0407 16:12:54.355290 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.52586 (* 0.0454545 = 0.160266 loss) | |
I0407 16:12:54.355334 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.47658 (* 0.0454545 = 0.158026 loss) | |
I0407 16:12:54.355365 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.15968 (* 0.0454545 = 0.143622 loss) | |
I0407 16:12:54.355392 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.81803 (* 0.0454545 = 0.128092 loss) | |
I0407 16:12:54.355418 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.836975 (* 0.0454545 = 0.0380443 loss) | |
I0407 16:12:54.355443 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.368638 (* 0.0454545 = 0.0167563 loss) | |
I0407 16:12:54.355470 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.46782 (* 0.0454545 = 0.0212646 loss) | |
I0407 16:12:54.355496 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.00960963 (* 0.0454545 = 0.000436801 loss) | |
I0407 16:12:54.355522 1004 solver.cpp:245] Train net output #32: loss/loss11 = 1.05876e-05 (* 0.0454545 = 4.81253e-07 loss) | |
I0407 16:12:54.355551 1004 solver.cpp:245] Train net output #33: loss/loss12 = 1.17201e-05 (* 0.0454545 = 5.32733e-07 loss) | |
I0407 16:12:54.355577 1004 solver.cpp:245] Train net output #34: loss/loss13 = 1.11837e-05 (* 0.0454545 = 5.08348e-07 loss) | |
I0407 16:12:54.355603 1004 solver.cpp:245] Train net output #35: loss/loss14 = 1.14072e-05 (* 0.0454545 = 5.18508e-07 loss) | |
I0407 16:12:54.355629 1004 solver.cpp:245] Train net output #36: loss/loss15 = 1.15636e-05 (* 0.0454545 = 5.2562e-07 loss) | |
I0407 16:12:54.355655 1004 solver.cpp:245] Train net output #37: loss/loss16 = 1.06993e-05 (* 0.0454545 = 4.86332e-07 loss) | |
I0407 16:12:54.355681 1004 solver.cpp:245] Train net output #38: loss/loss17 = 1.08036e-05 (* 0.0454545 = 4.91075e-07 loss) | |
I0407 16:12:54.355731 1004 solver.cpp:245] Train net output #39: loss/loss18 = 1.15264e-05 (* 0.0454545 = 5.23927e-07 loss) | |
I0407 16:12:54.355759 1004 solver.cpp:245] Train net output #40: loss/loss19 = 1.07589e-05 (* 0.0454545 = 4.89042e-07 loss) | |
I0407 16:12:54.355787 1004 solver.cpp:245] Train net output #41: loss/loss20 = 1.11389e-05 (* 0.0454545 = 5.06316e-07 loss) | |
I0407 16:12:54.355813 1004 solver.cpp:245] Train net output #42: loss/loss21 = 1.17127e-05 (* 0.0454545 = 5.32394e-07 loss) | |
I0407 16:12:54.355839 1004 solver.cpp:245] Train net output #43: loss/loss22 = 1.18319e-05 (* 0.0454545 = 5.37813e-07 loss) | |
I0407 16:12:54.355860 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:12:54.355882 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000123098 | |
I0407 16:12:54.355911 1004 sgd_solver.cpp:106] Iteration 44500, lr = 0.000911 | |
I0407 16:13:32.844895 1004 solver.cpp:338] Iteration 45000, Testing net (#0) | |
I0407 16:13:40.818805 1004 solver.cpp:393] Test loss: 0.96219 | |
I0407 16:13:40.818852 1004 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.311 | |
I0407 16:13:40.818868 1004 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.064 | |
I0407 16:13:40.818881 1004 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.065 | |
I0407 16:13:40.818893 1004 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.077 | |
I0407 16:13:40.818907 1004 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.203 | |
I0407 16:13:40.818920 1004 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.501 | |
I0407 16:13:40.818933 1004 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0407 16:13:40.818944 1004 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 16:13:40.818956 1004 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 16:13:40.818967 1004 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 16:13:40.818979 1004 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 16:13:40.818990 1004 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 16:13:40.819001 1004 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 16:13:40.819011 1004 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 16:13:40.819023 1004 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 16:13:40.819034 1004 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 16:13:40.819046 1004 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 16:13:40.819057 1004 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 16:13:40.819069 1004 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 16:13:40.819080 1004 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 16:13:40.819092 1004 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 16:13:40.819103 1004 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 16:13:40.819118 1004 solver.cpp:406] Test net output #22: loss/loss01 = 3.32963 (* 0.0454545 = 0.151347 loss) | |
I0407 16:13:40.819133 1004 solver.cpp:406] Test net output #23: loss/loss02 = 3.48268 (* 0.0454545 = 0.158304 loss) | |
I0407 16:13:40.819145 1004 solver.cpp:406] Test net output #24: loss/loss03 = 3.57628 (* 0.0454545 = 0.162558 loss) | |
I0407 16:13:40.819159 1004 solver.cpp:406] Test net output #25: loss/loss04 = 3.49714 (* 0.0454545 = 0.158961 loss) | |
I0407 16:13:40.819172 1004 solver.cpp:406] Test net output #26: loss/loss05 = 3.36077 (* 0.0454545 = 0.152762 loss) | |
I0407 16:13:40.819185 1004 solver.cpp:406] Test net output #27: loss/loss06 = 2.50469 (* 0.0454545 = 0.113849 loss) | |
I0407 16:13:40.819200 1004 solver.cpp:406] Test net output #28: loss/loss07 = 0.860732 (* 0.0454545 = 0.0391242 loss) | |
I0407 16:13:40.819212 1004 solver.cpp:406] Test net output #29: loss/loss08 = 0.334538 (* 0.0454545 = 0.0152063 loss) | |
I0407 16:13:40.819226 1004 solver.cpp:406] Test net output #30: loss/loss09 = 0.0986105 (* 0.0454545 = 0.0044823 loss) | |
I0407 16:13:40.819241 1004 solver.cpp:406] Test net output #31: loss/loss10 = 0.0449599 (* 0.0454545 = 0.00204363 loss) | |
I0407 16:13:40.819254 1004 solver.cpp:406] Test net output #32: loss/loss11 = 0.00650921 (* 0.0454545 = 0.000295873 loss) | |
I0407 16:13:40.819267 1004 solver.cpp:406] Test net output #33: loss/loss12 = 0.00656411 (* 0.0454545 = 0.000298369 loss) | |
I0407 16:13:40.819281 1004 solver.cpp:406] Test net output #34: loss/loss13 = 0.0065198 (* 0.0454545 = 0.000296355 loss) | |
I0407 16:13:40.819295 1004 solver.cpp:406] Test net output #35: loss/loss14 = 0.00648324 (* 0.0454545 = 0.000294693 loss) | |
I0407 16:13:40.819309 1004 solver.cpp:406] Test net output #36: loss/loss15 = 0.00651071 (* 0.0454545 = 0.000295941 loss) | |
I0407 16:13:40.819344 1004 solver.cpp:406] Test net output #37: loss/loss16 = 0.00652626 (* 0.0454545 = 0.000296648 loss) | |
I0407 16:13:40.819360 1004 solver.cpp:406] Test net output #38: loss/loss17 = 0.00653023 (* 0.0454545 = 0.000296829 loss) | |
I0407 16:13:40.819411 1004 solver.cpp:406] Test net output #39: loss/loss18 = 0.00648682 (* 0.0454545 = 0.000294855 loss) | |
I0407 16:13:40.819425 1004 solver.cpp:406] Test net output #40: loss/loss19 = 0.00652397 (* 0.0454545 = 0.000296544 loss) | |
I0407 16:13:40.819439 1004 solver.cpp:406] Test net output #41: loss/loss20 = 0.00654242 (* 0.0454545 = 0.000297383 loss) | |
I0407 16:13:40.819453 1004 solver.cpp:406] Test net output #42: loss/loss21 = 0.00644227 (* 0.0454545 = 0.00029283 loss) | |
I0407 16:13:40.819466 1004 solver.cpp:406] Test net output #43: loss/loss22 = 0.00650584 (* 0.0454545 = 0.00029572 loss) | |
I0407 16:13:40.819479 1004 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0407 16:13:40.819490 1004 solver.cpp:406] Test net output #45: total_confidence = 0.000368678 | |
I0407 16:13:40.841508 1004 solver.cpp:229] Iteration 45000, loss = 1.04826 | |
I0407 16:13:40.841547 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0407 16:13:40.841563 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:13:40.841575 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.25 | |
I0407 16:13:40.841588 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 16:13:40.841599 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 16:13:40.841611 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625 | |
I0407 16:13:40.841624 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.9375 | |
I0407 16:13:40.841634 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 16:13:40.841648 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:13:40.841660 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:13:40.841671 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:13:40.841682 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:13:40.841693 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:13:40.841706 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:13:40.841717 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:13:40.841727 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:13:40.841739 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:13:40.841750 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:13:40.841763 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:13:40.841773 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:13:40.841784 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:13:40.841796 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:13:40.841810 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.013 (* 0.0454545 = 0.136955 loss) | |
I0407 16:13:40.841825 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.27994 (* 0.0454545 = 0.149088 loss) | |
I0407 16:13:40.841838 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.12054 (* 0.0454545 = 0.141843 loss) | |
I0407 16:13:40.841852 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.75047 (* 0.0454545 = 0.170476 loss) | |
I0407 16:13:40.841866 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.12201 (* 0.0454545 = 0.141909 loss) | |
I0407 16:13:40.841881 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.11648 (* 0.0454545 = 0.0962035 loss) | |
I0407 16:13:40.841894 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.46768 (* 0.0454545 = 0.0212582 loss) | |
I0407 16:13:40.841908 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.109696 (* 0.0454545 = 0.00498616 loss) | |
I0407 16:13:40.841922 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0542078 (* 0.0454545 = 0.00246399 loss) | |
I0407 16:13:40.841935 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0230335 (* 0.0454545 = 0.00104698 loss) | |
I0407 16:13:40.841967 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000386686 (* 0.0454545 = 1.75767e-05 loss) | |
I0407 16:13:40.841984 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000385696 (* 0.0454545 = 1.75316e-05 loss) | |
I0407 16:13:40.841997 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000412886 (* 0.0454545 = 1.87676e-05 loss) | |
I0407 16:13:40.842011 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000416869 (* 0.0454545 = 1.89486e-05 loss) | |
I0407 16:13:40.842025 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000424392 (* 0.0454545 = 1.92906e-05 loss) | |
I0407 16:13:40.842039 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000411958 (* 0.0454545 = 1.87254e-05 loss) | |
I0407 16:13:40.842053 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000422924 (* 0.0454545 = 1.92238e-05 loss) | |
I0407 16:13:40.842067 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000414799 (* 0.0454545 = 1.88545e-05 loss) | |
I0407 16:13:40.842084 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.0004018 (* 0.0454545 = 1.82636e-05 loss) | |
I0407 16:13:40.842098 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000412835 (* 0.0454545 = 1.87652e-05 loss) | |
I0407 16:13:40.842113 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00043625 (* 0.0454545 = 1.98295e-05 loss) | |
I0407 16:13:40.842126 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00041586 (* 0.0454545 = 1.89027e-05 loss) | |
I0407 16:13:40.842139 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:13:40.842150 1004 solver.cpp:245] Train net output #45: total_confidence = 0.00180509 | |
I0407 16:13:40.842164 1004 sgd_solver.cpp:106] Iteration 45000, lr = 0.00091 | |
I0407 16:14:19.346454 1004 solver.cpp:229] Iteration 45500, loss = 1.04534 | |
I0407 16:14:19.346566 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 16:14:19.346585 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 16:14:19.346599 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:14:19.346611 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 16:14:19.346623 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 16:14:19.346637 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 16:14:19.346648 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 16:14:19.346660 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:14:19.346673 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:14:19.346684 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:14:19.346696 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:14:19.346707 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:14:19.346719 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:14:19.346730 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:14:19.346742 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:14:19.346753 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:14:19.346765 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:14:19.346776 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:14:19.346788 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:14:19.346799 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:14:19.346812 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:14:19.346822 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:14:19.346838 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.44922 (* 0.0454545 = 0.156783 loss) | |
I0407 16:14:19.346853 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.69372 (* 0.0454545 = 0.167896 loss) | |
I0407 16:14:19.346866 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.89888 (* 0.0454545 = 0.177222 loss) | |
I0407 16:14:19.346880 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.79714 (* 0.0454545 = 0.172597 loss) | |
I0407 16:14:19.346894 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.82146 (* 0.0454545 = 0.173703 loss) | |
I0407 16:14:19.346909 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.71882 (* 0.0454545 = 0.123583 loss) | |
I0407 16:14:19.346925 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.31962 (* 0.0454545 = 0.0599828 loss) | |
I0407 16:14:19.346940 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.482372 (* 0.0454545 = 0.021926 loss) | |
I0407 16:14:19.346953 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.458346 (* 0.0454545 = 0.0208339 loss) | |
I0407 16:14:19.346967 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0316026 (* 0.0454545 = 0.00143648 loss) | |
I0407 16:14:19.346982 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.00129568 (* 0.0454545 = 5.88946e-05 loss) | |
I0407 16:14:19.346997 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00138562 (* 0.0454545 = 6.29828e-05 loss) | |
I0407 16:14:19.347010 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.00120512 (* 0.0454545 = 5.4778e-05 loss) | |
I0407 16:14:19.347024 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00121076 (* 0.0454545 = 5.50347e-05 loss) | |
I0407 16:14:19.347038 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.001344 (* 0.0454545 = 6.10911e-05 loss) | |
I0407 16:14:19.347054 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.0012626 (* 0.0454545 = 5.73909e-05 loss) | |
I0407 16:14:19.347067 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.00120187 (* 0.0454545 = 5.46303e-05 loss) | |
I0407 16:14:19.347097 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.00128776 (* 0.0454545 = 5.85346e-05 loss) | |
I0407 16:14:19.347113 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00119389 (* 0.0454545 = 5.42678e-05 loss) | |
I0407 16:14:19.347127 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.00119433 (* 0.0454545 = 5.42879e-05 loss) | |
I0407 16:14:19.347141 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00127727 (* 0.0454545 = 5.80577e-05 loss) | |
I0407 16:14:19.347156 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00133792 (* 0.0454545 = 6.08144e-05 loss) | |
I0407 16:14:19.347167 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:14:19.347178 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000816305 | |
I0407 16:14:19.347193 1004 sgd_solver.cpp:106] Iteration 45500, lr = 0.000909 | |
I0407 16:14:57.884943 1004 solver.cpp:229] Iteration 46000, loss = 1.03642 | |
I0407 16:14:57.885097 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:14:57.885116 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:14:57.885129 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:14:57.885141 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 16:14:57.885154 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 16:14:57.885166 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 16:14:57.885179 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 16:14:57.885190 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 16:14:57.885202 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:14:57.885213 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:14:57.885226 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:14:57.885236 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:14:57.885248 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:14:57.885259 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:14:57.885272 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:14:57.885283 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:14:57.885294 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:14:57.885306 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:14:57.885318 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:14:57.885329 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:14:57.885341 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:14:57.885352 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:14:57.885368 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.58438 (* 0.0454545 = 0.162926 loss) | |
I0407 16:14:57.885382 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.95818 (* 0.0454545 = 0.179917 loss) | |
I0407 16:14:57.885396 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.74015 (* 0.0454545 = 0.170007 loss) | |
I0407 16:14:57.885411 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.55891 (* 0.0454545 = 0.161769 loss) | |
I0407 16:14:57.885423 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.52532 (* 0.0454545 = 0.160242 loss) | |
I0407 16:14:57.885437 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.90512 (* 0.0454545 = 0.132051 loss) | |
I0407 16:14:57.885452 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.80332 (* 0.0454545 = 0.0819693 loss) | |
I0407 16:14:57.885465 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.860128 (* 0.0454545 = 0.0390967 loss) | |
I0407 16:14:57.885479 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.40378 (* 0.0454545 = 0.0183536 loss) | |
I0407 16:14:57.885493 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.034325 (* 0.0454545 = 0.00156023 loss) | |
I0407 16:14:57.885507 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000266734 (* 0.0454545 = 1.21243e-05 loss) | |
I0407 16:14:57.885521 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000254395 (* 0.0454545 = 1.15634e-05 loss) | |
I0407 16:14:57.885535 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000263443 (* 0.0454545 = 1.19747e-05 loss) | |
I0407 16:14:57.885550 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000272219 (* 0.0454545 = 1.23736e-05 loss) | |
I0407 16:14:57.885563 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000288056 (* 0.0454545 = 1.30935e-05 loss) | |
I0407 16:14:57.885576 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000245642 (* 0.0454545 = 1.11656e-05 loss) | |
I0407 16:14:57.885591 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000256855 (* 0.0454545 = 1.16752e-05 loss) | |
I0407 16:14:57.885620 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000296659 (* 0.0454545 = 1.34845e-05 loss) | |
I0407 16:14:57.885635 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000252572 (* 0.0454545 = 1.14805e-05 loss) | |
I0407 16:14:57.885649 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000266709 (* 0.0454545 = 1.21231e-05 loss) | |
I0407 16:14:57.885663 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000293885 (* 0.0454545 = 1.33584e-05 loss) | |
I0407 16:14:57.885678 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000308697 (* 0.0454545 = 1.40317e-05 loss) | |
I0407 16:14:57.885689 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:14:57.885701 1004 solver.cpp:245] Train net output #45: total_confidence = 2.27196e-06 | |
I0407 16:14:57.885715 1004 sgd_solver.cpp:106] Iteration 46000, lr = 0.000908 | |
I0407 16:15:36.458904 1004 solver.cpp:229] Iteration 46500, loss = 1.04441 | |
I0407 16:15:36.459028 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:15:36.459048 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:15:36.459060 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:15:36.459072 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 16:15:36.459085 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.375 | |
I0407 16:15:36.459098 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625 | |
I0407 16:15:36.459111 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 16:15:36.459122 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:15:36.459134 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:15:36.459146 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:15:36.459157 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:15:36.459169 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:15:36.459180 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:15:36.459192 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:15:36.459203 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:15:36.459214 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:15:36.459226 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:15:36.459238 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:15:36.459249 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:15:36.459261 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:15:36.459272 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:15:36.459283 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:15:36.459298 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.38198 (* 0.0454545 = 0.153726 loss) | |
I0407 16:15:36.459313 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.73722 (* 0.0454545 = 0.169874 loss) | |
I0407 16:15:36.459342 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.62712 (* 0.0454545 = 0.164869 loss) | |
I0407 16:15:36.459357 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.54979 (* 0.0454545 = 0.161354 loss) | |
I0407 16:15:36.459372 1004 solver.cpp:245] Train net output #26: loss/loss05 = 2.8725 (* 0.0454545 = 0.130568 loss) | |
I0407 16:15:36.459385 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.15678 (* 0.0454545 = 0.0980353 loss) | |
I0407 16:15:36.459399 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.994905 (* 0.0454545 = 0.0452229 loss) | |
I0407 16:15:36.459413 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.372335 (* 0.0454545 = 0.0169243 loss) | |
I0407 16:15:36.459427 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0297002 (* 0.0454545 = 0.00135001 loss) | |
I0407 16:15:36.459441 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0115968 (* 0.0454545 = 0.000527128 loss) | |
I0407 16:15:36.459455 1004 solver.cpp:245] Train net output #32: loss/loss11 = 3.60448e-05 (* 0.0454545 = 1.6384e-06 loss) | |
I0407 16:15:36.459470 1004 solver.cpp:245] Train net output #33: loss/loss12 = 3.28777e-05 (* 0.0454545 = 1.49444e-06 loss) | |
I0407 16:15:36.459484 1004 solver.cpp:245] Train net output #34: loss/loss13 = 3.38092e-05 (* 0.0454545 = 1.53678e-06 loss) | |
I0407 16:15:36.459498 1004 solver.cpp:245] Train net output #35: loss/loss14 = 3.78704e-05 (* 0.0454545 = 1.72138e-06 loss) | |
I0407 16:15:36.459512 1004 solver.cpp:245] Train net output #36: loss/loss15 = 4.01693e-05 (* 0.0454545 = 1.82588e-06 loss) | |
I0407 16:15:36.459527 1004 solver.cpp:245] Train net output #37: loss/loss16 = 3.24456e-05 (* 0.0454545 = 1.4748e-06 loss) | |
I0407 16:15:36.459542 1004 solver.cpp:245] Train net output #38: loss/loss17 = 3.69911e-05 (* 0.0454545 = 1.68141e-06 loss) | |
I0407 16:15:36.459573 1004 solver.cpp:245] Train net output #39: loss/loss18 = 4.07841e-05 (* 0.0454545 = 1.85382e-06 loss) | |
I0407 16:15:36.459589 1004 solver.cpp:245] Train net output #40: loss/loss19 = 3.29598e-05 (* 0.0454545 = 1.49817e-06 loss) | |
I0407 16:15:36.459602 1004 solver.cpp:245] Train net output #41: loss/loss20 = 3.39136e-05 (* 0.0454545 = 1.54153e-06 loss) | |
I0407 16:15:36.459616 1004 solver.cpp:245] Train net output #42: loss/loss21 = 3.89658e-05 (* 0.0454545 = 1.77117e-06 loss) | |
I0407 16:15:36.459630 1004 solver.cpp:245] Train net output #43: loss/loss22 = 3.90626e-05 (* 0.0454545 = 1.77557e-06 loss) | |
I0407 16:15:36.459642 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:15:36.459655 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000172716 | |
I0407 16:15:36.459667 1004 sgd_solver.cpp:106] Iteration 46500, lr = 0.000907 | |
I0407 16:16:15.830869 1004 solver.cpp:229] Iteration 47000, loss = 1.03534 | |
I0407 16:16:15.831042 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 16:16:15.831061 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 16:16:15.831075 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:16:15.831087 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.25 | |
I0407 16:16:15.831099 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 16:16:15.831111 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 16:16:15.831122 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 16:16:15.831135 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.75 | |
I0407 16:16:15.831146 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:16:15.831158 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 16:16:15.831171 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:16:15.831182 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:16:15.831193 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:16:15.831204 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:16:15.831215 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:16:15.831228 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:16:15.831238 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:16:15.831250 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:16:15.831261 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:16:15.831274 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:16:15.831284 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:16:15.831295 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:16:15.831311 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.3712 (* 0.0454545 = 0.153236 loss) | |
I0407 16:16:15.831341 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.41294 (* 0.0454545 = 0.155134 loss) | |
I0407 16:16:15.831356 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.51058 (* 0.0454545 = 0.159572 loss) | |
I0407 16:16:15.831369 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.33692 (* 0.0454545 = 0.151678 loss) | |
I0407 16:16:15.831383 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.4817 (* 0.0454545 = 0.158259 loss) | |
I0407 16:16:15.831396 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.86498 (* 0.0454545 = 0.130226 loss) | |
I0407 16:16:15.831410 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.72454 (* 0.0454545 = 0.0783883 loss) | |
I0407 16:16:15.831424 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.40979 (* 0.0454545 = 0.0640814 loss) | |
I0407 16:16:15.831439 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.387482 (* 0.0454545 = 0.0176128 loss) | |
I0407 16:16:15.831454 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.40572 (* 0.0454545 = 0.0184418 loss) | |
I0407 16:16:15.831467 1004 solver.cpp:245] Train net output #32: loss/loss11 = 7.18578e-05 (* 0.0454545 = 3.26627e-06 loss) | |
I0407 16:16:15.831482 1004 solver.cpp:245] Train net output #33: loss/loss12 = 7.69073e-05 (* 0.0454545 = 3.49579e-06 loss) | |
I0407 16:16:15.831496 1004 solver.cpp:245] Train net output #34: loss/loss13 = 7.40453e-05 (* 0.0454545 = 3.36569e-06 loss) | |
I0407 16:16:15.831511 1004 solver.cpp:245] Train net output #35: loss/loss14 = 7.35827e-05 (* 0.0454545 = 3.34467e-06 loss) | |
I0407 16:16:15.831524 1004 solver.cpp:245] Train net output #36: loss/loss15 = 7.41606e-05 (* 0.0454545 = 3.37094e-06 loss) | |
I0407 16:16:15.831538 1004 solver.cpp:245] Train net output #37: loss/loss16 = 6.70915e-05 (* 0.0454545 = 3.04961e-06 loss) | |
I0407 16:16:15.831552 1004 solver.cpp:245] Train net output #38: loss/loss17 = 7.2573e-05 (* 0.0454545 = 3.29877e-06 loss) | |
I0407 16:16:15.831581 1004 solver.cpp:245] Train net output #39: loss/loss18 = 7.89229e-05 (* 0.0454545 = 3.58741e-06 loss) | |
I0407 16:16:15.831596 1004 solver.cpp:245] Train net output #40: loss/loss19 = 7.34637e-05 (* 0.0454545 = 3.33926e-06 loss) | |
I0407 16:16:15.831610 1004 solver.cpp:245] Train net output #41: loss/loss20 = 7.63708e-05 (* 0.0454545 = 3.4714e-06 loss) | |
I0407 16:16:15.831624 1004 solver.cpp:245] Train net output #42: loss/loss21 = 7.09292e-05 (* 0.0454545 = 3.22406e-06 loss) | |
I0407 16:16:15.831639 1004 solver.cpp:245] Train net output #43: loss/loss22 = 7.94372e-05 (* 0.0454545 = 3.61078e-06 loss) | |
I0407 16:16:15.831650 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:16:15.831662 1004 solver.cpp:245] Train net output #45: total_confidence = 5.40445e-06 | |
I0407 16:16:15.831676 1004 sgd_solver.cpp:106] Iteration 47000, lr = 0.000906 | |
I0407 16:16:54.801522 1004 solver.cpp:229] Iteration 47500, loss = 1.02981 | |
I0407 16:16:54.801656 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:16:54.801676 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:16:54.801689 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:16:54.801702 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 16:16:54.801717 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 16:16:54.801729 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 16:16:54.801741 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 16:16:54.801753 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:16:54.801765 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:16:54.801777 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 16:16:54.801789 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:16:54.801800 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:16:54.801812 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:16:54.801825 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:16:54.801836 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:16:54.801847 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:16:54.801858 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:16:54.801870 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:16:54.801882 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:16:54.801893 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:16:54.801904 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:16:54.801916 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:16:54.801933 1004 solver.cpp:245] Train net output #22: loss/loss01 = 2.98059 (* 0.0454545 = 0.135481 loss) | |
I0407 16:16:54.801947 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.7481 (* 0.0454545 = 0.170368 loss) | |
I0407 16:16:54.801961 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.75707 (* 0.0454545 = 0.170776 loss) | |
I0407 16:16:54.801975 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.42108 (* 0.0454545 = 0.155504 loss) | |
I0407 16:16:54.801990 1004 solver.cpp:245] Train net output #26: loss/loss05 = 2.98945 (* 0.0454545 = 0.135884 loss) | |
I0407 16:16:54.802003 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.10575 (* 0.0454545 = 0.0957159 loss) | |
I0407 16:16:54.802016 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.0561 (* 0.0454545 = 0.0480044 loss) | |
I0407 16:16:54.802031 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.347474 (* 0.0454545 = 0.0157943 loss) | |
I0407 16:16:54.802045 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.297833 (* 0.0454545 = 0.0135379 loss) | |
I0407 16:16:54.802059 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.377383 (* 0.0454545 = 0.0171538 loss) | |
I0407 16:16:54.802073 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000156084 (* 0.0454545 = 7.09473e-06 loss) | |
I0407 16:16:54.802088 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000158619 (* 0.0454545 = 7.20995e-06 loss) | |
I0407 16:16:54.802103 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000166379 (* 0.0454545 = 7.56267e-06 loss) | |
I0407 16:16:54.802116 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000188584 (* 0.0454545 = 8.57201e-06 loss) | |
I0407 16:16:54.802134 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000185016 (* 0.0454545 = 8.40981e-06 loss) | |
I0407 16:16:54.802148 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000143638 (* 0.0454545 = 6.529e-06 loss) | |
I0407 16:16:54.802162 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000164362 (* 0.0454545 = 7.47101e-06 loss) | |
I0407 16:16:54.802194 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000174272 (* 0.0454545 = 7.92146e-06 loss) | |
I0407 16:16:54.802209 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000168768 (* 0.0454545 = 7.67126e-06 loss) | |
I0407 16:16:54.802223 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000170509 (* 0.0454545 = 7.7504e-06 loss) | |
I0407 16:16:54.802237 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000147237 (* 0.0454545 = 6.69261e-06 loss) | |
I0407 16:16:54.802251 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000158298 (* 0.0454545 = 7.19537e-06 loss) | |
I0407 16:16:54.802264 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:16:54.802275 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000292966 | |
I0407 16:16:54.802289 1004 sgd_solver.cpp:106] Iteration 47500, lr = 0.000905 | |
I0407 16:17:33.541465 1004 solver.cpp:229] Iteration 48000, loss = 1.03065 | |
I0407 16:17:33.541594 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 16:17:33.541615 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:17:33.541628 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:17:33.541640 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 16:17:33.541652 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 16:17:33.541664 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 16:17:33.541676 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 16:17:33.541688 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:17:33.541700 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:17:33.541712 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:17:33.541723 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:17:33.541735 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:17:33.541748 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:17:33.541759 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:17:33.541770 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:17:33.541781 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:17:33.541793 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:17:33.541805 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:17:33.541816 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:17:33.541827 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:17:33.541838 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:17:33.541851 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:17:33.541865 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.40376 (* 0.0454545 = 0.154716 loss) | |
I0407 16:17:33.541879 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.76615 (* 0.0454545 = 0.171189 loss) | |
I0407 16:17:33.541893 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.78736 (* 0.0454545 = 0.172153 loss) | |
I0407 16:17:33.541908 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.80967 (* 0.0454545 = 0.173167 loss) | |
I0407 16:17:33.541924 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.2188 (* 0.0454545 = 0.146309 loss) | |
I0407 16:17:33.541939 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.10437 (* 0.0454545 = 0.141108 loss) | |
I0407 16:17:33.541952 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.3407 (* 0.0454545 = 0.0609409 loss) | |
I0407 16:17:33.541966 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.565279 (* 0.0454545 = 0.0256945 loss) | |
I0407 16:17:33.541980 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0508242 (* 0.0454545 = 0.00231019 loss) | |
I0407 16:17:33.541995 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0173991 (* 0.0454545 = 0.00079087 loss) | |
I0407 16:17:33.542009 1004 solver.cpp:245] Train net output #32: loss/loss11 = 8.77874e-05 (* 0.0454545 = 3.99034e-06 loss) | |
I0407 16:17:33.542024 1004 solver.cpp:245] Train net output #33: loss/loss12 = 8.56607e-05 (* 0.0454545 = 3.89367e-06 loss) | |
I0407 16:17:33.542038 1004 solver.cpp:245] Train net output #34: loss/loss13 = 8.51572e-05 (* 0.0454545 = 3.87078e-06 loss) | |
I0407 16:17:33.542052 1004 solver.cpp:245] Train net output #35: loss/loss14 = 8.96052e-05 (* 0.0454545 = 4.07297e-06 loss) | |
I0407 16:17:33.542067 1004 solver.cpp:245] Train net output #36: loss/loss15 = 9.08389e-05 (* 0.0454545 = 4.12904e-06 loss) | |
I0407 16:17:33.542079 1004 solver.cpp:245] Train net output #37: loss/loss16 = 7.97091e-05 (* 0.0454545 = 3.62314e-06 loss) | |
I0407 16:17:33.542093 1004 solver.cpp:245] Train net output #38: loss/loss17 = 8.46276e-05 (* 0.0454545 = 3.84671e-06 loss) | |
I0407 16:17:33.542124 1004 solver.cpp:245] Train net output #39: loss/loss18 = 9.16689e-05 (* 0.0454545 = 4.16677e-06 loss) | |
I0407 16:17:33.542138 1004 solver.cpp:245] Train net output #40: loss/loss19 = 8.6215e-05 (* 0.0454545 = 3.91887e-06 loss) | |
I0407 16:17:33.542152 1004 solver.cpp:245] Train net output #41: loss/loss20 = 8.30402e-05 (* 0.0454545 = 3.77456e-06 loss) | |
I0407 16:17:33.542166 1004 solver.cpp:245] Train net output #42: loss/loss21 = 8.24575e-05 (* 0.0454545 = 3.74807e-06 loss) | |
I0407 16:17:33.542179 1004 solver.cpp:245] Train net output #43: loss/loss22 = 9.29553e-05 (* 0.0454545 = 4.22524e-06 loss) | |
I0407 16:17:33.542191 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:17:33.542203 1004 solver.cpp:245] Train net output #45: total_confidence = 4.03025e-05 | |
I0407 16:17:33.542217 1004 sgd_solver.cpp:106] Iteration 48000, lr = 0.000904 | |
I0407 16:18:12.378597 1004 solver.cpp:229] Iteration 48500, loss = 1.02865 | |
I0407 16:18:12.378713 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:18:12.378731 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.1875 | |
I0407 16:18:12.378744 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:18:12.378757 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 16:18:12.378768 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 16:18:12.378780 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 16:18:12.378793 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 16:18:12.378804 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 16:18:12.378819 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:18:12.378831 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:18:12.378844 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:18:12.378855 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:18:12.378867 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:18:12.378878 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:18:12.378890 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:18:12.378902 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:18:12.378913 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:18:12.378926 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:18:12.378937 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:18:12.378948 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:18:12.378959 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:18:12.378970 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:18:12.378986 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.52885 (* 0.0454545 = 0.160402 loss) | |
I0407 16:18:12.379001 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.40163 (* 0.0454545 = 0.154619 loss) | |
I0407 16:18:12.379015 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.42899 (* 0.0454545 = 0.155863 loss) | |
I0407 16:18:12.379029 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.53761 (* 0.0454545 = 0.160801 loss) | |
I0407 16:18:12.379042 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.27597 (* 0.0454545 = 0.148908 loss) | |
I0407 16:18:12.379056 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.64647 (* 0.0454545 = 0.120294 loss) | |
I0407 16:18:12.379070 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.52024 (* 0.0454545 = 0.0691018 loss) | |
I0407 16:18:12.379086 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.0723126 (* 0.0454545 = 0.00328694 loss) | |
I0407 16:18:12.379101 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0264784 (* 0.0454545 = 0.00120357 loss) | |
I0407 16:18:12.379115 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.010223 (* 0.0454545 = 0.000464681 loss) | |
I0407 16:18:12.379129 1004 solver.cpp:245] Train net output #32: loss/loss11 = 6.83463e-05 (* 0.0454545 = 3.10665e-06 loss) | |
I0407 16:18:12.379149 1004 solver.cpp:245] Train net output #33: loss/loss12 = 6.7221e-05 (* 0.0454545 = 3.0555e-06 loss) | |
I0407 16:18:12.379179 1004 solver.cpp:245] Train net output #34: loss/loss13 = 6.80932e-05 (* 0.0454545 = 3.09515e-06 loss) | |
I0407 16:18:12.379199 1004 solver.cpp:245] Train net output #35: loss/loss14 = 7.62585e-05 (* 0.0454545 = 3.4663e-06 loss) | |
I0407 16:18:12.379214 1004 solver.cpp:245] Train net output #36: loss/loss15 = 7.35653e-05 (* 0.0454545 = 3.34388e-06 loss) | |
I0407 16:18:12.379227 1004 solver.cpp:245] Train net output #37: loss/loss16 = 6.20385e-05 (* 0.0454545 = 2.81993e-06 loss) | |
I0407 16:18:12.379241 1004 solver.cpp:245] Train net output #38: loss/loss17 = 6.66125e-05 (* 0.0454545 = 3.02784e-06 loss) | |
I0407 16:18:12.379273 1004 solver.cpp:245] Train net output #39: loss/loss18 = 7.75578e-05 (* 0.0454545 = 3.52535e-06 loss) | |
I0407 16:18:12.379288 1004 solver.cpp:245] Train net output #40: loss/loss19 = 6.96853e-05 (* 0.0454545 = 3.16751e-06 loss) | |
I0407 16:18:12.379302 1004 solver.cpp:245] Train net output #41: loss/loss20 = 6.31637e-05 (* 0.0454545 = 2.87108e-06 loss) | |
I0407 16:18:12.379329 1004 solver.cpp:245] Train net output #42: loss/loss21 = 6.53472e-05 (* 0.0454545 = 2.97033e-06 loss) | |
I0407 16:18:12.379348 1004 solver.cpp:245] Train net output #43: loss/loss22 = 6.72279e-05 (* 0.0454545 = 3.05581e-06 loss) | |
I0407 16:18:12.379360 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:18:12.379371 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000338612 | |
I0407 16:18:12.379384 1004 sgd_solver.cpp:106] Iteration 48500, lr = 0.000903 | |
I0407 16:18:51.066939 1004 solver.cpp:229] Iteration 49000, loss = 1.02587 | |
I0407 16:18:51.067082 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 16:18:51.067102 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:18:51.067116 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:18:51.067127 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 16:18:51.067140 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 16:18:51.067152 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 16:18:51.067165 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.5625 | |
I0407 16:18:51.067178 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 16:18:51.067189 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:18:51.067201 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:18:51.067214 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:18:51.067224 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:18:51.067236 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:18:51.067247 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:18:51.067260 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:18:51.067271 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:18:51.067282 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:18:51.067294 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:18:51.067306 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:18:51.067334 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:18:51.067348 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:18:51.067360 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:18:51.067378 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.32137 (* 0.0454545 = 0.150972 loss) | |
I0407 16:18:51.067392 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.40286 (* 0.0454545 = 0.154675 loss) | |
I0407 16:18:51.067406 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.65194 (* 0.0454545 = 0.165997 loss) | |
I0407 16:18:51.067420 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.47745 (* 0.0454545 = 0.158066 loss) | |
I0407 16:18:51.067435 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.0298 (* 0.0454545 = 0.137718 loss) | |
I0407 16:18:51.067448 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.73156 (* 0.0454545 = 0.124162 loss) | |
I0407 16:18:51.067462 1004 solver.cpp:245] Train net output #28: loss/loss07 = 2.27792 (* 0.0454545 = 0.103542 loss) | |
I0407 16:18:51.067476 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.16615 (* 0.0454545 = 0.053007 loss) | |
I0407 16:18:51.067490 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.343677 (* 0.0454545 = 0.0156217 loss) | |
I0407 16:18:51.067504 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0104423 (* 0.0454545 = 0.000474649 loss) | |
I0407 16:18:51.067519 1004 solver.cpp:245] Train net output #32: loss/loss11 = 4.26546e-05 (* 0.0454545 = 1.93884e-06 loss) | |
I0407 16:18:51.067533 1004 solver.cpp:245] Train net output #33: loss/loss12 = 3.89385e-05 (* 0.0454545 = 1.76993e-06 loss) | |
I0407 16:18:51.067548 1004 solver.cpp:245] Train net output #34: loss/loss13 = 3.84471e-05 (* 0.0454545 = 1.74759e-06 loss) | |
I0407 16:18:51.067561 1004 solver.cpp:245] Train net output #35: loss/loss14 = 4.64447e-05 (* 0.0454545 = 2.11112e-06 loss) | |
I0407 16:18:51.067576 1004 solver.cpp:245] Train net output #36: loss/loss15 = 4.91844e-05 (* 0.0454545 = 2.23565e-06 loss) | |
I0407 16:18:51.067590 1004 solver.cpp:245] Train net output #37: loss/loss16 = 4.26618e-05 (* 0.0454545 = 1.93917e-06 loss) | |
I0407 16:18:51.067605 1004 solver.cpp:245] Train net output #38: loss/loss17 = 4.14845e-05 (* 0.0454545 = 1.88566e-06 loss) | |
I0407 16:18:51.067633 1004 solver.cpp:245] Train net output #39: loss/loss18 = 4.86956e-05 (* 0.0454545 = 2.21344e-06 loss) | |
I0407 16:18:51.067648 1004 solver.cpp:245] Train net output #40: loss/loss19 = 4.23712e-05 (* 0.0454545 = 1.92596e-06 loss) | |
I0407 16:18:51.067662 1004 solver.cpp:245] Train net output #41: loss/loss20 = 4.03173e-05 (* 0.0454545 = 1.8326e-06 loss) | |
I0407 16:18:51.067677 1004 solver.cpp:245] Train net output #42: loss/loss21 = 4.55879e-05 (* 0.0454545 = 2.07218e-06 loss) | |
I0407 16:18:51.067690 1004 solver.cpp:245] Train net output #43: loss/loss22 = 4.54047e-05 (* 0.0454545 = 2.06385e-06 loss) | |
I0407 16:18:51.067703 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:18:51.067714 1004 solver.cpp:245] Train net output #45: total_confidence = 3.23424e-05 | |
I0407 16:18:51.067728 1004 sgd_solver.cpp:106] Iteration 49000, lr = 0.000902 | |
I0407 16:19:29.791137 1004 solver.cpp:229] Iteration 49500, loss = 1.02685 | |
I0407 16:19:29.791273 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:19:29.791292 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.1875 | |
I0407 16:19:29.791306 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:19:29.791317 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 16:19:29.791331 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 16:19:29.791342 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 16:19:29.791354 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 16:19:29.791366 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:19:29.791378 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:19:29.791390 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:19:29.791415 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:19:29.791427 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:19:29.791440 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:19:29.791450 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:19:29.791462 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:19:29.791474 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:19:29.791486 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:19:29.791497 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:19:29.791508 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:19:29.791520 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:19:29.791532 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:19:29.791543 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:19:29.791559 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.1969 (* 0.0454545 = 0.145314 loss) | |
I0407 16:19:29.791574 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.62436 (* 0.0454545 = 0.164744 loss) | |
I0407 16:19:29.791589 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.59027 (* 0.0454545 = 0.163194 loss) | |
I0407 16:19:29.791601 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.69769 (* 0.0454545 = 0.168077 loss) | |
I0407 16:19:29.791615 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.10283 (* 0.0454545 = 0.141038 loss) | |
I0407 16:19:29.791630 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.36932 (* 0.0454545 = 0.107696 loss) | |
I0407 16:19:29.791643 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.29128 (* 0.0454545 = 0.0586944 loss) | |
I0407 16:19:29.791656 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.32682 (* 0.0454545 = 0.0148555 loss) | |
I0407 16:19:29.791671 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0548415 (* 0.0454545 = 0.00249279 loss) | |
I0407 16:19:29.791687 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0212078 (* 0.0454545 = 0.00096399 loss) | |
I0407 16:19:29.791700 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000184481 (* 0.0454545 = 8.38549e-06 loss) | |
I0407 16:19:29.791715 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000190006 (* 0.0454545 = 8.63665e-06 loss) | |
I0407 16:19:29.791729 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000174897 (* 0.0454545 = 7.94985e-06 loss) | |
I0407 16:19:29.791743 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000172644 (* 0.0454545 = 7.84746e-06 loss) | |
I0407 16:19:29.791757 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.00017686 (* 0.0454545 = 8.03909e-06 loss) | |
I0407 16:19:29.791771 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000163493 (* 0.0454545 = 7.43149e-06 loss) | |
I0407 16:19:29.791785 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000162598 (* 0.0454545 = 7.3908e-06 loss) | |
I0407 16:19:29.792011 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000167816 (* 0.0454545 = 7.62798e-06 loss) | |
I0407 16:19:29.792028 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000172709 (* 0.0454545 = 7.85043e-06 loss) | |
I0407 16:19:29.792039 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000167947 (* 0.0454545 = 7.63395e-06 loss) | |
I0407 16:19:29.792048 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000156339 (* 0.0454545 = 7.10634e-06 loss) | |
I0407 16:19:29.792058 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000166595 (* 0.0454545 = 7.57249e-06 loss) | |
I0407 16:19:29.792065 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:19:29.792073 1004 solver.cpp:245] Train net output #45: total_confidence = 0.00016746 | |
I0407 16:19:29.792081 1004 sgd_solver.cpp:106] Iteration 49500, lr = 0.000901 | |
I0407 16:20:08.458269 1004 solver.cpp:338] Iteration 50000, Testing net (#0) | |
I0407 16:20:16.413247 1004 solver.cpp:393] Test loss: 0.965833 | |
I0407 16:20:16.413293 1004 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.307 | |
I0407 16:20:16.413310 1004 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.095 | |
I0407 16:20:16.413322 1004 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.057 | |
I0407 16:20:16.413334 1004 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.086 | |
I0407 16:20:16.413347 1004 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.2 | |
I0407 16:20:16.413358 1004 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.495 | |
I0407 16:20:16.413369 1004 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0407 16:20:16.413381 1004 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 16:20:16.413393 1004 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 16:20:16.413403 1004 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 16:20:16.413414 1004 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 16:20:16.413426 1004 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 16:20:16.413437 1004 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 16:20:16.413449 1004 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 16:20:16.413460 1004 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 16:20:16.413470 1004 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 16:20:16.413480 1004 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 16:20:16.413491 1004 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 16:20:16.413502 1004 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 16:20:16.413514 1004 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 16:20:16.413525 1004 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 16:20:16.413537 1004 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 16:20:16.413552 1004 solver.cpp:406] Test net output #22: loss/loss01 = 3.38206 (* 0.0454545 = 0.15373 loss) | |
I0407 16:20:16.413565 1004 solver.cpp:406] Test net output #23: loss/loss02 = 3.54658 (* 0.0454545 = 0.161208 loss) | |
I0407 16:20:16.413579 1004 solver.cpp:406] Test net output #24: loss/loss03 = 3.63565 (* 0.0454545 = 0.165257 loss) | |
I0407 16:20:16.413592 1004 solver.cpp:406] Test net output #25: loss/loss04 = 3.57373 (* 0.0454545 = 0.162442 loss) | |
I0407 16:20:16.413605 1004 solver.cpp:406] Test net output #26: loss/loss05 = 3.37663 (* 0.0454545 = 0.153483 loss) | |
I0407 16:20:16.413619 1004 solver.cpp:406] Test net output #27: loss/loss06 = 2.46154 (* 0.0454545 = 0.111888 loss) | |
I0407 16:20:16.413632 1004 solver.cpp:406] Test net output #28: loss/loss07 = 0.814221 (* 0.0454545 = 0.0370101 loss) | |
I0407 16:20:16.413645 1004 solver.cpp:406] Test net output #29: loss/loss08 = 0.295089 (* 0.0454545 = 0.0134132 loss) | |
I0407 16:20:16.413660 1004 solver.cpp:406] Test net output #30: loss/loss09 = 0.0734698 (* 0.0454545 = 0.00333953 loss) | |
I0407 16:20:16.413673 1004 solver.cpp:406] Test net output #31: loss/loss10 = 0.0403015 (* 0.0454545 = 0.00183188 loss) | |
I0407 16:20:16.413687 1004 solver.cpp:406] Test net output #32: loss/loss11 = 0.00410927 (* 0.0454545 = 0.000186785 loss) | |
I0407 16:20:16.413702 1004 solver.cpp:406] Test net output #33: loss/loss12 = 0.00420946 (* 0.0454545 = 0.000191339 loss) | |
I0407 16:20:16.413715 1004 solver.cpp:406] Test net output #34: loss/loss13 = 0.00411855 (* 0.0454545 = 0.000187207 loss) | |
I0407 16:20:16.413729 1004 solver.cpp:406] Test net output #35: loss/loss14 = 0.00405215 (* 0.0454545 = 0.000184189 loss) | |
I0407 16:20:16.413743 1004 solver.cpp:406] Test net output #36: loss/loss15 = 0.00403179 (* 0.0454545 = 0.000183263 loss) | |
I0407 16:20:16.413756 1004 solver.cpp:406] Test net output #37: loss/loss16 = 0.00412859 (* 0.0454545 = 0.000187663 loss) | |
I0407 16:20:16.413770 1004 solver.cpp:406] Test net output #38: loss/loss17 = 0.00408151 (* 0.0454545 = 0.000185523 loss) | |
I0407 16:20:16.413820 1004 solver.cpp:406] Test net output #39: loss/loss18 = 0.0041037 (* 0.0454545 = 0.000186532 loss) | |
I0407 16:20:16.413835 1004 solver.cpp:406] Test net output #40: loss/loss19 = 0.00410148 (* 0.0454545 = 0.000186431 loss) | |
I0407 16:20:16.413848 1004 solver.cpp:406] Test net output #41: loss/loss20 = 0.00411507 (* 0.0454545 = 0.000187049 loss) | |
I0407 16:20:16.413862 1004 solver.cpp:406] Test net output #42: loss/loss21 = 0.00392023 (* 0.0454545 = 0.000178192 loss) | |
I0407 16:20:16.413877 1004 solver.cpp:406] Test net output #43: loss/loss22 = 0.00407307 (* 0.0454545 = 0.000185139 loss) | |
I0407 16:20:16.413887 1004 solver.cpp:406] Test net output #44: total_accuracy = 0.001 | |
I0407 16:20:16.413899 1004 solver.cpp:406] Test net output #45: total_confidence = 0.000110406 | |
I0407 16:20:16.436472 1004 solver.cpp:229] Iteration 50000, loss = 1.02003 | |
I0407 16:20:16.436508 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:20:16.436525 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:20:16.436537 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:20:16.436549 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 16:20:16.436563 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 16:20:16.436575 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 16:20:16.436588 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 16:20:16.436599 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 16:20:16.436610 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:20:16.436622 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:20:16.436633 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:20:16.436645 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:20:16.436657 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:20:16.436668 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:20:16.436679 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:20:16.436691 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:20:16.436702 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:20:16.436714 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:20:16.436725 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:20:16.436738 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:20:16.436748 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:20:16.436760 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:20:16.436774 1004 solver.cpp:245] Train net output #22: loss/loss01 = 2.9178 (* 0.0454545 = 0.132627 loss) | |
I0407 16:20:16.436789 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.64962 (* 0.0454545 = 0.165892 loss) | |
I0407 16:20:16.436802 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.65102 (* 0.0454545 = 0.165955 loss) | |
I0407 16:20:16.436815 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.35049 (* 0.0454545 = 0.152295 loss) | |
I0407 16:20:16.436830 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.26269 (* 0.0454545 = 0.148304 loss) | |
I0407 16:20:16.436842 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.82166 (* 0.0454545 = 0.128257 loss) | |
I0407 16:20:16.436856 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.81725 (* 0.0454545 = 0.0826022 loss) | |
I0407 16:20:16.436871 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.12709 (* 0.0454545 = 0.0512315 loss) | |
I0407 16:20:16.436883 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0335903 (* 0.0454545 = 0.00152683 loss) | |
I0407 16:20:16.436898 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.011822 (* 0.0454545 = 0.000537365 loss) | |
I0407 16:20:16.436929 1004 solver.cpp:245] Train net output #32: loss/loss11 = 6.68393e-05 (* 0.0454545 = 3.03815e-06 loss) | |
I0407 16:20:16.436945 1004 solver.cpp:245] Train net output #33: loss/loss12 = 7.4364e-05 (* 0.0454545 = 3.38018e-06 loss) | |
I0407 16:20:16.436959 1004 solver.cpp:245] Train net output #34: loss/loss13 = 7.59375e-05 (* 0.0454545 = 3.45171e-06 loss) | |
I0407 16:20:16.436974 1004 solver.cpp:245] Train net output #35: loss/loss14 = 7.4986e-05 (* 0.0454545 = 3.40845e-06 loss) | |
I0407 16:20:16.436987 1004 solver.cpp:245] Train net output #36: loss/loss15 = 6.3841e-05 (* 0.0454545 = 2.90186e-06 loss) | |
I0407 16:20:16.437002 1004 solver.cpp:245] Train net output #37: loss/loss16 = 6.68616e-05 (* 0.0454545 = 3.03916e-06 loss) | |
I0407 16:20:16.437016 1004 solver.cpp:245] Train net output #38: loss/loss17 = 6.71528e-05 (* 0.0454545 = 3.0524e-06 loss) | |
I0407 16:20:16.437031 1004 solver.cpp:245] Train net output #39: loss/loss18 = 7.2598e-05 (* 0.0454545 = 3.29991e-06 loss) | |
I0407 16:20:16.437043 1004 solver.cpp:245] Train net output #40: loss/loss19 = 6.11213e-05 (* 0.0454545 = 2.77824e-06 loss) | |
I0407 16:20:16.437057 1004 solver.cpp:245] Train net output #41: loss/loss20 = 6.4018e-05 (* 0.0454545 = 2.90991e-06 loss) | |
I0407 16:20:16.437072 1004 solver.cpp:245] Train net output #42: loss/loss21 = 6.30739e-05 (* 0.0454545 = 2.86699e-06 loss) | |
I0407 16:20:16.437089 1004 solver.cpp:245] Train net output #43: loss/loss22 = 6.27822e-05 (* 0.0454545 = 2.85373e-06 loss) | |
I0407 16:20:16.437101 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:20:16.437113 1004 solver.cpp:245] Train net output #45: total_confidence = 7.22712e-06 | |
I0407 16:20:16.437127 1004 sgd_solver.cpp:106] Iteration 50000, lr = 0.0009 | |
I0407 16:20:55.636472 1004 solver.cpp:229] Iteration 50500, loss = 1.0168 | |
I0407 16:20:55.636641 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:20:55.636663 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 16:20:55.636677 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:20:55.636689 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 16:20:55.636701 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0407 16:20:55.636713 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 16:20:55.636725 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 16:20:55.636739 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:20:55.636750 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:20:55.636762 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:20:55.636775 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:20:55.636785 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:20:55.636797 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:20:55.636808 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:20:55.636821 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:20:55.636832 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:20:55.636844 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:20:55.636855 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:20:55.636867 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:20:55.636878 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:20:55.636889 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:20:55.636901 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:20:55.636916 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.12137 (* 0.0454545 = 0.14188 loss) | |
I0407 16:20:55.636934 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.4702 (* 0.0454545 = 0.157736 loss) | |
I0407 16:20:55.636947 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.57942 (* 0.0454545 = 0.162701 loss) | |
I0407 16:20:55.636961 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.47479 (* 0.0454545 = 0.157945 loss) | |
I0407 16:20:55.636976 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.60272 (* 0.0454545 = 0.16376 loss) | |
I0407 16:20:55.636989 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.16868 (* 0.0454545 = 0.144031 loss) | |
I0407 16:20:55.637003 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.915646 (* 0.0454545 = 0.0416203 loss) | |
I0407 16:20:55.637017 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.387559 (* 0.0454545 = 0.0176163 loss) | |
I0407 16:20:55.637032 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0431213 (* 0.0454545 = 0.00196006 loss) | |
I0407 16:20:55.637045 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0170652 (* 0.0454545 = 0.00077569 loss) | |
I0407 16:20:55.637060 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000106813 (* 0.0454545 = 4.85512e-06 loss) | |
I0407 16:20:55.637074 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000106916 (* 0.0454545 = 4.8598e-06 loss) | |
I0407 16:20:55.637089 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000104619 (* 0.0454545 = 4.75542e-06 loss) | |
I0407 16:20:55.637102 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000105724 (* 0.0454545 = 4.80565e-06 loss) | |
I0407 16:20:55.637116 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000105333 (* 0.0454545 = 4.78784e-06 loss) | |
I0407 16:20:55.637130 1004 solver.cpp:245] Train net output #37: loss/loss16 = 9.9431e-05 (* 0.0454545 = 4.51959e-06 loss) | |
I0407 16:20:55.637145 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000102692 (* 0.0454545 = 4.6678e-06 loss) | |
I0407 16:20:55.637173 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000115726 (* 0.0454545 = 5.26029e-06 loss) | |
I0407 16:20:55.637188 1004 solver.cpp:245] Train net output #40: loss/loss19 = 9.30766e-05 (* 0.0454545 = 4.23076e-06 loss) | |
I0407 16:20:55.637202 1004 solver.cpp:245] Train net output #41: loss/loss20 = 9.83394e-05 (* 0.0454545 = 4.46997e-06 loss) | |
I0407 16:20:55.637217 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000104665 (* 0.0454545 = 4.75751e-06 loss) | |
I0407 16:20:55.637230 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000108709 (* 0.0454545 = 4.9413e-06 loss) | |
I0407 16:20:55.637243 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:20:55.637254 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000350033 | |
I0407 16:20:55.637267 1004 sgd_solver.cpp:106] Iteration 50500, lr = 0.000899 | |
I0407 16:21:34.218384 1004 solver.cpp:229] Iteration 51000, loss = 1.02838 | |
I0407 16:21:34.218489 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:21:34.218509 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:21:34.218523 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:21:34.218535 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 16:21:34.218547 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 16:21:34.218559 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 16:21:34.218571 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 16:21:34.218582 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:21:34.218595 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:21:34.218607 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:21:34.218618 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:21:34.218631 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:21:34.218642 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:21:34.218653 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:21:34.218665 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:21:34.218677 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:21:34.218688 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:21:34.218700 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:21:34.218711 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:21:34.218724 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:21:34.218735 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:21:34.218746 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:21:34.218762 1004 solver.cpp:245] Train net output #22: loss/loss01 = 4.01777 (* 0.0454545 = 0.182626 loss) | |
I0407 16:21:34.218776 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.97722 (* 0.0454545 = 0.180783 loss) | |
I0407 16:21:34.218791 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.6578 (* 0.0454545 = 0.166264 loss) | |
I0407 16:21:34.218804 1004 solver.cpp:245] Train net output #25: loss/loss04 = 4.04686 (* 0.0454545 = 0.183948 loss) | |
I0407 16:21:34.218818 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.87643 (* 0.0454545 = 0.176202 loss) | |
I0407 16:21:34.218832 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.32837 (* 0.0454545 = 0.151289 loss) | |
I0407 16:21:34.218845 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.36997 (* 0.0454545 = 0.0622715 loss) | |
I0407 16:21:34.218859 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.439549 (* 0.0454545 = 0.0199795 loss) | |
I0407 16:21:34.218873 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0578558 (* 0.0454545 = 0.00262981 loss) | |
I0407 16:21:34.218888 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0368158 (* 0.0454545 = 0.00167345 loss) | |
I0407 16:21:34.218901 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000565793 (* 0.0454545 = 2.57179e-05 loss) | |
I0407 16:21:34.218915 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00053786 (* 0.0454545 = 2.44482e-05 loss) | |
I0407 16:21:34.218933 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000528956 (* 0.0454545 = 2.40435e-05 loss) | |
I0407 16:21:34.218947 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000552506 (* 0.0454545 = 2.51139e-05 loss) | |
I0407 16:21:34.218961 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000574413 (* 0.0454545 = 2.61097e-05 loss) | |
I0407 16:21:34.218976 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000525945 (* 0.0454545 = 2.39066e-05 loss) | |
I0407 16:21:34.218991 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000559109 (* 0.0454545 = 2.5414e-05 loss) | |
I0407 16:21:34.219022 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000580217 (* 0.0454545 = 2.63735e-05 loss) | |
I0407 16:21:34.219036 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000481728 (* 0.0454545 = 2.18967e-05 loss) | |
I0407 16:21:34.219050 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000522084 (* 0.0454545 = 2.37311e-05 loss) | |
I0407 16:21:34.219064 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000566136 (* 0.0454545 = 2.57334e-05 loss) | |
I0407 16:21:34.219079 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000542092 (* 0.0454545 = 2.46406e-05 loss) | |
I0407 16:21:34.219089 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:21:34.219101 1004 solver.cpp:245] Train net output #45: total_confidence = 1.85854e-05 | |
I0407 16:21:34.219115 1004 sgd_solver.cpp:106] Iteration 51000, lr = 0.000898 | |
I0407 16:22:13.060214 1004 solver.cpp:229] Iteration 51500, loss = 1.01754 | |
I0407 16:22:13.060293 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:22:13.060312 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:22:13.060324 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:22:13.060336 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 16:22:13.060348 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.5 | |
I0407 16:22:13.060360 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.625 | |
I0407 16:22:13.060374 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 16:22:13.060385 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 16:22:13.060397 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:22:13.060410 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:22:13.060420 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:22:13.060432 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:22:13.060444 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:22:13.060456 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:22:13.060467 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:22:13.060478 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:22:13.060494 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:22:13.060505 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:22:13.060518 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:22:13.060528 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:22:13.060540 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:22:13.060551 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:22:13.060567 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.07978 (* 0.0454545 = 0.13999 loss) | |
I0407 16:22:13.060582 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.34038 (* 0.0454545 = 0.151835 loss) | |
I0407 16:22:13.060596 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.39869 (* 0.0454545 = 0.154486 loss) | |
I0407 16:22:13.060611 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.37148 (* 0.0454545 = 0.153249 loss) | |
I0407 16:22:13.060624 1004 solver.cpp:245] Train net output #26: loss/loss05 = 2.3752 (* 0.0454545 = 0.107964 loss) | |
I0407 16:22:13.060637 1004 solver.cpp:245] Train net output #27: loss/loss06 = 1.68347 (* 0.0454545 = 0.0765212 loss) | |
I0407 16:22:13.060652 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.947697 (* 0.0454545 = 0.0430771 loss) | |
I0407 16:22:13.060667 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.0843181 (* 0.0454545 = 0.00383264 loss) | |
I0407 16:22:13.060680 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0220024 (* 0.0454545 = 0.00100011 loss) | |
I0407 16:22:13.060694 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.00887618 (* 0.0454545 = 0.000403463 loss) | |
I0407 16:22:13.060709 1004 solver.cpp:245] Train net output #32: loss/loss11 = 2.06913e-05 (* 0.0454545 = 9.40512e-07 loss) | |
I0407 16:22:13.060724 1004 solver.cpp:245] Train net output #33: loss/loss12 = 2.0885e-05 (* 0.0454545 = 9.4932e-07 loss) | |
I0407 16:22:13.060737 1004 solver.cpp:245] Train net output #34: loss/loss13 = 1.89403e-05 (* 0.0454545 = 8.60922e-07 loss) | |
I0407 16:22:13.060751 1004 solver.cpp:245] Train net output #35: loss/loss14 = 2.1332e-05 (* 0.0454545 = 9.69637e-07 loss) | |
I0407 16:22:13.060766 1004 solver.cpp:245] Train net output #36: loss/loss15 = 2.06688e-05 (* 0.0454545 = 9.39493e-07 loss) | |
I0407 16:22:13.060781 1004 solver.cpp:245] Train net output #37: loss/loss16 = 2.13769e-05 (* 0.0454545 = 9.71675e-07 loss) | |
I0407 16:22:13.060794 1004 solver.cpp:245] Train net output #38: loss/loss17 = 1.94543e-05 (* 0.0454545 = 8.84287e-07 loss) | |
I0407 16:22:13.060824 1004 solver.cpp:245] Train net output #39: loss/loss18 = 2.33588e-05 (* 0.0454545 = 1.06176e-06 loss) | |
I0407 16:22:13.060839 1004 solver.cpp:245] Train net output #40: loss/loss19 = 1.9134e-05 (* 0.0454545 = 8.69726e-07 loss) | |
I0407 16:22:13.060853 1004 solver.cpp:245] Train net output #41: loss/loss20 = 1.93649e-05 (* 0.0454545 = 8.80224e-07 loss) | |
I0407 16:22:13.060868 1004 solver.cpp:245] Train net output #42: loss/loss21 = 1.93127e-05 (* 0.0454545 = 8.77851e-07 loss) | |
I0407 16:22:13.060883 1004 solver.cpp:245] Train net output #43: loss/loss22 = 2.29936e-05 (* 0.0454545 = 1.04517e-06 loss) | |
I0407 16:22:13.060894 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:22:13.060905 1004 solver.cpp:245] Train net output #45: total_confidence = 9.15131e-05 | |
I0407 16:22:13.060920 1004 sgd_solver.cpp:106] Iteration 51500, lr = 0.000897 | |
I0407 16:22:52.001175 1004 solver.cpp:229] Iteration 52000, loss = 1.01487 | |
I0407 16:22:52.001287 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:22:52.001307 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:22:52.001319 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 16:22:52.001332 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 16:22:52.001344 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0407 16:22:52.001356 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.125 | |
I0407 16:22:52.001368 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.5 | |
I0407 16:22:52.001379 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.75 | |
I0407 16:22:52.001391 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0407 16:22:52.001404 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:22:52.001415 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:22:52.001426 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:22:52.001438 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:22:52.001449 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:22:52.001461 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:22:52.001472 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:22:52.001484 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:22:52.001497 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:22:52.001507 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:22:52.001519 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:22:52.001530 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:22:52.001543 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:22:52.001557 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.51584 (* 0.0454545 = 0.159811 loss) | |
I0407 16:22:52.001572 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.59646 (* 0.0454545 = 0.163475 loss) | |
I0407 16:22:52.001586 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.47805 (* 0.0454545 = 0.158093 loss) | |
I0407 16:22:52.001600 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.89336 (* 0.0454545 = 0.176971 loss) | |
I0407 16:22:52.001615 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.58873 (* 0.0454545 = 0.163124 loss) | |
I0407 16:22:52.001628 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.52831 (* 0.0454545 = 0.160378 loss) | |
I0407 16:22:52.001642 1004 solver.cpp:245] Train net output #28: loss/loss07 = 2.66441 (* 0.0454545 = 0.12111 loss) | |
I0407 16:22:52.001657 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.51576 (* 0.0454545 = 0.0688981 loss) | |
I0407 16:22:52.001670 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.906381 (* 0.0454545 = 0.0411992 loss) | |
I0407 16:22:52.001684 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0213384 (* 0.0454545 = 0.000969928 loss) | |
I0407 16:22:52.001698 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000186601 (* 0.0454545 = 8.48185e-06 loss) | |
I0407 16:22:52.001713 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000176207 (* 0.0454545 = 8.00941e-06 loss) | |
I0407 16:22:52.001727 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000165207 (* 0.0454545 = 7.50941e-06 loss) | |
I0407 16:22:52.001741 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00017056 (* 0.0454545 = 7.75273e-06 loss) | |
I0407 16:22:52.001755 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.00019716 (* 0.0454545 = 8.96181e-06 loss) | |
I0407 16:22:52.001770 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000180743 (* 0.0454545 = 8.21557e-06 loss) | |
I0407 16:22:52.001785 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000192118 (* 0.0454545 = 8.73264e-06 loss) | |
I0407 16:22:52.001814 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000205353 (* 0.0454545 = 9.33422e-06 loss) | |
I0407 16:22:52.001829 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000165469 (* 0.0454545 = 7.52133e-06 loss) | |
I0407 16:22:52.001843 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.00017467 (* 0.0454545 = 7.93954e-06 loss) | |
I0407 16:22:52.001857 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000204781 (* 0.0454545 = 9.30824e-06 loss) | |
I0407 16:22:52.001871 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000199777 (* 0.0454545 = 9.08076e-06 loss) | |
I0407 16:22:52.001883 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:22:52.001895 1004 solver.cpp:245] Train net output #45: total_confidence = 2.52798e-06 | |
I0407 16:22:52.001909 1004 sgd_solver.cpp:106] Iteration 52000, lr = 0.000896 | |
I0407 16:23:30.649839 1004 solver.cpp:229] Iteration 52500, loss = 1.01625 | |
I0407 16:23:30.650017 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:23:30.650037 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:23:30.650050 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:23:30.650063 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 16:23:30.650074 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 16:23:30.650086 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 16:23:30.650099 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 16:23:30.650110 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 16:23:30.650121 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:23:30.650133 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:23:30.650144 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:23:30.650156 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:23:30.650168 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:23:30.650179 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:23:30.650190 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:23:30.650202 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:23:30.650213 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:23:30.650225 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:23:30.650236 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:23:30.650249 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:23:30.650260 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:23:30.650271 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:23:30.650287 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.5951 (* 0.0454545 = 0.163414 loss) | |
I0407 16:23:30.650301 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.97566 (* 0.0454545 = 0.180712 loss) | |
I0407 16:23:30.650315 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.71678 (* 0.0454545 = 0.168944 loss) | |
I0407 16:23:30.650329 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.65096 (* 0.0454545 = 0.165953 loss) | |
I0407 16:23:30.650342 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.33117 (* 0.0454545 = 0.151417 loss) | |
I0407 16:23:30.650357 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.8259 (* 0.0454545 = 0.12845 loss) | |
I0407 16:23:30.650370 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.50187 (* 0.0454545 = 0.0682667 loss) | |
I0407 16:23:30.650384 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.741786 (* 0.0454545 = 0.0337175 loss) | |
I0407 16:23:30.650398 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0402707 (* 0.0454545 = 0.00183049 loss) | |
I0407 16:23:30.650413 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0173937 (* 0.0454545 = 0.000790621 loss) | |
I0407 16:23:30.650427 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000234864 (* 0.0454545 = 1.06756e-05 loss) | |
I0407 16:23:30.650441 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000187345 (* 0.0454545 = 8.51566e-06 loss) | |
I0407 16:23:30.650455 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000217595 (* 0.0454545 = 9.89067e-06 loss) | |
I0407 16:23:30.650470 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000225674 (* 0.0454545 = 1.02579e-05 loss) | |
I0407 16:23:30.650483 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000245241 (* 0.0454545 = 1.11473e-05 loss) | |
I0407 16:23:30.650497 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.00020354 (* 0.0454545 = 9.2518e-06 loss) | |
I0407 16:23:30.650512 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000215562 (* 0.0454545 = 9.79827e-06 loss) | |
I0407 16:23:30.650820 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000256326 (* 0.0454545 = 1.16512e-05 loss) | |
I0407 16:23:30.650836 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000198576 (* 0.0454545 = 9.02619e-06 loss) | |
I0407 16:23:30.650849 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000201878 (* 0.0454545 = 9.17628e-06 loss) | |
I0407 16:23:30.650863 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000242344 (* 0.0454545 = 1.10156e-05 loss) | |
I0407 16:23:30.650877 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000215493 (* 0.0454545 = 9.79513e-06 loss) | |
I0407 16:23:30.650889 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:23:30.650900 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000198366 | |
I0407 16:23:30.650913 1004 sgd_solver.cpp:106] Iteration 52500, lr = 0.000895 | |
I0407 16:24:09.318362 1004 solver.cpp:229] Iteration 53000, loss = 1.01729 | |
I0407 16:24:09.318435 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:24:09.318454 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:24:09.318467 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:24:09.318480 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 16:24:09.318492 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0407 16:24:09.318505 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.1875 | |
I0407 16:24:09.318516 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.375 | |
I0407 16:24:09.318528 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.6875 | |
I0407 16:24:09.318541 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0407 16:24:09.318552 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 16:24:09.318563 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:24:09.318575 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:24:09.318586 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:24:09.318598 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:24:09.318610 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:24:09.318621 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:24:09.318637 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:24:09.318650 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:24:09.318661 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:24:09.318673 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:24:09.318684 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:24:09.318696 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:24:09.318711 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.24234 (* 0.0454545 = 0.147379 loss) | |
I0407 16:24:09.318727 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.60207 (* 0.0454545 = 0.163731 loss) | |
I0407 16:24:09.318740 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.61204 (* 0.0454545 = 0.164183 loss) | |
I0407 16:24:09.318754 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.55315 (* 0.0454545 = 0.161507 loss) | |
I0407 16:24:09.318768 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.35547 (* 0.0454545 = 0.152522 loss) | |
I0407 16:24:09.318783 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.31402 (* 0.0454545 = 0.150637 loss) | |
I0407 16:24:09.318796 1004 solver.cpp:245] Train net output #28: loss/loss07 = 2.54919 (* 0.0454545 = 0.115872 loss) | |
I0407 16:24:09.318810 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.39877 (* 0.0454545 = 0.0635805 loss) | |
I0407 16:24:09.318825 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.655253 (* 0.0454545 = 0.0297842 loss) | |
I0407 16:24:09.318838 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.388883 (* 0.0454545 = 0.0176765 loss) | |
I0407 16:24:09.318852 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000720164 (* 0.0454545 = 3.27347e-05 loss) | |
I0407 16:24:09.318866 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000714265 (* 0.0454545 = 3.24666e-05 loss) | |
I0407 16:24:09.318881 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000720162 (* 0.0454545 = 3.27346e-05 loss) | |
I0407 16:24:09.318895 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000739257 (* 0.0454545 = 3.36026e-05 loss) | |
I0407 16:24:09.318909 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.0007444 (* 0.0454545 = 3.38363e-05 loss) | |
I0407 16:24:09.318923 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000711671 (* 0.0454545 = 3.23487e-05 loss) | |
I0407 16:24:09.318938 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000731012 (* 0.0454545 = 3.32278e-05 loss) | |
I0407 16:24:09.318969 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000780474 (* 0.0454545 = 3.54761e-05 loss) | |
I0407 16:24:09.318984 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000710393 (* 0.0454545 = 3.22906e-05 loss) | |
I0407 16:24:09.318999 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000745 (* 0.0454545 = 3.38636e-05 loss) | |
I0407 16:24:09.319013 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000752752 (* 0.0454545 = 3.4216e-05 loss) | |
I0407 16:24:09.319027 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000821652 (* 0.0454545 = 3.73478e-05 loss) | |
I0407 16:24:09.319039 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:24:09.319051 1004 solver.cpp:245] Train net output #45: total_confidence = 8.67963e-05 | |
I0407 16:24:09.319063 1004 sgd_solver.cpp:106] Iteration 53000, lr = 0.000894 | |
I0407 16:24:47.866300 1004 solver.cpp:229] Iteration 53500, loss = 1.01938 | |
I0407 16:24:47.866484 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:24:47.866503 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:24:47.866516 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:24:47.866528 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 16:24:47.866540 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0407 16:24:47.866552 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 16:24:47.866564 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 16:24:47.866576 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:24:47.866588 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:24:47.866600 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:24:47.866611 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:24:47.866623 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:24:47.866636 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:24:47.866647 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:24:47.866658 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:24:47.866669 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:24:47.866682 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:24:47.866693 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:24:47.866704 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:24:47.866716 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:24:47.866727 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:24:47.866739 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:24:47.866755 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.41426 (* 0.0454545 = 0.155193 loss) | |
I0407 16:24:47.866770 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.66316 (* 0.0454545 = 0.166507 loss) | |
I0407 16:24:47.866783 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.92811 (* 0.0454545 = 0.17855 loss) | |
I0407 16:24:47.866796 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.57154 (* 0.0454545 = 0.162343 loss) | |
I0407 16:24:47.866811 1004 solver.cpp:245] Train net output #26: loss/loss05 = 4.11929 (* 0.0454545 = 0.18724 loss) | |
I0407 16:24:47.866824 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.21366 (* 0.0454545 = 0.146075 loss) | |
I0407 16:24:47.866838 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.70142 (* 0.0454545 = 0.0773372 loss) | |
I0407 16:24:47.866852 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.371683 (* 0.0454545 = 0.0168947 loss) | |
I0407 16:24:47.866866 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0295644 (* 0.0454545 = 0.00134384 loss) | |
I0407 16:24:47.866880 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.012629 (* 0.0454545 = 0.000574044 loss) | |
I0407 16:24:47.866894 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000100902 (* 0.0454545 = 4.58646e-06 loss) | |
I0407 16:24:47.866909 1004 solver.cpp:245] Train net output #33: loss/loss12 = 9.25896e-05 (* 0.0454545 = 4.20862e-06 loss) | |
I0407 16:24:47.866922 1004 solver.cpp:245] Train net output #34: loss/loss13 = 9.39035e-05 (* 0.0454545 = 4.26834e-06 loss) | |
I0407 16:24:47.866936 1004 solver.cpp:245] Train net output #35: loss/loss14 = 9.98418e-05 (* 0.0454545 = 4.53826e-06 loss) | |
I0407 16:24:47.866950 1004 solver.cpp:245] Train net output #36: loss/loss15 = 9.94347e-05 (* 0.0454545 = 4.51976e-06 loss) | |
I0407 16:24:47.866964 1004 solver.cpp:245] Train net output #37: loss/loss16 = 9.90539e-05 (* 0.0454545 = 4.50245e-06 loss) | |
I0407 16:24:47.866978 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000104561 (* 0.0454545 = 4.75276e-06 loss) | |
I0407 16:24:47.867009 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000125618 (* 0.0454545 = 5.7099e-06 loss) | |
I0407 16:24:47.867024 1004 solver.cpp:245] Train net output #40: loss/loss19 = 9.93453e-05 (* 0.0454545 = 4.51569e-06 loss) | |
I0407 16:24:47.867038 1004 solver.cpp:245] Train net output #41: loss/loss20 = 9.41023e-05 (* 0.0454545 = 4.27738e-06 loss) | |
I0407 16:24:47.867053 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00011597 (* 0.0454545 = 5.27137e-06 loss) | |
I0407 16:24:47.867066 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000105105 (* 0.0454545 = 4.77748e-06 loss) | |
I0407 16:24:47.867081 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:24:47.867094 1004 solver.cpp:245] Train net output #45: total_confidence = 6.32692e-05 | |
I0407 16:24:47.867106 1004 sgd_solver.cpp:106] Iteration 53500, lr = 0.000893 | |
I0407 16:25:26.519111 1004 solver.cpp:229] Iteration 54000, loss = 1.01137 | |
I0407 16:25:26.519232 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:25:26.519253 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:25:26.519266 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:25:26.519279 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 16:25:26.519290 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 16:25:26.519304 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 16:25:26.519315 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 16:25:26.519327 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 16:25:26.519340 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:25:26.519351 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:25:26.519376 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:25:26.519388 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:25:26.519402 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:25:26.519412 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:25:26.519425 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:25:26.519436 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:25:26.519448 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:25:26.519460 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:25:26.519471 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:25:26.519484 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:25:26.519495 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:25:26.519506 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:25:26.519522 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.6492 (* 0.0454545 = 0.165873 loss) | |
I0407 16:25:26.519537 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.68946 (* 0.0454545 = 0.167703 loss) | |
I0407 16:25:26.519551 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.854 (* 0.0454545 = 0.175182 loss) | |
I0407 16:25:26.519565 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.65611 (* 0.0454545 = 0.166187 loss) | |
I0407 16:25:26.519579 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.06221 (* 0.0454545 = 0.139191 loss) | |
I0407 16:25:26.519593 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.96258 (* 0.0454545 = 0.134663 loss) | |
I0407 16:25:26.519608 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.4402 (* 0.0454545 = 0.0654636 loss) | |
I0407 16:25:26.519621 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.0472331 (* 0.0454545 = 0.00214696 loss) | |
I0407 16:25:26.519635 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0231605 (* 0.0454545 = 0.00105275 loss) | |
I0407 16:25:26.519649 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.014418 (* 0.0454545 = 0.000655364 loss) | |
I0407 16:25:26.519665 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000398069 (* 0.0454545 = 1.8094e-05 loss) | |
I0407 16:25:26.519678 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000385715 (* 0.0454545 = 1.75325e-05 loss) | |
I0407 16:25:26.519692 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000368781 (* 0.0454545 = 1.67628e-05 loss) | |
I0407 16:25:26.519707 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00040776 (* 0.0454545 = 1.85346e-05 loss) | |
I0407 16:25:26.519721 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000439924 (* 0.0454545 = 1.99965e-05 loss) | |
I0407 16:25:26.519736 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000405084 (* 0.0454545 = 1.84129e-05 loss) | |
I0407 16:25:26.519749 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000418718 (* 0.0454545 = 1.90326e-05 loss) | |
I0407 16:25:26.519781 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000505376 (* 0.0454545 = 2.29717e-05 loss) | |
I0407 16:25:26.519796 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000401743 (* 0.0454545 = 1.8261e-05 loss) | |
I0407 16:25:26.519811 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000377367 (* 0.0454545 = 1.7153e-05 loss) | |
I0407 16:25:26.519825 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000450604 (* 0.0454545 = 2.0482e-05 loss) | |
I0407 16:25:26.519840 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000455927 (* 0.0454545 = 2.0724e-05 loss) | |
I0407 16:25:26.519851 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:25:26.519863 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000283178 | |
I0407 16:25:26.519876 1004 sgd_solver.cpp:106] Iteration 54000, lr = 0.000892 | |
I0407 16:26:05.222785 1004 solver.cpp:229] Iteration 54500, loss = 1.01549 | |
I0407 16:26:05.222939 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:26:05.222960 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:26:05.222975 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 16:26:05.222986 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 16:26:05.222998 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 16:26:05.223011 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 16:26:05.223022 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 16:26:05.223034 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 16:26:05.223047 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:26:05.223057 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:26:05.223069 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:26:05.223080 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:26:05.223093 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:26:05.223104 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:26:05.223116 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:26:05.223129 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:26:05.223140 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:26:05.223151 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:26:05.223162 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:26:05.223175 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:26:05.223186 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:26:05.223196 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:26:05.223212 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.13016 (* 0.0454545 = 0.14228 loss) | |
I0407 16:26:05.223227 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.4675 (* 0.0454545 = 0.157613 loss) | |
I0407 16:26:05.223242 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.49319 (* 0.0454545 = 0.158781 loss) | |
I0407 16:26:05.223255 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.84463 (* 0.0454545 = 0.174756 loss) | |
I0407 16:26:05.223268 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.33111 (* 0.0454545 = 0.151414 loss) | |
I0407 16:26:05.223283 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.80887 (* 0.0454545 = 0.127676 loss) | |
I0407 16:26:05.223296 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.42963 (* 0.0454545 = 0.0649832 loss) | |
I0407 16:26:05.223310 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.0377516 (* 0.0454545 = 0.00171598 loss) | |
I0407 16:26:05.223348 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0124445 (* 0.0454545 = 0.000565659 loss) | |
I0407 16:26:05.223364 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.00556086 (* 0.0454545 = 0.000252766 loss) | |
I0407 16:26:05.223379 1004 solver.cpp:245] Train net output #32: loss/loss11 = 8.17546e-05 (* 0.0454545 = 3.71612e-06 loss) | |
I0407 16:26:05.223392 1004 solver.cpp:245] Train net output #33: loss/loss12 = 6.93182e-05 (* 0.0454545 = 3.15083e-06 loss) | |
I0407 16:26:05.223407 1004 solver.cpp:245] Train net output #34: loss/loss13 = 6.90308e-05 (* 0.0454545 = 3.13776e-06 loss) | |
I0407 16:26:05.223422 1004 solver.cpp:245] Train net output #35: loss/loss14 = 8.15763e-05 (* 0.0454545 = 3.70801e-06 loss) | |
I0407 16:26:05.223435 1004 solver.cpp:245] Train net output #36: loss/loss15 = 8.41624e-05 (* 0.0454545 = 3.82556e-06 loss) | |
I0407 16:26:05.223449 1004 solver.cpp:245] Train net output #37: loss/loss16 = 7.60005e-05 (* 0.0454545 = 3.45457e-06 loss) | |
I0407 16:26:05.223464 1004 solver.cpp:245] Train net output #38: loss/loss17 = 7.97535e-05 (* 0.0454545 = 3.62516e-06 loss) | |
I0407 16:26:05.223491 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000100225 (* 0.0454545 = 4.55568e-06 loss) | |
I0407 16:26:05.223507 1004 solver.cpp:245] Train net output #40: loss/loss19 = 6.99028e-05 (* 0.0454545 = 3.1774e-06 loss) | |
I0407 16:26:05.223521 1004 solver.cpp:245] Train net output #41: loss/loss20 = 7.72645e-05 (* 0.0454545 = 3.51202e-06 loss) | |
I0407 16:26:05.223536 1004 solver.cpp:245] Train net output #42: loss/loss21 = 9.23293e-05 (* 0.0454545 = 4.19679e-06 loss) | |
I0407 16:26:05.223567 1004 solver.cpp:245] Train net output #43: loss/loss22 = 8.48109e-05 (* 0.0454545 = 3.85504e-06 loss) | |
I0407 16:26:05.223582 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:26:05.223593 1004 solver.cpp:245] Train net output #45: total_confidence = 0.0004599 | |
I0407 16:26:05.223606 1004 sgd_solver.cpp:106] Iteration 54500, lr = 0.000891 | |
I0407 16:26:44.004312 1004 solver.cpp:338] Iteration 55000, Testing net (#0) | |
I0407 16:26:51.989516 1004 solver.cpp:393] Test loss: 0.894567 | |
I0407 16:26:51.989567 1004 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.421 | |
I0407 16:26:51.989583 1004 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.075 | |
I0407 16:26:51.989595 1004 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.089 | |
I0407 16:26:51.989608 1004 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.08 | |
I0407 16:26:51.989619 1004 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.202 | |
I0407 16:26:51.989631 1004 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.497 | |
I0407 16:26:51.989642 1004 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0407 16:26:51.989655 1004 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 16:26:51.989665 1004 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 16:26:51.989676 1004 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 16:26:51.989687 1004 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 16:26:51.989698 1004 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 16:26:51.989709 1004 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 16:26:51.989722 1004 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 16:26:51.989732 1004 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 16:26:51.989743 1004 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 16:26:51.989753 1004 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 16:26:51.989765 1004 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 16:26:51.989776 1004 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 16:26:51.989787 1004 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 16:26:51.989799 1004 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 16:26:51.989809 1004 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 16:26:51.989823 1004 solver.cpp:406] Test net output #22: loss/loss01 = 2.93143 (* 0.0454545 = 0.133247 loss) | |
I0407 16:26:51.989840 1004 solver.cpp:406] Test net output #23: loss/loss02 = 3.30121 (* 0.0454545 = 0.150055 loss) | |
I0407 16:26:51.989852 1004 solver.cpp:406] Test net output #24: loss/loss03 = 3.36547 (* 0.0454545 = 0.152976 loss) | |
I0407 16:26:51.989866 1004 solver.cpp:406] Test net output #25: loss/loss04 = 3.35422 (* 0.0454545 = 0.152465 loss) | |
I0407 16:26:51.989879 1004 solver.cpp:406] Test net output #26: loss/loss05 = 3.24041 (* 0.0454545 = 0.147291 loss) | |
I0407 16:26:51.989893 1004 solver.cpp:406] Test net output #27: loss/loss06 = 2.31057 (* 0.0454545 = 0.105026 loss) | |
I0407 16:26:51.989907 1004 solver.cpp:406] Test net output #28: loss/loss07 = 0.766983 (* 0.0454545 = 0.0348629 loss) | |
I0407 16:26:51.989923 1004 solver.cpp:406] Test net output #29: loss/loss08 = 0.277015 (* 0.0454545 = 0.0125916 loss) | |
I0407 16:26:51.989938 1004 solver.cpp:406] Test net output #30: loss/loss09 = 0.0663103 (* 0.0454545 = 0.0030141 loss) | |
I0407 16:26:51.989953 1004 solver.cpp:406] Test net output #31: loss/loss10 = 0.038292 (* 0.0454545 = 0.00174055 loss) | |
I0407 16:26:51.989965 1004 solver.cpp:406] Test net output #32: loss/loss11 = 0.00248213 (* 0.0454545 = 0.000112824 loss) | |
I0407 16:26:51.989979 1004 solver.cpp:406] Test net output #33: loss/loss12 = 0.00245043 (* 0.0454545 = 0.000111383 loss) | |
I0407 16:26:51.989994 1004 solver.cpp:406] Test net output #34: loss/loss13 = 0.00241126 (* 0.0454545 = 0.000109603 loss) | |
I0407 16:26:51.990007 1004 solver.cpp:406] Test net output #35: loss/loss14 = 0.00235507 (* 0.0454545 = 0.000107049 loss) | |
I0407 16:26:51.990021 1004 solver.cpp:406] Test net output #36: loss/loss15 = 0.00234189 (* 0.0454545 = 0.000106449 loss) | |
I0407 16:26:51.990034 1004 solver.cpp:406] Test net output #37: loss/loss16 = 0.00239475 (* 0.0454545 = 0.000108852 loss) | |
I0407 16:26:51.990048 1004 solver.cpp:406] Test net output #38: loss/loss17 = 0.00235637 (* 0.0454545 = 0.000107108 loss) | |
I0407 16:26:51.990097 1004 solver.cpp:406] Test net output #39: loss/loss18 = 0.00245998 (* 0.0454545 = 0.000111817 loss) | |
I0407 16:26:51.990113 1004 solver.cpp:406] Test net output #40: loss/loss19 = 0.00233713 (* 0.0454545 = 0.000106233 loss) | |
I0407 16:26:51.990126 1004 solver.cpp:406] Test net output #41: loss/loss20 = 0.00233459 (* 0.0454545 = 0.000106118 loss) | |
I0407 16:26:51.990140 1004 solver.cpp:406] Test net output #42: loss/loss21 = 0.0022839 (* 0.0454545 = 0.000103814 loss) | |
I0407 16:26:51.990154 1004 solver.cpp:406] Test net output #43: loss/loss22 = 0.00237127 (* 0.0454545 = 0.000107785 loss) | |
I0407 16:26:51.990165 1004 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0407 16:26:51.990177 1004 solver.cpp:406] Test net output #45: total_confidence = 0.000290701 | |
I0407 16:26:52.012771 1004 solver.cpp:229] Iteration 55000, loss = 1.01007 | |
I0407 16:26:52.012806 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:26:52.012823 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:26:52.012835 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 16:26:52.012847 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 16:26:52.012859 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 16:26:52.012871 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 16:26:52.012883 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 16:26:52.012895 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:26:52.012907 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:26:52.012918 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 16:26:52.012929 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:26:52.012941 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:26:52.012956 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:26:52.012969 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:26:52.012979 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:26:52.012991 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:26:52.013002 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:26:52.013015 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:26:52.013025 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:26:52.013036 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:26:52.013047 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:26:52.013058 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:26:52.013075 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.51549 (* 0.0454545 = 0.159795 loss) | |
I0407 16:26:52.013089 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.74826 (* 0.0454545 = 0.170376 loss) | |
I0407 16:26:52.013103 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.73718 (* 0.0454545 = 0.169872 loss) | |
I0407 16:26:52.013116 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.73649 (* 0.0454545 = 0.169841 loss) | |
I0407 16:26:52.013130 1004 solver.cpp:245] Train net output #26: loss/loss05 = 2.92247 (* 0.0454545 = 0.13284 loss) | |
I0407 16:26:52.013144 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.37047 (* 0.0454545 = 0.107749 loss) | |
I0407 16:26:52.013157 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.12311 (* 0.0454545 = 0.0510507 loss) | |
I0407 16:26:52.013171 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.313248 (* 0.0454545 = 0.0142385 loss) | |
I0407 16:26:52.013185 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.293647 (* 0.0454545 = 0.0133476 loss) | |
I0407 16:26:52.013198 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.404744 (* 0.0454545 = 0.0183974 loss) | |
I0407 16:26:52.013229 1004 solver.cpp:245] Train net output #32: loss/loss11 = 3.85109e-05 (* 0.0454545 = 1.75049e-06 loss) | |
I0407 16:26:52.013245 1004 solver.cpp:245] Train net output #33: loss/loss12 = 3.5605e-05 (* 0.0454545 = 1.61841e-06 loss) | |
I0407 16:26:52.013259 1004 solver.cpp:245] Train net output #34: loss/loss13 = 3.66779e-05 (* 0.0454545 = 1.66718e-06 loss) | |
I0407 16:26:52.013273 1004 solver.cpp:245] Train net output #35: loss/loss14 = 4.09179e-05 (* 0.0454545 = 1.8599e-06 loss) | |
I0407 16:26:52.013288 1004 solver.cpp:245] Train net output #36: loss/loss15 = 4.47967e-05 (* 0.0454545 = 2.03621e-06 loss) | |
I0407 16:26:52.013301 1004 solver.cpp:245] Train net output #37: loss/loss16 = 3.48262e-05 (* 0.0454545 = 1.58301e-06 loss) | |
I0407 16:26:52.013315 1004 solver.cpp:245] Train net output #38: loss/loss17 = 3.58359e-05 (* 0.0454545 = 1.6289e-06 loss) | |
I0407 16:26:52.013329 1004 solver.cpp:245] Train net output #39: loss/loss18 = 5.20324e-05 (* 0.0454545 = 2.36511e-06 loss) | |
I0407 16:26:52.013344 1004 solver.cpp:245] Train net output #40: loss/loss19 = 3.97818e-05 (* 0.0454545 = 1.80826e-06 loss) | |
I0407 16:26:52.013357 1004 solver.cpp:245] Train net output #41: loss/loss20 = 3.75946e-05 (* 0.0454545 = 1.70885e-06 loss) | |
I0407 16:26:52.013371 1004 solver.cpp:245] Train net output #42: loss/loss21 = 4.34999e-05 (* 0.0454545 = 1.97727e-06 loss) | |
I0407 16:26:52.013386 1004 solver.cpp:245] Train net output #43: loss/loss22 = 4.08842e-05 (* 0.0454545 = 1.85837e-06 loss) | |
I0407 16:26:52.013397 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:26:52.013409 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000224287 | |
I0407 16:26:52.013423 1004 sgd_solver.cpp:106] Iteration 55000, lr = 0.00089 | |
I0407 16:27:31.455869 1004 solver.cpp:229] Iteration 55500, loss = 1.00531 | |
I0407 16:27:31.456008 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:27:31.456029 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:27:31.456043 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:27:31.456054 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 16:27:31.456066 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 16:27:31.456079 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 16:27:31.456090 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 16:27:31.456104 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:27:31.456115 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:27:31.456126 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:27:31.456138 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:27:31.456149 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:27:31.456161 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:27:31.456176 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:27:31.456198 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:27:31.456223 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:27:31.456248 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:27:31.456264 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:27:31.456276 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:27:31.456289 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:27:31.456300 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:27:31.456311 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:27:31.456327 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.08606 (* 0.0454545 = 0.140276 loss) | |
I0407 16:27:31.456341 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.44591 (* 0.0454545 = 0.156632 loss) | |
I0407 16:27:31.456356 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.45476 (* 0.0454545 = 0.157035 loss) | |
I0407 16:27:31.456369 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.43844 (* 0.0454545 = 0.156293 loss) | |
I0407 16:27:31.456382 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.35869 (* 0.0454545 = 0.152668 loss) | |
I0407 16:27:31.456396 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.19371 (* 0.0454545 = 0.145168 loss) | |
I0407 16:27:31.456410 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.01736 (* 0.0454545 = 0.0462435 loss) | |
I0407 16:27:31.456423 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.401925 (* 0.0454545 = 0.0182693 loss) | |
I0407 16:27:31.456437 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0227486 (* 0.0454545 = 0.00103403 loss) | |
I0407 16:27:31.456452 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0131879 (* 0.0454545 = 0.000599452 loss) | |
I0407 16:27:31.456466 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000315961 (* 0.0454545 = 1.43619e-05 loss) | |
I0407 16:27:31.456481 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000240978 (* 0.0454545 = 1.09535e-05 loss) | |
I0407 16:27:31.456496 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000269233 (* 0.0454545 = 1.22379e-05 loss) | |
I0407 16:27:31.456509 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000318943 (* 0.0454545 = 1.44974e-05 loss) | |
I0407 16:27:31.456523 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000331226 (* 0.0454545 = 1.50557e-05 loss) | |
I0407 16:27:31.456538 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000271847 (* 0.0454545 = 1.23567e-05 loss) | |
I0407 16:27:31.456552 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000321267 (* 0.0454545 = 1.46031e-05 loss) | |
I0407 16:27:31.456583 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000384803 (* 0.0454545 = 1.7491e-05 loss) | |
I0407 16:27:31.456599 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000270437 (* 0.0454545 = 1.22926e-05 loss) | |
I0407 16:27:31.456614 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000290505 (* 0.0454545 = 1.32048e-05 loss) | |
I0407 16:27:31.456627 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000352643 (* 0.0454545 = 1.60292e-05 loss) | |
I0407 16:27:31.456641 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000325903 (* 0.0454545 = 1.48138e-05 loss) | |
I0407 16:27:31.456653 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:27:31.456665 1004 solver.cpp:245] Train net output #45: total_confidence = 1.14572e-05 | |
I0407 16:27:31.456678 1004 sgd_solver.cpp:106] Iteration 55500, lr = 0.000889 | |
I0407 16:28:10.338461 1004 solver.cpp:229] Iteration 56000, loss = 1.00169 | |
I0407 16:28:10.338593 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:28:10.338614 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:28:10.338627 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 16:28:10.338639 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 16:28:10.338651 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 16:28:10.338665 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 16:28:10.338676 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 16:28:10.338687 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 16:28:10.338701 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0407 16:28:10.338711 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 16:28:10.338723 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:28:10.338735 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:28:10.338747 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:28:10.338757 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:28:10.338769 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:28:10.338786 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:28:10.338811 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:28:10.338834 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:28:10.338847 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:28:10.338860 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:28:10.338871 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:28:10.338882 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:28:10.338897 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.52363 (* 0.0454545 = 0.160165 loss) | |
I0407 16:28:10.338912 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.62529 (* 0.0454545 = 0.164786 loss) | |
I0407 16:28:10.338929 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.68932 (* 0.0454545 = 0.167696 loss) | |
I0407 16:28:10.338943 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.67541 (* 0.0454545 = 0.167064 loss) | |
I0407 16:28:10.338958 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.1831 (* 0.0454545 = 0.144687 loss) | |
I0407 16:28:10.338971 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.94834 (* 0.0454545 = 0.134016 loss) | |
I0407 16:28:10.338984 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.33819 (* 0.0454545 = 0.060827 loss) | |
I0407 16:28:10.338999 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.918069 (* 0.0454545 = 0.0417304 loss) | |
I0407 16:28:10.339012 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.816347 (* 0.0454545 = 0.0371067 loss) | |
I0407 16:28:10.339025 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.540736 (* 0.0454545 = 0.0245789 loss) | |
I0407 16:28:10.339040 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.00056046 (* 0.0454545 = 2.54754e-05 loss) | |
I0407 16:28:10.339054 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000468117 (* 0.0454545 = 2.1278e-05 loss) | |
I0407 16:28:10.339068 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000480243 (* 0.0454545 = 2.18292e-05 loss) | |
I0407 16:28:10.339082 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000485687 (* 0.0454545 = 2.20767e-05 loss) | |
I0407 16:28:10.339097 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000545504 (* 0.0454545 = 2.47956e-05 loss) | |
I0407 16:28:10.339112 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000508973 (* 0.0454545 = 2.31351e-05 loss) | |
I0407 16:28:10.339125 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000512874 (* 0.0454545 = 2.33125e-05 loss) | |
I0407 16:28:10.339154 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000592046 (* 0.0454545 = 2.69112e-05 loss) | |
I0407 16:28:10.339169 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000501436 (* 0.0454545 = 2.27925e-05 loss) | |
I0407 16:28:10.339182 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000528495 (* 0.0454545 = 2.40225e-05 loss) | |
I0407 16:28:10.339196 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000541296 (* 0.0454545 = 2.46044e-05 loss) | |
I0407 16:28:10.339210 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000523615 (* 0.0454545 = 2.38007e-05 loss) | |
I0407 16:28:10.339222 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:28:10.339234 1004 solver.cpp:245] Train net output #45: total_confidence = 5.1529e-06 | |
I0407 16:28:10.339247 1004 sgd_solver.cpp:106] Iteration 56000, lr = 0.000888 | |
I0407 16:28:49.105340 1004 solver.cpp:229] Iteration 56500, loss = 1.0033 | |
I0407 16:28:49.105451 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:28:49.105471 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:28:49.105484 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:28:49.105495 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 16:28:49.105507 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 16:28:49.105520 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.625 | |
I0407 16:28:49.105532 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 16:28:49.105543 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 16:28:49.105556 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:28:49.105567 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:28:49.105578 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:28:49.105589 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:28:49.105602 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:28:49.105612 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:28:49.105623 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:28:49.105635 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:28:49.105646 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:28:49.105659 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:28:49.105669 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:28:49.105681 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:28:49.105692 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:28:49.105703 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:28:49.105720 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.28381 (* 0.0454545 = 0.149264 loss) | |
I0407 16:28:49.105733 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.66287 (* 0.0454545 = 0.166494 loss) | |
I0407 16:28:49.105747 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.63789 (* 0.0454545 = 0.165358 loss) | |
I0407 16:28:49.105762 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.50786 (* 0.0454545 = 0.159448 loss) | |
I0407 16:28:49.105775 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.12333 (* 0.0454545 = 0.141969 loss) | |
I0407 16:28:49.105789 1004 solver.cpp:245] Train net output #27: loss/loss06 = 1.56969 (* 0.0454545 = 0.0713494 loss) | |
I0407 16:28:49.105803 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.17288 (* 0.0454545 = 0.0533127 loss) | |
I0407 16:28:49.105816 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.740721 (* 0.0454545 = 0.0336691 loss) | |
I0407 16:28:49.105830 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.338335 (* 0.0454545 = 0.0153788 loss) | |
I0407 16:28:49.105844 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.016543 (* 0.0454545 = 0.000751956 loss) | |
I0407 16:28:49.105859 1004 solver.cpp:245] Train net output #32: loss/loss11 = 2.84826e-05 (* 0.0454545 = 1.29466e-06 loss) | |
I0407 16:28:49.105873 1004 solver.cpp:245] Train net output #33: loss/loss12 = 2.98869e-05 (* 0.0454545 = 1.3585e-06 loss) | |
I0407 16:28:49.105887 1004 solver.cpp:245] Train net output #34: loss/loss13 = 3.05136e-05 (* 0.0454545 = 1.38698e-06 loss) | |
I0407 16:28:49.105901 1004 solver.cpp:245] Train net output #35: loss/loss14 = 2.68805e-05 (* 0.0454545 = 1.22184e-06 loss) | |
I0407 16:28:49.105916 1004 solver.cpp:245] Train net output #36: loss/loss15 = 3.05433e-05 (* 0.0454545 = 1.38833e-06 loss) | |
I0407 16:28:49.105932 1004 solver.cpp:245] Train net output #37: loss/loss16 = 2.76291e-05 (* 0.0454545 = 1.25587e-06 loss) | |
I0407 16:28:49.105947 1004 solver.cpp:245] Train net output #38: loss/loss17 = 2.98429e-05 (* 0.0454545 = 1.3565e-06 loss) | |
I0407 16:28:49.105976 1004 solver.cpp:245] Train net output #39: loss/loss18 = 3.86332e-05 (* 0.0454545 = 1.75605e-06 loss) | |
I0407 16:28:49.105993 1004 solver.cpp:245] Train net output #40: loss/loss19 = 2.74168e-05 (* 0.0454545 = 1.24622e-06 loss) | |
I0407 16:28:49.106006 1004 solver.cpp:245] Train net output #41: loss/loss20 = 2.78266e-05 (* 0.0454545 = 1.26484e-06 loss) | |
I0407 16:28:49.106020 1004 solver.cpp:245] Train net output #42: loss/loss21 = 2.98206e-05 (* 0.0454545 = 1.35548e-06 loss) | |
I0407 16:28:49.106034 1004 solver.cpp:245] Train net output #43: loss/loss22 = 3.20934e-05 (* 0.0454545 = 1.45879e-06 loss) | |
I0407 16:28:49.106046 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:28:49.106057 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000127106 | |
I0407 16:28:49.106071 1004 sgd_solver.cpp:106] Iteration 56500, lr = 0.000887 | |
I0407 16:29:28.580324 1004 solver.cpp:229] Iteration 57000, loss = 1.00024 | |
I0407 16:29:28.580442 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:29:28.580471 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:29:28.580497 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:29:28.580519 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 16:29:28.580541 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 16:29:28.580566 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 16:29:28.580590 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 16:29:28.580611 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 16:29:28.580631 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0407 16:29:28.580648 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 16:29:28.580669 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:29:28.580690 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:29:28.580713 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:29:28.580734 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:29:28.580754 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:29:28.580775 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:29:28.580796 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:29:28.580817 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:29:28.580838 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:29:28.580859 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:29:28.580883 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:29:28.580906 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:29:28.580940 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.02612 (* 0.0454545 = 0.137551 loss) | |
I0407 16:29:28.580966 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.22721 (* 0.0454545 = 0.146691 loss) | |
I0407 16:29:28.580992 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.73001 (* 0.0454545 = 0.169546 loss) | |
I0407 16:29:28.581018 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.83543 (* 0.0454545 = 0.174338 loss) | |
I0407 16:29:28.581045 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.28597 (* 0.0454545 = 0.149362 loss) | |
I0407 16:29:28.581070 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.7924 (* 0.0454545 = 0.126927 loss) | |
I0407 16:29:28.581096 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.904208 (* 0.0454545 = 0.0411004 loss) | |
I0407 16:29:28.581121 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.566815 (* 0.0454545 = 0.0257643 loss) | |
I0407 16:29:28.581147 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.605054 (* 0.0454545 = 0.0275025 loss) | |
I0407 16:29:28.581172 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.382393 (* 0.0454545 = 0.0173815 loss) | |
I0407 16:29:28.581198 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000185342 (* 0.0454545 = 8.42463e-06 loss) | |
I0407 16:29:28.581225 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000146347 (* 0.0454545 = 6.65215e-06 loss) | |
I0407 16:29:28.581251 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000168781 (* 0.0454545 = 7.67187e-06 loss) | |
I0407 16:29:28.581277 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000179174 (* 0.0454545 = 8.14426e-06 loss) | |
I0407 16:29:28.581302 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000197081 (* 0.0454545 = 8.9582e-06 loss) | |
I0407 16:29:28.581329 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000163694 (* 0.0454545 = 7.44064e-06 loss) | |
I0407 16:29:28.581356 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000178892 (* 0.0454545 = 8.13148e-06 loss) | |
I0407 16:29:28.581403 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000219929 (* 0.0454545 = 9.99679e-06 loss) | |
I0407 16:29:28.581430 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000158854 (* 0.0454545 = 7.22065e-06 loss) | |
I0407 16:29:28.581461 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000182424 (* 0.0454545 = 8.29201e-06 loss) | |
I0407 16:29:28.581490 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000205847 (* 0.0454545 = 9.3567e-06 loss) | |
I0407 16:29:28.581516 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000160419 (* 0.0454545 = 7.29179e-06 loss) | |
I0407 16:29:28.581538 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:29:28.581559 1004 solver.cpp:245] Train net output #45: total_confidence = 3.43692e-05 | |
I0407 16:29:28.581583 1004 sgd_solver.cpp:106] Iteration 57000, lr = 0.000886 | |
I0407 16:30:07.699607 1004 solver.cpp:229] Iteration 57500, loss = 1.00883 | |
I0407 16:30:07.699751 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0407 16:30:07.699779 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:30:07.699800 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:30:07.699823 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 16:30:07.699846 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 16:30:07.699867 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 16:30:07.699887 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.5625 | |
I0407 16:30:07.699908 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 16:30:07.699935 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:30:07.699956 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:30:07.699981 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:30:07.700002 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:30:07.700023 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:30:07.700044 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:30:07.700065 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:30:07.700086 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:30:07.700108 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:30:07.700129 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:30:07.700150 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:30:07.700170 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:30:07.700191 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:30:07.700212 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:30:07.700238 1004 solver.cpp:245] Train net output #22: loss/loss01 = 2.8404 (* 0.0454545 = 0.129109 loss) | |
I0407 16:30:07.700265 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.36854 (* 0.0454545 = 0.153116 loss) | |
I0407 16:30:07.700291 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.15903 (* 0.0454545 = 0.143592 loss) | |
I0407 16:30:07.700316 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.1245 (* 0.0454545 = 0.142023 loss) | |
I0407 16:30:07.700341 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.36957 (* 0.0454545 = 0.153162 loss) | |
I0407 16:30:07.700367 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.96775 (* 0.0454545 = 0.134898 loss) | |
I0407 16:30:07.700393 1004 solver.cpp:245] Train net output #28: loss/loss07 = 2.12031 (* 0.0454545 = 0.0963778 loss) | |
I0407 16:30:07.700418 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.0588772 (* 0.0454545 = 0.00267624 loss) | |
I0407 16:30:07.700444 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0115167 (* 0.0454545 = 0.000523488 loss) | |
I0407 16:30:07.700470 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.00598781 (* 0.0454545 = 0.000272173 loss) | |
I0407 16:30:07.700496 1004 solver.cpp:245] Train net output #32: loss/loss11 = 2.36314e-05 (* 0.0454545 = 1.07415e-06 loss) | |
I0407 16:30:07.700528 1004 solver.cpp:245] Train net output #33: loss/loss12 = 1.903e-05 (* 0.0454545 = 8.64998e-07 loss) | |
I0407 16:30:07.700558 1004 solver.cpp:245] Train net output #34: loss/loss13 = 1.89554e-05 (* 0.0454545 = 8.61609e-07 loss) | |
I0407 16:30:07.700585 1004 solver.cpp:245] Train net output #35: loss/loss14 = 1.97229e-05 (* 0.0454545 = 8.96498e-07 loss) | |
I0407 16:30:07.700613 1004 solver.cpp:245] Train net output #36: loss/loss15 = 2.22379e-05 (* 0.0454545 = 1.01081e-06 loss) | |
I0407 16:30:07.700639 1004 solver.cpp:245] Train net output #37: loss/loss16 = 1.98571e-05 (* 0.0454545 = 9.02596e-07 loss) | |
I0407 16:30:07.700665 1004 solver.cpp:245] Train net output #38: loss/loss17 = 2.11946e-05 (* 0.0454545 = 9.63392e-07 loss) | |
I0407 16:30:07.700714 1004 solver.cpp:245] Train net output #39: loss/loss18 = 2.29681e-05 (* 0.0454545 = 1.044e-06 loss) | |
I0407 16:30:07.700743 1004 solver.cpp:245] Train net output #40: loss/loss19 = 1.90076e-05 (* 0.0454545 = 8.63981e-07 loss) | |
I0407 16:30:07.700775 1004 solver.cpp:245] Train net output #41: loss/loss20 = 1.78154e-05 (* 0.0454545 = 8.09789e-07 loss) | |
I0407 16:30:07.700803 1004 solver.cpp:245] Train net output #42: loss/loss21 = 2.08854e-05 (* 0.0454545 = 9.49335e-07 loss) | |
I0407 16:30:07.700830 1004 solver.cpp:245] Train net output #43: loss/loss22 = 1.90076e-05 (* 0.0454545 = 8.63982e-07 loss) | |
I0407 16:30:07.700852 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:30:07.700873 1004 solver.cpp:245] Train net output #45: total_confidence = 8.59093e-05 | |
I0407 16:30:07.700896 1004 sgd_solver.cpp:106] Iteration 57500, lr = 0.000885 | |
I0407 16:30:46.870340 1004 solver.cpp:229] Iteration 58000, loss = 1.00731 | |
I0407 16:30:46.870499 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:30:46.870520 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:30:46.870533 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:30:46.870545 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 16:30:46.870558 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 16:30:46.870569 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 16:30:46.870581 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 16:30:46.870594 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 16:30:46.870605 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:30:46.870616 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:30:46.870628 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:30:46.870640 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:30:46.870651 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:30:46.870663 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:30:46.870676 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:30:46.870687 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:30:46.870698 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:30:46.870710 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:30:46.870721 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:30:46.870733 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:30:46.870744 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:30:46.870756 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:30:46.870772 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.13558 (* 0.0454545 = 0.142526 loss) | |
I0407 16:30:46.870787 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.42346 (* 0.0454545 = 0.155612 loss) | |
I0407 16:30:46.870801 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.67481 (* 0.0454545 = 0.167037 loss) | |
I0407 16:30:46.870815 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.30428 (* 0.0454545 = 0.150195 loss) | |
I0407 16:30:46.870829 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.18798 (* 0.0454545 = 0.144908 loss) | |
I0407 16:30:46.870842 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.6174 (* 0.0454545 = 0.118973 loss) | |
I0407 16:30:46.870857 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.34449 (* 0.0454545 = 0.061113 loss) | |
I0407 16:30:46.870870 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.680545 (* 0.0454545 = 0.0309339 loss) | |
I0407 16:30:46.870884 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.00642572 (* 0.0454545 = 0.000292078 loss) | |
I0407 16:30:46.870898 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0028391 (* 0.0454545 = 0.00012905 loss) | |
I0407 16:30:46.870913 1004 solver.cpp:245] Train net output #32: loss/loss11 = 3.99705e-05 (* 0.0454545 = 1.81684e-06 loss) | |
I0407 16:30:46.870930 1004 solver.cpp:245] Train net output #33: loss/loss12 = 3.55021e-05 (* 0.0454545 = 1.61373e-06 loss) | |
I0407 16:30:46.870944 1004 solver.cpp:245] Train net output #34: loss/loss13 = 3.43351e-05 (* 0.0454545 = 1.56068e-06 loss) | |
I0407 16:30:46.870959 1004 solver.cpp:245] Train net output #35: loss/loss14 = 3.39848e-05 (* 0.0454545 = 1.54477e-06 loss) | |
I0407 16:30:46.870973 1004 solver.cpp:245] Train net output #36: loss/loss15 = 4.49837e-05 (* 0.0454545 = 2.04472e-06 loss) | |
I0407 16:30:46.870987 1004 solver.cpp:245] Train net output #37: loss/loss16 = 3.32844e-05 (* 0.0454545 = 1.51293e-06 loss) | |
I0407 16:30:46.871001 1004 solver.cpp:245] Train net output #38: loss/loss17 = 4.38734e-05 (* 0.0454545 = 1.99425e-06 loss) | |
I0407 16:30:46.871028 1004 solver.cpp:245] Train net output #39: loss/loss18 = 4.7552e-05 (* 0.0454545 = 2.16145e-06 loss) | |
I0407 16:30:46.871044 1004 solver.cpp:245] Train net output #40: loss/loss19 = 3.70895e-05 (* 0.0454545 = 1.68589e-06 loss) | |
I0407 16:30:46.871058 1004 solver.cpp:245] Train net output #41: loss/loss20 = 3.51144e-05 (* 0.0454545 = 1.59611e-06 loss) | |
I0407 16:30:46.871073 1004 solver.cpp:245] Train net output #42: loss/loss21 = 4.35445e-05 (* 0.0454545 = 1.9793e-06 loss) | |
I0407 16:30:46.871086 1004 solver.cpp:245] Train net output #43: loss/loss22 = 4.04703e-05 (* 0.0454545 = 1.83956e-06 loss) | |
I0407 16:30:46.871098 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:30:46.871110 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000156689 | |
I0407 16:30:46.871124 1004 sgd_solver.cpp:106] Iteration 58000, lr = 0.000884 | |
I0407 16:31:26.023600 1004 solver.cpp:229] Iteration 58500, loss = 1.00044 | |
I0407 16:31:26.023744 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 16:31:26.023772 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:31:26.023797 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:31:26.023818 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 16:31:26.023841 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 16:31:26.023861 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625 | |
I0407 16:31:26.023886 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 16:31:26.023910 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 16:31:26.023934 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:31:26.023957 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:31:26.023977 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:31:26.023998 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:31:26.024019 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:31:26.024040 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:31:26.024062 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:31:26.024083 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:31:26.024103 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:31:26.024124 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:31:26.024147 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:31:26.024166 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:31:26.024188 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:31:26.024209 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:31:26.024235 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.26596 (* 0.0454545 = 0.148453 loss) | |
I0407 16:31:26.024266 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.38383 (* 0.0454545 = 0.153811 loss) | |
I0407 16:31:26.024296 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.59314 (* 0.0454545 = 0.163325 loss) | |
I0407 16:31:26.024322 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.37561 (* 0.0454545 = 0.153437 loss) | |
I0407 16:31:26.024348 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.31404 (* 0.0454545 = 0.150638 loss) | |
I0407 16:31:26.024372 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.03586 (* 0.0454545 = 0.0925392 loss) | |
I0407 16:31:26.024399 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.32577 (* 0.0454545 = 0.0602621 loss) | |
I0407 16:31:26.024425 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.0768398 (* 0.0454545 = 0.00349272 loss) | |
I0407 16:31:26.024451 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0175713 (* 0.0454545 = 0.000798694 loss) | |
I0407 16:31:26.024477 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.00583136 (* 0.0454545 = 0.000265062 loss) | |
I0407 16:31:26.024503 1004 solver.cpp:245] Train net output #32: loss/loss11 = 6.08722e-06 (* 0.0454545 = 2.76692e-07 loss) | |
I0407 16:31:26.024530 1004 solver.cpp:245] Train net output #33: loss/loss12 = 6.33311e-06 (* 0.0454545 = 2.87869e-07 loss) | |
I0407 16:31:26.024556 1004 solver.cpp:245] Train net output #34: loss/loss13 = 5.24528e-06 (* 0.0454545 = 2.38422e-07 loss) | |
I0407 16:31:26.024583 1004 solver.cpp:245] Train net output #35: loss/loss14 = 5.99037e-06 (* 0.0454545 = 2.72289e-07 loss) | |
I0407 16:31:26.024610 1004 solver.cpp:245] Train net output #36: loss/loss15 = 7.36878e-06 (* 0.0454545 = 3.34944e-07 loss) | |
I0407 16:31:26.024636 1004 solver.cpp:245] Train net output #37: loss/loss16 = 5.84879e-06 (* 0.0454545 = 2.65854e-07 loss) | |
I0407 16:31:26.024662 1004 solver.cpp:245] Train net output #38: loss/loss17 = 6.25114e-06 (* 0.0454545 = 2.84143e-07 loss) | |
I0407 16:31:26.024710 1004 solver.cpp:245] Train net output #39: loss/loss18 = 7.08563e-06 (* 0.0454545 = 3.22074e-07 loss) | |
I0407 16:31:26.024739 1004 solver.cpp:245] Train net output #40: loss/loss19 = 5.55822e-06 (* 0.0454545 = 2.52646e-07 loss) | |
I0407 16:31:26.024770 1004 solver.cpp:245] Train net output #41: loss/loss20 = 6.19155e-06 (* 0.0454545 = 2.81434e-07 loss) | |
I0407 16:31:26.024797 1004 solver.cpp:245] Train net output #42: loss/loss21 = 6.22133e-06 (* 0.0454545 = 2.82788e-07 loss) | |
I0407 16:31:26.024824 1004 solver.cpp:245] Train net output #43: loss/loss22 = 5.44645e-06 (* 0.0454545 = 2.47566e-07 loss) | |
I0407 16:31:26.024845 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:31:26.024866 1004 solver.cpp:245] Train net output #45: total_confidence = 9.33228e-05 | |
I0407 16:31:26.024889 1004 sgd_solver.cpp:106] Iteration 58500, lr = 0.000883 | |
I0407 16:32:05.512015 1004 solver.cpp:229] Iteration 59000, loss = 1.00323 | |
I0407 16:32:05.512145 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:32:05.512173 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:32:05.512194 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:32:05.512215 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 16:32:05.512236 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 16:32:05.512259 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 16:32:05.512279 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 16:32:05.512300 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 16:32:05.512322 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:32:05.512343 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:32:05.512363 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:32:05.512383 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:32:05.512406 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:32:05.512429 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:32:05.512450 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:32:05.512472 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:32:05.512495 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:32:05.512514 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:32:05.512536 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:32:05.512555 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:32:05.512576 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:32:05.512598 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:32:05.512625 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.6085 (* 0.0454545 = 0.164023 loss) | |
I0407 16:32:05.512652 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.71402 (* 0.0454545 = 0.168819 loss) | |
I0407 16:32:05.512678 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.69942 (* 0.0454545 = 0.168156 loss) | |
I0407 16:32:05.512704 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.86682 (* 0.0454545 = 0.175765 loss) | |
I0407 16:32:05.512729 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.55827 (* 0.0454545 = 0.16174 loss) | |
I0407 16:32:05.512754 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.55688 (* 0.0454545 = 0.116222 loss) | |
I0407 16:32:05.512780 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.989404 (* 0.0454545 = 0.0449729 loss) | |
I0407 16:32:05.512805 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.609229 (* 0.0454545 = 0.0276922 loss) | |
I0407 16:32:05.512831 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0357187 (* 0.0454545 = 0.00162358 loss) | |
I0407 16:32:05.512857 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0151099 (* 0.0454545 = 0.000686812 loss) | |
I0407 16:32:05.512883 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000596786 (* 0.0454545 = 2.71266e-05 loss) | |
I0407 16:32:05.512909 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000556717 (* 0.0454545 = 2.53053e-05 loss) | |
I0407 16:32:05.512936 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000538369 (* 0.0454545 = 2.44713e-05 loss) | |
I0407 16:32:05.512961 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000611048 (* 0.0454545 = 2.77749e-05 loss) | |
I0407 16:32:05.512989 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000672746 (* 0.0454545 = 3.05794e-05 loss) | |
I0407 16:32:05.513015 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000533246 (* 0.0454545 = 2.42385e-05 loss) | |
I0407 16:32:05.513041 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000679693 (* 0.0454545 = 3.08951e-05 loss) | |
I0407 16:32:05.513090 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000718325 (* 0.0454545 = 3.26511e-05 loss) | |
I0407 16:32:05.513118 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000581582 (* 0.0454545 = 2.64355e-05 loss) | |
I0407 16:32:05.513144 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000546116 (* 0.0454545 = 2.48235e-05 loss) | |
I0407 16:32:05.513176 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000664079 (* 0.0454545 = 3.01854e-05 loss) | |
I0407 16:32:05.513208 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000590455 (* 0.0454545 = 2.68389e-05 loss) | |
I0407 16:32:05.513231 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:32:05.513253 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000102258 | |
I0407 16:32:05.513276 1004 sgd_solver.cpp:106] Iteration 59000, lr = 0.000882 | |
I0407 16:32:45.062306 1004 solver.cpp:229] Iteration 59500, loss = 0.99565 | |
I0407 16:32:45.062427 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:32:45.062454 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 16:32:45.062479 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 16:32:45.062500 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 16:32:45.062522 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0 | |
I0407 16:32:45.062544 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.125 | |
I0407 16:32:45.062566 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 16:32:45.062592 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 16:32:45.062615 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:32:45.062638 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:32:45.062659 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:32:45.062680 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:32:45.062700 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:32:45.062722 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:32:45.062743 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:32:45.062763 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:32:45.062784 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:32:45.062805 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:32:45.062826 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:32:45.062849 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:32:45.062870 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:32:45.062890 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:32:45.062921 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.66104 (* 0.0454545 = 0.166411 loss) | |
I0407 16:32:45.062948 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.879 (* 0.0454545 = 0.176318 loss) | |
I0407 16:32:45.062975 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.84277 (* 0.0454545 = 0.174671 loss) | |
I0407 16:32:45.063001 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.76171 (* 0.0454545 = 0.170987 loss) | |
I0407 16:32:45.063030 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.99943 (* 0.0454545 = 0.181792 loss) | |
I0407 16:32:45.063055 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.7508 (* 0.0454545 = 0.170491 loss) | |
I0407 16:32:45.063081 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.26592 (* 0.0454545 = 0.0575419 loss) | |
I0407 16:32:45.063105 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.131681 (* 0.0454545 = 0.00598548 loss) | |
I0407 16:32:45.063132 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0325557 (* 0.0454545 = 0.0014798 loss) | |
I0407 16:32:45.063156 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0127636 (* 0.0454545 = 0.000580166 loss) | |
I0407 16:32:45.063184 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000329473 (* 0.0454545 = 1.4976e-05 loss) | |
I0407 16:32:45.063210 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000287882 (* 0.0454545 = 1.30856e-05 loss) | |
I0407 16:32:45.063235 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.00031093 (* 0.0454545 = 1.41332e-05 loss) | |
I0407 16:32:45.063261 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000337916 (* 0.0454545 = 1.53598e-05 loss) | |
I0407 16:32:45.063287 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000340665 (* 0.0454545 = 1.54848e-05 loss) | |
I0407 16:32:45.063313 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000309907 (* 0.0454545 = 1.40867e-05 loss) | |
I0407 16:32:45.063355 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.00036359 (* 0.0454545 = 1.65268e-05 loss) | |
I0407 16:32:45.063406 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000386579 (* 0.0454545 = 1.75718e-05 loss) | |
I0407 16:32:45.063438 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00031549 (* 0.0454545 = 1.43404e-05 loss) | |
I0407 16:32:45.063467 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000312917 (* 0.0454545 = 1.42235e-05 loss) | |
I0407 16:32:45.063493 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00038363 (* 0.0454545 = 1.74377e-05 loss) | |
I0407 16:32:45.063520 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000316337 (* 0.0454545 = 1.4379e-05 loss) | |
I0407 16:32:45.063544 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:32:45.063565 1004 solver.cpp:245] Train net output #45: total_confidence = 1.87702e-06 | |
I0407 16:32:45.063588 1004 sgd_solver.cpp:106] Iteration 59500, lr = 0.000881 | |
I0407 16:33:23.693553 1004 solver.cpp:338] Iteration 60000, Testing net (#0) | |
I0407 16:33:31.623431 1004 solver.cpp:393] Test loss: 0.894539 | |
I0407 16:33:31.623479 1004 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.362 | |
I0407 16:33:31.623497 1004 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.098 | |
I0407 16:33:31.623510 1004 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.08 | |
I0407 16:33:31.623522 1004 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.079 | |
I0407 16:33:31.623534 1004 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.202 | |
I0407 16:33:31.623546 1004 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.496 | |
I0407 16:33:31.623558 1004 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0407 16:33:31.623569 1004 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 16:33:31.623580 1004 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 16:33:31.623591 1004 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 16:33:31.623602 1004 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 16:33:31.623615 1004 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 16:33:31.623625 1004 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 16:33:31.623636 1004 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 16:33:31.623647 1004 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 16:33:31.623658 1004 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 16:33:31.623669 1004 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 16:33:31.623680 1004 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 16:33:31.623692 1004 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 16:33:31.623703 1004 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 16:33:31.623713 1004 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 16:33:31.623724 1004 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 16:33:31.623739 1004 solver.cpp:406] Test net output #22: loss/loss01 = 3.01864 (* 0.0454545 = 0.137211 loss) | |
I0407 16:33:31.623754 1004 solver.cpp:406] Test net output #23: loss/loss02 = 3.28682 (* 0.0454545 = 0.149401 loss) | |
I0407 16:33:31.623769 1004 solver.cpp:406] Test net output #24: loss/loss03 = 3.36936 (* 0.0454545 = 0.153153 loss) | |
I0407 16:33:31.623781 1004 solver.cpp:406] Test net output #25: loss/loss04 = 3.33659 (* 0.0454545 = 0.151663 loss) | |
I0407 16:33:31.623795 1004 solver.cpp:406] Test net output #26: loss/loss05 = 3.26165 (* 0.0454545 = 0.148257 loss) | |
I0407 16:33:31.623808 1004 solver.cpp:406] Test net output #27: loss/loss06 = 2.27936 (* 0.0454545 = 0.103607 loss) | |
I0407 16:33:31.623821 1004 solver.cpp:406] Test net output #28: loss/loss07 = 0.744315 (* 0.0454545 = 0.0338325 loss) | |
I0407 16:33:31.623834 1004 solver.cpp:406] Test net output #29: loss/loss08 = 0.271226 (* 0.0454545 = 0.0123285 loss) | |
I0407 16:33:31.623848 1004 solver.cpp:406] Test net output #30: loss/loss09 = 0.0665362 (* 0.0454545 = 0.00302437 loss) | |
I0407 16:33:31.623862 1004 solver.cpp:406] Test net output #31: loss/loss10 = 0.0352758 (* 0.0454545 = 0.00160345 loss) | |
I0407 16:33:31.623877 1004 solver.cpp:406] Test net output #32: loss/loss11 = 0.000898783 (* 0.0454545 = 4.08538e-05 loss) | |
I0407 16:33:31.623890 1004 solver.cpp:406] Test net output #33: loss/loss12 = 0.000833551 (* 0.0454545 = 3.78887e-05 loss) | |
I0407 16:33:31.623904 1004 solver.cpp:406] Test net output #34: loss/loss13 = 0.000823597 (* 0.0454545 = 3.74362e-05 loss) | |
I0407 16:33:31.623920 1004 solver.cpp:406] Test net output #35: loss/loss14 = 0.000817377 (* 0.0454545 = 3.71535e-05 loss) | |
I0407 16:33:31.623934 1004 solver.cpp:406] Test net output #36: loss/loss15 = 0.000821194 (* 0.0454545 = 3.7327e-05 loss) | |
I0407 16:33:31.623949 1004 solver.cpp:406] Test net output #37: loss/loss16 = 0.000834321 (* 0.0454545 = 3.79237e-05 loss) | |
I0407 16:33:31.623962 1004 solver.cpp:406] Test net output #38: loss/loss17 = 0.000845954 (* 0.0454545 = 3.84525e-05 loss) | |
I0407 16:33:31.624011 1004 solver.cpp:406] Test net output #39: loss/loss18 = 0.000924435 (* 0.0454545 = 4.20198e-05 loss) | |
I0407 16:33:31.624027 1004 solver.cpp:406] Test net output #40: loss/loss19 = 0.000786688 (* 0.0454545 = 3.57585e-05 loss) | |
I0407 16:33:31.624039 1004 solver.cpp:406] Test net output #41: loss/loss20 = 0.000807159 (* 0.0454545 = 3.6689e-05 loss) | |
I0407 16:33:31.624053 1004 solver.cpp:406] Test net output #42: loss/loss21 = 0.000855601 (* 0.0454545 = 3.8891e-05 loss) | |
I0407 16:33:31.624068 1004 solver.cpp:406] Test net output #43: loss/loss22 = 0.000829854 (* 0.0454545 = 3.77206e-05 loss) | |
I0407 16:33:31.624079 1004 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0407 16:33:31.624090 1004 solver.cpp:406] Test net output #45: total_confidence = 0.000155933 | |
I0407 16:33:31.645632 1004 solver.cpp:229] Iteration 60000, loss = 0.99382 | |
I0407 16:33:31.645668 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:33:31.645685 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:33:31.645701 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875 | |
I0407 16:33:31.645714 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 16:33:31.645725 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 16:33:31.645738 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 16:33:31.645750 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 16:33:31.645761 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:33:31.645772 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:33:31.645783 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:33:31.645795 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:33:31.645807 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:33:31.645817 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:33:31.645829 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:33:31.645840 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:33:31.645851 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:33:31.645862 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:33:31.645874 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:33:31.645885 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:33:31.645896 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:33:31.645907 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:33:31.645918 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:33:31.645932 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.19695 (* 0.0454545 = 0.145316 loss) | |
I0407 16:33:31.645946 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.43108 (* 0.0454545 = 0.155958 loss) | |
I0407 16:33:31.645961 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.38937 (* 0.0454545 = 0.154062 loss) | |
I0407 16:33:31.645973 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.53885 (* 0.0454545 = 0.160857 loss) | |
I0407 16:33:31.645987 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.17362 (* 0.0454545 = 0.144256 loss) | |
I0407 16:33:31.646001 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.58118 (* 0.0454545 = 0.117326 loss) | |
I0407 16:33:31.646014 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.989236 (* 0.0454545 = 0.0449653 loss) | |
I0407 16:33:31.646028 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.540277 (* 0.0454545 = 0.024558 loss) | |
I0407 16:33:31.646042 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0304486 (* 0.0454545 = 0.00138403 loss) | |
I0407 16:33:31.646056 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0117331 (* 0.0454545 = 0.000533321 loss) | |
I0407 16:33:31.646090 1004 solver.cpp:245] Train net output #32: loss/loss11 = 2.79336e-05 (* 0.0454545 = 1.26971e-06 loss) | |
I0407 16:33:31.646106 1004 solver.cpp:245] Train net output #33: loss/loss12 = 2.56163e-05 (* 0.0454545 = 1.16438e-06 loss) | |
I0407 16:33:31.646119 1004 solver.cpp:245] Train net output #34: loss/loss13 = 2.45061e-05 (* 0.0454545 = 1.11391e-06 loss) | |
I0407 16:33:31.646133 1004 solver.cpp:245] Train net output #35: loss/loss14 = 2.61827e-05 (* 0.0454545 = 1.19012e-06 loss) | |
I0407 16:33:31.646147 1004 solver.cpp:245] Train net output #36: loss/loss15 = 2.74531e-05 (* 0.0454545 = 1.24787e-06 loss) | |
I0407 16:33:31.646162 1004 solver.cpp:245] Train net output #37: loss/loss16 = 2.5147e-05 (* 0.0454545 = 1.14304e-06 loss) | |
I0407 16:33:31.646175 1004 solver.cpp:245] Train net output #38: loss/loss17 = 2.58772e-05 (* 0.0454545 = 1.17623e-06 loss) | |
I0407 16:33:31.646188 1004 solver.cpp:245] Train net output #39: loss/loss18 = 3.15067e-05 (* 0.0454545 = 1.43212e-06 loss) | |
I0407 16:33:31.646203 1004 solver.cpp:245] Train net output #40: loss/loss19 = 2.45621e-05 (* 0.0454545 = 1.11646e-06 loss) | |
I0407 16:33:31.646216 1004 solver.cpp:245] Train net output #41: loss/loss20 = 2.79749e-05 (* 0.0454545 = 1.27159e-06 loss) | |
I0407 16:33:31.646230 1004 solver.cpp:245] Train net output #42: loss/loss21 = 2.86603e-05 (* 0.0454545 = 1.30274e-06 loss) | |
I0407 16:33:31.646244 1004 solver.cpp:245] Train net output #43: loss/loss22 = 2.66595e-05 (* 0.0454545 = 1.21179e-06 loss) | |
I0407 16:33:31.646255 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:33:31.646267 1004 solver.cpp:245] Train net output #45: total_confidence = 4.26584e-05 | |
I0407 16:33:31.646281 1004 sgd_solver.cpp:106] Iteration 60000, lr = 0.00088 | |
I0407 16:34:09.892370 1004 solver.cpp:229] Iteration 60500, loss = 0.989298 | |
I0407 16:34:09.892482 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:34:09.892501 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:34:09.892514 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:34:09.892526 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 16:34:09.892539 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 16:34:09.892550 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625 | |
I0407 16:34:09.892563 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 16:34:09.892575 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:34:09.892586 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:34:09.892597 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:34:09.892609 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:34:09.892621 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:34:09.892632 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:34:09.892643 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:34:09.892654 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:34:09.892665 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:34:09.892676 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:34:09.892688 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:34:09.892699 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:34:09.892710 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:34:09.892722 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:34:09.892734 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:34:09.892750 1004 solver.cpp:245] Train net output #22: loss/loss01 = 2.90085 (* 0.0454545 = 0.131857 loss) | |
I0407 16:34:09.892763 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.30321 (* 0.0454545 = 0.150146 loss) | |
I0407 16:34:09.892777 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.2366 (* 0.0454545 = 0.147118 loss) | |
I0407 16:34:09.892791 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.03448 (* 0.0454545 = 0.137931 loss) | |
I0407 16:34:09.892805 1004 solver.cpp:245] Train net output #26: loss/loss05 = 2.74852 (* 0.0454545 = 0.124933 loss) | |
I0407 16:34:09.892820 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.08312 (* 0.0454545 = 0.0946872 loss) | |
I0407 16:34:09.892834 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.972345 (* 0.0454545 = 0.0441975 loss) | |
I0407 16:34:09.892848 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.298147 (* 0.0454545 = 0.0135521 loss) | |
I0407 16:34:09.892863 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0138037 (* 0.0454545 = 0.000627442 loss) | |
I0407 16:34:09.892876 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.00437982 (* 0.0454545 = 0.000199083 loss) | |
I0407 16:34:09.892891 1004 solver.cpp:245] Train net output #32: loss/loss11 = 1.05056e-05 (* 0.0454545 = 4.77529e-07 loss) | |
I0407 16:34:09.892905 1004 solver.cpp:245] Train net output #33: loss/loss12 = 1.04609e-05 (* 0.0454545 = 4.75497e-07 loss) | |
I0407 16:34:09.892921 1004 solver.cpp:245] Train net output #34: loss/loss13 = 9.25388e-06 (* 0.0454545 = 4.20631e-07 loss) | |
I0407 16:34:09.892936 1004 solver.cpp:245] Train net output #35: loss/loss14 = 9.79038e-06 (* 0.0454545 = 4.45017e-07 loss) | |
I0407 16:34:09.892951 1004 solver.cpp:245] Train net output #36: loss/loss15 = 1.02598e-05 (* 0.0454545 = 4.66354e-07 loss) | |
I0407 16:34:09.892964 1004 solver.cpp:245] Train net output #37: loss/loss16 = 9.3284e-06 (* 0.0454545 = 4.24018e-07 loss) | |
I0407 16:34:09.892978 1004 solver.cpp:245] Train net output #38: loss/loss17 = 1.03939e-05 (* 0.0454545 = 4.72451e-07 loss) | |
I0407 16:34:09.893010 1004 solver.cpp:245] Train net output #39: loss/loss18 = 1.13924e-05 (* 0.0454545 = 5.17836e-07 loss) | |
I0407 16:34:09.893025 1004 solver.cpp:245] Train net output #40: loss/loss19 = 9.71588e-06 (* 0.0454545 = 4.41631e-07 loss) | |
I0407 16:34:09.893039 1004 solver.cpp:245] Train net output #41: loss/loss20 = 8.70252e-06 (* 0.0454545 = 3.95569e-07 loss) | |
I0407 16:34:09.893054 1004 solver.cpp:245] Train net output #42: loss/loss21 = 9.48488e-06 (* 0.0454545 = 4.31131e-07 loss) | |
I0407 16:34:09.893066 1004 solver.cpp:245] Train net output #43: loss/loss22 = 9.42528e-06 (* 0.0454545 = 4.28422e-07 loss) | |
I0407 16:34:09.893079 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:34:09.893090 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000325228 | |
I0407 16:34:09.893103 1004 sgd_solver.cpp:106] Iteration 60500, lr = 0.000879 | |
I0407 16:34:48.769438 1004 solver.cpp:229] Iteration 61000, loss = 0.996925 | |
I0407 16:34:48.769616 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:34:48.769634 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:34:48.769647 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875 | |
I0407 16:34:48.769659 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 16:34:48.769671 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0 | |
I0407 16:34:48.769683 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 16:34:48.769695 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.5625 | |
I0407 16:34:48.769706 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.75 | |
I0407 16:34:48.769718 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0407 16:34:48.769729 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.875 | |
I0407 16:34:48.769742 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:34:48.769754 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:34:48.769767 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:34:48.769778 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:34:48.769788 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:34:48.769800 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:34:48.769811 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:34:48.769822 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:34:48.769834 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:34:48.769845 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:34:48.769856 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:34:48.769868 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:34:48.769883 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.48478 (* 0.0454545 = 0.158399 loss) | |
I0407 16:34:48.769898 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.53058 (* 0.0454545 = 0.160481 loss) | |
I0407 16:34:48.769912 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.6465 (* 0.0454545 = 0.16575 loss) | |
I0407 16:34:48.769927 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.65901 (* 0.0454545 = 0.166319 loss) | |
I0407 16:34:48.769940 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.80315 (* 0.0454545 = 0.17287 loss) | |
I0407 16:34:48.769954 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.90459 (* 0.0454545 = 0.132027 loss) | |
I0407 16:34:48.769968 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.9837 (* 0.0454545 = 0.0901682 loss) | |
I0407 16:34:48.769981 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.12579 (* 0.0454545 = 0.0511721 loss) | |
I0407 16:34:48.769995 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.586753 (* 0.0454545 = 0.0266706 loss) | |
I0407 16:34:48.770009 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.655328 (* 0.0454545 = 0.0297876 loss) | |
I0407 16:34:48.770025 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000372098 (* 0.0454545 = 1.69135e-05 loss) | |
I0407 16:34:48.770038 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000324214 (* 0.0454545 = 1.4737e-05 loss) | |
I0407 16:34:48.770052 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000330838 (* 0.0454545 = 1.50381e-05 loss) | |
I0407 16:34:48.770066 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000382135 (* 0.0454545 = 1.73698e-05 loss) | |
I0407 16:34:48.770084 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000387548 (* 0.0454545 = 1.76158e-05 loss) | |
I0407 16:34:48.770098 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000321242 (* 0.0454545 = 1.46019e-05 loss) | |
I0407 16:34:48.770112 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000397156 (* 0.0454545 = 1.80526e-05 loss) | |
I0407 16:34:48.770143 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000433159 (* 0.0454545 = 1.96891e-05 loss) | |
I0407 16:34:48.770159 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000350355 (* 0.0454545 = 1.59252e-05 loss) | |
I0407 16:34:48.770172 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000367892 (* 0.0454545 = 1.67224e-05 loss) | |
I0407 16:34:48.770186 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000399928 (* 0.0454545 = 1.81785e-05 loss) | |
I0407 16:34:48.770200 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000336906 (* 0.0454545 = 1.53139e-05 loss) | |
I0407 16:34:48.770212 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:34:48.770225 1004 solver.cpp:245] Train net output #45: total_confidence = 4.652e-06 | |
I0407 16:34:48.770237 1004 sgd_solver.cpp:106] Iteration 61000, lr = 0.000878 | |
I0407 16:35:28.323962 1004 solver.cpp:229] Iteration 61500, loss = 0.995097 | |
I0407 16:35:28.324105 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:35:28.324123 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 16:35:28.324136 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:35:28.324148 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.25 | |
I0407 16:35:28.324161 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.375 | |
I0407 16:35:28.324173 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 16:35:28.324184 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 16:35:28.324196 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:35:28.324208 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:35:28.324220 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:35:28.324232 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:35:28.324244 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:35:28.324254 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:35:28.324266 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:35:28.324277 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:35:28.324290 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:35:28.324301 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:35:28.324312 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:35:28.324324 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:35:28.324336 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:35:28.324347 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:35:28.324358 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:35:28.324374 1004 solver.cpp:245] Train net output #22: loss/loss01 = 2.79414 (* 0.0454545 = 0.127006 loss) | |
I0407 16:35:28.324389 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.07552 (* 0.0454545 = 0.139797 loss) | |
I0407 16:35:28.324404 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.18692 (* 0.0454545 = 0.14486 loss) | |
I0407 16:35:28.324417 1004 solver.cpp:245] Train net output #25: loss/loss04 = 2.83853 (* 0.0454545 = 0.129024 loss) | |
I0407 16:35:28.324431 1004 solver.cpp:245] Train net output #26: loss/loss05 = 2.23412 (* 0.0454545 = 0.101551 loss) | |
I0407 16:35:28.324445 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.09643 (* 0.0454545 = 0.0952922 loss) | |
I0407 16:35:28.324458 1004 solver.cpp:245] Train net output #28: loss/loss07 = 2.23158 (* 0.0454545 = 0.101435 loss) | |
I0407 16:35:28.324472 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.579228 (* 0.0454545 = 0.0263286 loss) | |
I0407 16:35:28.324487 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.00332556 (* 0.0454545 = 0.000151162 loss) | |
I0407 16:35:28.324501 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.00099284 (* 0.0454545 = 4.51291e-05 loss) | |
I0407 16:35:28.324517 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000126668 (* 0.0454545 = 5.75763e-06 loss) | |
I0407 16:35:28.324530 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000101547 (* 0.0454545 = 4.61577e-06 loss) | |
I0407 16:35:28.324544 1004 solver.cpp:245] Train net output #34: loss/loss13 = 9.42457e-05 (* 0.0454545 = 4.28389e-06 loss) | |
I0407 16:35:28.324558 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000117348 (* 0.0454545 = 5.33399e-06 loss) | |
I0407 16:35:28.324573 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000117696 (* 0.0454545 = 5.34982e-06 loss) | |
I0407 16:35:28.324586 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000100885 (* 0.0454545 = 4.58567e-06 loss) | |
I0407 16:35:28.324600 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000114743 (* 0.0454545 = 5.21558e-06 loss) | |
I0407 16:35:28.324627 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000124562 (* 0.0454545 = 5.66193e-06 loss) | |
I0407 16:35:28.324642 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000114494 (* 0.0454545 = 5.20426e-06 loss) | |
I0407 16:35:28.324656 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000116052 (* 0.0454545 = 5.27509e-06 loss) | |
I0407 16:35:28.324671 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000129144 (* 0.0454545 = 5.87018e-06 loss) | |
I0407 16:35:28.324684 1004 solver.cpp:245] Train net output #43: loss/loss22 = 9.51048e-05 (* 0.0454545 = 4.32295e-06 loss) | |
I0407 16:35:28.324697 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:35:28.324708 1004 solver.cpp:245] Train net output #45: total_confidence = 0.00402658 | |
I0407 16:35:28.324720 1004 sgd_solver.cpp:106] Iteration 61500, lr = 0.000877 | |
I0407 16:36:07.076725 1004 solver.cpp:229] Iteration 62000, loss = 0.992541 | |
I0407 16:36:07.076823 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:36:07.076843 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:36:07.076855 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:36:07.076867 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 16:36:07.076879 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 16:36:07.076894 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 16:36:07.076907 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 16:36:07.076920 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:36:07.076931 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:36:07.076943 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:36:07.076959 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:36:07.076984 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:36:07.077008 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:36:07.077021 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:36:07.077033 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:36:07.077044 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:36:07.077056 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:36:07.077067 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:36:07.077081 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:36:07.077093 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:36:07.077105 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:36:07.077117 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:36:07.077132 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.22791 (* 0.0454545 = 0.146723 loss) | |
I0407 16:36:07.077147 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.75279 (* 0.0454545 = 0.170581 loss) | |
I0407 16:36:07.077162 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.54381 (* 0.0454545 = 0.161082 loss) | |
I0407 16:36:07.077175 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.81809 (* 0.0454545 = 0.173549 loss) | |
I0407 16:36:07.077188 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.36562 (* 0.0454545 = 0.152983 loss) | |
I0407 16:36:07.077203 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.7791 (* 0.0454545 = 0.126323 loss) | |
I0407 16:36:07.077215 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.26572 (* 0.0454545 = 0.0575327 loss) | |
I0407 16:36:07.077229 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.567677 (* 0.0454545 = 0.0258035 loss) | |
I0407 16:36:07.077242 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.63351 (* 0.0454545 = 0.0287959 loss) | |
I0407 16:36:07.077256 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0222286 (* 0.0454545 = 0.00101039 loss) | |
I0407 16:36:07.077271 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.00112343 (* 0.0454545 = 5.10648e-05 loss) | |
I0407 16:36:07.077286 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00101717 (* 0.0454545 = 4.62352e-05 loss) | |
I0407 16:36:07.077299 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.00107942 (* 0.0454545 = 4.90644e-05 loss) | |
I0407 16:36:07.077314 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00115559 (* 0.0454545 = 5.25269e-05 loss) | |
I0407 16:36:07.077328 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.00125085 (* 0.0454545 = 5.68569e-05 loss) | |
I0407 16:36:07.077342 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000972491 (* 0.0454545 = 4.42041e-05 loss) | |
I0407 16:36:07.077358 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.00120938 (* 0.0454545 = 5.49718e-05 loss) | |
I0407 16:36:07.077389 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.00130492 (* 0.0454545 = 5.93145e-05 loss) | |
I0407 16:36:07.077404 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00112034 (* 0.0454545 = 5.09244e-05 loss) | |
I0407 16:36:07.077419 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.00116856 (* 0.0454545 = 5.31162e-05 loss) | |
I0407 16:36:07.077432 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00125595 (* 0.0454545 = 5.70886e-05 loss) | |
I0407 16:36:07.077446 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00106403 (* 0.0454545 = 4.8365e-05 loss) | |
I0407 16:36:07.077458 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:36:07.077469 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000721559 | |
I0407 16:36:07.077483 1004 sgd_solver.cpp:106] Iteration 62000, lr = 0.000876 | |
I0407 16:36:45.943537 1004 solver.cpp:229] Iteration 62500, loss = 0.990481 | |
I0407 16:36:45.943673 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:36:45.943694 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:36:45.943707 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:36:45.943719 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 16:36:45.943732 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 16:36:45.943743 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 16:36:45.943756 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 16:36:45.943768 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 16:36:45.943780 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:36:45.943791 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:36:45.943804 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:36:45.943814 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:36:45.943826 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:36:45.943837 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:36:45.943850 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:36:45.943861 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:36:45.943871 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:36:45.943882 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:36:45.943894 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:36:45.943907 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:36:45.943917 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:36:45.943929 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:36:45.943944 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.52941 (* 0.0454545 = 0.160428 loss) | |
I0407 16:36:45.943959 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.83765 (* 0.0454545 = 0.174439 loss) | |
I0407 16:36:45.943974 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.74235 (* 0.0454545 = 0.170107 loss) | |
I0407 16:36:45.943987 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.33059 (* 0.0454545 = 0.15139 loss) | |
I0407 16:36:45.944001 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.15208 (* 0.0454545 = 0.143277 loss) | |
I0407 16:36:45.944015 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.18555 (* 0.0454545 = 0.0993432 loss) | |
I0407 16:36:45.944028 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.74957 (* 0.0454545 = 0.0795257 loss) | |
I0407 16:36:45.944042 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.653858 (* 0.0454545 = 0.0297208 loss) | |
I0407 16:36:45.944056 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0239153 (* 0.0454545 = 0.00108706 loss) | |
I0407 16:36:45.944070 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.00864262 (* 0.0454545 = 0.000392846 loss) | |
I0407 16:36:45.944089 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.00021827 (* 0.0454545 = 9.92135e-06 loss) | |
I0407 16:36:45.944103 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000189807 (* 0.0454545 = 8.62761e-06 loss) | |
I0407 16:36:45.944118 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000199754 (* 0.0454545 = 9.07972e-06 loss) | |
I0407 16:36:45.944133 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000219858 (* 0.0454545 = 9.99354e-06 loss) | |
I0407 16:36:45.944146 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000222077 (* 0.0454545 = 1.00944e-05 loss) | |
I0407 16:36:45.944160 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000176245 (* 0.0454545 = 8.01114e-06 loss) | |
I0407 16:36:45.944175 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000232343 (* 0.0454545 = 1.05611e-05 loss) | |
I0407 16:36:45.944375 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000246156 (* 0.0454545 = 1.11889e-05 loss) | |
I0407 16:36:45.944392 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000190234 (* 0.0454545 = 8.64699e-06 loss) | |
I0407 16:36:45.944406 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000212545 (* 0.0454545 = 9.66112e-06 loss) | |
I0407 16:36:45.944421 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000228788 (* 0.0454545 = 1.03994e-05 loss) | |
I0407 16:36:45.944434 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000199786 (* 0.0454545 = 9.08117e-06 loss) | |
I0407 16:36:45.944447 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:36:45.944458 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000265377 | |
I0407 16:36:45.944471 1004 sgd_solver.cpp:106] Iteration 62500, lr = 0.000875 | |
I0407 16:37:25.038573 1004 solver.cpp:229] Iteration 63000, loss = 0.993061 | |
I0407 16:37:25.038692 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:37:25.038712 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:37:25.038725 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:37:25.038738 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 16:37:25.038749 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 16:37:25.038761 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 16:37:25.038774 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 16:37:25.038785 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:37:25.038799 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:37:25.038810 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 16:37:25.038822 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:37:25.038833 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:37:25.038846 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:37:25.038856 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:37:25.038867 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:37:25.038879 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:37:25.038890 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:37:25.038902 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:37:25.038913 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:37:25.038928 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:37:25.038939 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:37:25.038951 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:37:25.038967 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.30398 (* 0.0454545 = 0.150181 loss) | |
I0407 16:37:25.038981 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.59564 (* 0.0454545 = 0.163438 loss) | |
I0407 16:37:25.038995 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.75306 (* 0.0454545 = 0.170594 loss) | |
I0407 16:37:25.039008 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.6701 (* 0.0454545 = 0.166823 loss) | |
I0407 16:37:25.039022 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.31035 (* 0.0454545 = 0.15047 loss) | |
I0407 16:37:25.039036 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.73095 (* 0.0454545 = 0.124134 loss) | |
I0407 16:37:25.039050 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.47453 (* 0.0454545 = 0.0670239 loss) | |
I0407 16:37:25.039064 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.5296 (* 0.0454545 = 0.0240727 loss) | |
I0407 16:37:25.039078 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.526575 (* 0.0454545 = 0.0239352 loss) | |
I0407 16:37:25.039091 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.665202 (* 0.0454545 = 0.0302364 loss) | |
I0407 16:37:25.039106 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000312196 (* 0.0454545 = 1.41907e-05 loss) | |
I0407 16:37:25.039120 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000290891 (* 0.0454545 = 1.32223e-05 loss) | |
I0407 16:37:25.039134 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000258848 (* 0.0454545 = 1.17658e-05 loss) | |
I0407 16:37:25.039149 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000251342 (* 0.0454545 = 1.14246e-05 loss) | |
I0407 16:37:25.039162 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000275715 (* 0.0454545 = 1.25325e-05 loss) | |
I0407 16:37:25.039175 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000259704 (* 0.0454545 = 1.18047e-05 loss) | |
I0407 16:37:25.039189 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000244798 (* 0.0454545 = 1.11272e-05 loss) | |
I0407 16:37:25.039219 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000311246 (* 0.0454545 = 1.41475e-05 loss) | |
I0407 16:37:25.039235 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000267268 (* 0.0454545 = 1.21485e-05 loss) | |
I0407 16:37:25.039249 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000253387 (* 0.0454545 = 1.15176e-05 loss) | |
I0407 16:37:25.039263 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00028109 (* 0.0454545 = 1.27768e-05 loss) | |
I0407 16:37:25.039278 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000267065 (* 0.0454545 = 1.21393e-05 loss) | |
I0407 16:37:25.039289 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:37:25.039300 1004 solver.cpp:245] Train net output #45: total_confidence = 9.58047e-05 | |
I0407 16:37:25.039314 1004 sgd_solver.cpp:106] Iteration 63000, lr = 0.000874 | |
I0407 16:38:04.200525 1004 solver.cpp:229] Iteration 63500, loss = 0.987642 | |
I0407 16:38:04.200657 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0407 16:38:04.200676 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:38:04.200690 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:38:04.200702 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 16:38:04.200714 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 16:38:04.200726 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 16:38:04.200738 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 16:38:04.200750 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 16:38:04.200762 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:38:04.200774 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:38:04.200785 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:38:04.200798 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:38:04.200809 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:38:04.200820 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:38:04.200831 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:38:04.200844 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:38:04.200855 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:38:04.200866 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:38:04.200877 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:38:04.200889 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:38:04.200901 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:38:04.200912 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:38:04.200930 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.28861 (* 0.0454545 = 0.149482 loss) | |
I0407 16:38:04.200945 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.59278 (* 0.0454545 = 0.163308 loss) | |
I0407 16:38:04.200959 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.47027 (* 0.0454545 = 0.15774 loss) | |
I0407 16:38:04.200973 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.64966 (* 0.0454545 = 0.165894 loss) | |
I0407 16:38:04.200987 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.25587 (* 0.0454545 = 0.147994 loss) | |
I0407 16:38:04.201000 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.8902 (* 0.0454545 = 0.131373 loss) | |
I0407 16:38:04.201014 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.74185 (* 0.0454545 = 0.0791748 loss) | |
I0407 16:38:04.201027 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.856815 (* 0.0454545 = 0.0389461 loss) | |
I0407 16:38:04.201041 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.324719 (* 0.0454545 = 0.01476 loss) | |
I0407 16:38:04.201056 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0258411 (* 0.0454545 = 0.00117459 loss) | |
I0407 16:38:04.201069 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000194605 (* 0.0454545 = 8.84569e-06 loss) | |
I0407 16:38:04.201083 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000178978 (* 0.0454545 = 8.13535e-06 loss) | |
I0407 16:38:04.201097 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000173212 (* 0.0454545 = 7.87327e-06 loss) | |
I0407 16:38:04.201112 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000206663 (* 0.0454545 = 9.39376e-06 loss) | |
I0407 16:38:04.201125 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000188313 (* 0.0454545 = 8.55969e-06 loss) | |
I0407 16:38:04.201139 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000175245 (* 0.0454545 = 7.96569e-06 loss) | |
I0407 16:38:04.201153 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000196648 (* 0.0454545 = 8.93853e-06 loss) | |
I0407 16:38:04.201180 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.00020598 (* 0.0454545 = 9.36274e-06 loss) | |
I0407 16:38:04.201195 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000171992 (* 0.0454545 = 7.81782e-06 loss) | |
I0407 16:38:04.201210 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000192203 (* 0.0454545 = 8.7365e-06 loss) | |
I0407 16:38:04.201223 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000211196 (* 0.0454545 = 9.59981e-06 loss) | |
I0407 16:38:04.201237 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000189225 (* 0.0454545 = 8.60116e-06 loss) | |
I0407 16:38:04.201249 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:38:04.201261 1004 solver.cpp:245] Train net output #45: total_confidence = 3.7169e-05 | |
I0407 16:38:04.201273 1004 sgd_solver.cpp:106] Iteration 63500, lr = 0.000873 | |
I0407 16:38:43.083632 1004 solver.cpp:229] Iteration 64000, loss = 0.990287 | |
I0407 16:38:43.083760 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0407 16:38:43.083778 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:38:43.083791 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 16:38:43.083803 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.25 | |
I0407 16:38:43.083816 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 16:38:43.083827 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 16:38:43.083839 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 16:38:43.083852 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:38:43.083863 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:38:43.083874 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 16:38:43.083886 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:38:43.083897 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:38:43.083909 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:38:43.083925 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:38:43.083936 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:38:43.083948 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:38:43.083961 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:38:43.083971 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:38:43.083983 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:38:43.083994 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:38:43.084007 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:38:43.084017 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:38:43.084033 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.16403 (* 0.0454545 = 0.143819 loss) | |
I0407 16:38:43.084048 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.38872 (* 0.0454545 = 0.154033 loss) | |
I0407 16:38:43.084063 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.4103 (* 0.0454545 = 0.155014 loss) | |
I0407 16:38:43.084076 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.02786 (* 0.0454545 = 0.13763 loss) | |
I0407 16:38:43.084089 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.00278 (* 0.0454545 = 0.13649 loss) | |
I0407 16:38:43.084103 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.487 (* 0.0454545 = 0.113046 loss) | |
I0407 16:38:43.084117 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.10313 (* 0.0454545 = 0.0501423 loss) | |
I0407 16:38:43.084131 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.348012 (* 0.0454545 = 0.0158187 loss) | |
I0407 16:38:43.084146 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.415504 (* 0.0454545 = 0.0188865 loss) | |
I0407 16:38:43.084158 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.43266 (* 0.0454545 = 0.0196663 loss) | |
I0407 16:38:43.084173 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000596053 (* 0.0454545 = 2.70933e-05 loss) | |
I0407 16:38:43.084187 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00045367 (* 0.0454545 = 2.06213e-05 loss) | |
I0407 16:38:43.084202 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000486237 (* 0.0454545 = 2.21017e-05 loss) | |
I0407 16:38:43.084215 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000530432 (* 0.0454545 = 2.41105e-05 loss) | |
I0407 16:38:43.084229 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000558386 (* 0.0454545 = 2.53812e-05 loss) | |
I0407 16:38:43.084244 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.00050347 (* 0.0454545 = 2.2885e-05 loss) | |
I0407 16:38:43.084257 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000593373 (* 0.0454545 = 2.69715e-05 loss) | |
I0407 16:38:43.084288 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000623389 (* 0.0454545 = 2.83359e-05 loss) | |
I0407 16:38:43.084305 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000529547 (* 0.0454545 = 2.40703e-05 loss) | |
I0407 16:38:43.084317 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000496493 (* 0.0454545 = 2.25679e-05 loss) | |
I0407 16:38:43.084332 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000650614 (* 0.0454545 = 2.95734e-05 loss) | |
I0407 16:38:43.084347 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000554918 (* 0.0454545 = 2.52235e-05 loss) | |
I0407 16:38:43.084358 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:38:43.084370 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000751509 | |
I0407 16:38:43.084383 1004 sgd_solver.cpp:106] Iteration 64000, lr = 0.000872 | |
I0407 16:39:22.119001 1004 solver.cpp:229] Iteration 64500, loss = 0.992696 | |
I0407 16:39:22.119113 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0407 16:39:22.119132 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:39:22.119145 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:39:22.119158 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.25 | |
I0407 16:39:22.119170 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.4375 | |
I0407 16:39:22.119182 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.625 | |
I0407 16:39:22.119194 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 16:39:22.119206 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:39:22.119218 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:39:22.119230 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:39:22.119241 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:39:22.119253 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:39:22.119264 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:39:22.119277 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:39:22.119288 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:39:22.119299 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:39:22.119312 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:39:22.119336 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:39:22.119349 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:39:22.119361 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:39:22.119372 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:39:22.119385 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:39:22.119400 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.10318 (* 0.0454545 = 0.141054 loss) | |
I0407 16:39:22.119415 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.3887 (* 0.0454545 = 0.154032 loss) | |
I0407 16:39:22.119428 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.47451 (* 0.0454545 = 0.157932 loss) | |
I0407 16:39:22.119442 1004 solver.cpp:245] Train net output #25: loss/loss04 = 2.98322 (* 0.0454545 = 0.135601 loss) | |
I0407 16:39:22.119457 1004 solver.cpp:245] Train net output #26: loss/loss05 = 2.58208 (* 0.0454545 = 0.117367 loss) | |
I0407 16:39:22.119470 1004 solver.cpp:245] Train net output #27: loss/loss06 = 1.96878 (* 0.0454545 = 0.0894899 loss) | |
I0407 16:39:22.119483 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.947268 (* 0.0454545 = 0.0430577 loss) | |
I0407 16:39:22.119498 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.372978 (* 0.0454545 = 0.0169535 loss) | |
I0407 16:39:22.119511 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0588741 (* 0.0454545 = 0.0026761 loss) | |
I0407 16:39:22.119526 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0232771 (* 0.0454545 = 0.00105805 loss) | |
I0407 16:39:22.119540 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.00059408 (* 0.0454545 = 2.70036e-05 loss) | |
I0407 16:39:22.119554 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000619611 (* 0.0454545 = 2.81641e-05 loss) | |
I0407 16:39:22.119568 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000666927 (* 0.0454545 = 3.03149e-05 loss) | |
I0407 16:39:22.119582 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000694172 (* 0.0454545 = 3.15533e-05 loss) | |
I0407 16:39:22.119596 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000736927 (* 0.0454545 = 3.34967e-05 loss) | |
I0407 16:39:22.119609 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000596566 (* 0.0454545 = 2.71166e-05 loss) | |
I0407 16:39:22.119623 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000703356 (* 0.0454545 = 3.19707e-05 loss) | |
I0407 16:39:22.119655 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000735377 (* 0.0454545 = 3.34262e-05 loss) | |
I0407 16:39:22.119670 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000570103 (* 0.0454545 = 2.59138e-05 loss) | |
I0407 16:39:22.119684 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000680145 (* 0.0454545 = 3.09157e-05 loss) | |
I0407 16:39:22.119699 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000697389 (* 0.0454545 = 3.16995e-05 loss) | |
I0407 16:39:22.119712 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000693744 (* 0.0454545 = 3.15338e-05 loss) | |
I0407 16:39:22.119724 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:39:22.119736 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000389114 | |
I0407 16:39:22.119750 1004 sgd_solver.cpp:106] Iteration 64500, lr = 0.000871 | |
I0407 16:40:01.449442 1004 solver.cpp:338] Iteration 65000, Testing net (#0) | |
I0407 16:40:09.404753 1004 solver.cpp:393] Test loss: 0.89467 | |
I0407 16:40:09.404803 1004 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.36 | |
I0407 16:40:09.404819 1004 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.107 | |
I0407 16:40:09.404831 1004 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.076 | |
I0407 16:40:09.404844 1004 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.08 | |
I0407 16:40:09.404855 1004 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.205 | |
I0407 16:40:09.404866 1004 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.496 | |
I0407 16:40:09.404878 1004 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0407 16:40:09.404891 1004 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 16:40:09.404901 1004 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 16:40:09.404912 1004 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 16:40:09.404927 1004 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 16:40:09.404938 1004 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 16:40:09.404949 1004 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 16:40:09.404960 1004 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 16:40:09.404973 1004 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 16:40:09.404983 1004 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 16:40:09.404994 1004 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 16:40:09.405004 1004 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 16:40:09.405015 1004 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 16:40:09.405026 1004 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 16:40:09.405037 1004 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 16:40:09.405048 1004 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 16:40:09.405064 1004 solver.cpp:406] Test net output #22: loss/loss01 = 3.00187 (* 0.0454545 = 0.136449 loss) | |
I0407 16:40:09.405078 1004 solver.cpp:406] Test net output #23: loss/loss02 = 3.26805 (* 0.0454545 = 0.148548 loss) | |
I0407 16:40:09.405092 1004 solver.cpp:406] Test net output #24: loss/loss03 = 3.38182 (* 0.0454545 = 0.153719 loss) | |
I0407 16:40:09.405107 1004 solver.cpp:406] Test net output #25: loss/loss04 = 3.32236 (* 0.0454545 = 0.151017 loss) | |
I0407 16:40:09.405120 1004 solver.cpp:406] Test net output #26: loss/loss05 = 3.25097 (* 0.0454545 = 0.147772 loss) | |
I0407 16:40:09.405134 1004 solver.cpp:406] Test net output #27: loss/loss06 = 2.29869 (* 0.0454545 = 0.104486 loss) | |
I0407 16:40:09.405148 1004 solver.cpp:406] Test net output #28: loss/loss07 = 0.76149 (* 0.0454545 = 0.0346132 loss) | |
I0407 16:40:09.405160 1004 solver.cpp:406] Test net output #29: loss/loss08 = 0.283204 (* 0.0454545 = 0.0128729 loss) | |
I0407 16:40:09.405174 1004 solver.cpp:406] Test net output #30: loss/loss09 = 0.0671729 (* 0.0454545 = 0.00305331 loss) | |
I0407 16:40:09.405189 1004 solver.cpp:406] Test net output #31: loss/loss10 = 0.0352257 (* 0.0454545 = 0.00160117 loss) | |
I0407 16:40:09.405202 1004 solver.cpp:406] Test net output #32: loss/loss11 = 0.0010431 (* 0.0454545 = 4.74137e-05 loss) | |
I0407 16:40:09.405216 1004 solver.cpp:406] Test net output #33: loss/loss12 = 0.000939298 (* 0.0454545 = 4.26954e-05 loss) | |
I0407 16:40:09.405231 1004 solver.cpp:406] Test net output #34: loss/loss13 = 0.000938294 (* 0.0454545 = 4.26497e-05 loss) | |
I0407 16:40:09.405246 1004 solver.cpp:406] Test net output #35: loss/loss14 = 0.000990492 (* 0.0454545 = 4.50224e-05 loss) | |
I0407 16:40:09.405259 1004 solver.cpp:406] Test net output #36: loss/loss15 = 0.000979141 (* 0.0454545 = 4.45064e-05 loss) | |
I0407 16:40:09.405273 1004 solver.cpp:406] Test net output #37: loss/loss16 = 0.000970843 (* 0.0454545 = 4.41292e-05 loss) | |
I0407 16:40:09.405287 1004 solver.cpp:406] Test net output #38: loss/loss17 = 0.00101964 (* 0.0454545 = 4.63471e-05 loss) | |
I0407 16:40:09.405334 1004 solver.cpp:406] Test net output #39: loss/loss18 = 0.00111328 (* 0.0454545 = 5.06035e-05 loss) | |
I0407 16:40:09.405349 1004 solver.cpp:406] Test net output #40: loss/loss19 = 0.000928525 (* 0.0454545 = 4.22057e-05 loss) | |
I0407 16:40:09.405364 1004 solver.cpp:406] Test net output #41: loss/loss20 = 0.000948419 (* 0.0454545 = 4.311e-05 loss) | |
I0407 16:40:09.405377 1004 solver.cpp:406] Test net output #42: loss/loss21 = 0.00101446 (* 0.0454545 = 4.61117e-05 loss) | |
I0407 16:40:09.405390 1004 solver.cpp:406] Test net output #43: loss/loss22 = 0.000999628 (* 0.0454545 = 4.54376e-05 loss) | |
I0407 16:40:09.405402 1004 solver.cpp:406] Test net output #44: total_accuracy = 0.001 | |
I0407 16:40:09.405413 1004 solver.cpp:406] Test net output #45: total_confidence = 0.000128334 | |
I0407 16:40:09.427716 1004 solver.cpp:229] Iteration 65000, loss = 0.983656 | |
I0407 16:40:09.427750 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0407 16:40:09.427768 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:40:09.427780 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875 | |
I0407 16:40:09.427793 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 16:40:09.427804 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.5 | |
I0407 16:40:09.427816 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625 | |
I0407 16:40:09.427827 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 16:40:09.427839 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 16:40:09.427850 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:40:09.427865 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:40:09.427877 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:40:09.427888 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:40:09.427901 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:40:09.427911 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:40:09.427923 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:40:09.427934 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:40:09.427945 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:40:09.427958 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:40:09.427968 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:40:09.427980 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:40:09.427991 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:40:09.428004 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:40:09.428017 1004 solver.cpp:245] Train net output #22: loss/loss01 = 2.45513 (* 0.0454545 = 0.111597 loss) | |
I0407 16:40:09.428032 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.14356 (* 0.0454545 = 0.142889 loss) | |
I0407 16:40:09.428045 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.13051 (* 0.0454545 = 0.142296 loss) | |
I0407 16:40:09.428059 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.00581 (* 0.0454545 = 0.136628 loss) | |
I0407 16:40:09.428076 1004 solver.cpp:245] Train net output #26: loss/loss05 = 2.20178 (* 0.0454545 = 0.100081 loss) | |
I0407 16:40:09.428089 1004 solver.cpp:245] Train net output #27: loss/loss06 = 1.75733 (* 0.0454545 = 0.0798786 loss) | |
I0407 16:40:09.428103 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.00491 (* 0.0454545 = 0.0456778 loss) | |
I0407 16:40:09.428117 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.0488049 (* 0.0454545 = 0.00221841 loss) | |
I0407 16:40:09.428133 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0103625 (* 0.0454545 = 0.000471021 loss) | |
I0407 16:40:09.428145 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.00266077 (* 0.0454545 = 0.000120944 loss) | |
I0407 16:40:09.428176 1004 solver.cpp:245] Train net output #32: loss/loss11 = 4.93241e-06 (* 0.0454545 = 2.242e-07 loss) | |
I0407 16:40:09.428192 1004 solver.cpp:245] Train net output #33: loss/loss12 = 4.99947e-06 (* 0.0454545 = 2.27249e-07 loss) | |
I0407 16:40:09.428207 1004 solver.cpp:245] Train net output #34: loss/loss13 = 5.16341e-06 (* 0.0454545 = 2.347e-07 loss) | |
I0407 16:40:09.428221 1004 solver.cpp:245] Train net output #35: loss/loss14 = 4.44065e-06 (* 0.0454545 = 2.01848e-07 loss) | |
I0407 16:40:09.428236 1004 solver.cpp:245] Train net output #36: loss/loss15 = 4.8281e-06 (* 0.0454545 = 2.19459e-07 loss) | |
I0407 16:40:09.428249 1004 solver.cpp:245] Train net output #37: loss/loss16 = 4.53007e-06 (* 0.0454545 = 2.05912e-07 loss) | |
I0407 16:40:09.428263 1004 solver.cpp:245] Train net output #38: loss/loss17 = 4.29163e-06 (* 0.0454545 = 1.95074e-07 loss) | |
I0407 16:40:09.428277 1004 solver.cpp:245] Train net output #39: loss/loss18 = 5.29006e-06 (* 0.0454545 = 2.40457e-07 loss) | |
I0407 16:40:09.428292 1004 solver.cpp:245] Train net output #40: loss/loss19 = 4.52262e-06 (* 0.0454545 = 2.05573e-07 loss) | |
I0407 16:40:09.428305 1004 solver.cpp:245] Train net output #41: loss/loss20 = 4.30654e-06 (* 0.0454545 = 1.95752e-07 loss) | |
I0407 16:40:09.428319 1004 solver.cpp:245] Train net output #42: loss/loss21 = 5.23791e-06 (* 0.0454545 = 2.38087e-07 loss) | |
I0407 16:40:09.428333 1004 solver.cpp:245] Train net output #43: loss/loss22 = 5.1485e-06 (* 0.0454545 = 2.34023e-07 loss) | |
I0407 16:40:09.428344 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:40:09.428356 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000336043 | |
I0407 16:40:09.428371 1004 sgd_solver.cpp:106] Iteration 65000, lr = 0.00087 | |
I0407 16:40:48.843886 1004 solver.cpp:229] Iteration 65500, loss = 0.996828 | |
I0407 16:40:48.844051 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0407 16:40:48.844080 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 16:40:48.844094 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:40:48.844107 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 16:40:48.844120 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 16:40:48.844132 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 16:40:48.844144 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 16:40:48.844156 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 16:40:48.844169 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0407 16:40:48.844180 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 16:40:48.844192 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:40:48.844204 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:40:48.844216 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:40:48.844228 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:40:48.844239 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:40:48.844250 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:40:48.844262 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:40:48.844274 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:40:48.844285 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:40:48.844296 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:40:48.844307 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:40:48.844319 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:40:48.844334 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.14024 (* 0.0454545 = 0.142738 loss) | |
I0407 16:40:48.844348 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.51547 (* 0.0454545 = 0.159794 loss) | |
I0407 16:40:48.844362 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.5729 (* 0.0454545 = 0.162405 loss) | |
I0407 16:40:48.844377 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.60581 (* 0.0454545 = 0.1639 loss) | |
I0407 16:40:48.844390 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.48895 (* 0.0454545 = 0.158589 loss) | |
I0407 16:40:48.844404 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.73808 (* 0.0454545 = 0.124458 loss) | |
I0407 16:40:48.844418 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.63578 (* 0.0454545 = 0.0743534 loss) | |
I0407 16:40:48.844431 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.957273 (* 0.0454545 = 0.0435124 loss) | |
I0407 16:40:48.844445 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.831411 (* 0.0454545 = 0.0377914 loss) | |
I0407 16:40:48.844458 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.469352 (* 0.0454545 = 0.0213342 loss) | |
I0407 16:40:48.844473 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.00019238 (* 0.0454545 = 8.74455e-06 loss) | |
I0407 16:40:48.844487 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000160171 (* 0.0454545 = 7.28052e-06 loss) | |
I0407 16:40:48.844501 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000152957 (* 0.0454545 = 6.95258e-06 loss) | |
I0407 16:40:48.844516 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000171559 (* 0.0454545 = 7.79812e-06 loss) | |
I0407 16:40:48.844530 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000172482 (* 0.0454545 = 7.84011e-06 loss) | |
I0407 16:40:48.844544 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000171491 (* 0.0454545 = 7.79503e-06 loss) | |
I0407 16:40:48.844574 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000187727 (* 0.0454545 = 8.53306e-06 loss) | |
I0407 16:40:48.844605 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000179825 (* 0.0454545 = 8.17388e-06 loss) | |
I0407 16:40:48.844620 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000151838 (* 0.0454545 = 6.90174e-06 loss) | |
I0407 16:40:48.844635 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000172667 (* 0.0454545 = 7.84852e-06 loss) | |
I0407 16:40:48.844650 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000181756 (* 0.0454545 = 8.26162e-06 loss) | |
I0407 16:40:48.844663 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.00017146 (* 0.0454545 = 7.79364e-06 loss) | |
I0407 16:40:48.844676 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:40:48.844687 1004 solver.cpp:245] Train net output #45: total_confidence = 1.55387e-06 | |
I0407 16:40:48.844701 1004 sgd_solver.cpp:106] Iteration 65500, lr = 0.000869 | |
I0407 16:41:27.845897 1004 solver.cpp:229] Iteration 66000, loss = 0.982354 | |
I0407 16:41:27.846004 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 16:41:27.846025 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 16:41:27.846038 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:41:27.846051 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 16:41:27.846063 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 16:41:27.846078 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625 | |
I0407 16:41:27.846091 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875 | |
I0407 16:41:27.846102 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 16:41:27.846114 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:41:27.846125 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:41:27.846146 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:41:27.846169 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:41:27.846186 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:41:27.846197 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:41:27.846210 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:41:27.846221 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:41:27.846232 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:41:27.846243 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:41:27.846256 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:41:27.846266 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:41:27.846278 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:41:27.846289 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:41:27.846305 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.48124 (* 0.0454545 = 0.158238 loss) | |
I0407 16:41:27.846329 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.2511 (* 0.0454545 = 0.147777 loss) | |
I0407 16:41:27.846354 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.57809 (* 0.0454545 = 0.16264 loss) | |
I0407 16:41:27.846369 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.19601 (* 0.0454545 = 0.145273 loss) | |
I0407 16:41:27.846382 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.17378 (* 0.0454545 = 0.144263 loss) | |
I0407 16:41:27.846396 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.48128 (* 0.0454545 = 0.112786 loss) | |
I0407 16:41:27.846410 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.863575 (* 0.0454545 = 0.0392534 loss) | |
I0407 16:41:27.846424 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.807112 (* 0.0454545 = 0.0366869 loss) | |
I0407 16:41:27.846438 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0151156 (* 0.0454545 = 0.000687073 loss) | |
I0407 16:41:27.846452 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.00684207 (* 0.0454545 = 0.000311003 loss) | |
I0407 16:41:27.846467 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000480169 (* 0.0454545 = 2.18259e-05 loss) | |
I0407 16:41:27.846480 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000419156 (* 0.0454545 = 1.90525e-05 loss) | |
I0407 16:41:27.846494 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000412567 (* 0.0454545 = 1.87531e-05 loss) | |
I0407 16:41:27.846508 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000441631 (* 0.0454545 = 2.00741e-05 loss) | |
I0407 16:41:27.846524 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000428365 (* 0.0454545 = 1.94711e-05 loss) | |
I0407 16:41:27.846536 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000484768 (* 0.0454545 = 2.20349e-05 loss) | |
I0407 16:41:27.846551 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000522853 (* 0.0454545 = 2.37661e-05 loss) | |
I0407 16:41:27.846581 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000481629 (* 0.0454545 = 2.18922e-05 loss) | |
I0407 16:41:27.846597 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000397647 (* 0.0454545 = 1.80749e-05 loss) | |
I0407 16:41:27.846611 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000500923 (* 0.0454545 = 2.27692e-05 loss) | |
I0407 16:41:27.846626 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000525984 (* 0.0454545 = 2.39084e-05 loss) | |
I0407 16:41:27.846639 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000432202 (* 0.0454545 = 1.96455e-05 loss) | |
I0407 16:41:27.846652 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:41:27.846663 1004 solver.cpp:245] Train net output #45: total_confidence = 3.29779e-06 | |
I0407 16:41:27.846676 1004 sgd_solver.cpp:106] Iteration 66000, lr = 0.000868 | |
I0407 16:42:07.261538 1004 solver.cpp:229] Iteration 66500, loss = 0.983326 | |
I0407 16:42:07.261674 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:42:07.261695 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 16:42:07.261708 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875 | |
I0407 16:42:07.261720 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 16:42:07.261732 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 16:42:07.261744 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 16:42:07.261756 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 16:42:07.261768 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:42:07.261780 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:42:07.261792 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 16:42:07.261804 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:42:07.261816 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:42:07.261827 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:42:07.261839 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:42:07.261852 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:42:07.261863 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:42:07.261874 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:42:07.261886 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:42:07.261898 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:42:07.261910 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:42:07.261925 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:42:07.261939 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:42:07.261955 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.22733 (* 0.0454545 = 0.146697 loss) | |
I0407 16:42:07.261970 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.56939 (* 0.0454545 = 0.162245 loss) | |
I0407 16:42:07.261983 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.45854 (* 0.0454545 = 0.157206 loss) | |
I0407 16:42:07.261997 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.4058 (* 0.0454545 = 0.154809 loss) | |
I0407 16:42:07.262012 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.35538 (* 0.0454545 = 0.152517 loss) | |
I0407 16:42:07.262024 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.20073 (* 0.0454545 = 0.100033 loss) | |
I0407 16:42:07.262038 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.97875 (* 0.0454545 = 0.0444887 loss) | |
I0407 16:42:07.262053 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.360792 (* 0.0454545 = 0.0163996 loss) | |
I0407 16:42:07.262066 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.376865 (* 0.0454545 = 0.0171302 loss) | |
I0407 16:42:07.262080 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.609295 (* 0.0454545 = 0.0276952 loss) | |
I0407 16:42:07.262095 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000164776 (* 0.0454545 = 7.48981e-06 loss) | |
I0407 16:42:07.262109 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000148451 (* 0.0454545 = 6.74776e-06 loss) | |
I0407 16:42:07.262123 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000144728 (* 0.0454545 = 6.57854e-06 loss) | |
I0407 16:42:07.262137 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000164534 (* 0.0454545 = 7.47881e-06 loss) | |
I0407 16:42:07.262151 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000173926 (* 0.0454545 = 7.90572e-06 loss) | |
I0407 16:42:07.262166 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000172469 (* 0.0454545 = 7.8395e-06 loss) | |
I0407 16:42:07.262181 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000166177 (* 0.0454545 = 7.55352e-06 loss) | |
I0407 16:42:07.262210 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000173833 (* 0.0454545 = 7.9015e-06 loss) | |
I0407 16:42:07.262226 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000179596 (* 0.0454545 = 8.16346e-06 loss) | |
I0407 16:42:07.262240 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000168839 (* 0.0454545 = 7.67451e-06 loss) | |
I0407 16:42:07.262254 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000187071 (* 0.0454545 = 8.50321e-06 loss) | |
I0407 16:42:07.262269 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000195285 (* 0.0454545 = 8.87658e-06 loss) | |
I0407 16:42:07.262280 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:42:07.262292 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000242682 | |
I0407 16:42:07.262307 1004 sgd_solver.cpp:106] Iteration 66500, lr = 0.000867 | |
I0407 16:42:47.489687 1004 solver.cpp:229] Iteration 67000, loss = 0.987158 | |
I0407 16:42:47.489816 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:42:47.489835 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:42:47.489848 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:42:47.489861 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 16:42:47.489873 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0407 16:42:47.489886 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 16:42:47.489897 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 16:42:47.489909 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:42:47.489926 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:42:47.489938 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:42:47.489950 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:42:47.489961 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:42:47.489974 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:42:47.489984 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:42:47.489996 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:42:47.490008 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:42:47.490020 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:42:47.490031 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:42:47.490042 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:42:47.490053 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:42:47.490066 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:42:47.490079 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:42:47.490095 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.71371 (* 0.0454545 = 0.168805 loss) | |
I0407 16:42:47.490110 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.83365 (* 0.0454545 = 0.174257 loss) | |
I0407 16:42:47.490124 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.78567 (* 0.0454545 = 0.172076 loss) | |
I0407 16:42:47.490137 1004 solver.cpp:245] Train net output #25: loss/loss04 = 4.00524 (* 0.0454545 = 0.182056 loss) | |
I0407 16:42:47.490151 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.83326 (* 0.0454545 = 0.174239 loss) | |
I0407 16:42:47.490165 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.01783 (* 0.0454545 = 0.137174 loss) | |
I0407 16:42:47.490180 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.94207 (* 0.0454545 = 0.088276 loss) | |
I0407 16:42:47.490193 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.531304 (* 0.0454545 = 0.0241502 loss) | |
I0407 16:42:47.490207 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0232303 (* 0.0454545 = 0.00105592 loss) | |
I0407 16:42:47.490221 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0111908 (* 0.0454545 = 0.000508671 loss) | |
I0407 16:42:47.490236 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000544018 (* 0.0454545 = 2.47281e-05 loss) | |
I0407 16:42:47.490250 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000479453 (* 0.0454545 = 2.17933e-05 loss) | |
I0407 16:42:47.490264 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000466757 (* 0.0454545 = 2.12162e-05 loss) | |
I0407 16:42:47.490278 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000539559 (* 0.0454545 = 2.45254e-05 loss) | |
I0407 16:42:47.490293 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000519863 (* 0.0454545 = 2.36302e-05 loss) | |
I0407 16:42:47.490308 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000472787 (* 0.0454545 = 2.14903e-05 loss) | |
I0407 16:42:47.490321 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.00054274 (* 0.0454545 = 2.467e-05 loss) | |
I0407 16:42:47.490348 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000520774 (* 0.0454545 = 2.36716e-05 loss) | |
I0407 16:42:47.490363 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000498936 (* 0.0454545 = 2.26789e-05 loss) | |
I0407 16:42:47.490377 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000460697 (* 0.0454545 = 2.09408e-05 loss) | |
I0407 16:42:47.490392 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000507112 (* 0.0454545 = 2.30505e-05 loss) | |
I0407 16:42:47.490406 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000455935 (* 0.0454545 = 2.07243e-05 loss) | |
I0407 16:42:47.490417 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:42:47.490429 1004 solver.cpp:245] Train net output #45: total_confidence = 5.95702e-06 | |
I0407 16:42:47.490442 1004 sgd_solver.cpp:106] Iteration 67000, lr = 0.000866 | |
I0407 16:43:26.774057 1004 solver.cpp:229] Iteration 67500, loss = 0.984098 | |
I0407 16:43:26.774204 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:43:26.774224 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:43:26.774237 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:43:26.774250 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 16:43:26.774261 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 16:43:26.774273 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 16:43:26.774286 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 16:43:26.774297 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 16:43:26.774309 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:43:26.774322 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:43:26.774333 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:43:26.774344 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:43:26.774356 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:43:26.774368 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:43:26.774379 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:43:26.774391 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:43:26.774402 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:43:26.774415 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:43:26.774426 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:43:26.774437 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:43:26.774449 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:43:26.774461 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:43:26.774477 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.56135 (* 0.0454545 = 0.161879 loss) | |
I0407 16:43:26.774490 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.9947 (* 0.0454545 = 0.181578 loss) | |
I0407 16:43:26.774504 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.94002 (* 0.0454545 = 0.179092 loss) | |
I0407 16:43:26.774518 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.95755 (* 0.0454545 = 0.179889 loss) | |
I0407 16:43:26.774533 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.8276 (* 0.0454545 = 0.173982 loss) | |
I0407 16:43:26.774547 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.6489 (* 0.0454545 = 0.120405 loss) | |
I0407 16:43:26.774561 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.31857 (* 0.0454545 = 0.0599348 loss) | |
I0407 16:43:26.774575 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.7945 (* 0.0454545 = 0.0361136 loss) | |
I0407 16:43:26.774588 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.368153 (* 0.0454545 = 0.0167342 loss) | |
I0407 16:43:26.774603 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0146493 (* 0.0454545 = 0.000665878 loss) | |
I0407 16:43:26.774617 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000408842 (* 0.0454545 = 1.85837e-05 loss) | |
I0407 16:43:26.774632 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000343928 (* 0.0454545 = 1.56331e-05 loss) | |
I0407 16:43:26.774646 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.00034485 (* 0.0454545 = 1.5675e-05 loss) | |
I0407 16:43:26.774662 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.00037349 (* 0.0454545 = 1.69768e-05 loss) | |
I0407 16:43:26.774675 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000389883 (* 0.0454545 = 1.7722e-05 loss) | |
I0407 16:43:26.774689 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000369353 (* 0.0454545 = 1.67888e-05 loss) | |
I0407 16:43:26.774704 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000448523 (* 0.0454545 = 2.03874e-05 loss) | |
I0407 16:43:26.774735 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000452177 (* 0.0454545 = 2.05535e-05 loss) | |
I0407 16:43:26.774750 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000374097 (* 0.0454545 = 1.70044e-05 loss) | |
I0407 16:43:26.774765 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000375683 (* 0.0454545 = 1.70765e-05 loss) | |
I0407 16:43:26.774778 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000454098 (* 0.0454545 = 2.06408e-05 loss) | |
I0407 16:43:26.774792 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000380017 (* 0.0454545 = 1.72735e-05 loss) | |
I0407 16:43:26.774804 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:43:26.774816 1004 solver.cpp:245] Train net output #45: total_confidence = 4.88729e-05 | |
I0407 16:43:26.774829 1004 sgd_solver.cpp:106] Iteration 67500, lr = 0.000865 | |
I0407 16:44:05.786052 1004 solver.cpp:229] Iteration 68000, loss = 0.975454 | |
I0407 16:44:05.786157 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 16:44:05.786176 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 16:44:05.786190 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:44:05.786202 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 16:44:05.786214 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 16:44:05.786226 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 16:44:05.786238 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 16:44:05.786250 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 16:44:05.786262 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:44:05.786274 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:44:05.786285 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:44:05.786298 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:44:05.786309 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:44:05.786320 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:44:05.786331 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:44:05.786344 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:44:05.786355 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:44:05.786366 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:44:05.786377 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:44:05.786389 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:44:05.786401 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:44:05.786412 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:44:05.786427 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.81166 (* 0.0454545 = 0.173257 loss) | |
I0407 16:44:05.786442 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.4425 (* 0.0454545 = 0.156477 loss) | |
I0407 16:44:05.786456 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.67447 (* 0.0454545 = 0.167021 loss) | |
I0407 16:44:05.786470 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.95792 (* 0.0454545 = 0.179905 loss) | |
I0407 16:44:05.786484 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.99199 (* 0.0454545 = 0.181454 loss) | |
I0407 16:44:05.786499 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.46541 (* 0.0454545 = 0.112064 loss) | |
I0407 16:44:05.786512 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.78125 (* 0.0454545 = 0.0809658 loss) | |
I0407 16:44:05.786525 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.25353 (* 0.0454545 = 0.0569787 loss) | |
I0407 16:44:05.786540 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0296443 (* 0.0454545 = 0.00134747 loss) | |
I0407 16:44:05.786555 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0128777 (* 0.0454545 = 0.00058535 loss) | |
I0407 16:44:05.786568 1004 solver.cpp:245] Train net output #32: loss/loss11 = 9.21634e-05 (* 0.0454545 = 4.18925e-06 loss) | |
I0407 16:44:05.786583 1004 solver.cpp:245] Train net output #33: loss/loss12 = 6.90323e-05 (* 0.0454545 = 3.13783e-06 loss) | |
I0407 16:44:05.786597 1004 solver.cpp:245] Train net output #34: loss/loss13 = 8.24181e-05 (* 0.0454545 = 3.74628e-06 loss) | |
I0407 16:44:05.786612 1004 solver.cpp:245] Train net output #35: loss/loss14 = 9.01811e-05 (* 0.0454545 = 4.09914e-06 loss) | |
I0407 16:44:05.786625 1004 solver.cpp:245] Train net output #36: loss/loss15 = 9.12806e-05 (* 0.0454545 = 4.14912e-06 loss) | |
I0407 16:44:05.786639 1004 solver.cpp:245] Train net output #37: loss/loss16 = 7.99681e-05 (* 0.0454545 = 3.63491e-06 loss) | |
I0407 16:44:05.786653 1004 solver.cpp:245] Train net output #38: loss/loss17 = 9.3215e-05 (* 0.0454545 = 4.23704e-06 loss) | |
I0407 16:44:05.786684 1004 solver.cpp:245] Train net output #39: loss/loss18 = 9.62554e-05 (* 0.0454545 = 4.37525e-06 loss) | |
I0407 16:44:05.786700 1004 solver.cpp:245] Train net output #40: loss/loss19 = 7.98163e-05 (* 0.0454545 = 3.62801e-06 loss) | |
I0407 16:44:05.786713 1004 solver.cpp:245] Train net output #41: loss/loss20 = 8.6271e-05 (* 0.0454545 = 3.92141e-06 loss) | |
I0407 16:44:05.786728 1004 solver.cpp:245] Train net output #42: loss/loss21 = 9.02412e-05 (* 0.0454545 = 4.10187e-06 loss) | |
I0407 16:44:05.786742 1004 solver.cpp:245] Train net output #43: loss/loss22 = 9.66956e-05 (* 0.0454545 = 4.39526e-06 loss) | |
I0407 16:44:05.786754 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:44:05.786767 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000115648 | |
I0407 16:44:05.786779 1004 sgd_solver.cpp:106] Iteration 68000, lr = 0.000864 | |
I0407 16:44:45.386806 1004 solver.cpp:229] Iteration 68500, loss = 0.984466 | |
I0407 16:44:45.386927 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:44:45.386947 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:44:45.386960 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 16:44:45.386973 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 16:44:45.386986 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0407 16:44:45.386997 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 16:44:45.387009 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.4375 | |
I0407 16:44:45.387022 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.6875 | |
I0407 16:44:45.387034 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:44:45.387047 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:44:45.387058 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:44:45.387069 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:44:45.387080 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:44:45.387092 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:44:45.387104 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:44:45.387115 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:44:45.387126 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:44:45.387138 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:44:45.387150 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:44:45.387161 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:44:45.387172 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:44:45.387183 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:44:45.387199 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.36783 (* 0.0454545 = 0.153083 loss) | |
I0407 16:44:45.387213 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.4958 (* 0.0454545 = 0.1589 loss) | |
I0407 16:44:45.387228 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.36372 (* 0.0454545 = 0.152896 loss) | |
I0407 16:44:45.387241 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.22322 (* 0.0454545 = 0.14651 loss) | |
I0407 16:44:45.387255 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.68578 (* 0.0454545 = 0.167535 loss) | |
I0407 16:44:45.387269 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.02132 (* 0.0454545 = 0.137333 loss) | |
I0407 16:44:45.387284 1004 solver.cpp:245] Train net output #28: loss/loss07 = 2.87355 (* 0.0454545 = 0.130616 loss) | |
I0407 16:44:45.387296 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.7943 (* 0.0454545 = 0.0815593 loss) | |
I0407 16:44:45.387311 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0388893 (* 0.0454545 = 0.00176769 loss) | |
I0407 16:44:45.387341 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0140929 (* 0.0454545 = 0.000640586 loss) | |
I0407 16:44:45.387358 1004 solver.cpp:245] Train net output #32: loss/loss11 = 3.91067e-05 (* 0.0454545 = 1.77758e-06 loss) | |
I0407 16:44:45.387372 1004 solver.cpp:245] Train net output #33: loss/loss12 = 3.48763e-05 (* 0.0454545 = 1.58529e-06 loss) | |
I0407 16:44:45.387387 1004 solver.cpp:245] Train net output #34: loss/loss13 = 3.08104e-05 (* 0.0454545 = 1.40047e-06 loss) | |
I0407 16:44:45.387401 1004 solver.cpp:245] Train net output #35: loss/loss14 = 3.83465e-05 (* 0.0454545 = 1.74302e-06 loss) | |
I0407 16:44:45.387415 1004 solver.cpp:245] Train net output #36: loss/loss15 = 3.88684e-05 (* 0.0454545 = 1.76675e-06 loss) | |
I0407 16:44:45.387429 1004 solver.cpp:245] Train net output #37: loss/loss16 = 3.99976e-05 (* 0.0454545 = 1.81807e-06 loss) | |
I0407 16:44:45.387444 1004 solver.cpp:245] Train net output #38: loss/loss17 = 3.80858e-05 (* 0.0454545 = 1.73117e-06 loss) | |
I0407 16:44:45.387475 1004 solver.cpp:245] Train net output #39: loss/loss18 = 3.78545e-05 (* 0.0454545 = 1.72066e-06 loss) | |
I0407 16:44:45.387491 1004 solver.cpp:245] Train net output #40: loss/loss19 = 3.1854e-05 (* 0.0454545 = 1.44791e-06 loss) | |
I0407 16:44:45.387506 1004 solver.cpp:245] Train net output #41: loss/loss20 = 3.15708e-05 (* 0.0454545 = 1.43504e-06 loss) | |
I0407 16:44:45.387519 1004 solver.cpp:245] Train net output #42: loss/loss21 = 3.93084e-05 (* 0.0454545 = 1.78674e-06 loss) | |
I0407 16:44:45.387533 1004 solver.cpp:245] Train net output #43: loss/loss22 = 3.53908e-05 (* 0.0454545 = 1.60867e-06 loss) | |
I0407 16:44:45.387545 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:44:45.387557 1004 solver.cpp:245] Train net output #45: total_confidence = 9.40113e-05 | |
I0407 16:44:45.387570 1004 sgd_solver.cpp:106] Iteration 68500, lr = 0.000863 | |
I0407 16:45:24.637388 1004 solver.cpp:229] Iteration 69000, loss = 0.985722 | |
I0407 16:45:24.637650 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 16:45:24.637670 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:45:24.637683 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:45:24.637696 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 16:45:24.637708 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 16:45:24.637720 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 16:45:24.637732 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.9375 | |
I0407 16:45:24.637744 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 16:45:24.637756 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:45:24.637768 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:45:24.637779 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:45:24.637791 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:45:24.637802 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:45:24.637814 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:45:24.637826 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:45:24.637837 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:45:24.637850 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:45:24.637861 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:45:24.637872 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:45:24.637883 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:45:24.637895 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:45:24.637907 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:45:24.637925 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.29199 (* 0.0454545 = 0.149636 loss) | |
I0407 16:45:24.637940 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.41292 (* 0.0454545 = 0.155133 loss) | |
I0407 16:45:24.637954 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.60354 (* 0.0454545 = 0.163797 loss) | |
I0407 16:45:24.637969 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.17367 (* 0.0454545 = 0.144258 loss) | |
I0407 16:45:24.637981 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.32073 (* 0.0454545 = 0.150942 loss) | |
I0407 16:45:24.637995 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.1574 (* 0.0454545 = 0.143518 loss) | |
I0407 16:45:24.638010 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.542803 (* 0.0454545 = 0.0246729 loss) | |
I0407 16:45:24.638023 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.0833006 (* 0.0454545 = 0.00378639 loss) | |
I0407 16:45:24.638037 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0290713 (* 0.0454545 = 0.00132142 loss) | |
I0407 16:45:24.638051 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0115152 (* 0.0454545 = 0.000523417 loss) | |
I0407 16:45:24.638065 1004 solver.cpp:245] Train net output #32: loss/loss11 = 1.6985e-05 (* 0.0454545 = 7.72046e-07 loss) | |
I0407 16:45:24.638079 1004 solver.cpp:245] Train net output #33: loss/loss12 = 1.36765e-05 (* 0.0454545 = 6.21659e-07 loss) | |
I0407 16:45:24.638093 1004 solver.cpp:245] Train net output #34: loss/loss13 = 1.29574e-05 (* 0.0454545 = 5.88972e-07 loss) | |
I0407 16:45:24.638108 1004 solver.cpp:245] Train net output #35: loss/loss14 = 1.22643e-05 (* 0.0454545 = 5.5747e-07 loss) | |
I0407 16:45:24.638121 1004 solver.cpp:245] Train net output #36: loss/loss15 = 1.27711e-05 (* 0.0454545 = 5.80503e-07 loss) | |
I0407 16:45:24.638135 1004 solver.cpp:245] Train net output #37: loss/loss16 = 1.39224e-05 (* 0.0454545 = 6.32835e-07 loss) | |
I0407 16:45:24.638150 1004 solver.cpp:245] Train net output #38: loss/loss17 = 1.29648e-05 (* 0.0454545 = 5.89308e-07 loss) | |
I0407 16:45:24.638178 1004 solver.cpp:245] Train net output #39: loss/loss18 = 1.44514e-05 (* 0.0454545 = 6.56883e-07 loss) | |
I0407 16:45:24.638193 1004 solver.cpp:245] Train net output #40: loss/loss19 = 1.13255e-05 (* 0.0454545 = 5.14794e-07 loss) | |
I0407 16:45:24.638207 1004 solver.cpp:245] Train net output #41: loss/loss20 = 1.2093e-05 (* 0.0454545 = 5.49684e-07 loss) | |
I0407 16:45:24.638221 1004 solver.cpp:245] Train net output #42: loss/loss21 = 1.21228e-05 (* 0.0454545 = 5.51035e-07 loss) | |
I0407 16:45:24.638236 1004 solver.cpp:245] Train net output #43: loss/loss22 = 1.31437e-05 (* 0.0454545 = 5.97439e-07 loss) | |
I0407 16:45:24.638247 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:45:24.638258 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000216036 | |
I0407 16:45:24.638272 1004 sgd_solver.cpp:106] Iteration 69000, lr = 0.000862 | |
I0407 16:46:04.116844 1004 solver.cpp:229] Iteration 69500, loss = 0.987112 | |
I0407 16:46:04.116950 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0407 16:46:04.116969 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:46:04.116983 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:46:04.116996 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 16:46:04.117007 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 16:46:04.117019 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 16:46:04.117032 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 16:46:04.117043 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 16:46:04.117055 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:46:04.117068 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:46:04.117081 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:46:04.117094 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:46:04.117105 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:46:04.117117 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:46:04.117130 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:46:04.117141 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:46:04.117152 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:46:04.117163 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:46:04.117175 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:46:04.117187 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:46:04.117197 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:46:04.117209 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:46:04.117225 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.51719 (* 0.0454545 = 0.159872 loss) | |
I0407 16:46:04.117239 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.98629 (* 0.0454545 = 0.181195 loss) | |
I0407 16:46:04.117254 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.9516 (* 0.0454545 = 0.179618 loss) | |
I0407 16:46:04.117267 1004 solver.cpp:245] Train net output #25: loss/loss04 = 4.20139 (* 0.0454545 = 0.190972 loss) | |
I0407 16:46:04.117281 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.56748 (* 0.0454545 = 0.162158 loss) | |
I0407 16:46:04.117295 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.47257 (* 0.0454545 = 0.11239 loss) | |
I0407 16:46:04.117308 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.09127 (* 0.0454545 = 0.0496033 loss) | |
I0407 16:46:04.117322 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.665086 (* 0.0454545 = 0.0302312 loss) | |
I0407 16:46:04.117336 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0217572 (* 0.0454545 = 0.000988962 loss) | |
I0407 16:46:04.117350 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.00825213 (* 0.0454545 = 0.000375097 loss) | |
I0407 16:46:04.117365 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000356817 (* 0.0454545 = 1.6219e-05 loss) | |
I0407 16:46:04.117379 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000292235 (* 0.0454545 = 1.32834e-05 loss) | |
I0407 16:46:04.117393 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000286858 (* 0.0454545 = 1.3039e-05 loss) | |
I0407 16:46:04.117408 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000310597 (* 0.0454545 = 1.4118e-05 loss) | |
I0407 16:46:04.117422 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000349337 (* 0.0454545 = 1.5879e-05 loss) | |
I0407 16:46:04.117436 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000324802 (* 0.0454545 = 1.47637e-05 loss) | |
I0407 16:46:04.117450 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000340583 (* 0.0454545 = 1.54811e-05 loss) | |
I0407 16:46:04.117482 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000339137 (* 0.0454545 = 1.54153e-05 loss) | |
I0407 16:46:04.117498 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000320974 (* 0.0454545 = 1.45897e-05 loss) | |
I0407 16:46:04.117512 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000316893 (* 0.0454545 = 1.44042e-05 loss) | |
I0407 16:46:04.117527 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00034437 (* 0.0454545 = 1.56532e-05 loss) | |
I0407 16:46:04.117540 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000345477 (* 0.0454545 = 1.57035e-05 loss) | |
I0407 16:46:04.117552 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:46:04.117563 1004 solver.cpp:245] Train net output #45: total_confidence = 2.4211e-05 | |
I0407 16:46:04.117578 1004 sgd_solver.cpp:106] Iteration 69500, lr = 0.000861 | |
I0407 16:46:44.526106 1004 solver.cpp:338] Iteration 70000, Testing net (#0) | |
I0407 16:46:52.460484 1004 solver.cpp:393] Test loss: 0.888049 | |
I0407 16:46:52.460530 1004 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.324 | |
I0407 16:46:52.460546 1004 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.113 | |
I0407 16:46:52.460558 1004 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.072 | |
I0407 16:46:52.460571 1004 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.087 | |
I0407 16:46:52.460582 1004 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.203 | |
I0407 16:46:52.460594 1004 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.493 | |
I0407 16:46:52.460605 1004 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.893 | |
I0407 16:46:52.460618 1004 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 16:46:52.460628 1004 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 16:46:52.460639 1004 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 16:46:52.460651 1004 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 16:46:52.460662 1004 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 16:46:52.460674 1004 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 16:46:52.460685 1004 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 16:46:52.460695 1004 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 16:46:52.460706 1004 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 16:46:52.460717 1004 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 16:46:52.460728 1004 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 16:46:52.460739 1004 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 16:46:52.460752 1004 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 16:46:52.460763 1004 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 16:46:52.460774 1004 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 16:46:52.460789 1004 solver.cpp:406] Test net output #22: loss/loss01 = 3.08629 (* 0.0454545 = 0.140286 loss) | |
I0407 16:46:52.460803 1004 solver.cpp:406] Test net output #23: loss/loss02 = 3.22897 (* 0.0454545 = 0.146771 loss) | |
I0407 16:46:52.460818 1004 solver.cpp:406] Test net output #24: loss/loss03 = 3.35784 (* 0.0454545 = 0.152629 loss) | |
I0407 16:46:52.460831 1004 solver.cpp:406] Test net output #25: loss/loss04 = 3.2942 (* 0.0454545 = 0.149737 loss) | |
I0407 16:46:52.460844 1004 solver.cpp:406] Test net output #26: loss/loss05 = 3.2085 (* 0.0454545 = 0.145841 loss) | |
I0407 16:46:52.460858 1004 solver.cpp:406] Test net output #27: loss/loss06 = 2.27187 (* 0.0454545 = 0.103267 loss) | |
I0407 16:46:52.460871 1004 solver.cpp:406] Test net output #28: loss/loss07 = 0.741074 (* 0.0454545 = 0.0336852 loss) | |
I0407 16:46:52.460886 1004 solver.cpp:406] Test net output #29: loss/loss08 = 0.255635 (* 0.0454545 = 0.0116198 loss) | |
I0407 16:46:52.460899 1004 solver.cpp:406] Test net output #30: loss/loss09 = 0.0592638 (* 0.0454545 = 0.00269381 loss) | |
I0407 16:46:52.460913 1004 solver.cpp:406] Test net output #31: loss/loss10 = 0.030532 (* 0.0454545 = 0.00138782 loss) | |
I0407 16:46:52.460927 1004 solver.cpp:406] Test net output #32: loss/loss11 = 0.000261337 (* 0.0454545 = 1.18789e-05 loss) | |
I0407 16:46:52.460942 1004 solver.cpp:406] Test net output #33: loss/loss12 = 0.000231779 (* 0.0454545 = 1.05354e-05 loss) | |
I0407 16:46:52.460955 1004 solver.cpp:406] Test net output #34: loss/loss13 = 0.000231865 (* 0.0454545 = 1.05393e-05 loss) | |
I0407 16:46:52.460969 1004 solver.cpp:406] Test net output #35: loss/loss14 = 0.000244735 (* 0.0454545 = 1.11243e-05 loss) | |
I0407 16:46:52.460988 1004 solver.cpp:406] Test net output #36: loss/loss15 = 0.000248162 (* 0.0454545 = 1.12801e-05 loss) | |
I0407 16:46:52.461001 1004 solver.cpp:406] Test net output #37: loss/loss16 = 0.000225716 (* 0.0454545 = 1.02598e-05 loss) | |
I0407 16:46:52.461015 1004 solver.cpp:406] Test net output #38: loss/loss17 = 0.000253076 (* 0.0454545 = 1.15034e-05 loss) | |
I0407 16:46:52.461066 1004 solver.cpp:406] Test net output #39: loss/loss18 = 0.000268342 (* 0.0454545 = 1.21974e-05 loss) | |
I0407 16:46:52.461081 1004 solver.cpp:406] Test net output #40: loss/loss19 = 0.000233735 (* 0.0454545 = 1.06243e-05 loss) | |
I0407 16:46:52.461094 1004 solver.cpp:406] Test net output #41: loss/loss20 = 0.000229244 (* 0.0454545 = 1.04202e-05 loss) | |
I0407 16:46:52.461107 1004 solver.cpp:406] Test net output #42: loss/loss21 = 0.000250655 (* 0.0454545 = 1.13934e-05 loss) | |
I0407 16:46:52.461122 1004 solver.cpp:406] Test net output #43: loss/loss22 = 0.000233167 (* 0.0454545 = 1.05985e-05 loss) | |
I0407 16:46:52.461133 1004 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0407 16:46:52.461144 1004 solver.cpp:406] Test net output #45: total_confidence = 0.000117004 | |
I0407 16:46:52.483754 1004 solver.cpp:229] Iteration 70000, loss = 0.984851 | |
I0407 16:46:52.483799 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0407 16:46:52.483815 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:46:52.483829 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 16:46:52.483841 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 16:46:52.483857 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.375 | |
I0407 16:46:52.483870 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 16:46:52.483881 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 16:46:52.483896 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:46:52.483914 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:46:52.483927 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:46:52.483938 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:46:52.483949 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:46:52.483961 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:46:52.483973 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:46:52.483984 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:46:52.483995 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:46:52.484006 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:46:52.484019 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:46:52.484031 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:46:52.484042 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:46:52.484053 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:46:52.484066 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:46:52.484082 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.65235 (* 0.0454545 = 0.166016 loss) | |
I0407 16:46:52.484097 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.78133 (* 0.0454545 = 0.171879 loss) | |
I0407 16:46:52.484110 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.79312 (* 0.0454545 = 0.172415 loss) | |
I0407 16:46:52.484124 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.5548 (* 0.0454545 = 0.161582 loss) | |
I0407 16:46:52.484138 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.06015 (* 0.0454545 = 0.139098 loss) | |
I0407 16:46:52.484151 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.46314 (* 0.0454545 = 0.111961 loss) | |
I0407 16:46:52.484165 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.50087 (* 0.0454545 = 0.0682213 loss) | |
I0407 16:46:52.484179 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.914252 (* 0.0454545 = 0.0415569 loss) | |
I0407 16:46:52.484194 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0864355 (* 0.0454545 = 0.00392889 loss) | |
I0407 16:46:52.484207 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0326498 (* 0.0454545 = 0.00148408 loss) | |
I0407 16:46:52.484239 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000151755 (* 0.0454545 = 6.89796e-06 loss) | |
I0407 16:46:52.484254 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000152871 (* 0.0454545 = 6.94868e-06 loss) | |
I0407 16:46:52.484268 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000142879 (* 0.0454545 = 6.4945e-06 loss) | |
I0407 16:46:52.484283 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000169099 (* 0.0454545 = 7.68633e-06 loss) | |
I0407 16:46:52.484297 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000169297 (* 0.0454545 = 7.6953e-06 loss) | |
I0407 16:46:52.484310 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000145471 (* 0.0454545 = 6.61231e-06 loss) | |
I0407 16:46:52.484324 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000160957 (* 0.0454545 = 7.31624e-06 loss) | |
I0407 16:46:52.484338 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000170365 (* 0.0454545 = 7.74384e-06 loss) | |
I0407 16:46:52.484352 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000146848 (* 0.0454545 = 6.67492e-06 loss) | |
I0407 16:46:52.484366 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000147107 (* 0.0454545 = 6.68668e-06 loss) | |
I0407 16:46:52.484380 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.0001544 (* 0.0454545 = 7.0182e-06 loss) | |
I0407 16:46:52.484395 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000143109 (* 0.0454545 = 6.50493e-06 loss) | |
I0407 16:46:52.484406 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:46:52.484417 1004 solver.cpp:245] Train net output #45: total_confidence = 4.78303e-05 | |
I0407 16:46:52.484432 1004 sgd_solver.cpp:106] Iteration 70000, lr = 0.00086 | |
I0407 16:47:31.608580 1004 solver.cpp:229] Iteration 70500, loss = 0.986425 | |
I0407 16:47:31.608758 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:47:31.608779 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:47:31.608793 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:47:31.608805 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 16:47:31.608817 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 16:47:31.608829 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 16:47:31.608841 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 16:47:31.608853 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 16:47:31.608865 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0407 16:47:31.608876 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 16:47:31.608888 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:47:31.608901 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:47:31.608911 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:47:31.608923 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:47:31.608934 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:47:31.608947 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:47:31.608958 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:47:31.608969 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:47:31.608980 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:47:31.608991 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:47:31.609004 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:47:31.609014 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:47:31.609030 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.94627 (* 0.0454545 = 0.179376 loss) | |
I0407 16:47:31.609045 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.86089 (* 0.0454545 = 0.175495 loss) | |
I0407 16:47:31.609058 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.98279 (* 0.0454545 = 0.181036 loss) | |
I0407 16:47:31.609076 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.83832 (* 0.0454545 = 0.174469 loss) | |
I0407 16:47:31.609091 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.74897 (* 0.0454545 = 0.170408 loss) | |
I0407 16:47:31.609104 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.21764 (* 0.0454545 = 0.146256 loss) | |
I0407 16:47:31.609118 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.90324 (* 0.0454545 = 0.0865107 loss) | |
I0407 16:47:31.609132 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.42332 (* 0.0454545 = 0.0646963 loss) | |
I0407 16:47:31.609145 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.914857 (* 0.0454545 = 0.0415844 loss) | |
I0407 16:47:31.609158 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.634297 (* 0.0454545 = 0.0288317 loss) | |
I0407 16:47:31.609174 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000577601 (* 0.0454545 = 2.62546e-05 loss) | |
I0407 16:47:31.609187 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00054958 (* 0.0454545 = 2.49809e-05 loss) | |
I0407 16:47:31.609201 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000487632 (* 0.0454545 = 2.21651e-05 loss) | |
I0407 16:47:31.609215 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000507819 (* 0.0454545 = 2.30827e-05 loss) | |
I0407 16:47:31.609230 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000518771 (* 0.0454545 = 2.35805e-05 loss) | |
I0407 16:47:31.609246 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000492006 (* 0.0454545 = 2.23639e-05 loss) | |
I0407 16:47:31.609272 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000564126 (* 0.0454545 = 2.56421e-05 loss) | |
I0407 16:47:31.609308 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000497806 (* 0.0454545 = 2.26275e-05 loss) | |
I0407 16:47:31.609324 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00054782 (* 0.0454545 = 2.49009e-05 loss) | |
I0407 16:47:31.609338 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.00050767 (* 0.0454545 = 2.30759e-05 loss) | |
I0407 16:47:31.609352 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000515307 (* 0.0454545 = 2.34231e-05 loss) | |
I0407 16:47:31.609370 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000485694 (* 0.0454545 = 2.2077e-05 loss) | |
I0407 16:47:31.609383 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:47:31.609395 1004 solver.cpp:245] Train net output #45: total_confidence = 1.61228e-06 | |
I0407 16:47:31.609410 1004 sgd_solver.cpp:106] Iteration 70500, lr = 0.000859 | |
I0407 16:48:10.825930 1004 solver.cpp:229] Iteration 71000, loss = 0.977451 | |
I0407 16:48:10.826061 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:48:10.826079 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 16:48:10.826092 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:48:10.826104 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 16:48:10.826117 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 16:48:10.826128 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 16:48:10.826140 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 16:48:10.826151 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:48:10.826164 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:48:10.826175 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 16:48:10.826186 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:48:10.826198 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:48:10.826210 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:48:10.826221 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:48:10.826232 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:48:10.826244 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:48:10.826256 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:48:10.826267 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:48:10.826279 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:48:10.826290 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:48:10.826302 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:48:10.826313 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:48:10.826329 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.02945 (* 0.0454545 = 0.137702 loss) | |
I0407 16:48:10.826344 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.45144 (* 0.0454545 = 0.156884 loss) | |
I0407 16:48:10.826359 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.55654 (* 0.0454545 = 0.161661 loss) | |
I0407 16:48:10.826372 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.32121 (* 0.0454545 = 0.150964 loss) | |
I0407 16:48:10.826386 1004 solver.cpp:245] Train net output #26: loss/loss05 = 2.98084 (* 0.0454545 = 0.135493 loss) | |
I0407 16:48:10.826400 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.5713 (* 0.0454545 = 0.116877 loss) | |
I0407 16:48:10.826414 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.3652 (* 0.0454545 = 0.0620545 loss) | |
I0407 16:48:10.826428 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.388642 (* 0.0454545 = 0.0176656 loss) | |
I0407 16:48:10.826442 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.366757 (* 0.0454545 = 0.0166708 loss) | |
I0407 16:48:10.826457 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.40284 (* 0.0454545 = 0.0183109 loss) | |
I0407 16:48:10.826470 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000447545 (* 0.0454545 = 2.03429e-05 loss) | |
I0407 16:48:10.826484 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00039289 (* 0.0454545 = 1.78587e-05 loss) | |
I0407 16:48:10.826498 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000400319 (* 0.0454545 = 1.81963e-05 loss) | |
I0407 16:48:10.826513 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000447868 (* 0.0454545 = 2.03576e-05 loss) | |
I0407 16:48:10.826526 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000523369 (* 0.0454545 = 2.37895e-05 loss) | |
I0407 16:48:10.826540 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000418314 (* 0.0454545 = 1.90143e-05 loss) | |
I0407 16:48:10.826555 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000490725 (* 0.0454545 = 2.23057e-05 loss) | |
I0407 16:48:10.826586 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000496548 (* 0.0454545 = 2.25704e-05 loss) | |
I0407 16:48:10.826601 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000410911 (* 0.0454545 = 1.86778e-05 loss) | |
I0407 16:48:10.826616 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000415842 (* 0.0454545 = 1.89019e-05 loss) | |
I0407 16:48:10.826629 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00046412 (* 0.0454545 = 2.10964e-05 loss) | |
I0407 16:48:10.826643 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000501945 (* 0.0454545 = 2.28157e-05 loss) | |
I0407 16:48:10.826655 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:48:10.826668 1004 solver.cpp:245] Train net output #45: total_confidence = 7.57177e-05 | |
I0407 16:48:10.826680 1004 sgd_solver.cpp:106] Iteration 71000, lr = 0.000858 | |
I0407 16:48:50.238384 1004 solver.cpp:229] Iteration 71500, loss = 0.979026 | |
I0407 16:48:50.238504 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0407 16:48:50.238524 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:48:50.238538 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:48:50.238550 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.25 | |
I0407 16:48:50.238562 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 16:48:50.238575 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 16:48:50.238587 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 16:48:50.238600 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:48:50.238610 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:48:50.238622 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:48:50.238634 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:48:50.238646 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:48:50.238656 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:48:50.238668 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:48:50.238679 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:48:50.238692 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:48:50.238703 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:48:50.238713 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:48:50.238725 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:48:50.238736 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:48:50.238747 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:48:50.238759 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:48:50.238775 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.07358 (* 0.0454545 = 0.139708 loss) | |
I0407 16:48:50.238790 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.48504 (* 0.0454545 = 0.158411 loss) | |
I0407 16:48:50.238802 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.52541 (* 0.0454545 = 0.160246 loss) | |
I0407 16:48:50.238816 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.41413 (* 0.0454545 = 0.155188 loss) | |
I0407 16:48:50.238831 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.01739 (* 0.0454545 = 0.137154 loss) | |
I0407 16:48:50.238844 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.60458 (* 0.0454545 = 0.11839 loss) | |
I0407 16:48:50.238857 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.29621 (* 0.0454545 = 0.0589185 loss) | |
I0407 16:48:50.238872 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.357785 (* 0.0454545 = 0.0162629 loss) | |
I0407 16:48:50.238885 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.324984 (* 0.0454545 = 0.014772 loss) | |
I0407 16:48:50.238899 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0168442 (* 0.0454545 = 0.000765647 loss) | |
I0407 16:48:50.238914 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000170972 (* 0.0454545 = 7.77144e-06 loss) | |
I0407 16:48:50.238931 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000176552 (* 0.0454545 = 8.02508e-06 loss) | |
I0407 16:48:50.238945 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000150282 (* 0.0454545 = 6.83098e-06 loss) | |
I0407 16:48:50.238960 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000156381 (* 0.0454545 = 7.10821e-06 loss) | |
I0407 16:48:50.238973 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000157039 (* 0.0454545 = 7.13813e-06 loss) | |
I0407 16:48:50.238987 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000144512 (* 0.0454545 = 6.56873e-06 loss) | |
I0407 16:48:50.239002 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000156181 (* 0.0454545 = 7.09913e-06 loss) | |
I0407 16:48:50.239033 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000149532 (* 0.0454545 = 6.7969e-06 loss) | |
I0407 16:48:50.239048 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000153139 (* 0.0454545 = 6.96086e-06 loss) | |
I0407 16:48:50.239063 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000151169 (* 0.0454545 = 6.87133e-06 loss) | |
I0407 16:48:50.239076 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000140532 (* 0.0454545 = 6.38781e-06 loss) | |
I0407 16:48:50.239090 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000152275 (* 0.0454545 = 6.92159e-06 loss) | |
I0407 16:48:50.239102 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:48:50.239114 1004 solver.cpp:245] Train net output #45: total_confidence = 9.18186e-05 | |
I0407 16:48:50.239127 1004 sgd_solver.cpp:106] Iteration 71500, lr = 0.000857 | |
I0407 16:49:29.120764 1004 solver.cpp:229] Iteration 72000, loss = 0.980921 | |
I0407 16:49:29.120896 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:49:29.120915 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:49:29.120931 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:49:29.120944 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 16:49:29.120956 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 16:49:29.120968 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 16:49:29.120980 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 16:49:29.120991 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.75 | |
I0407 16:49:29.121003 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:49:29.121016 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:49:29.121026 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:49:29.121038 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:49:29.121049 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:49:29.121062 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:49:29.121073 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:49:29.121084 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:49:29.121095 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:49:29.121106 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:49:29.121119 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:49:29.121130 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:49:29.121141 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:49:29.121153 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:49:29.121168 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.23398 (* 0.0454545 = 0.146999 loss) | |
I0407 16:49:29.121183 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.70162 (* 0.0454545 = 0.168255 loss) | |
I0407 16:49:29.121197 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.35333 (* 0.0454545 = 0.152424 loss) | |
I0407 16:49:29.121212 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.65973 (* 0.0454545 = 0.166351 loss) | |
I0407 16:49:29.121224 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.05036 (* 0.0454545 = 0.138653 loss) | |
I0407 16:49:29.121239 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.82331 (* 0.0454545 = 0.128332 loss) | |
I0407 16:49:29.121253 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.20128 (* 0.0454545 = 0.0546037 loss) | |
I0407 16:49:29.121266 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.18057 (* 0.0454545 = 0.0536623 loss) | |
I0407 16:49:29.121280 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0609495 (* 0.0454545 = 0.00277043 loss) | |
I0407 16:49:29.121294 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0220405 (* 0.0454545 = 0.00100184 loss) | |
I0407 16:49:29.121309 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000248922 (* 0.0454545 = 1.13147e-05 loss) | |
I0407 16:49:29.121322 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000216684 (* 0.0454545 = 9.8493e-06 loss) | |
I0407 16:49:29.121337 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000218962 (* 0.0454545 = 9.95283e-06 loss) | |
I0407 16:49:29.121351 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000257867 (* 0.0454545 = 1.17212e-05 loss) | |
I0407 16:49:29.121366 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000206989 (* 0.0454545 = 9.40857e-06 loss) | |
I0407 16:49:29.121379 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000193074 (* 0.0454545 = 8.77609e-06 loss) | |
I0407 16:49:29.121393 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000232728 (* 0.0454545 = 1.05785e-05 loss) | |
I0407 16:49:29.121424 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000227041 (* 0.0454545 = 1.032e-05 loss) | |
I0407 16:49:29.121440 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000213602 (* 0.0454545 = 9.7092e-06 loss) | |
I0407 16:49:29.121454 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000200485 (* 0.0454545 = 9.11295e-06 loss) | |
I0407 16:49:29.121469 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000218741 (* 0.0454545 = 9.94278e-06 loss) | |
I0407 16:49:29.121482 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000197279 (* 0.0454545 = 8.96725e-06 loss) | |
I0407 16:49:29.121495 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:49:29.121506 1004 solver.cpp:245] Train net output #45: total_confidence = 8.21621e-06 | |
I0407 16:49:29.121520 1004 sgd_solver.cpp:106] Iteration 72000, lr = 0.000856 | |
I0407 16:50:08.040314 1004 solver.cpp:229] Iteration 72500, loss = 0.979003 | |
I0407 16:50:08.040472 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0407 16:50:08.040503 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:50:08.040529 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:50:08.040544 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.25 | |
I0407 16:50:08.040557 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.4375 | |
I0407 16:50:08.040570 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625 | |
I0407 16:50:08.040581 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 16:50:08.040593 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 16:50:08.040606 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:50:08.040616 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:50:08.040628 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:50:08.040639 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:50:08.040652 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:50:08.040663 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:50:08.040673 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:50:08.040684 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:50:08.040696 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:50:08.040707 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:50:08.040719 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:50:08.040730 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:50:08.040741 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:50:08.040753 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:50:08.040768 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.08177 (* 0.0454545 = 0.140081 loss) | |
I0407 16:50:08.040783 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.30651 (* 0.0454545 = 0.150296 loss) | |
I0407 16:50:08.040797 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.4273 (* 0.0454545 = 0.155786 loss) | |
I0407 16:50:08.040812 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.10579 (* 0.0454545 = 0.141172 loss) | |
I0407 16:50:08.040825 1004 solver.cpp:245] Train net output #26: loss/loss05 = 2.41054 (* 0.0454545 = 0.10957 loss) | |
I0407 16:50:08.040839 1004 solver.cpp:245] Train net output #27: loss/loss06 = 1.88966 (* 0.0454545 = 0.0858938 loss) | |
I0407 16:50:08.040853 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.16186 (* 0.0454545 = 0.052812 loss) | |
I0407 16:50:08.040868 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.664698 (* 0.0454545 = 0.0302135 loss) | |
I0407 16:50:08.040881 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0421667 (* 0.0454545 = 0.00191667 loss) | |
I0407 16:50:08.040895 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0140516 (* 0.0454545 = 0.00063871 loss) | |
I0407 16:50:08.040910 1004 solver.cpp:245] Train net output #32: loss/loss11 = 1.05728e-05 (* 0.0454545 = 4.80582e-07 loss) | |
I0407 16:50:08.040927 1004 solver.cpp:245] Train net output #33: loss/loss12 = 9.64884e-06 (* 0.0454545 = 4.38584e-07 loss) | |
I0407 16:50:08.040942 1004 solver.cpp:245] Train net output #34: loss/loss13 = 8.8516e-06 (* 0.0454545 = 4.02346e-07 loss) | |
I0407 16:50:08.040956 1004 solver.cpp:245] Train net output #35: loss/loss14 = 8.38218e-06 (* 0.0454545 = 3.81008e-07 loss) | |
I0407 16:50:08.040971 1004 solver.cpp:245] Train net output #36: loss/loss15 = 7.39864e-06 (* 0.0454545 = 3.36302e-07 loss) | |
I0407 16:50:08.040984 1004 solver.cpp:245] Train net output #37: loss/loss16 = 7.06333e-06 (* 0.0454545 = 3.21061e-07 loss) | |
I0407 16:50:08.040998 1004 solver.cpp:245] Train net output #38: loss/loss17 = 7.84569e-06 (* 0.0454545 = 3.56622e-07 loss) | |
I0407 16:50:08.041026 1004 solver.cpp:245] Train net output #39: loss/loss18 = 7.33158e-06 (* 0.0454545 = 3.33253e-07 loss) | |
I0407 16:50:08.041043 1004 solver.cpp:245] Train net output #40: loss/loss19 = 7.17509e-06 (* 0.0454545 = 3.26141e-07 loss) | |
I0407 16:50:08.041056 1004 solver.cpp:245] Train net output #41: loss/loss20 = 6.75039e-06 (* 0.0454545 = 3.06836e-07 loss) | |
I0407 16:50:08.041070 1004 solver.cpp:245] Train net output #42: loss/loss21 = 6.04254e-06 (* 0.0454545 = 2.74661e-07 loss) | |
I0407 16:50:08.041085 1004 solver.cpp:245] Train net output #43: loss/loss22 = 7.56256e-06 (* 0.0454545 = 3.43753e-07 loss) | |
I0407 16:50:08.041096 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:50:08.041107 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000355686 | |
I0407 16:50:08.041121 1004 sgd_solver.cpp:106] Iteration 72500, lr = 0.000855 | |
I0407 16:50:46.850499 1004 solver.cpp:229] Iteration 73000, loss = 0.977415 | |
I0407 16:50:46.850635 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:50:46.850654 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:50:46.850667 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 16:50:46.850679 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 16:50:46.850692 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 16:50:46.850704 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.1875 | |
I0407 16:50:46.850716 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.5625 | |
I0407 16:50:46.850728 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:50:46.850740 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:50:46.850752 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 16:50:46.850764 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:50:46.850775 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:50:46.850787 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:50:46.850798 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:50:46.850810 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:50:46.850821 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:50:46.850832 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:50:46.850844 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:50:46.850855 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:50:46.850867 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:50:46.850878 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:50:46.850889 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:50:46.850905 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.29575 (* 0.0454545 = 0.149807 loss) | |
I0407 16:50:46.850922 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.52597 (* 0.0454545 = 0.160271 loss) | |
I0407 16:50:46.850936 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.65502 (* 0.0454545 = 0.166137 loss) | |
I0407 16:50:46.850950 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.47927 (* 0.0454545 = 0.158149 loss) | |
I0407 16:50:46.850965 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.5341 (* 0.0454545 = 0.160641 loss) | |
I0407 16:50:46.850978 1004 solver.cpp:245] Train net output #27: loss/loss06 = 3.30494 (* 0.0454545 = 0.150224 loss) | |
I0407 16:50:46.850992 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.95541 (* 0.0454545 = 0.0888825 loss) | |
I0407 16:50:46.851006 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.394707 (* 0.0454545 = 0.0179412 loss) | |
I0407 16:50:46.851019 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.347627 (* 0.0454545 = 0.0158012 loss) | |
I0407 16:50:46.851033 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.378202 (* 0.0454545 = 0.017191 loss) | |
I0407 16:50:46.851047 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000640229 (* 0.0454545 = 2.91013e-05 loss) | |
I0407 16:50:46.851063 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000656042 (* 0.0454545 = 2.98201e-05 loss) | |
I0407 16:50:46.851076 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000610506 (* 0.0454545 = 2.77503e-05 loss) | |
I0407 16:50:46.851090 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000618314 (* 0.0454545 = 2.81052e-05 loss) | |
I0407 16:50:46.851104 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000642292 (* 0.0454545 = 2.91951e-05 loss) | |
I0407 16:50:46.851119 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000571178 (* 0.0454545 = 2.59626e-05 loss) | |
I0407 16:50:46.851132 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000630771 (* 0.0454545 = 2.86714e-05 loss) | |
I0407 16:50:46.851164 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000605655 (* 0.0454545 = 2.75298e-05 loss) | |
I0407 16:50:46.851179 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000594065 (* 0.0454545 = 2.7003e-05 loss) | |
I0407 16:50:46.851193 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000621346 (* 0.0454545 = 2.8243e-05 loss) | |
I0407 16:50:46.851208 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000590971 (* 0.0454545 = 2.68623e-05 loss) | |
I0407 16:50:46.851222 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000573608 (* 0.0454545 = 2.60731e-05 loss) | |
I0407 16:50:46.851234 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:50:46.851245 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000204375 | |
I0407 16:50:46.851258 1004 sgd_solver.cpp:106] Iteration 73000, lr = 0.000854 | |
I0407 16:51:26.333524 1004 solver.cpp:229] Iteration 73500, loss = 0.975353 | |
I0407 16:51:26.333660 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:51:26.333680 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:51:26.333693 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:51:26.333706 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.25 | |
I0407 16:51:26.333719 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.4375 | |
I0407 16:51:26.333730 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 16:51:26.333742 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 16:51:26.333753 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:51:26.333765 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:51:26.333777 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:51:26.333789 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:51:26.333801 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:51:26.333812 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:51:26.333823 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:51:26.333834 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:51:26.333847 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:51:26.333858 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:51:26.333869 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:51:26.333880 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:51:26.333892 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:51:26.333904 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:51:26.333915 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:51:26.333935 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.14345 (* 0.0454545 = 0.142884 loss) | |
I0407 16:51:26.333950 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.36889 (* 0.0454545 = 0.153131 loss) | |
I0407 16:51:26.333963 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.49515 (* 0.0454545 = 0.15887 loss) | |
I0407 16:51:26.333977 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.18248 (* 0.0454545 = 0.144658 loss) | |
I0407 16:51:26.333992 1004 solver.cpp:245] Train net output #26: loss/loss05 = 2.53947 (* 0.0454545 = 0.11543 loss) | |
I0407 16:51:26.334004 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.74262 (* 0.0454545 = 0.124665 loss) | |
I0407 16:51:26.334018 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.32509 (* 0.0454545 = 0.0602315 loss) | |
I0407 16:51:26.334033 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.211571 (* 0.0454545 = 0.00961685 loss) | |
I0407 16:51:26.334048 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0314857 (* 0.0454545 = 0.00143117 loss) | |
I0407 16:51:26.334063 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0106502 (* 0.0454545 = 0.000484102 loss) | |
I0407 16:51:26.334077 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000418161 (* 0.0454545 = 1.90073e-05 loss) | |
I0407 16:51:26.334091 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00037176 (* 0.0454545 = 1.68982e-05 loss) | |
I0407 16:51:26.334105 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.00039388 (* 0.0454545 = 1.79037e-05 loss) | |
I0407 16:51:26.334120 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000416196 (* 0.0454545 = 1.8918e-05 loss) | |
I0407 16:51:26.334134 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000382772 (* 0.0454545 = 1.73987e-05 loss) | |
I0407 16:51:26.334148 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000357884 (* 0.0454545 = 1.62675e-05 loss) | |
I0407 16:51:26.334162 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000412095 (* 0.0454545 = 1.87316e-05 loss) | |
I0407 16:51:26.334194 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000399154 (* 0.0454545 = 1.81434e-05 loss) | |
I0407 16:51:26.334209 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000362052 (* 0.0454545 = 1.64569e-05 loss) | |
I0407 16:51:26.334224 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000377155 (* 0.0454545 = 1.71434e-05 loss) | |
I0407 16:51:26.334239 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000367789 (* 0.0454545 = 1.67177e-05 loss) | |
I0407 16:51:26.334252 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000406274 (* 0.0454545 = 1.8467e-05 loss) | |
I0407 16:51:26.334264 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:51:26.334275 1004 solver.cpp:245] Train net output #45: total_confidence = 0.00146487 | |
I0407 16:51:26.334290 1004 sgd_solver.cpp:106] Iteration 73500, lr = 0.000853 | |
I0407 16:52:04.834365 1004 solver.cpp:229] Iteration 74000, loss = 0.976655 | |
I0407 16:52:04.834465 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:52:04.834483 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:52:04.834496 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:52:04.834508 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 16:52:04.834520 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 16:52:04.834533 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 16:52:04.834544 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 16:52:04.834556 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 16:52:04.834568 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:52:04.834580 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 16:52:04.834592 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:52:04.834604 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:52:04.834615 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:52:04.834626 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:52:04.834637 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:52:04.834650 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:52:04.834661 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:52:04.834671 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:52:04.834683 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:52:04.834694 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:52:04.834715 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:52:04.834736 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:52:04.834754 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.05635 (* 0.0454545 = 0.138925 loss) | |
I0407 16:52:04.834769 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.57087 (* 0.0454545 = 0.162312 loss) | |
I0407 16:52:04.834782 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.34507 (* 0.0454545 = 0.152049 loss) | |
I0407 16:52:04.834796 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.67077 (* 0.0454545 = 0.166853 loss) | |
I0407 16:52:04.834810 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.43539 (* 0.0454545 = 0.156154 loss) | |
I0407 16:52:04.834825 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.95876 (* 0.0454545 = 0.134489 loss) | |
I0407 16:52:04.834838 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.87827 (* 0.0454545 = 0.0853757 loss) | |
I0407 16:52:04.834852 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.591076 (* 0.0454545 = 0.0268671 loss) | |
I0407 16:52:04.834867 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.282283 (* 0.0454545 = 0.0128311 loss) | |
I0407 16:52:04.834880 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.243317 (* 0.0454545 = 0.0110599 loss) | |
I0407 16:52:04.834894 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000287014 (* 0.0454545 = 1.30461e-05 loss) | |
I0407 16:52:04.834908 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000262509 (* 0.0454545 = 1.19322e-05 loss) | |
I0407 16:52:04.834923 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000246069 (* 0.0454545 = 1.11849e-05 loss) | |
I0407 16:52:04.834936 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000249224 (* 0.0454545 = 1.13284e-05 loss) | |
I0407 16:52:04.834950 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000264406 (* 0.0454545 = 1.20185e-05 loss) | |
I0407 16:52:04.834964 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.00023236 (* 0.0454545 = 1.05618e-05 loss) | |
I0407 16:52:04.834978 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000256271 (* 0.0454545 = 1.16487e-05 loss) | |
I0407 16:52:04.835010 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000266894 (* 0.0454545 = 1.21316e-05 loss) | |
I0407 16:52:04.835026 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000220207 (* 0.0454545 = 1.00094e-05 loss) | |
I0407 16:52:04.835039 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000212381 (* 0.0454545 = 9.65369e-06 loss) | |
I0407 16:52:04.835053 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000265216 (* 0.0454545 = 1.20553e-05 loss) | |
I0407 16:52:04.835067 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000248472 (* 0.0454545 = 1.12942e-05 loss) | |
I0407 16:52:04.835083 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:52:04.835094 1004 solver.cpp:245] Train net output #45: total_confidence = 2.21439e-05 | |
I0407 16:52:04.835108 1004 sgd_solver.cpp:106] Iteration 74000, lr = 0.000852 | |
I0407 16:52:44.547813 1004 solver.cpp:229] Iteration 74500, loss = 0.97858 | |
I0407 16:52:44.547962 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:52:44.547982 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:52:44.547996 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:52:44.548008 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 16:52:44.548020 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 16:52:44.548033 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 16:52:44.548045 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 16:52:44.548058 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:52:44.548069 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:52:44.548081 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:52:44.548092 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:52:44.548105 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:52:44.548115 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:52:44.548127 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:52:44.548140 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:52:44.548151 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:52:44.548162 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:52:44.548173 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:52:44.548185 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:52:44.548197 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:52:44.548208 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:52:44.548219 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:52:44.548234 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.18874 (* 0.0454545 = 0.144943 loss) | |
I0407 16:52:44.548249 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.33845 (* 0.0454545 = 0.151748 loss) | |
I0407 16:52:44.548264 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.3458 (* 0.0454545 = 0.152082 loss) | |
I0407 16:52:44.548277 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.1212 (* 0.0454545 = 0.141873 loss) | |
I0407 16:52:44.548291 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.0424 (* 0.0454545 = 0.138291 loss) | |
I0407 16:52:44.548305 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.57447 (* 0.0454545 = 0.117022 loss) | |
I0407 16:52:44.548319 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.985628 (* 0.0454545 = 0.0448013 loss) | |
I0407 16:52:44.548332 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.414793 (* 0.0454545 = 0.0188542 loss) | |
I0407 16:52:44.548347 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0070902 (* 0.0454545 = 0.000322282 loss) | |
I0407 16:52:44.548362 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.00265788 (* 0.0454545 = 0.000120813 loss) | |
I0407 16:52:44.548375 1004 solver.cpp:245] Train net output #32: loss/loss11 = 2.4802e-05 (* 0.0454545 = 1.12736e-06 loss) | |
I0407 16:52:44.548390 1004 solver.cpp:245] Train net output #33: loss/loss12 = 2.50554e-05 (* 0.0454545 = 1.13888e-06 loss) | |
I0407 16:52:44.548404 1004 solver.cpp:245] Train net output #34: loss/loss13 = 2.17542e-05 (* 0.0454545 = 9.88825e-07 loss) | |
I0407 16:52:44.548419 1004 solver.cpp:245] Train net output #35: loss/loss14 = 2.36919e-05 (* 0.0454545 = 1.0769e-06 loss) | |
I0407 16:52:44.548434 1004 solver.cpp:245] Train net output #36: loss/loss15 = 2.3908e-05 (* 0.0454545 = 1.08673e-06 loss) | |
I0407 16:52:44.548447 1004 solver.cpp:245] Train net output #37: loss/loss16 = 2.36696e-05 (* 0.0454545 = 1.07589e-06 loss) | |
I0407 16:52:44.548461 1004 solver.cpp:245] Train net output #38: loss/loss17 = 2.69898e-05 (* 0.0454545 = 1.22681e-06 loss) | |
I0407 16:52:44.548488 1004 solver.cpp:245] Train net output #39: loss/loss18 = 2.60654e-05 (* 0.0454545 = 1.18479e-06 loss) | |
I0407 16:52:44.548503 1004 solver.cpp:245] Train net output #40: loss/loss19 = 2.1404e-05 (* 0.0454545 = 9.72909e-07 loss) | |
I0407 16:52:44.548518 1004 solver.cpp:245] Train net output #41: loss/loss20 = 2.29243e-05 (* 0.0454545 = 1.04202e-06 loss) | |
I0407 16:52:44.548532 1004 solver.cpp:245] Train net output #42: loss/loss21 = 2.41614e-05 (* 0.0454545 = 1.09825e-06 loss) | |
I0407 16:52:44.548547 1004 solver.cpp:245] Train net output #43: loss/loss22 = 2.47614e-05 (* 0.0454545 = 1.12552e-06 loss) | |
I0407 16:52:44.548558 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:52:44.548570 1004 solver.cpp:245] Train net output #45: total_confidence = 7.98787e-05 | |
I0407 16:52:44.548583 1004 sgd_solver.cpp:106] Iteration 74500, lr = 0.000851 | |
I0407 16:53:23.274535 1004 solver.cpp:338] Iteration 75000, Testing net (#0) | |
I0407 16:53:31.209463 1004 solver.cpp:393] Test loss: 0.885413 | |
I0407 16:53:31.209514 1004 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.329 | |
I0407 16:53:31.209532 1004 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.088 | |
I0407 16:53:31.209544 1004 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.085 | |
I0407 16:53:31.209558 1004 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.082 | |
I0407 16:53:31.209569 1004 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.203 | |
I0407 16:53:31.209580 1004 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.495 | |
I0407 16:53:31.209592 1004 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0407 16:53:31.209604 1004 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 16:53:31.209614 1004 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 16:53:31.209625 1004 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 16:53:31.209637 1004 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 16:53:31.209650 1004 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 16:53:31.209661 1004 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 16:53:31.209671 1004 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 16:53:31.209682 1004 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 16:53:31.209693 1004 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 16:53:31.209704 1004 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 16:53:31.209715 1004 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 16:53:31.209727 1004 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 16:53:31.209738 1004 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 16:53:31.209748 1004 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 16:53:31.209759 1004 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 16:53:31.209774 1004 solver.cpp:406] Test net output #22: loss/loss01 = 3.08337 (* 0.0454545 = 0.140153 loss) | |
I0407 16:53:31.209789 1004 solver.cpp:406] Test net output #23: loss/loss02 = 3.21283 (* 0.0454545 = 0.146038 loss) | |
I0407 16:53:31.209802 1004 solver.cpp:406] Test net output #24: loss/loss03 = 3.31481 (* 0.0454545 = 0.150673 loss) | |
I0407 16:53:31.209815 1004 solver.cpp:406] Test net output #25: loss/loss04 = 3.27663 (* 0.0454545 = 0.148938 loss) | |
I0407 16:53:31.209828 1004 solver.cpp:406] Test net output #26: loss/loss05 = 3.22167 (* 0.0454545 = 0.146439 loss) | |
I0407 16:53:31.209842 1004 solver.cpp:406] Test net output #27: loss/loss06 = 2.27051 (* 0.0454545 = 0.103205 loss) | |
I0407 16:53:31.209856 1004 solver.cpp:406] Test net output #28: loss/loss07 = 0.748306 (* 0.0454545 = 0.0340139 loss) | |
I0407 16:53:31.209868 1004 solver.cpp:406] Test net output #29: loss/loss08 = 0.260556 (* 0.0454545 = 0.0118435 loss) | |
I0407 16:53:31.209882 1004 solver.cpp:406] Test net output #30: loss/loss09 = 0.0571233 (* 0.0454545 = 0.00259651 loss) | |
I0407 16:53:31.209897 1004 solver.cpp:406] Test net output #31: loss/loss10 = 0.0290581 (* 0.0454545 = 0.00132082 loss) | |
I0407 16:53:31.209910 1004 solver.cpp:406] Test net output #32: loss/loss11 = 0.000375904 (* 0.0454545 = 1.70866e-05 loss) | |
I0407 16:53:31.209928 1004 solver.cpp:406] Test net output #33: loss/loss12 = 0.000349961 (* 0.0454545 = 1.59073e-05 loss) | |
I0407 16:53:31.209944 1004 solver.cpp:406] Test net output #34: loss/loss13 = 0.000341537 (* 0.0454545 = 1.55244e-05 loss) | |
I0407 16:53:31.209957 1004 solver.cpp:406] Test net output #35: loss/loss14 = 0.00034331 (* 0.0454545 = 1.5605e-05 loss) | |
I0407 16:53:31.209971 1004 solver.cpp:406] Test net output #36: loss/loss15 = 0.000360485 (* 0.0454545 = 1.63857e-05 loss) | |
I0407 16:53:31.209985 1004 solver.cpp:406] Test net output #37: loss/loss16 = 0.000336212 (* 0.0454545 = 1.52823e-05 loss) | |
I0407 16:53:31.210000 1004 solver.cpp:406] Test net output #38: loss/loss17 = 0.000368655 (* 0.0454545 = 1.67571e-05 loss) | |
I0407 16:53:31.210047 1004 solver.cpp:406] Test net output #39: loss/loss18 = 0.00037816 (* 0.0454545 = 1.71891e-05 loss) | |
I0407 16:53:31.210063 1004 solver.cpp:406] Test net output #40: loss/loss19 = 0.000341486 (* 0.0454545 = 1.55221e-05 loss) | |
I0407 16:53:31.210078 1004 solver.cpp:406] Test net output #41: loss/loss20 = 0.000324088 (* 0.0454545 = 1.47313e-05 loss) | |
I0407 16:53:31.210091 1004 solver.cpp:406] Test net output #42: loss/loss21 = 0.000358154 (* 0.0454545 = 1.62797e-05 loss) | |
I0407 16:53:31.210105 1004 solver.cpp:406] Test net output #43: loss/loss22 = 0.000347836 (* 0.0454545 = 1.58107e-05 loss) | |
I0407 16:53:31.210116 1004 solver.cpp:406] Test net output #44: total_accuracy = 0.001 | |
I0407 16:53:31.210129 1004 solver.cpp:406] Test net output #45: total_confidence = 0.000255982 | |
I0407 16:53:31.232305 1004 solver.cpp:229] Iteration 75000, loss = 0.98021 | |
I0407 16:53:31.232341 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:53:31.232357 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 16:53:31.232370 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:53:31.232383 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 16:53:31.232393 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 16:53:31.232405 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625 | |
I0407 16:53:31.232417 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.9375 | |
I0407 16:53:31.232429 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 16:53:31.232440 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:53:31.232451 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:53:31.232462 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:53:31.232473 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:53:31.232486 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:53:31.232496 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:53:31.232507 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:53:31.232518 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:53:31.232530 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:53:31.232542 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:53:31.232553 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:53:31.232563 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:53:31.232574 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:53:31.232586 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:53:31.232600 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.08853 (* 0.0454545 = 0.140388 loss) | |
I0407 16:53:31.232614 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.27711 (* 0.0454545 = 0.14896 loss) | |
I0407 16:53:31.232628 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.29342 (* 0.0454545 = 0.149701 loss) | |
I0407 16:53:31.232642 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.02435 (* 0.0454545 = 0.13747 loss) | |
I0407 16:53:31.232656 1004 solver.cpp:245] Train net output #26: loss/loss05 = 2.76472 (* 0.0454545 = 0.125669 loss) | |
I0407 16:53:31.232669 1004 solver.cpp:245] Train net output #27: loss/loss06 = 1.96764 (* 0.0454545 = 0.0894381 loss) | |
I0407 16:53:31.232682 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.51109 (* 0.0454545 = 0.0232314 loss) | |
I0407 16:53:31.232697 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.102002 (* 0.0454545 = 0.00463645 loss) | |
I0407 16:53:31.232712 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0260088 (* 0.0454545 = 0.00118222 loss) | |
I0407 16:53:31.232725 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0107043 (* 0.0454545 = 0.000486561 loss) | |
I0407 16:53:31.232756 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000428893 (* 0.0454545 = 1.94952e-05 loss) | |
I0407 16:53:31.232772 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000417747 (* 0.0454545 = 1.89885e-05 loss) | |
I0407 16:53:31.232786 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000459744 (* 0.0454545 = 2.08975e-05 loss) | |
I0407 16:53:31.232800 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000406428 (* 0.0454545 = 1.8474e-05 loss) | |
I0407 16:53:31.232815 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000424122 (* 0.0454545 = 1.92783e-05 loss) | |
I0407 16:53:31.232830 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000454203 (* 0.0454545 = 2.06456e-05 loss) | |
I0407 16:53:31.232842 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000421065 (* 0.0454545 = 1.91393e-05 loss) | |
I0407 16:53:31.232856 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000515466 (* 0.0454545 = 2.34303e-05 loss) | |
I0407 16:53:31.232870 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000465245 (* 0.0454545 = 2.11475e-05 loss) | |
I0407 16:53:31.232884 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000403694 (* 0.0454545 = 1.83497e-05 loss) | |
I0407 16:53:31.232899 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.00047205 (* 0.0454545 = 2.14568e-05 loss) | |
I0407 16:53:31.232913 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000424602 (* 0.0454545 = 1.93001e-05 loss) | |
I0407 16:53:31.232924 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:53:31.232936 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000557626 | |
I0407 16:53:31.232950 1004 sgd_solver.cpp:106] Iteration 75000, lr = 0.00085 | |
I0407 16:54:09.479434 1004 solver.cpp:229] Iteration 75500, loss = 0.972105 | |
I0407 16:54:09.479544 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0407 16:54:09.479563 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:54:09.479576 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:54:09.479589 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 16:54:09.479601 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 16:54:09.479614 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 16:54:09.479624 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 16:54:09.479636 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.75 | |
I0407 16:54:09.479647 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0407 16:54:09.479660 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.875 | |
I0407 16:54:09.479671 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:54:09.479683 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:54:09.479694 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:54:09.479707 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:54:09.479717 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:54:09.479728 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:54:09.479740 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:54:09.479751 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:54:09.479763 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:54:09.479774 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:54:09.479786 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:54:09.479797 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:54:09.479812 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.37642 (* 0.0454545 = 0.153473 loss) | |
I0407 16:54:09.479827 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.88795 (* 0.0454545 = 0.176725 loss) | |
I0407 16:54:09.479841 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.42294 (* 0.0454545 = 0.155588 loss) | |
I0407 16:54:09.479854 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.28083 (* 0.0454545 = 0.149129 loss) | |
I0407 16:54:09.479868 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.4706 (* 0.0454545 = 0.157755 loss) | |
I0407 16:54:09.479882 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.56336 (* 0.0454545 = 0.116516 loss) | |
I0407 16:54:09.479897 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.15026 (* 0.0454545 = 0.0522847 loss) | |
I0407 16:54:09.479909 1004 solver.cpp:245] Train net output #29: loss/loss08 = 1.01686 (* 0.0454545 = 0.046221 loss) | |
I0407 16:54:09.479926 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.65901 (* 0.0454545 = 0.029955 loss) | |
I0407 16:54:09.479940 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.651094 (* 0.0454545 = 0.0295952 loss) | |
I0407 16:54:09.479955 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000228092 (* 0.0454545 = 1.03678e-05 loss) | |
I0407 16:54:09.479969 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000211699 (* 0.0454545 = 9.62268e-06 loss) | |
I0407 16:54:09.479984 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000199935 (* 0.0454545 = 9.08794e-06 loss) | |
I0407 16:54:09.479997 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000198611 (* 0.0454545 = 9.02777e-06 loss) | |
I0407 16:54:09.480012 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000227214 (* 0.0454545 = 1.03279e-05 loss) | |
I0407 16:54:09.480026 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000214487 (* 0.0454545 = 9.74941e-06 loss) | |
I0407 16:54:09.480041 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000244646 (* 0.0454545 = 1.11203e-05 loss) | |
I0407 16:54:09.480072 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000238709 (* 0.0454545 = 1.08504e-05 loss) | |
I0407 16:54:09.480087 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.00020072 (* 0.0454545 = 9.12364e-06 loss) | |
I0407 16:54:09.480100 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.00017853 (* 0.0454545 = 8.11499e-06 loss) | |
I0407 16:54:09.480114 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000222656 (* 0.0454545 = 1.01207e-05 loss) | |
I0407 16:54:09.480129 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000207757 (* 0.0454545 = 9.44351e-06 loss) | |
I0407 16:54:09.480139 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:54:09.480151 1004 solver.cpp:245] Train net output #45: total_confidence = 8.13313e-06 | |
I0407 16:54:09.480165 1004 sgd_solver.cpp:106] Iteration 75500, lr = 0.000849 | |
I0407 16:54:48.156548 1004 solver.cpp:229] Iteration 76000, loss = 0.974559 | |
I0407 16:54:48.156827 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:54:48.156848 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:54:48.156862 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875 | |
I0407 16:54:48.156873 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 16:54:48.156885 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 16:54:48.156898 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 16:54:48.156909 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 16:54:48.156924 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 16:54:48.156937 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:54:48.156949 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:54:48.156960 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:54:48.156972 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:54:48.156983 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:54:48.156996 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:54:48.157007 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:54:48.157018 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:54:48.157032 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:54:48.157042 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:54:48.157054 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:54:48.157065 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:54:48.157076 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:54:48.157088 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:54:48.157104 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.08221 (* 0.0454545 = 0.140101 loss) | |
I0407 16:54:48.157117 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.26759 (* 0.0454545 = 0.148527 loss) | |
I0407 16:54:48.157131 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.17508 (* 0.0454545 = 0.144322 loss) | |
I0407 16:54:48.157145 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.32818 (* 0.0454545 = 0.151281 loss) | |
I0407 16:54:48.157158 1004 solver.cpp:245] Train net output #26: loss/loss05 = 2.92578 (* 0.0454545 = 0.13299 loss) | |
I0407 16:54:48.157172 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.4466 (* 0.0454545 = 0.111209 loss) | |
I0407 16:54:48.157186 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.877623 (* 0.0454545 = 0.039892 loss) | |
I0407 16:54:48.157201 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.894213 (* 0.0454545 = 0.040646 loss) | |
I0407 16:54:48.157214 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.384649 (* 0.0454545 = 0.0174841 loss) | |
I0407 16:54:48.157228 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.00855819 (* 0.0454545 = 0.000389009 loss) | |
I0407 16:54:48.157243 1004 solver.cpp:245] Train net output #32: loss/loss11 = 7.69776e-05 (* 0.0454545 = 3.49898e-06 loss) | |
I0407 16:54:48.157256 1004 solver.cpp:245] Train net output #33: loss/loss12 = 8.25802e-05 (* 0.0454545 = 3.75364e-06 loss) | |
I0407 16:54:48.157270 1004 solver.cpp:245] Train net output #34: loss/loss13 = 7.34345e-05 (* 0.0454545 = 3.33793e-06 loss) | |
I0407 16:54:48.157284 1004 solver.cpp:245] Train net output #35: loss/loss14 = 6.28134e-05 (* 0.0454545 = 2.85515e-06 loss) | |
I0407 16:54:48.157299 1004 solver.cpp:245] Train net output #36: loss/loss15 = 6.66097e-05 (* 0.0454545 = 3.02771e-06 loss) | |
I0407 16:54:48.157312 1004 solver.cpp:245] Train net output #37: loss/loss16 = 6.73182e-05 (* 0.0454545 = 3.05992e-06 loss) | |
I0407 16:54:48.157326 1004 solver.cpp:245] Train net output #38: loss/loss17 = 7.07418e-05 (* 0.0454545 = 3.21554e-06 loss) | |
I0407 16:54:48.157366 1004 solver.cpp:245] Train net output #39: loss/loss18 = 7.8093e-05 (* 0.0454545 = 3.54968e-06 loss) | |
I0407 16:54:48.157382 1004 solver.cpp:245] Train net output #40: loss/loss19 = 5.28093e-05 (* 0.0454545 = 2.40042e-06 loss) | |
I0407 16:54:48.157395 1004 solver.cpp:245] Train net output #41: loss/loss20 = 6.09378e-05 (* 0.0454545 = 2.7699e-06 loss) | |
I0407 16:54:48.157409 1004 solver.cpp:245] Train net output #42: loss/loss21 = 7.28751e-05 (* 0.0454545 = 3.3125e-06 loss) | |
I0407 16:54:48.157423 1004 solver.cpp:245] Train net output #43: loss/loss22 = 6.58974e-05 (* 0.0454545 = 2.99533e-06 loss) | |
I0407 16:54:48.157436 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:54:48.157449 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000104001 | |
I0407 16:54:48.157461 1004 sgd_solver.cpp:106] Iteration 76000, lr = 0.000848 | |
I0407 16:55:27.031545 1004 solver.cpp:229] Iteration 76500, loss = 0.972834 | |
I0407 16:55:27.031682 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0407 16:55:27.031702 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:55:27.031715 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 16:55:27.031728 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 16:55:27.031740 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0407 16:55:27.031752 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 16:55:27.031764 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.5625 | |
I0407 16:55:27.031777 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 16:55:27.031790 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0407 16:55:27.031801 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:55:27.031812 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:55:27.031824 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:55:27.031836 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:55:27.031847 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:55:27.031860 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:55:27.031872 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:55:27.031883 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:55:27.031894 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:55:27.031906 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:55:27.031918 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:55:27.031929 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:55:27.031940 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:55:27.031955 1004 solver.cpp:245] Train net output #22: loss/loss01 = 2.90856 (* 0.0454545 = 0.132207 loss) | |
I0407 16:55:27.031970 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.43952 (* 0.0454545 = 0.156342 loss) | |
I0407 16:55:27.031985 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.38962 (* 0.0454545 = 0.154074 loss) | |
I0407 16:55:27.031998 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.27976 (* 0.0454545 = 0.14908 loss) | |
I0407 16:55:27.032011 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.59362 (* 0.0454545 = 0.163346 loss) | |
I0407 16:55:27.032026 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.94734 (* 0.0454545 = 0.13397 loss) | |
I0407 16:55:27.032039 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.8468 (* 0.0454545 = 0.0839456 loss) | |
I0407 16:55:27.032053 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.953202 (* 0.0454545 = 0.0433274 loss) | |
I0407 16:55:27.032066 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.607895 (* 0.0454545 = 0.0276316 loss) | |
I0407 16:55:27.032083 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0300199 (* 0.0454545 = 0.00136454 loss) | |
I0407 16:55:27.032099 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000238388 (* 0.0454545 = 1.08358e-05 loss) | |
I0407 16:55:27.032112 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000232186 (* 0.0454545 = 1.05539e-05 loss) | |
I0407 16:55:27.032127 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000237489 (* 0.0454545 = 1.0795e-05 loss) | |
I0407 16:55:27.032141 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000224224 (* 0.0454545 = 1.0192e-05 loss) | |
I0407 16:55:27.032155 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000273373 (* 0.0454545 = 1.2426e-05 loss) | |
I0407 16:55:27.032171 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000243469 (* 0.0454545 = 1.10668e-05 loss) | |
I0407 16:55:27.032186 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000282889 (* 0.0454545 = 1.28586e-05 loss) | |
I0407 16:55:27.032217 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000284973 (* 0.0454545 = 1.29533e-05 loss) | |
I0407 16:55:27.032232 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000246461 (* 0.0454545 = 1.12028e-05 loss) | |
I0407 16:55:27.032246 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000259253 (* 0.0454545 = 1.17842e-05 loss) | |
I0407 16:55:27.032260 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000289786 (* 0.0454545 = 1.31721e-05 loss) | |
I0407 16:55:27.032274 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000256954 (* 0.0454545 = 1.16797e-05 loss) | |
I0407 16:55:27.032286 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:55:27.032299 1004 solver.cpp:245] Train net output #45: total_confidence = 5.67946e-05 | |
I0407 16:55:27.032311 1004 sgd_solver.cpp:106] Iteration 76500, lr = 0.000847 | |
I0407 16:56:05.910658 1004 solver.cpp:229] Iteration 77000, loss = 0.975022 | |
I0407 16:56:05.910779 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:56:05.910809 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:56:05.910830 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 16:56:05.910852 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 16:56:05.910876 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 16:56:05.910897 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 16:56:05.910919 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 16:56:05.910941 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 16:56:05.910964 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:56:05.910985 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:56:05.911006 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:56:05.911026 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:56:05.911046 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:56:05.911067 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:56:05.911085 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:56:05.911106 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:56:05.911126 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:56:05.911149 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:56:05.911171 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:56:05.911191 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:56:05.911212 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:56:05.911233 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:56:05.911259 1004 solver.cpp:245] Train net output #22: loss/loss01 = 2.84411 (* 0.0454545 = 0.129278 loss) | |
I0407 16:56:05.911284 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.32545 (* 0.0454545 = 0.151157 loss) | |
I0407 16:56:05.911310 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.24176 (* 0.0454545 = 0.147353 loss) | |
I0407 16:56:05.911356 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.53402 (* 0.0454545 = 0.160637 loss) | |
I0407 16:56:05.911383 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.03392 (* 0.0454545 = 0.137905 loss) | |
I0407 16:56:05.911412 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.71941 (* 0.0454545 = 0.123609 loss) | |
I0407 16:56:05.911437 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.34659 (* 0.0454545 = 0.0612085 loss) | |
I0407 16:56:05.911463 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.122992 (* 0.0454545 = 0.00559055 loss) | |
I0407 16:56:05.911489 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0464075 (* 0.0454545 = 0.00210943 loss) | |
I0407 16:56:05.911515 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0153047 (* 0.0454545 = 0.00069567 loss) | |
I0407 16:56:05.911541 1004 solver.cpp:245] Train net output #32: loss/loss11 = 4.14572e-05 (* 0.0454545 = 1.88442e-06 loss) | |
I0407 16:56:05.911567 1004 solver.cpp:245] Train net output #33: loss/loss12 = 3.91842e-05 (* 0.0454545 = 1.7811e-06 loss) | |
I0407 16:56:05.911592 1004 solver.cpp:245] Train net output #34: loss/loss13 = 3.51784e-05 (* 0.0454545 = 1.59902e-06 loss) | |
I0407 16:56:05.911618 1004 solver.cpp:245] Train net output #35: loss/loss14 = 3.38966e-05 (* 0.0454545 = 1.54075e-06 loss) | |
I0407 16:56:05.911643 1004 solver.cpp:245] Train net output #36: loss/loss15 = 3.84986e-05 (* 0.0454545 = 1.74994e-06 loss) | |
I0407 16:56:05.911669 1004 solver.cpp:245] Train net output #37: loss/loss16 = 3.40233e-05 (* 0.0454545 = 1.54652e-06 loss) | |
I0407 16:56:05.911695 1004 solver.cpp:245] Train net output #38: loss/loss17 = 3.51785e-05 (* 0.0454545 = 1.59902e-06 loss) | |
I0407 16:56:05.911744 1004 solver.cpp:245] Train net output #39: loss/loss18 = 3.77013e-05 (* 0.0454545 = 1.71369e-06 loss) | |
I0407 16:56:05.911772 1004 solver.cpp:245] Train net output #40: loss/loss19 = 3.10051e-05 (* 0.0454545 = 1.40932e-06 loss) | |
I0407 16:56:05.911803 1004 solver.cpp:245] Train net output #41: loss/loss20 = 3.23689e-05 (* 0.0454545 = 1.47132e-06 loss) | |
I0407 16:56:05.911830 1004 solver.cpp:245] Train net output #42: loss/loss21 = 3.74033e-05 (* 0.0454545 = 1.70015e-06 loss) | |
I0407 16:56:05.911855 1004 solver.cpp:245] Train net output #43: loss/loss22 = 4.08388e-05 (* 0.0454545 = 1.85631e-06 loss) | |
I0407 16:56:05.911876 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:56:05.911896 1004 solver.cpp:245] Train net output #45: total_confidence = 8.40021e-07 | |
I0407 16:56:05.911918 1004 sgd_solver.cpp:106] Iteration 77000, lr = 0.000846 | |
I0407 16:56:44.824825 1004 solver.cpp:229] Iteration 77500, loss = 0.970292 | |
I0407 16:56:44.824949 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 16:56:44.824968 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:56:44.824981 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 16:56:44.824993 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 16:56:44.825006 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 16:56:44.825017 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625 | |
I0407 16:56:44.825029 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 16:56:44.825042 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:56:44.825053 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:56:44.825064 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:56:44.825076 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:56:44.825088 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:56:44.825099 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:56:44.825110 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:56:44.825122 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:56:44.825134 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:56:44.825145 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:56:44.825156 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:56:44.825168 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:56:44.825179 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:56:44.825192 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:56:44.825203 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:56:44.825219 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.23668 (* 0.0454545 = 0.147122 loss) | |
I0407 16:56:44.825233 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.53602 (* 0.0454545 = 0.160728 loss) | |
I0407 16:56:44.825248 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.35284 (* 0.0454545 = 0.152402 loss) | |
I0407 16:56:44.825260 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.50272 (* 0.0454545 = 0.159215 loss) | |
I0407 16:56:44.825274 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.02149 (* 0.0454545 = 0.13734 loss) | |
I0407 16:56:44.825289 1004 solver.cpp:245] Train net output #27: loss/loss06 = 1.77585 (* 0.0454545 = 0.0807205 loss) | |
I0407 16:56:44.825302 1004 solver.cpp:245] Train net output #28: loss/loss07 = 0.86912 (* 0.0454545 = 0.0395054 loss) | |
I0407 16:56:44.825315 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.486245 (* 0.0454545 = 0.022102 loss) | |
I0407 16:56:44.825330 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0393365 (* 0.0454545 = 0.00178802 loss) | |
I0407 16:56:44.825345 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0104495 (* 0.0454545 = 0.000474979 loss) | |
I0407 16:56:44.825361 1004 solver.cpp:245] Train net output #32: loss/loss11 = 7.88185e-05 (* 0.0454545 = 3.58266e-06 loss) | |
I0407 16:56:44.825374 1004 solver.cpp:245] Train net output #33: loss/loss12 = 6.53775e-05 (* 0.0454545 = 2.9717e-06 loss) | |
I0407 16:56:44.825388 1004 solver.cpp:245] Train net output #34: loss/loss13 = 6.32711e-05 (* 0.0454545 = 2.87596e-06 loss) | |
I0407 16:56:44.825402 1004 solver.cpp:245] Train net output #35: loss/loss14 = 6.40428e-05 (* 0.0454545 = 2.91104e-06 loss) | |
I0407 16:56:44.825417 1004 solver.cpp:245] Train net output #36: loss/loss15 = 7.47013e-05 (* 0.0454545 = 3.39551e-06 loss) | |
I0407 16:56:44.825431 1004 solver.cpp:245] Train net output #37: loss/loss16 = 6.7526e-05 (* 0.0454545 = 3.06936e-06 loss) | |
I0407 16:56:44.825445 1004 solver.cpp:245] Train net output #38: loss/loss17 = 8.0557e-05 (* 0.0454545 = 3.66168e-06 loss) | |
I0407 16:56:44.825476 1004 solver.cpp:245] Train net output #39: loss/loss18 = 7.58986e-05 (* 0.0454545 = 3.44994e-06 loss) | |
I0407 16:56:44.825492 1004 solver.cpp:245] Train net output #40: loss/loss19 = 6.52437e-05 (* 0.0454545 = 2.96562e-06 loss) | |
I0407 16:56:44.825506 1004 solver.cpp:245] Train net output #41: loss/loss20 = 5.55786e-05 (* 0.0454545 = 2.5263e-06 loss) | |
I0407 16:56:44.825520 1004 solver.cpp:245] Train net output #42: loss/loss21 = 7.00061e-05 (* 0.0454545 = 3.1821e-06 loss) | |
I0407 16:56:44.825534 1004 solver.cpp:245] Train net output #43: loss/loss22 = 7.09569e-05 (* 0.0454545 = 3.22531e-06 loss) | |
I0407 16:56:44.825546 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:56:44.825557 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000107102 | |
I0407 16:56:44.825572 1004 sgd_solver.cpp:106] Iteration 77500, lr = 0.000845 | |
I0407 16:57:24.071579 1004 solver.cpp:229] Iteration 78000, loss = 0.97727 | |
I0407 16:57:24.071748 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:57:24.071768 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:57:24.071781 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875 | |
I0407 16:57:24.071794 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 16:57:24.071806 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 16:57:24.071817 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 16:57:24.071830 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 16:57:24.071841 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 16:57:24.071853 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:57:24.071866 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:57:24.071877 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:57:24.071887 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:57:24.071899 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:57:24.071910 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:57:24.071925 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:57:24.071938 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:57:24.071949 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:57:24.071960 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:57:24.071971 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:57:24.071982 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:57:24.071993 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:57:24.072005 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:57:24.072021 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.22341 (* 0.0454545 = 0.146519 loss) | |
I0407 16:57:24.072036 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.40654 (* 0.0454545 = 0.154843 loss) | |
I0407 16:57:24.072048 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.32171 (* 0.0454545 = 0.150987 loss) | |
I0407 16:57:24.072062 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.6724 (* 0.0454545 = 0.166927 loss) | |
I0407 16:57:24.072077 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.1532 (* 0.0454545 = 0.143327 loss) | |
I0407 16:57:24.072090 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.87114 (* 0.0454545 = 0.130506 loss) | |
I0407 16:57:24.072104 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.43129 (* 0.0454545 = 0.0650589 loss) | |
I0407 16:57:24.072118 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.971688 (* 0.0454545 = 0.0441676 loss) | |
I0407 16:57:24.072131 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.339526 (* 0.0454545 = 0.015433 loss) | |
I0407 16:57:24.072145 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.00938771 (* 0.0454545 = 0.000426714 loss) | |
I0407 16:57:24.072160 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000122285 (* 0.0454545 = 5.55843e-06 loss) | |
I0407 16:57:24.072175 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.00012021 (* 0.0454545 = 5.4641e-06 loss) | |
I0407 16:57:24.072188 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000106582 (* 0.0454545 = 4.84462e-06 loss) | |
I0407 16:57:24.072202 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000113257 (* 0.0454545 = 5.14805e-06 loss) | |
I0407 16:57:24.072216 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000117479 (* 0.0454545 = 5.33997e-06 loss) | |
I0407 16:57:24.072230 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000104897 (* 0.0454545 = 4.76802e-06 loss) | |
I0407 16:57:24.072244 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000124057 (* 0.0454545 = 5.63897e-06 loss) | |
I0407 16:57:24.072273 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000112424 (* 0.0454545 = 5.1102e-06 loss) | |
I0407 16:57:24.072288 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000107022 (* 0.0454545 = 4.86464e-06 loss) | |
I0407 16:57:24.072302 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000110313 (* 0.0454545 = 5.01422e-06 loss) | |
I0407 16:57:24.072317 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000119812 (* 0.0454545 = 5.44601e-06 loss) | |
I0407 16:57:24.072331 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000102519 (* 0.0454545 = 4.65997e-06 loss) | |
I0407 16:57:24.072343 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:57:24.072355 1004 solver.cpp:245] Train net output #45: total_confidence = 2.19217e-06 | |
I0407 16:57:24.072367 1004 sgd_solver.cpp:106] Iteration 78000, lr = 0.000844 | |
I0407 16:58:03.595341 1004 solver.cpp:229] Iteration 78500, loss = 0.976837 | |
I0407 16:58:03.595464 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0407 16:58:03.595484 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 16:58:03.595496 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 16:58:03.595510 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 16:58:03.595521 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 16:58:03.595533 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 16:58:03.595552 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 16:58:03.595578 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:58:03.595599 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:58:03.595613 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 16:58:03.595625 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:58:03.595638 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:58:03.595649 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:58:03.595660 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:58:03.595671 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:58:03.595684 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:58:03.595695 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:58:03.595705 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:58:03.595716 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:58:03.595728 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:58:03.595741 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:58:03.595752 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:58:03.595767 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.00344 (* 0.0454545 = 0.13652 loss) | |
I0407 16:58:03.595782 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.45286 (* 0.0454545 = 0.156948 loss) | |
I0407 16:58:03.595795 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.71782 (* 0.0454545 = 0.168992 loss) | |
I0407 16:58:03.595809 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.32549 (* 0.0454545 = 0.151158 loss) | |
I0407 16:58:03.595824 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.10183 (* 0.0454545 = 0.140992 loss) | |
I0407 16:58:03.595836 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.68581 (* 0.0454545 = 0.122082 loss) | |
I0407 16:58:03.595850 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.72268 (* 0.0454545 = 0.0783037 loss) | |
I0407 16:58:03.595863 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.268579 (* 0.0454545 = 0.0122081 loss) | |
I0407 16:58:03.595877 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.301251 (* 0.0454545 = 0.0136932 loss) | |
I0407 16:58:03.595891 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.374709 (* 0.0454545 = 0.0170322 loss) | |
I0407 16:58:03.595906 1004 solver.cpp:245] Train net output #32: loss/loss11 = 2.43455e-05 (* 0.0454545 = 1.10662e-06 loss) | |
I0407 16:58:03.595922 1004 solver.cpp:245] Train net output #33: loss/loss12 = 2.85978e-05 (* 0.0454545 = 1.2999e-06 loss) | |
I0407 16:58:03.595937 1004 solver.cpp:245] Train net output #34: loss/loss13 = 2.55717e-05 (* 0.0454545 = 1.16235e-06 loss) | |
I0407 16:58:03.595952 1004 solver.cpp:245] Train net output #35: loss/loss14 = 3.46732e-05 (* 0.0454545 = 1.57605e-06 loss) | |
I0407 16:58:03.595973 1004 solver.cpp:245] Train net output #36: loss/loss15 = 2.73978e-05 (* 0.0454545 = 1.24536e-06 loss) | |
I0407 16:58:03.596004 1004 solver.cpp:245] Train net output #37: loss/loss16 = 2.90191e-05 (* 0.0454545 = 1.31905e-06 loss) | |
I0407 16:58:03.596021 1004 solver.cpp:245] Train net output #38: loss/loss17 = 2.89781e-05 (* 0.0454545 = 1.31718e-06 loss) | |
I0407 16:58:03.596053 1004 solver.cpp:245] Train net output #39: loss/loss18 = 3.00179e-05 (* 0.0454545 = 1.36445e-06 loss) | |
I0407 16:58:03.596074 1004 solver.cpp:245] Train net output #40: loss/loss19 = 3.52919e-05 (* 0.0454545 = 1.60418e-06 loss) | |
I0407 16:58:03.596106 1004 solver.cpp:245] Train net output #41: loss/loss20 = 3.20306e-05 (* 0.0454545 = 1.45594e-06 loss) | |
I0407 16:58:03.596124 1004 solver.cpp:245] Train net output #42: loss/loss21 = 3.20827e-05 (* 0.0454545 = 1.4583e-06 loss) | |
I0407 16:58:03.596139 1004 solver.cpp:245] Train net output #43: loss/loss22 = 3.33612e-05 (* 0.0454545 = 1.51642e-06 loss) | |
I0407 16:58:03.596151 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:58:03.596163 1004 solver.cpp:245] Train net output #45: total_confidence = 9.33661e-05 | |
I0407 16:58:03.596175 1004 sgd_solver.cpp:106] Iteration 78500, lr = 0.000843 | |
I0407 16:58:43.225256 1004 solver.cpp:229] Iteration 79000, loss = 0.968364 | |
I0407 16:58:43.225381 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:58:43.225400 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 16:58:43.225414 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:58:43.225425 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 16:58:43.225437 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 16:58:43.225450 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 16:58:43.225461 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 16:58:43.225472 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 16:58:43.225484 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 16:58:43.225495 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 16:58:43.225507 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:58:43.225518 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:58:43.225530 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:58:43.225541 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:58:43.225553 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:58:43.225564 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:58:43.225575 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:58:43.225586 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:58:43.225597 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:58:43.225610 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:58:43.225620 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:58:43.225631 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:58:43.225647 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.33556 (* 0.0454545 = 0.151616 loss) | |
I0407 16:58:43.225662 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.78543 (* 0.0454545 = 0.172065 loss) | |
I0407 16:58:43.225677 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.40855 (* 0.0454545 = 0.154934 loss) | |
I0407 16:58:43.225690 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.24522 (* 0.0454545 = 0.14751 loss) | |
I0407 16:58:43.225704 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.09475 (* 0.0454545 = 0.14067 loss) | |
I0407 16:58:43.225718 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.34484 (* 0.0454545 = 0.106583 loss) | |
I0407 16:58:43.225731 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.37217 (* 0.0454545 = 0.0623713 loss) | |
I0407 16:58:43.225745 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.911907 (* 0.0454545 = 0.0414503 loss) | |
I0407 16:58:43.225759 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0538224 (* 0.0454545 = 0.00244647 loss) | |
I0407 16:58:43.225774 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0183352 (* 0.0454545 = 0.000833418 loss) | |
I0407 16:58:43.225787 1004 solver.cpp:245] Train net output #32: loss/loss11 = 1.21449e-05 (* 0.0454545 = 5.52042e-07 loss) | |
I0407 16:58:43.225803 1004 solver.cpp:245] Train net output #33: loss/loss12 = 1.38588e-05 (* 0.0454545 = 6.29945e-07 loss) | |
I0407 16:58:43.225817 1004 solver.cpp:245] Train net output #34: loss/loss13 = 1.05057e-05 (* 0.0454545 = 4.77531e-07 loss) | |
I0407 16:58:43.225831 1004 solver.cpp:245] Train net output #35: loss/loss14 = 9.79786e-06 (* 0.0454545 = 4.45357e-07 loss) | |
I0407 16:58:43.225844 1004 solver.cpp:245] Train net output #36: loss/loss15 = 9.5147e-06 (* 0.0454545 = 4.32486e-07 loss) | |
I0407 16:58:43.225859 1004 solver.cpp:245] Train net output #37: loss/loss16 = 9.90961e-06 (* 0.0454545 = 4.50437e-07 loss) | |
I0407 16:58:43.225873 1004 solver.cpp:245] Train net output #38: loss/loss17 = 9.85746e-06 (* 0.0454545 = 4.48066e-07 loss) | |
I0407 16:58:43.225903 1004 solver.cpp:245] Train net output #39: loss/loss18 = 8.94842e-06 (* 0.0454545 = 4.06746e-07 loss) | |
I0407 16:58:43.225922 1004 solver.cpp:245] Train net output #40: loss/loss19 = 9.15706e-06 (* 0.0454545 = 4.1623e-07 loss) | |
I0407 16:58:43.225937 1004 solver.cpp:245] Train net output #41: loss/loss20 = 8.3598e-06 (* 0.0454545 = 3.79991e-07 loss) | |
I0407 16:58:43.225951 1004 solver.cpp:245] Train net output #42: loss/loss21 = 8.62803e-06 (* 0.0454545 = 3.92183e-07 loss) | |
I0407 16:58:43.225965 1004 solver.cpp:245] Train net output #43: loss/loss22 = 9.09743e-06 (* 0.0454545 = 4.1352e-07 loss) | |
I0407 16:58:43.225977 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:58:43.225989 1004 solver.cpp:245] Train net output #45: total_confidence = 0.000311897 | |
I0407 16:58:43.226002 1004 sgd_solver.cpp:106] Iteration 79000, lr = 0.000842 | |
I0407 16:59:22.218101 1004 solver.cpp:229] Iteration 79500, loss = 0.962143 | |
I0407 16:59:22.218216 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 16:59:22.218235 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 16:59:22.218248 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 16:59:22.218261 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 16:59:22.218272 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 16:59:22.218284 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 16:59:22.218297 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 16:59:22.218307 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 16:59:22.218319 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 16:59:22.218330 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 16:59:22.218343 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 16:59:22.218354 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 16:59:22.218365 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 16:59:22.218376 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 16:59:22.218389 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 16:59:22.218400 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 16:59:22.218410 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 16:59:22.218422 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 16:59:22.218433 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 16:59:22.218446 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 16:59:22.218457 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 16:59:22.218468 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 16:59:22.218484 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.6233 (* 0.0454545 = 0.164696 loss) | |
I0407 16:59:22.218498 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.75532 (* 0.0454545 = 0.170696 loss) | |
I0407 16:59:22.218513 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.55156 (* 0.0454545 = 0.161435 loss) | |
I0407 16:59:22.218526 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.62541 (* 0.0454545 = 0.164792 loss) | |
I0407 16:59:22.218540 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.14321 (* 0.0454545 = 0.142873 loss) | |
I0407 16:59:22.218554 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.38344 (* 0.0454545 = 0.108338 loss) | |
I0407 16:59:22.218567 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.05343 (* 0.0454545 = 0.047883 loss) | |
I0407 16:59:22.218581 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.42503 (* 0.0454545 = 0.0193195 loss) | |
I0407 16:59:22.218595 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.452451 (* 0.0454545 = 0.0205659 loss) | |
I0407 16:59:22.218610 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.499007 (* 0.0454545 = 0.0226821 loss) | |
I0407 16:59:22.218623 1004 solver.cpp:245] Train net output #32: loss/loss11 = 5.88947e-05 (* 0.0454545 = 2.67703e-06 loss) | |
I0407 16:59:22.218638 1004 solver.cpp:245] Train net output #33: loss/loss12 = 5.55449e-05 (* 0.0454545 = 2.52477e-06 loss) | |
I0407 16:59:22.218652 1004 solver.cpp:245] Train net output #34: loss/loss13 = 5.05479e-05 (* 0.0454545 = 2.29763e-06 loss) | |
I0407 16:59:22.218665 1004 solver.cpp:245] Train net output #35: loss/loss14 = 4.98882e-05 (* 0.0454545 = 2.26765e-06 loss) | |
I0407 16:59:22.218679 1004 solver.cpp:245] Train net output #36: loss/loss15 = 5.23665e-05 (* 0.0454545 = 2.3803e-06 loss) | |
I0407 16:59:22.218693 1004 solver.cpp:245] Train net output #37: loss/loss16 = 5.07268e-05 (* 0.0454545 = 2.30577e-06 loss) | |
I0407 16:59:22.218708 1004 solver.cpp:245] Train net output #38: loss/loss17 = 4.75595e-05 (* 0.0454545 = 2.1618e-06 loss) | |
I0407 16:59:22.218739 1004 solver.cpp:245] Train net output #39: loss/loss18 = 5.64879e-05 (* 0.0454545 = 2.56763e-06 loss) | |
I0407 16:59:22.218754 1004 solver.cpp:245] Train net output #40: loss/loss19 = 4.92887e-05 (* 0.0454545 = 2.24039e-06 loss) | |
I0407 16:59:22.218767 1004 solver.cpp:245] Train net output #41: loss/loss20 = 4.72169e-05 (* 0.0454545 = 2.14622e-06 loss) | |
I0407 16:59:22.218781 1004 solver.cpp:245] Train net output #42: loss/loss21 = 5.29256e-05 (* 0.0454545 = 2.40571e-06 loss) | |
I0407 16:59:22.218796 1004 solver.cpp:245] Train net output #43: loss/loss22 = 5.40886e-05 (* 0.0454545 = 2.45857e-06 loss) | |
I0407 16:59:22.218806 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 16:59:22.218818 1004 solver.cpp:245] Train net output #45: total_confidence = 5.21125e-05 | |
I0407 16:59:22.218830 1004 sgd_solver.cpp:106] Iteration 79500, lr = 0.000841 | |
I0407 17:00:01.638530 1004 solver.cpp:338] Iteration 80000, Testing net (#0) | |
I0407 17:00:09.624562 1004 solver.cpp:393] Test loss: 0.869783 | |
I0407 17:00:09.624608 1004 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.321 | |
I0407 17:00:09.624624 1004 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.092 | |
I0407 17:00:09.624637 1004 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.084 | |
I0407 17:00:09.624650 1004 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.083 | |
I0407 17:00:09.624660 1004 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.205 | |
I0407 17:00:09.624672 1004 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.497 | |
I0407 17:00:09.624686 1004 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0407 17:00:09.624696 1004 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 17:00:09.624708 1004 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 17:00:09.624719 1004 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 17:00:09.624732 1004 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 17:00:09.624742 1004 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 17:00:09.624753 1004 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 17:00:09.624764 1004 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 17:00:09.624775 1004 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 17:00:09.624786 1004 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 17:00:09.624797 1004 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 17:00:09.624809 1004 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 17:00:09.624819 1004 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 17:00:09.624830 1004 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 17:00:09.624840 1004 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 17:00:09.624851 1004 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 17:00:09.624867 1004 solver.cpp:406] Test net output #22: loss/loss01 = 2.93912 (* 0.0454545 = 0.133596 loss) | |
I0407 17:00:09.624881 1004 solver.cpp:406] Test net output #23: loss/loss02 = 3.17453 (* 0.0454545 = 0.144297 loss) | |
I0407 17:00:09.624896 1004 solver.cpp:406] Test net output #24: loss/loss03 = 3.27611 (* 0.0454545 = 0.148914 loss) | |
I0407 17:00:09.624908 1004 solver.cpp:406] Test net output #25: loss/loss04 = 3.25077 (* 0.0454545 = 0.147762 loss) | |
I0407 17:00:09.624925 1004 solver.cpp:406] Test net output #26: loss/loss05 = 3.16142 (* 0.0454545 = 0.143701 loss) | |
I0407 17:00:09.624939 1004 solver.cpp:406] Test net output #27: loss/loss06 = 2.2609 (* 0.0454545 = 0.102768 loss) | |
I0407 17:00:09.624953 1004 solver.cpp:406] Test net output #28: loss/loss07 = 0.734126 (* 0.0454545 = 0.0333693 loss) | |
I0407 17:00:09.624966 1004 solver.cpp:406] Test net output #29: loss/loss08 = 0.254448 (* 0.0454545 = 0.0115658 loss) | |
I0407 17:00:09.624980 1004 solver.cpp:406] Test net output #30: loss/loss09 = 0.0548584 (* 0.0454545 = 0.00249357 loss) | |
I0407 17:00:09.624994 1004 solver.cpp:406] Test net output #31: loss/loss10 = 0.0277361 (* 0.0454545 = 0.00126073 loss) | |
I0407 17:00:09.625008 1004 solver.cpp:406] Test net output #32: loss/loss11 = 0.000109576 (* 0.0454545 = 4.98073e-06 loss) | |
I0407 17:00:09.625022 1004 solver.cpp:406] Test net output #33: loss/loss12 = 0.000111511 (* 0.0454545 = 5.06868e-06 loss) | |
I0407 17:00:09.625036 1004 solver.cpp:406] Test net output #34: loss/loss13 = 0.000100709 (* 0.0454545 = 4.57767e-06 loss) | |
I0407 17:00:09.625049 1004 solver.cpp:406] Test net output #35: loss/loss14 = 0.00010135 (* 0.0454545 = 4.60684e-06 loss) | |
I0407 17:00:09.625063 1004 solver.cpp:406] Test net output #36: loss/loss15 = 0.000100127 (* 0.0454545 = 4.55122e-06 loss) | |
I0407 17:00:09.625077 1004 solver.cpp:406] Test net output #37: loss/loss16 = 0.000100105 (* 0.0454545 = 4.55022e-06 loss) | |
I0407 17:00:09.625092 1004 solver.cpp:406] Test net output #38: loss/loss17 = 0.000101097 (* 0.0454545 = 4.59531e-06 loss) | |
I0407 17:00:09.625138 1004 solver.cpp:406] Test net output #39: loss/loss18 = 0.00010271 (* 0.0454545 = 4.66864e-06 loss) | |
I0407 17:00:09.625154 1004 solver.cpp:406] Test net output #40: loss/loss19 = 9.7015e-05 (* 0.0454545 = 4.40977e-06 loss) | |
I0407 17:00:09.625169 1004 solver.cpp:406] Test net output #41: loss/loss20 = 9.89693e-05 (* 0.0454545 = 4.49861e-06 loss) | |
I0407 17:00:09.625182 1004 solver.cpp:406] Test net output #42: loss/loss21 = 9.73527e-05 (* 0.0454545 = 4.42512e-06 loss) | |
I0407 17:00:09.625195 1004 solver.cpp:406] Test net output #43: loss/loss22 = 9.92332e-05 (* 0.0454545 = 4.5106e-06 loss) | |
I0407 17:00:09.625207 1004 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0407 17:00:09.625219 1004 solver.cpp:406] Test net output #45: total_confidence = 0.000155281 | |
I0407 17:00:09.647954 1004 solver.cpp:229] Iteration 80000, loss = 0.965318 | |
I0407 17:00:09.648007 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 17:00:09.648027 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 17:00:09.648041 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 17:00:09.648064 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 17:00:09.648092 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 17:00:09.648108 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 17:00:09.648120 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 17:00:09.648133 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 17:00:09.648144 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0407 17:00:09.648156 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 17:00:09.648167 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 17:00:09.648180 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 17:00:09.648191 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 17:00:09.648203 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 17:00:09.648214 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 17:00:09.648226 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 17:00:09.648237 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 17:00:09.648248 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 17:00:09.648259 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 17:00:09.648270 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 17:00:09.648283 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 17:00:09.648293 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 17:00:09.648308 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.16311 (* 0.0454545 = 0.143778 loss) | |
I0407 17:00:09.648322 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.39723 (* 0.0454545 = 0.15442 loss) | |
I0407 17:00:09.648336 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.53058 (* 0.0454545 = 0.160481 loss) | |
I0407 17:00:09.648350 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.04101 (* 0.0454545 = 0.138228 loss) | |
I0407 17:00:09.648371 1004 solver.cpp:245] Train net output #26: loss/loss05 = 2.8294 (* 0.0454545 = 0.128609 loss) | |
I0407 17:00:09.648406 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.80908 (* 0.0454545 = 0.127685 loss) | |
I0407 17:00:09.648422 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.08338 (* 0.0454545 = 0.0492446 loss) | |
I0407 17:00:09.648437 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.755726 (* 0.0454545 = 0.0343512 loss) | |
I0407 17:00:09.648450 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.717777 (* 0.0454545 = 0.0326262 loss) | |
I0407 17:00:09.648464 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.356418 (* 0.0454545 = 0.0162008 loss) | |
I0407 17:00:09.648497 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000278658 (* 0.0454545 = 1.26663e-05 loss) | |
I0407 17:00:09.648514 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000312705 (* 0.0454545 = 1.42139e-05 loss) | |
I0407 17:00:09.648529 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.00029047 (* 0.0454545 = 1.32032e-05 loss) | |
I0407 17:00:09.648543 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000330707 (* 0.0454545 = 1.50321e-05 loss) | |
I0407 17:00:09.648557 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000334506 (* 0.0454545 = 1.52048e-05 loss) | |
I0407 17:00:09.648571 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000362865 (* 0.0454545 = 1.64939e-05 loss) | |
I0407 17:00:09.648586 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000358434 (* 0.0454545 = 1.62925e-05 loss) | |
I0407 17:00:09.648599 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000374105 (* 0.0454545 = 1.70048e-05 loss) | |
I0407 17:00:09.648613 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000343843 (* 0.0454545 = 1.56292e-05 loss) | |
I0407 17:00:09.648627 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000309174 (* 0.0454545 = 1.40534e-05 loss) | |
I0407 17:00:09.648641 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000311824 (* 0.0454545 = 1.41738e-05 loss) | |
I0407 17:00:09.648655 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000279588 (* 0.0454545 = 1.27086e-05 loss) | |
I0407 17:00:09.648668 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 17:00:09.648679 1004 solver.cpp:245] Train net output #45: total_confidence = 0.00114305 | |
I0407 17:00:09.648694 1004 sgd_solver.cpp:106] Iteration 80000, lr = 0.00084 | |
I0407 17:00:48.489629 1004 solver.cpp:229] Iteration 80500, loss = 0.967568 | |
I0407 17:00:48.489739 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 17:00:48.489758 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 17:00:48.489771 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 17:00:48.489784 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 17:00:48.489796 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 17:00:48.489809 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 17:00:48.489820 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 17:00:48.489831 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 17:00:48.489843 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 17:00:48.489856 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 17:00:48.489868 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 17:00:48.489879 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 17:00:48.489892 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 17:00:48.489902 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 17:00:48.489914 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 17:00:48.489925 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 17:00:48.489938 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 17:00:48.489948 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 17:00:48.489959 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 17:00:48.489970 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 17:00:48.489982 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 17:00:48.489995 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 17:00:48.490010 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.29955 (* 0.0454545 = 0.14998 loss) | |
I0407 17:00:48.490025 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.34291 (* 0.0454545 = 0.151951 loss) | |
I0407 17:00:48.490038 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.30005 (* 0.0454545 = 0.150002 loss) | |
I0407 17:00:48.490051 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.35007 (* 0.0454545 = 0.152276 loss) | |
I0407 17:00:48.490066 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.18383 (* 0.0454545 = 0.14472 loss) | |
I0407 17:00:48.490079 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.54467 (* 0.0454545 = 0.115667 loss) | |
I0407 17:00:48.490092 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.41039 (* 0.0454545 = 0.0641088 loss) | |
I0407 17:00:48.490106 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.763155 (* 0.0454545 = 0.0346888 loss) | |
I0407 17:00:48.490120 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.0806254 (* 0.0454545 = 0.00366479 loss) | |
I0407 17:00:48.490139 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.0277077 (* 0.0454545 = 0.00125944 loss) | |
I0407 17:00:48.490152 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.000370918 (* 0.0454545 = 1.68599e-05 loss) | |
I0407 17:00:48.490167 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000344544 (* 0.0454545 = 1.56611e-05 loss) | |
I0407 17:00:48.490182 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000351508 (* 0.0454545 = 1.59776e-05 loss) | |
I0407 17:00:48.490196 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000327163 (* 0.0454545 = 1.48711e-05 loss) | |
I0407 17:00:48.490211 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.00037583 (* 0.0454545 = 1.70832e-05 loss) | |
I0407 17:00:48.490224 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000382924 (* 0.0454545 = 1.74056e-05 loss) | |
I0407 17:00:48.490238 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000350956 (* 0.0454545 = 1.59525e-05 loss) | |
I0407 17:00:48.490269 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000393753 (* 0.0454545 = 1.78979e-05 loss) | |
I0407 17:00:48.490285 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000335497 (* 0.0454545 = 1.52499e-05 loss) | |
I0407 17:00:48.490299 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000314276 (* 0.0454545 = 1.42853e-05 loss) | |
I0407 17:00:48.490314 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000363084 (* 0.0454545 = 1.65038e-05 loss) | |
I0407 17:00:48.490326 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000373772 (* 0.0454545 = 1.69896e-05 loss) | |
I0407 17:00:48.490339 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 17:00:48.490350 1004 solver.cpp:245] Train net output #45: total_confidence = 7.95353e-05 | |
I0407 17:00:48.490363 1004 sgd_solver.cpp:106] Iteration 80500, lr = 0.000839 | |
I0407 17:01:27.867372 1004 solver.cpp:229] Iteration 81000, loss = 0.962802 | |
I0407 17:01:27.867523 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 17:01:27.867543 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 17:01:27.867557 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 17:01:27.867569 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 17:01:27.867581 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.4375 | |
I0407 17:01:27.867594 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 17:01:27.867604 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 17:01:27.867616 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 17:01:27.867629 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 17:01:27.867640 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 17:01:27.867651 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 17:01:27.867663 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 17:01:27.867674 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 17:01:27.867686 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 17:01:27.867697 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 17:01:27.867709 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 17:01:27.867722 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 17:01:27.867733 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 17:01:27.867744 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 17:01:27.867755 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 17:01:27.867768 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 17:01:27.867779 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 17:01:27.867794 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.01597 (* 0.0454545 = 0.13709 loss) | |
I0407 17:01:27.867810 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.40168 (* 0.0454545 = 0.154622 loss) | |
I0407 17:01:27.867823 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.21644 (* 0.0454545 = 0.146202 loss) | |
I0407 17:01:27.867837 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.06292 (* 0.0454545 = 0.139224 loss) | |
I0407 17:01:27.867851 1004 solver.cpp:245] Train net output #26: loss/loss05 = 2.2373 (* 0.0454545 = 0.101696 loss) | |
I0407 17:01:27.867866 1004 solver.cpp:245] Train net output #27: loss/loss06 = 1.841 (* 0.0454545 = 0.0836817 loss) | |
I0407 17:01:27.867878 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.71306 (* 0.0454545 = 0.0778664 loss) | |
I0407 17:01:27.867892 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.690238 (* 0.0454545 = 0.0313744 loss) | |
I0407 17:01:27.867908 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.359598 (* 0.0454545 = 0.0163454 loss) | |
I0407 17:01:27.867924 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.018562 (* 0.0454545 = 0.000843727 loss) | |
I0407 17:01:27.867939 1004 solver.cpp:245] Train net output #32: loss/loss11 = 0.00057947 (* 0.0454545 = 2.63396e-05 loss) | |
I0407 17:01:27.867954 1004 solver.cpp:245] Train net output #33: loss/loss12 = 0.000606938 (* 0.0454545 = 2.75881e-05 loss) | |
I0407 17:01:27.867969 1004 solver.cpp:245] Train net output #34: loss/loss13 = 0.000601852 (* 0.0454545 = 2.73569e-05 loss) | |
I0407 17:01:27.867982 1004 solver.cpp:245] Train net output #35: loss/loss14 = 0.000603853 (* 0.0454545 = 2.74479e-05 loss) | |
I0407 17:01:27.867996 1004 solver.cpp:245] Train net output #36: loss/loss15 = 0.000642961 (* 0.0454545 = 2.92255e-05 loss) | |
I0407 17:01:27.868010 1004 solver.cpp:245] Train net output #37: loss/loss16 = 0.000675338 (* 0.0454545 = 3.06972e-05 loss) | |
I0407 17:01:27.868024 1004 solver.cpp:245] Train net output #38: loss/loss17 = 0.000599987 (* 0.0454545 = 2.72721e-05 loss) | |
I0407 17:01:27.868057 1004 solver.cpp:245] Train net output #39: loss/loss18 = 0.000635324 (* 0.0454545 = 2.88784e-05 loss) | |
I0407 17:01:27.868072 1004 solver.cpp:245] Train net output #40: loss/loss19 = 0.000603264 (* 0.0454545 = 2.74211e-05 loss) | |
I0407 17:01:27.868085 1004 solver.cpp:245] Train net output #41: loss/loss20 = 0.000590071 (* 0.0454545 = 2.68214e-05 loss) | |
I0407 17:01:27.868099 1004 solver.cpp:245] Train net output #42: loss/loss21 = 0.000618556 (* 0.0454545 = 2.81162e-05 loss) | |
I0407 17:01:27.868113 1004 solver.cpp:245] Train net output #43: loss/loss22 = 0.000620826 (* 0.0454545 = 2.82194e-05 loss) | |
I0407 17:01:27.868125 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 17:01:27.868136 1004 solver.cpp:245] Train net output #45: total_confidence = 0.00263988 | |
I0407 17:01:27.868151 1004 sgd_solver.cpp:106] Iteration 81000, lr = 0.000838 | |
I0407 17:02:07.787822 1004 solver.cpp:229] Iteration 81500, loss = 0.968055 | |
I0407 17:02:07.787961 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 17:02:07.787981 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 17:02:07.787994 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 17:02:07.788007 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 17:02:07.788019 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 17:02:07.788031 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 17:02:07.788043 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 17:02:07.788054 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 17:02:07.788066 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 17:02:07.788079 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 17:02:07.788090 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 17:02:07.788101 1004 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 17:02:07.788112 1004 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 17:02:07.788125 1004 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 17:02:07.788136 1004 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 17:02:07.788147 1004 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 17:02:07.788158 1004 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 17:02:07.788171 1004 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 17:02:07.788182 1004 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 17:02:07.788192 1004 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 17:02:07.788204 1004 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 17:02:07.788215 1004 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 17:02:07.788231 1004 solver.cpp:245] Train net output #22: loss/loss01 = 3.08409 (* 0.0454545 = 0.140186 loss) | |
I0407 17:02:07.788245 1004 solver.cpp:245] Train net output #23: loss/loss02 = 3.16583 (* 0.0454545 = 0.143901 loss) | |
I0407 17:02:07.788259 1004 solver.cpp:245] Train net output #24: loss/loss03 = 3.36211 (* 0.0454545 = 0.152823 loss) | |
I0407 17:02:07.788274 1004 solver.cpp:245] Train net output #25: loss/loss04 = 3.37036 (* 0.0454545 = 0.153198 loss) | |
I0407 17:02:07.788287 1004 solver.cpp:245] Train net output #26: loss/loss05 = 3.12678 (* 0.0454545 = 0.142127 loss) | |
I0407 17:02:07.788300 1004 solver.cpp:245] Train net output #27: loss/loss06 = 2.77723 (* 0.0454545 = 0.126238 loss) | |
I0407 17:02:07.788314 1004 solver.cpp:245] Train net output #28: loss/loss07 = 1.42854 (* 0.0454545 = 0.0649335 loss) | |
I0407 17:02:07.788328 1004 solver.cpp:245] Train net output #29: loss/loss08 = 0.407094 (* 0.0454545 = 0.0185043 loss) | |
I0407 17:02:07.788342 1004 solver.cpp:245] Train net output #30: loss/loss09 = 0.361174 (* 0.0454545 = 0.016417 loss) | |
I0407 17:02:07.788355 1004 solver.cpp:245] Train net output #31: loss/loss10 = 0.399589 (* 0.0454545 = 0.0181632 loss) | |
I0407 17:02:07.788370 1004 solver.cpp:245] Train net output #32: loss/loss11 = 4.84288e-07 (* 0.0454545 = 2.20131e-08 loss) | |
I0407 17:02:07.788384 1004 solver.cpp:245] Train net output #33: loss/loss12 = 5.58794e-07 (* 0.0454545 = 2.53997e-08 loss) | |
I0407 17:02:07.788398 1004 solver.cpp:245] Train net output #34: loss/loss13 = 4.69387e-07 (* 0.0454545 = 2.13358e-08 loss) | |
I0407 17:02:07.788411 1004 solver.cpp:245] Train net output #35: loss/loss14 = 3.42727e-07 (* 0.0454545 = 1.55785e-08 loss) | |
I0407 17:02:07.788425 1004 solver.cpp:245] Train net output #36: loss/loss15 = 3.50178e-07 (* 0.0454545 = 1.59172e-08 loss) | |
I0407 17:02:07.788439 1004 solver.cpp:245] Train net output #37: loss/loss16 = 4.02332e-07 (* 0.0454545 = 1.82878e-08 loss) | |
I0407 17:02:07.788453 1004 solver.cpp:245] Train net output #38: loss/loss17 = 3.65079e-07 (* 0.0454545 = 1.65945e-08 loss) | |
I0407 17:02:07.788480 1004 solver.cpp:245] Train net output #39: loss/loss18 = 3.27826e-07 (* 0.0454545 = 1.49012e-08 loss) | |
I0407 17:02:07.788496 1004 solver.cpp:245] Train net output #40: loss/loss19 = 3.35276e-07 (* 0.0454545 = 1.52398e-08 loss) | |
I0407 17:02:07.788511 1004 solver.cpp:245] Train net output #41: loss/loss20 = 3.05474e-07 (* 0.0454545 = 1.38852e-08 loss) | |
I0407 17:02:07.788524 1004 solver.cpp:245] Train net output #42: loss/loss21 = 2.83122e-07 (* 0.0454545 = 1.28692e-08 loss) | |
I0407 17:02:07.788537 1004 solver.cpp:245] Train net output #43: loss/loss22 = 3.7998e-07 (* 0.0454545 = 1.72718e-08 loss) | |
I0407 17:02:07.788549 1004 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 17:02:07.788561 1004 solver.cpp:245] Train net output #45: total_confidence = 8.42924e-06 | |
I0407 17:02:07.788574 1004 sgd_solver.cpp:106] Iteration 81500, lr = 0.000837 | |
I0407 17:02:47.522557 1004 solver.cpp:229] Iteration 82000, loss = 0.964636 | |
I0407 17:02:47.522671 1004 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 17:02:47.522691 1004 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 17:02:47.522704 1004 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 17:02:47.522716 1004 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 17:02:47.522728 1004 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0407 17:02:47.522740 1004 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 17:02:47.522752 1004 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 17:02:47.522763 1004 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 17:02:47.522776 1004 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 17:02:47.522789 1004 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 17:02:47.522799 1004 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 17:02:47.522814 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment