Skip to content

Instantly share code, notes, and snippets.

@stas-sl
Last active June 27, 2016 21:06
Show Gist options
  • Save stas-sl/e7aa923871d2b2ffc7f64b92718990dd to your computer and use it in GitHub Desktop.
Save stas-sl/e7aa923871d2b2ffc7f64b92718990dd to your computer and use it in GitHub Desktop.
This file has been truncated, but you can view the full file.
I0623 14:13:34.760556 10365 solver.cpp:280] Solving mixed_lstm
I0623 14:13:34.760573 10365 solver.cpp:281] Learning Rate Policy: fixed
I0623 14:13:34.771200 10365 solver.cpp:338] Iteration 0, Testing net (#0)
I0623 14:14:33.060055 10365 solver.cpp:393] Test loss: 4.63185
I0623 14:14:33.060313 10365 solver.cpp:406] Test net output #0: loss1/accuracy = 0.483626
I0623 14:14:33.060333 10365 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.92
I0623 14:14:33.060346 10365 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.726
I0623 14:14:33.060359 10365 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.492
I0623 14:14:33.060370 10365 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.391
I0623 14:14:33.060381 10365 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.353
I0623 14:14:33.060394 10365 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.366
I0623 14:14:33.060405 10365 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.344
I0623 14:14:33.060415 10365 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.46
I0623 14:14:33.060427 10365 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.387
I0623 14:14:33.060438 10365 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.377
I0623 14:14:33.060449 10365 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.347
I0623 14:14:33.060461 10365 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.436
I0623 14:14:33.060472 10365 solver.cpp:406] Test net output #13: loss1/accuracy13 = 0.574
I0623 14:14:33.060484 10365 solver.cpp:406] Test net output #14: loss1/accuracy14 = 0.667
I0623 14:14:33.060495 10365 solver.cpp:406] Test net output #15: loss1/accuracy15 = 0.763
I0623 14:14:33.060506 10365 solver.cpp:406] Test net output #16: loss1/accuracy16 = 0.826
I0623 14:14:33.060518 10365 solver.cpp:406] Test net output #17: loss1/accuracy17 = 0.901
I0623 14:14:33.060528 10365 solver.cpp:406] Test net output #18: loss1/accuracy18 = 0.949
I0623 14:14:33.060554 10365 solver.cpp:406] Test net output #19: loss1/accuracy19 = 0.972
I0623 14:14:33.060566 10365 solver.cpp:406] Test net output #20: loss1/accuracy20 = 0.987
I0623 14:14:33.060578 10365 solver.cpp:406] Test net output #21: loss1/accuracy21 = 0.999
I0623 14:14:33.060590 10365 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1
I0623 14:14:33.060600 10365 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.685363
I0623 14:14:33.060621 10365 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.80516
I0623 14:14:33.060638 10365 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.54183 (* 0.3 = 0.46255 loss)
I0623 14:14:33.060652 10365 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.947007 (* 0.3 = 0.284102 loss)
I0623 14:14:33.060667 10365 solver.cpp:406] Test net output #27: loss1/loss01 = 0.425258 (* 0.0272727 = 0.0115979 loss)
I0623 14:14:33.060681 10365 solver.cpp:406] Test net output #28: loss1/loss02 = 0.988915 (* 0.0272727 = 0.0269704 loss)
I0623 14:14:33.060695 10365 solver.cpp:406] Test net output #29: loss1/loss03 = 1.60917 (* 0.0272727 = 0.0438865 loss)
I0623 14:14:33.060708 10365 solver.cpp:406] Test net output #30: loss1/loss04 = 1.81765 (* 0.0272727 = 0.0495723 loss)
I0623 14:14:33.060722 10365 solver.cpp:406] Test net output #31: loss1/loss05 = 1.97238 (* 0.0272727 = 0.053792 loss)
I0623 14:14:33.060736 10365 solver.cpp:406] Test net output #32: loss1/loss06 = 2.02873 (* 0.0272727 = 0.055329 loss)
I0623 14:14:33.060750 10365 solver.cpp:406] Test net output #33: loss1/loss07 = 1.9944 (* 0.0272727 = 0.0543926 loss)
I0623 14:14:33.060763 10365 solver.cpp:406] Test net output #34: loss1/loss08 = 1.77259 (* 0.0272727 = 0.0483434 loss)
I0623 14:14:33.060776 10365 solver.cpp:406] Test net output #35: loss1/loss09 = 1.9091 (* 0.0272727 = 0.0520663 loss)
I0623 14:14:33.060791 10365 solver.cpp:406] Test net output #36: loss1/loss10 = 1.92095 (* 0.0272727 = 0.0523895 loss)
I0623 14:14:33.060804 10365 solver.cpp:406] Test net output #37: loss1/loss11 = 1.97178 (* 0.0272727 = 0.0537758 loss)
I0623 14:14:33.060818 10365 solver.cpp:406] Test net output #38: loss1/loss12 = 1.6758 (* 0.0272727 = 0.0457036 loss)
I0623 14:14:33.060832 10365 solver.cpp:406] Test net output #39: loss1/loss13 = 1.32602 (* 0.0272727 = 0.0361641 loss)
I0623 14:14:33.060880 10365 solver.cpp:406] Test net output #40: loss1/loss14 = 1.03335 (* 0.0272727 = 0.0281822 loss)
I0623 14:14:33.060896 10365 solver.cpp:406] Test net output #41: loss1/loss15 = 0.744528 (* 0.0272727 = 0.0203053 loss)
I0623 14:14:33.060910 10365 solver.cpp:406] Test net output #42: loss1/loss16 = 0.555813 (* 0.0272727 = 0.0151585 loss)
I0623 14:14:33.060923 10365 solver.cpp:406] Test net output #43: loss1/loss17 = 0.347406 (* 0.0272727 = 0.00947471 loss)
I0623 14:14:33.060937 10365 solver.cpp:406] Test net output #44: loss1/loss18 = 0.19763 (* 0.0272727 = 0.00538992 loss)
I0623 14:14:33.060950 10365 solver.cpp:406] Test net output #45: loss1/loss19 = 0.123181 (* 0.0272727 = 0.00335947 loss)
I0623 14:14:33.060964 10365 solver.cpp:406] Test net output #46: loss1/loss20 = 0.0715468 (* 0.0272727 = 0.00195128 loss)
I0623 14:14:33.060977 10365 solver.cpp:406] Test net output #47: loss1/loss21 = 0.0064354 (* 0.0272727 = 0.000175511 loss)
I0623 14:14:33.060992 10365 solver.cpp:406] Test net output #48: loss1/loss22 = 0.000157251 (* 0.0272727 = 4.28865e-06 loss)
I0623 14:14:33.061003 10365 solver.cpp:406] Test net output #49: loss2/accuracy = 0.568327
I0623 14:14:33.061015 10365 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.964
I0623 14:14:33.061027 10365 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.921
I0623 14:14:33.061038 10365 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.815
I0623 14:14:33.061048 10365 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.629
I0623 14:14:33.061059 10365 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.483
I0623 14:14:33.061070 10365 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.455
I0623 14:14:33.061082 10365 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.409
I0623 14:14:33.061092 10365 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.479
I0623 14:14:33.061105 10365 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.447
I0623 14:14:33.061115 10365 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.392
I0623 14:14:33.061125 10365 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.374
I0623 14:14:33.061136 10365 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.479
I0623 14:14:33.061147 10365 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.583
I0623 14:14:33.061158 10365 solver.cpp:406] Test net output #63: loss2/accuracy14 = 0.671
I0623 14:14:33.061169 10365 solver.cpp:406] Test net output #64: loss2/accuracy15 = 0.771
I0623 14:14:33.061180 10365 solver.cpp:406] Test net output #65: loss2/accuracy16 = 0.829
I0623 14:14:33.061192 10365 solver.cpp:406] Test net output #66: loss2/accuracy17 = 0.901
I0623 14:14:33.061203 10365 solver.cpp:406] Test net output #67: loss2/accuracy18 = 0.95
I0623 14:14:33.061213 10365 solver.cpp:406] Test net output #68: loss2/accuracy19 = 0.972
I0623 14:14:33.061224 10365 solver.cpp:406] Test net output #69: loss2/accuracy20 = 0.987
I0623 14:14:33.061235 10365 solver.cpp:406] Test net output #70: loss2/accuracy21 = 0.999
I0623 14:14:33.061246 10365 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1
I0623 14:14:33.061257 10365 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.730864
I0623 14:14:33.061271 10365 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.869695
I0623 14:14:33.061285 10365 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 1.23732 (* 0.3 = 0.371196 loss)
I0623 14:14:33.061298 10365 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.770825 (* 0.3 = 0.231247 loss)
I0623 14:14:33.061312 10365 solver.cpp:406] Test net output #76: loss2/loss01 = 0.221866 (* 0.0272727 = 0.00605089 loss)
I0623 14:14:33.061326 10365 solver.cpp:406] Test net output #77: loss2/loss02 = 0.387539 (* 0.0272727 = 0.0105692 loss)
I0623 14:14:33.061354 10365 solver.cpp:406] Test net output #78: loss2/loss03 = 0.703188 (* 0.0272727 = 0.0191779 loss)
I0623 14:14:33.061369 10365 solver.cpp:406] Test net output #79: loss2/loss04 = 1.14818 (* 0.0272727 = 0.0313141 loss)
I0623 14:14:33.061379 10365 solver.cpp:406] Test net output #80: loss2/loss05 = 1.44089 (* 0.0272727 = 0.039297 loss)
I0623 14:14:33.061389 10365 solver.cpp:406] Test net output #81: loss2/loss06 = 1.65874 (* 0.0272727 = 0.0452384 loss)
I0623 14:14:33.061404 10365 solver.cpp:406] Test net output #82: loss2/loss07 = 1.74339 (* 0.0272727 = 0.0475469 loss)
I0623 14:14:33.061417 10365 solver.cpp:406] Test net output #83: loss2/loss08 = 1.61813 (* 0.0272727 = 0.0441309 loss)
I0623 14:14:33.061431 10365 solver.cpp:406] Test net output #84: loss2/loss09 = 1.73008 (* 0.0272727 = 0.0471839 loss)
I0623 14:14:33.061445 10365 solver.cpp:406] Test net output #85: loss2/loss10 = 1.79506 (* 0.0272727 = 0.0489561 loss)
I0623 14:14:33.061458 10365 solver.cpp:406] Test net output #86: loss2/loss11 = 1.8371 (* 0.0272727 = 0.0501028 loss)
I0623 14:14:33.061472 10365 solver.cpp:406] Test net output #87: loss2/loss12 = 1.52091 (* 0.0272727 = 0.0414794 loss)
I0623 14:14:33.061486 10365 solver.cpp:406] Test net output #88: loss2/loss13 = 1.21411 (* 0.0272727 = 0.0331122 loss)
I0623 14:14:33.061499 10365 solver.cpp:406] Test net output #89: loss2/loss14 = 0.933804 (* 0.0272727 = 0.0254674 loss)
I0623 14:14:33.061512 10365 solver.cpp:406] Test net output #90: loss2/loss15 = 0.668074 (* 0.0272727 = 0.0182202 loss)
I0623 14:14:33.061527 10365 solver.cpp:406] Test net output #91: loss2/loss16 = 0.507575 (* 0.0272727 = 0.0138429 loss)
I0623 14:14:33.061539 10365 solver.cpp:406] Test net output #92: loss2/loss17 = 0.332998 (* 0.0272727 = 0.00908176 loss)
I0623 14:14:33.061553 10365 solver.cpp:406] Test net output #93: loss2/loss18 = 0.182017 (* 0.0272727 = 0.00496409 loss)
I0623 14:14:33.061566 10365 solver.cpp:406] Test net output #94: loss2/loss19 = 0.113026 (* 0.0272727 = 0.00308252 loss)
I0623 14:14:33.061580 10365 solver.cpp:406] Test net output #95: loss2/loss20 = 0.0646569 (* 0.0272727 = 0.00176337 loss)
I0623 14:14:33.061594 10365 solver.cpp:406] Test net output #96: loss2/loss21 = 0.00830641 (* 0.0272727 = 0.000226538 loss)
I0623 14:14:33.061607 10365 solver.cpp:406] Test net output #97: loss2/loss22 = 0.000274394 (* 0.0272727 = 7.48349e-06 loss)
I0623 14:14:33.061619 10365 solver.cpp:406] Test net output #98: loss3/accuracy = 0.824308
I0623 14:14:33.061630 10365 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.974
I0623 14:14:33.061642 10365 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.964
I0623 14:14:33.061652 10365 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.937
I0623 14:14:33.061663 10365 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.919
I0623 14:14:33.061676 10365 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.917
I0623 14:14:33.061686 10365 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.87
I0623 14:14:33.061697 10365 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.84
I0623 14:14:33.061708 10365 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.789
I0623 14:14:33.061719 10365 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.687
I0623 14:14:33.061730 10365 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.563
I0623 14:14:33.061741 10365 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.508
I0623 14:14:33.061760 10365 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.568
I0623 14:14:33.061771 10365 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.65
I0623 14:14:33.061782 10365 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.713
I0623 14:14:33.061794 10365 solver.cpp:406] Test net output #113: loss3/accuracy15 = 0.795
I0623 14:14:33.061805 10365 solver.cpp:406] Test net output #114: loss3/accuracy16 = 0.836
I0623 14:14:33.061835 10365 solver.cpp:406] Test net output #115: loss3/accuracy17 = 0.908
I0623 14:14:33.061846 10365 solver.cpp:406] Test net output #116: loss3/accuracy18 = 0.957
I0623 14:14:33.061857 10365 solver.cpp:406] Test net output #117: loss3/accuracy19 = 0.973
I0623 14:14:33.061868 10365 solver.cpp:406] Test net output #118: loss3/accuracy20 = 0.987
I0623 14:14:33.061879 10365 solver.cpp:406] Test net output #119: loss3/accuracy21 = 0.999
I0623 14:14:33.061892 10365 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1
I0623 14:14:33.061902 10365 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.883092
I0623 14:14:33.061913 10365 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.96174
I0623 14:14:33.061926 10365 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.630206 (* 1 = 0.630206 loss)
I0623 14:14:33.061939 10365 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.39967 (* 1 = 0.39967 loss)
I0623 14:14:33.061954 10365 solver.cpp:406] Test net output #125: loss3/loss01 = 0.1817 (* 0.0909091 = 0.0165182 loss)
I0623 14:14:33.061969 10365 solver.cpp:406] Test net output #126: loss3/loss02 = 0.236424 (* 0.0909091 = 0.0214931 loss)
I0623 14:14:33.061982 10365 solver.cpp:406] Test net output #127: loss3/loss03 = 0.350202 (* 0.0909091 = 0.0318366 loss)
I0623 14:14:33.061996 10365 solver.cpp:406] Test net output #128: loss3/loss04 = 0.416311 (* 0.0909091 = 0.0378464 loss)
I0623 14:14:33.062010 10365 solver.cpp:406] Test net output #129: loss3/loss05 = 0.454873 (* 0.0909091 = 0.0413521 loss)
I0623 14:14:33.062024 10365 solver.cpp:406] Test net output #130: loss3/loss06 = 0.583978 (* 0.0909091 = 0.0530889 loss)
I0623 14:14:33.062038 10365 solver.cpp:406] Test net output #131: loss3/loss07 = 0.658571 (* 0.0909091 = 0.0598701 loss)
I0623 14:14:33.062048 10365 solver.cpp:406] Test net output #132: loss3/loss08 = 0.741631 (* 0.0909091 = 0.067421 loss)
I0623 14:14:33.062062 10365 solver.cpp:406] Test net output #133: loss3/loss09 = 0.95179 (* 0.0909091 = 0.0865264 loss)
I0623 14:14:33.062077 10365 solver.cpp:406] Test net output #134: loss3/loss10 = 1.21927 (* 0.0909091 = 0.110843 loss)
I0623 14:14:33.062090 10365 solver.cpp:406] Test net output #135: loss3/loss11 = 1.31837 (* 0.0909091 = 0.119852 loss)
I0623 14:14:33.062111 10365 solver.cpp:406] Test net output #136: loss3/loss12 = 1.13646 (* 0.0909091 = 0.103314 loss)
I0623 14:14:33.062130 10365 solver.cpp:406] Test net output #137: loss3/loss13 = 0.989969 (* 0.0909091 = 0.0899972 loss)
I0623 14:14:33.062145 10365 solver.cpp:406] Test net output #138: loss3/loss14 = 0.758606 (* 0.0909091 = 0.0689642 loss)
I0623 14:14:33.062166 10365 solver.cpp:406] Test net output #139: loss3/loss15 = 0.517559 (* 0.0909091 = 0.0470508 loss)
I0623 14:14:33.062180 10365 solver.cpp:406] Test net output #140: loss3/loss16 = 0.424152 (* 0.0909091 = 0.0385593 loss)
I0623 14:14:33.062193 10365 solver.cpp:406] Test net output #141: loss3/loss17 = 0.255278 (* 0.0909091 = 0.0232071 loss)
I0623 14:14:33.062207 10365 solver.cpp:406] Test net output #142: loss3/loss18 = 0.144045 (* 0.0909091 = 0.013095 loss)
I0623 14:14:33.062221 10365 solver.cpp:406] Test net output #143: loss3/loss19 = 0.0864126 (* 0.0909091 = 0.00785569 loss)
I0623 14:14:33.062234 10365 solver.cpp:406] Test net output #144: loss3/loss20 = 0.0533713 (* 0.0909091 = 0.00485194 loss)
I0623 14:14:33.062247 10365 solver.cpp:406] Test net output #145: loss3/loss21 = 0.00578669 (* 0.0909091 = 0.000526063 loss)
I0623 14:14:33.062261 10365 solver.cpp:406] Test net output #146: loss3/loss22 = 9.36713e-05 (* 0.0909091 = 8.51557e-06 loss)
I0623 14:14:33.062273 10365 solver.cpp:406] Test net output #147: total_accuracy = 0.278
I0623 14:14:33.062284 10365 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.146
I0623 14:14:33.062295 10365 solver.cpp:406] Test net output #149: total_confidence = 0.139813
I0623 14:14:33.062317 10365 solver.cpp:406] Test net output #150: total_confidence_not_rec = 0.100067
I0623 14:14:33.552907 10365 solver.cpp:229] Iteration 0, loss = 5.12142
I0623 14:14:33.552981 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.401961
I0623 14:14:33.552999 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 1
I0623 14:14:33.553014 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0623 14:14:33.553025 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0623 14:14:33.553037 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0623 14:14:33.553050 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0623 14:14:33.553061 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.25
I0623 14:14:33.553074 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0623 14:14:33.553086 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.375
I0623 14:14:33.553098 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.375
I0623 14:14:33.553109 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.5
I0623 14:14:33.553122 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.125
I0623 14:14:33.553133 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.25
I0623 14:14:33.553144 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.5
I0623 14:14:33.553156 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.5
I0623 14:14:33.553169 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.625
I0623 14:14:33.553179 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875
I0623 14:14:33.553191 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 14:14:33.553203 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 14:14:33.553215 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 14:14:33.553226 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 14:14:33.553237 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 14:14:33.553249 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 14:14:33.553261 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.647727
I0623 14:14:33.553272 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.735294
I0623 14:14:33.553289 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.79252 (* 0.3 = 0.537755 loss)
I0623 14:14:33.553305 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.06922 (* 0.3 = 0.320767 loss)
I0623 14:14:33.553319 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.324429 (* 0.0272727 = 0.00884805 loss)
I0623 14:14:33.553333 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 1.0714 (* 0.0272727 = 0.02922 loss)
I0623 14:14:33.553349 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.60965 (* 0.0272727 = 0.0438995 loss)
I0623 14:14:33.553361 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.86818 (* 0.0272727 = 0.0509504 loss)
I0623 14:14:33.553375 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 1.90872 (* 0.0272727 = 0.0520559 loss)
I0623 14:14:33.553390 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 2.53158 (* 0.0272727 = 0.0690431 loss)
I0623 14:14:33.553403 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.5928 (* 0.0272727 = 0.0434399 loss)
I0623 14:14:33.553418 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.88923 (* 0.0272727 = 0.0515244 loss)
I0623 14:14:33.553431 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.70306 (* 0.0272727 = 0.0464472 loss)
I0623 14:14:33.553445 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 2.09238 (* 0.0272727 = 0.0570648 loss)
I0623 14:14:33.553459 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 2.44719 (* 0.0272727 = 0.0667417 loss)
I0623 14:14:33.553501 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 2.30285 (* 0.0272727 = 0.062805 loss)
I0623 14:14:33.553524 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.78017 (* 0.0272727 = 0.0485502 loss)
I0623 14:14:33.553539 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.30083 (* 0.0272727 = 0.0354772 loss)
I0623 14:14:33.553552 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 1.24533 (* 0.0272727 = 0.0339636 loss)
I0623 14:14:33.553566 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 1.00064 (* 0.0272727 = 0.0272902 loss)
I0623 14:14:33.553588 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0466472 (* 0.0272727 = 0.0012722 loss)
I0623 14:14:33.553602 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00791877 (* 0.0272727 = 0.000215966 loss)
I0623 14:14:33.553617 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00312984 (* 0.0272727 = 8.53593e-05 loss)
I0623 14:14:33.553633 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000648265 (* 0.0272727 = 1.768e-05 loss)
I0623 14:14:33.553648 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000746471 (* 0.0272727 = 2.03583e-05 loss)
I0623 14:14:33.553663 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000106871 (* 0.0272727 = 2.91465e-06 loss)
I0623 14:14:33.553675 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.5
I0623 14:14:33.553688 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0623 14:14:33.553699 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0623 14:14:33.553711 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5
I0623 14:14:33.553722 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.75
I0623 14:14:33.553735 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0623 14:14:33.553745 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.25
I0623 14:14:33.553762 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.375
I0623 14:14:33.553773 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.25
I0623 14:14:33.553786 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.375
I0623 14:14:33.553797 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.375
I0623 14:14:33.553807 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.125
I0623 14:14:33.553825 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.375
I0623 14:14:33.553838 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.5
I0623 14:14:33.553848 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.75
I0623 14:14:33.553860 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.625
I0623 14:14:33.553871 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875
I0623 14:14:33.553885 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 14:14:33.553897 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 14:14:33.553908 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 14:14:33.553920 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 14:14:33.553930 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 14:14:33.553942 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 14:14:33.553953 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.704545
I0623 14:14:33.553966 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.813725
I0623 14:14:33.553978 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.49093 (* 0.3 = 0.447279 loss)
I0623 14:14:33.553992 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.892697 (* 0.3 = 0.267809 loss)
I0623 14:14:33.554006 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.41995 (* 0.0272727 = 0.0114532 loss)
I0623 14:14:33.554033 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.667512 (* 0.0272727 = 0.0182049 loss)
I0623 14:14:33.554047 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.932408 (* 0.0272727 = 0.0254293 loss)
I0623 14:14:33.554061 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 0.885443 (* 0.0272727 = 0.0241484 loss)
I0623 14:14:33.554075 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 2.02774 (* 0.0272727 = 0.055302 loss)
I0623 14:14:33.554090 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 2.051 (* 0.0272727 = 0.0559365 loss)
I0623 14:14:33.554105 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.80063 (* 0.0272727 = 0.0491081 loss)
I0623 14:14:33.554118 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 2.06991 (* 0.0272727 = 0.0564521 loss)
I0623 14:14:33.554132 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.99384 (* 0.0272727 = 0.0543775 loss)
I0623 14:14:33.554147 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.96296 (* 0.0272727 = 0.0535352 loss)
I0623 14:14:33.554160 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 2.4945 (* 0.0272727 = 0.0680318 loss)
I0623 14:14:33.554174 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 2.14919 (* 0.0272727 = 0.0586143 loss)
I0623 14:14:33.554188 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.408 (* 0.0272727 = 0.0384001 loss)
I0623 14:14:33.554201 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 0.935762 (* 0.0272727 = 0.0255208 loss)
I0623 14:14:33.554215 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.973234 (* 0.0272727 = 0.0265427 loss)
I0623 14:14:33.554230 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.970905 (* 0.0272727 = 0.0264792 loss)
I0623 14:14:33.554244 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0856895 (* 0.0272727 = 0.00233699 loss)
I0623 14:14:33.554258 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0186307 (* 0.0272727 = 0.000508111 loss)
I0623 14:14:33.554273 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00553131 (* 0.0272727 = 0.000150854 loss)
I0623 14:14:33.554287 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00141805 (* 0.0272727 = 3.8674e-05 loss)
I0623 14:14:33.554301 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000240579 (* 0.0272727 = 6.56125e-06 loss)
I0623 14:14:33.554316 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 8.45916e-05 (* 0.0272727 = 2.30704e-06 loss)
I0623 14:14:33.554328 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.803922
I0623 14:14:33.554340 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 14:14:33.554352 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 14:14:33.554363 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 14:14:33.554375 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 14:14:33.554386 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0623 14:14:33.554399 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0623 14:14:33.554409 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0623 14:14:33.554421 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0623 14:14:33.554432 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.5
I0623 14:14:33.554443 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.375
I0623 14:14:33.554455 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.25
I0623 14:14:33.554466 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.5
I0623 14:14:33.554477 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.625
I0623 14:14:33.554489 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875
I0623 14:14:33.554507 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.625
I0623 14:14:33.554515 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.75
I0623 14:14:33.554530 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 14:14:33.554541 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 14:14:33.554553 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 14:14:33.554564 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 14:14:33.554574 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 14:14:33.554585 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 14:14:33.554596 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.880682
I0623 14:14:33.554607 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.95098
I0623 14:14:33.554621 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.644893 (* 1 = 0.644893 loss)
I0623 14:14:33.554635 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.384166 (* 1 = 0.384166 loss)
I0623 14:14:33.554648 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.079225 (* 0.0909091 = 0.00720227 loss)
I0623 14:14:33.554662 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0830121 (* 0.0909091 = 0.00754656 loss)
I0623 14:14:33.554675 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0467799 (* 0.0909091 = 0.00425272 loss)
I0623 14:14:33.554692 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.130574 (* 0.0909091 = 0.0118704 loss)
I0623 14:14:33.554707 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.832513 (* 0.0909091 = 0.075683 loss)
I0623 14:14:33.554720 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.28307 (* 0.0909091 = 0.0257336 loss)
I0623 14:14:33.554733 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.598593 (* 0.0909091 = 0.0544175 loss)
I0623 14:14:33.554746 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.936576 (* 0.0909091 = 0.0851433 loss)
I0623 14:14:33.554760 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.926023 (* 0.0909091 = 0.0841839 loss)
I0623 14:14:33.554774 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 1.85965 (* 0.0909091 = 0.169059 loss)
I0623 14:14:33.554786 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 1.91403 (* 0.0909091 = 0.174003 loss)
I0623 14:14:33.554800 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.51265 (* 0.0909091 = 0.137514 loss)
I0623 14:14:33.554813 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 1.11668 (* 0.0909091 = 0.101517 loss)
I0623 14:14:33.554826 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.619355 (* 0.0909091 = 0.056305 loss)
I0623 14:14:33.554841 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.714942 (* 0.0909091 = 0.0649947 loss)
I0623 14:14:33.554853 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.852556 (* 0.0909091 = 0.0775051 loss)
I0623 14:14:33.554867 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0190559 (* 0.0909091 = 0.00173235 loss)
I0623 14:14:33.554880 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00355098 (* 0.0909091 = 0.000322817 loss)
I0623 14:14:33.554894 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00154537 (* 0.0909091 = 0.000140488 loss)
I0623 14:14:33.554908 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000877499 (* 0.0909091 = 7.97726e-05 loss)
I0623 14:14:33.554922 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000159306 (* 0.0909091 = 1.44823e-05 loss)
I0623 14:14:33.554939 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 0.00013564 (* 0.0909091 = 1.23309e-05 loss)
I0623 14:14:33.554951 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0623 14:14:33.554976 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0623 14:14:33.554991 10365 solver.cpp:245] Train net output #149: total_confidence = 0.109761
I0623 14:14:33.555001 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.108266
I0623 14:14:33.555022 10365 sgd_solver.cpp:106] Iteration 0, lr = 0.001
I0623 14:15:19.266675 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.4511 > 30) by scale factor 0.985185
I0623 14:15:52.274754 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 36.5472 > 30) by scale factor 0.820855
I0623 14:17:08.293911 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 35.9362 > 30) by scale factor 0.834814
I0623 14:17:29.809190 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 33.9036 > 30) by scale factor 0.884861
I0623 14:20:24.121537 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 42.3355 > 30) by scale factor 0.708625
I0623 14:20:40.253177 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 56.9096 > 30) by scale factor 0.527152
I0623 14:20:57.513164 10365 solver.cpp:229] Iteration 500, loss = 5.02442
I0623 14:20:57.513280 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.459459
I0623 14:20:57.513300 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0623 14:20:57.513312 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.25
I0623 14:20:57.513325 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.75
I0623 14:20:57.513337 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0623 14:20:57.513350 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.125
I0623 14:20:57.513361 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.25
I0623 14:20:57.513373 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.375
I0623 14:20:57.513386 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.125
I0623 14:20:57.513397 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.375
I0623 14:20:57.513408 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.375
I0623 14:20:57.513420 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.125
I0623 14:20:57.513432 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.25
I0623 14:20:57.513443 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.25
I0623 14:20:57.513455 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.625
I0623 14:20:57.513468 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.625
I0623 14:20:57.513478 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.75
I0623 14:20:57.513490 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875
I0623 14:20:57.513501 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 14:20:57.513514 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 14:20:57.513525 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 14:20:57.513536 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 14:20:57.513547 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 14:20:57.513559 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.653409
I0623 14:20:57.513571 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.711712
I0623 14:20:57.513588 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.78541 (* 0.3 = 0.535622 loss)
I0623 14:20:57.513603 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.17627 (* 0.3 = 0.352881 loss)
I0623 14:20:57.513617 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.792957 (* 0.0272727 = 0.0216261 loss)
I0623 14:20:57.513631 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 2.44411 (* 0.0272727 = 0.0666575 loss)
I0623 14:20:57.513644 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.18889 (* 0.0272727 = 0.0324242 loss)
I0623 14:20:57.513659 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.94172 (* 0.0272727 = 0.052956 loss)
I0623 14:20:57.513672 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 2.49155 (* 0.0272727 = 0.0679513 loss)
I0623 14:20:57.513686 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 2.43514 (* 0.0272727 = 0.066413 loss)
I0623 14:20:57.513700 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.79543 (* 0.0272727 = 0.0489663 loss)
I0623 14:20:57.513713 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 2.72213 (* 0.0272727 = 0.07424 loss)
I0623 14:20:57.513727 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 2.0564 (* 0.0272727 = 0.0560837 loss)
I0623 14:20:57.513741 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 2.14042 (* 0.0272727 = 0.058375 loss)
I0623 14:20:57.513754 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 2.76514 (* 0.0272727 = 0.0754129 loss)
I0623 14:20:57.513768 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 2.29966 (* 0.0272727 = 0.0627181 loss)
I0623 14:20:57.513799 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.70819 (* 0.0272727 = 0.0465871 loss)
I0623 14:20:57.513814 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.34664 (* 0.0272727 = 0.0367266 loss)
I0623 14:20:57.513828 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 1.00315 (* 0.0272727 = 0.0273586 loss)
I0623 14:20:57.513841 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 1.18193 (* 0.0272727 = 0.0322345 loss)
I0623 14:20:57.513855 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.729755 (* 0.0272727 = 0.0199024 loss)
I0623 14:20:57.513870 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0136932 (* 0.0272727 = 0.000373452 loss)
I0623 14:20:57.513883 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00239847 (* 0.0272727 = 6.54127e-05 loss)
I0623 14:20:57.513897 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000722501 (* 0.0272727 = 1.97046e-05 loss)
I0623 14:20:57.513911 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000203126 (* 0.0272727 = 5.53981e-06 loss)
I0623 14:20:57.513926 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 4.89618e-05 (* 0.0272727 = 1.33532e-06 loss)
I0623 14:20:57.513937 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.558559
I0623 14:20:57.513949 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0623 14:20:57.513962 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0623 14:20:57.513972 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 1
I0623 14:20:57.513983 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.75
I0623 14:20:57.513994 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0623 14:20:57.514005 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0623 14:20:57.514017 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.125
I0623 14:20:57.514029 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.25
I0623 14:20:57.514039 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.5
I0623 14:20:57.514050 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.375
I0623 14:20:57.514061 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0
I0623 14:20:57.514073 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0
I0623 14:20:57.514084 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.625
I0623 14:20:57.514096 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.625
I0623 14:20:57.514106 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.625
I0623 14:20:57.514117 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875
I0623 14:20:57.514128 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875
I0623 14:20:57.514139 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 14:20:57.514150 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 14:20:57.514163 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 14:20:57.514173 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 14:20:57.514185 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 14:20:57.514196 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.715909
I0623 14:20:57.514209 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.801802
I0623 14:20:57.514222 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.49167 (* 0.3 = 0.447501 loss)
I0623 14:20:57.514236 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.964172 (* 0.3 = 0.289252 loss)
I0623 14:20:57.514250 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.207342 (* 0.0272727 = 0.00565479 loss)
I0623 14:20:57.514268 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.551789 (* 0.0272727 = 0.0150488 loss)
I0623 14:20:57.514294 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.211737 (* 0.0272727 = 0.00577466 loss)
I0623 14:20:57.514309 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 0.830071 (* 0.0272727 = 0.0226383 loss)
I0623 14:20:57.514323 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.09761 (* 0.0272727 = 0.0299347 loss)
I0623 14:20:57.514338 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.83724 (* 0.0272727 = 0.0501065 loss)
I0623 14:20:57.514351 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.79621 (* 0.0272727 = 0.0489876 loss)
I0623 14:20:57.514365 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 2.61365 (* 0.0272727 = 0.0712814 loss)
I0623 14:20:57.514379 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.70172 (* 0.0272727 = 0.0464107 loss)
I0623 14:20:57.514392 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.58875 (* 0.0272727 = 0.0433294 loss)
I0623 14:20:57.514406 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 2.7115 (* 0.0272727 = 0.0739501 loss)
I0623 14:20:57.514416 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 2.77846 (* 0.0272727 = 0.0757761 loss)
I0623 14:20:57.514431 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.08562 (* 0.0272727 = 0.0296077 loss)
I0623 14:20:57.514446 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.69045 (* 0.0272727 = 0.0461033 loss)
I0623 14:20:57.514458 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 1.02518 (* 0.0272727 = 0.0279595 loss)
I0623 14:20:57.514472 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.8921 (* 0.0272727 = 0.02433 loss)
I0623 14:20:57.514485 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.994337 (* 0.0272727 = 0.0271183 loss)
I0623 14:20:57.514499 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00238301 (* 0.0272727 = 6.49911e-05 loss)
I0623 14:20:57.514513 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000596238 (* 0.0272727 = 1.6261e-05 loss)
I0623 14:20:57.514528 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000135191 (* 0.0272727 = 3.68702e-06 loss)
I0623 14:20:57.514541 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 2.43196e-05 (* 0.0272727 = 6.63262e-07 loss)
I0623 14:20:57.514555 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 3.87432e-06 (* 0.0272727 = 1.05663e-07 loss)
I0623 14:20:57.514567 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.738739
I0623 14:20:57.514578 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 14:20:57.514590 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 14:20:57.514600 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 14:20:57.514612 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 14:20:57.514623 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0623 14:20:57.514634 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0623 14:20:57.514645 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0623 14:20:57.514657 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.625
I0623 14:20:57.514667 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.625
I0623 14:20:57.514679 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.375
I0623 14:20:57.514690 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.375
I0623 14:20:57.514701 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.25
I0623 14:20:57.514713 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.375
I0623 14:20:57.514724 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.5
I0623 14:20:57.514734 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.75
I0623 14:20:57.514745 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875
I0623 14:20:57.514766 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.875
I0623 14:20:57.514780 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 14:20:57.514791 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 14:20:57.514802 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 14:20:57.514813 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 14:20:57.514824 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 14:20:57.514835 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.835227
I0623 14:20:57.514847 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.936937
I0623 14:20:57.514860 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.836642 (* 1 = 0.836642 loss)
I0623 14:20:57.514873 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.533756 (* 1 = 0.533756 loss)
I0623 14:20:57.514888 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0850979 (* 0.0909091 = 0.00773617 loss)
I0623 14:20:57.514901 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0624322 (* 0.0909091 = 0.00567565 loss)
I0623 14:20:57.514915 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0335406 (* 0.0909091 = 0.00304914 loss)
I0623 14:20:57.514930 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0513493 (* 0.0909091 = 0.00466812 loss)
I0623 14:20:57.514943 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.493017 (* 0.0909091 = 0.0448197 loss)
I0623 14:20:57.514957 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.656601 (* 0.0909091 = 0.059691 loss)
I0623 14:20:57.514971 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.814834 (* 0.0909091 = 0.0740758 loss)
I0623 14:20:57.514984 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 1.56302 (* 0.0909091 = 0.142093 loss)
I0623 14:20:57.514998 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 1.18253 (* 0.0909091 = 0.107503 loss)
I0623 14:20:57.515012 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 1.23405 (* 0.0909091 = 0.112186 loss)
I0623 14:20:57.515025 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 1.48682 (* 0.0909091 = 0.135165 loss)
I0623 14:20:57.515038 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.47172 (* 0.0909091 = 0.133793 loss)
I0623 14:20:57.515053 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 1.33224 (* 0.0909091 = 0.121113 loss)
I0623 14:20:57.515065 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 1.41434 (* 0.0909091 = 0.128576 loss)
I0623 14:20:57.515079 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 1.05772 (* 0.0909091 = 0.0961561 loss)
I0623 14:20:57.515092 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.798388 (* 0.0909091 = 0.0725808 loss)
I0623 14:20:57.515106 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.981651 (* 0.0909091 = 0.089241 loss)
I0623 14:20:57.515120 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000568332 (* 0.0909091 = 5.16665e-05 loss)
I0623 14:20:57.515135 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000143639 (* 0.0909091 = 1.30581e-05 loss)
I0623 14:20:57.515148 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 4.31788e-05 (* 0.0909091 = 3.92534e-06 loss)
I0623 14:20:57.515161 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 1.25171e-05 (* 0.0909091 = 1.13792e-06 loss)
I0623 14:20:57.515175 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 9.08984e-06 (* 0.0909091 = 8.26349e-07 loss)
I0623 14:20:57.515187 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0623 14:20:57.515199 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0
I0623 14:20:57.515210 10365 solver.cpp:245] Train net output #149: total_confidence = 0.0310181
I0623 14:20:57.515231 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.00863898
I0623 14:20:57.515246 10365 sgd_solver.cpp:106] Iteration 500, lr = 0.001
I0623 14:21:35.439049 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.2764 > 30) by scale factor 0.990871
I0623 14:23:42.637328 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 38.8471 > 30) by scale factor 0.772259
I0623 14:24:21.707362 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 39.9716 > 30) by scale factor 0.750533
I0623 14:24:33.197569 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 35.2116 > 30) by scale factor 0.851992
I0623 14:25:29.132534 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 33.0346 > 30) by scale factor 0.908138
I0623 14:26:56.500510 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 38.7428 > 30) by scale factor 0.774337
I0623 14:27:20.673233 10365 solver.cpp:229] Iteration 1000, loss = 5.0137
I0623 14:27:20.673290 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4
I0623 14:27:20.673308 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5
I0623 14:27:20.673321 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0623 14:27:20.673333 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0623 14:27:20.673346 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0623 14:27:20.673357 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0
I0623 14:27:20.673369 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0623 14:27:20.673382 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.125
I0623 14:27:20.673393 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.375
I0623 14:27:20.673405 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.25
I0623 14:27:20.673416 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.125
I0623 14:27:20.673429 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.25
I0623 14:27:20.673439 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.375
I0623 14:27:20.673451 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.375
I0623 14:27:20.673462 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.75
I0623 14:27:20.673475 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0623 14:27:20.673485 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0623 14:27:20.673497 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 14:27:20.673508 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 14:27:20.673519 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 14:27:20.673532 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 14:27:20.673542 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 14:27:20.673553 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 14:27:20.673564 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.647727
I0623 14:27:20.673576 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.73
I0623 14:27:20.673593 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.95348 (* 0.3 = 0.586043 loss)
I0623 14:27:20.673606 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.15325 (* 0.3 = 0.345975 loss)
I0623 14:27:20.673620 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 1.00459 (* 0.0272727 = 0.027398 loss)
I0623 14:27:20.673635 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 1.73638 (* 0.0272727 = 0.0473558 loss)
I0623 14:27:20.673648 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.89167 (* 0.0272727 = 0.0515909 loss)
I0623 14:27:20.673665 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 2.0593 (* 0.0272727 = 0.0561628 loss)
I0623 14:27:20.673678 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 3.29933 (* 0.0272727 = 0.0899817 loss)
I0623 14:27:20.673692 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 2.37125 (* 0.0272727 = 0.0646706 loss)
I0623 14:27:20.673705 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 2.0382 (* 0.0272727 = 0.0555871 loss)
I0623 14:27:20.673719 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 2.20754 (* 0.0272727 = 0.0602055 loss)
I0623 14:27:20.673732 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 2.05245 (* 0.0272727 = 0.055976 loss)
I0623 14:27:20.673746 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.85184 (* 0.0272727 = 0.0505047 loss)
I0623 14:27:20.673760 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 3.06303 (* 0.0272727 = 0.0835371 loss)
I0623 14:27:20.673774 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 2.68697 (* 0.0272727 = 0.0732809 loss)
I0623 14:27:20.673816 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 2.11863 (* 0.0272727 = 0.0577807 loss)
I0623 14:27:20.673831 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 0.830733 (* 0.0272727 = 0.0226564 loss)
I0623 14:27:20.673846 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.169665 (* 0.0272727 = 0.00462723 loss)
I0623 14:27:20.673859 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0521971 (* 0.0272727 = 0.00142356 loss)
I0623 14:27:20.673873 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00874121 (* 0.0272727 = 0.000238397 loss)
I0623 14:27:20.673887 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00658462 (* 0.0272727 = 0.000179581 loss)
I0623 14:27:20.673902 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000559141 (* 0.0272727 = 1.52493e-05 loss)
I0623 14:27:20.673915 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000220096 (* 0.0272727 = 6.00262e-06 loss)
I0623 14:27:20.673929 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000131226 (* 0.0272727 = 3.5789e-06 loss)
I0623 14:27:20.673943 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 8.71745e-06 (* 0.0272727 = 2.37749e-07 loss)
I0623 14:27:20.673956 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.54
I0623 14:27:20.673967 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0623 14:27:20.673979 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 1
I0623 14:27:20.673990 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 1
I0623 14:27:20.674001 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0623 14:27:20.674013 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25
I0623 14:27:20.674024 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0623 14:27:20.674036 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.25
I0623 14:27:20.674047 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.375
I0623 14:27:20.674059 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.25
I0623 14:27:20.674070 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.25
I0623 14:27:20.674082 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.375
I0623 14:27:20.674093 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.375
I0623 14:27:20.674105 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.375
I0623 14:27:20.674119 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.75
I0623 14:27:20.674131 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0623 14:27:20.674142 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0623 14:27:20.674154 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 14:27:20.674165 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 14:27:20.674175 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 14:27:20.674187 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 14:27:20.674199 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 14:27:20.674211 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 14:27:20.674221 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.738636
I0623 14:27:20.674233 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.8
I0623 14:27:20.674247 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.35541 (* 0.3 = 0.406622 loss)
I0623 14:27:20.674262 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.79964 (* 0.3 = 0.239892 loss)
I0623 14:27:20.674278 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.185283 (* 0.0272727 = 0.00505318 loss)
I0623 14:27:20.674293 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.297175 (* 0.0272727 = 0.00810478 loss)
I0623 14:27:20.674319 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.355719 (* 0.0272727 = 0.00970144 loss)
I0623 14:27:20.674334 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.00669 (* 0.0272727 = 0.0274553 loss)
I0623 14:27:20.674347 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 2.44598 (* 0.0272727 = 0.0667086 loss)
I0623 14:27:20.674361 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.98102 (* 0.0272727 = 0.0540278 loss)
I0623 14:27:20.674374 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.8353 (* 0.0272727 = 0.0500536 loss)
I0623 14:27:20.674388 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 2.13399 (* 0.0272727 = 0.0581998 loss)
I0623 14:27:20.674401 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 2.10105 (* 0.0272727 = 0.0573014 loss)
I0623 14:27:20.674414 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.9969 (* 0.0272727 = 0.0544608 loss)
I0623 14:27:20.674428 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 2.48258 (* 0.0272727 = 0.0677067 loss)
I0623 14:27:20.674441 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.60997 (* 0.0272727 = 0.0439084 loss)
I0623 14:27:20.674454 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.73087 (* 0.0272727 = 0.0472056 loss)
I0623 14:27:20.674468 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 0.571708 (* 0.0272727 = 0.015592 loss)
I0623 14:27:20.674482 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0720522 (* 0.0272727 = 0.00196506 loss)
I0623 14:27:20.674497 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0269818 (* 0.0272727 = 0.000735868 loss)
I0623 14:27:20.674507 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00143195 (* 0.0272727 = 3.90533e-05 loss)
I0623 14:27:20.674522 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000274465 (* 0.0272727 = 7.48541e-06 loss)
I0623 14:27:20.674536 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000105223 (* 0.0272727 = 2.86972e-06 loss)
I0623 14:27:20.674551 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 3.79486e-05 (* 0.0272727 = 1.03496e-06 loss)
I0623 14:27:20.674564 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 9.47731e-06 (* 0.0272727 = 2.58472e-07 loss)
I0623 14:27:20.674578 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 1.77325e-06 (* 0.0272727 = 4.83613e-08 loss)
I0623 14:27:20.674590 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.89
I0623 14:27:20.674602 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 14:27:20.674614 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 14:27:20.674625 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 14:27:20.674636 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0623 14:27:20.674648 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0623 14:27:20.674659 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0623 14:27:20.674670 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0623 14:27:20.674681 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.625
I0623 14:27:20.674693 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.25
I0623 14:27:20.674705 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75
I0623 14:27:20.674715 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.75
I0623 14:27:20.674726 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.75
I0623 14:27:20.674737 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.625
I0623 14:27:20.674749 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.75
I0623 14:27:20.674760 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875
I0623 14:27:20.674782 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0623 14:27:20.674793 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 14:27:20.674804 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 14:27:20.674816 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 14:27:20.674828 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 14:27:20.674839 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 14:27:20.674849 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 14:27:20.674860 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.931818
I0623 14:27:20.674872 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.98
I0623 14:27:20.674885 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.437546 (* 1 = 0.437546 loss)
I0623 14:27:20.674899 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.271503 (* 1 = 0.271503 loss)
I0623 14:27:20.674912 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.200327 (* 0.0909091 = 0.0182115 loss)
I0623 14:27:20.674926 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0666142 (* 0.0909091 = 0.00605583 loss)
I0623 14:27:20.674940 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0982584 (* 0.0909091 = 0.00893258 loss)
I0623 14:27:20.674953 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.258239 (* 0.0909091 = 0.0234763 loss)
I0623 14:27:20.674968 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.699413 (* 0.0909091 = 0.063583 loss)
I0623 14:27:20.674981 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.268446 (* 0.0909091 = 0.0244042 loss)
I0623 14:27:20.674994 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.289023 (* 0.0909091 = 0.0262749 loss)
I0623 14:27:20.675009 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.93049 (* 0.0909091 = 0.08459 loss)
I0623 14:27:20.675022 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 1.44596 (* 0.0909091 = 0.131451 loss)
I0623 14:27:20.675036 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.840798 (* 0.0909091 = 0.0764362 loss)
I0623 14:27:20.675050 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 0.876739 (* 0.0909091 = 0.0797035 loss)
I0623 14:27:20.675063 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 0.877419 (* 0.0909091 = 0.0797654 loss)
I0623 14:27:20.675077 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 0.940941 (* 0.0909091 = 0.0855401 loss)
I0623 14:27:20.675091 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.589183 (* 0.0909091 = 0.0535621 loss)
I0623 14:27:20.675104 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.14662 (* 0.0909091 = 0.0133291 loss)
I0623 14:27:20.675117 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.0129137 (* 0.0909091 = 0.00117397 loss)
I0623 14:27:20.675132 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00143373 (* 0.0909091 = 0.000130339 loss)
I0623 14:27:20.675145 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 8.6886e-05 (* 0.0909091 = 7.89873e-06 loss)
I0623 14:27:20.675159 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 4.02736e-05 (* 0.0909091 = 3.66124e-06 loss)
I0623 14:27:20.675176 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 2.55423e-05 (* 0.0909091 = 2.32203e-06 loss)
I0623 14:27:20.675190 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 1.35156e-05 (* 0.0909091 = 1.2287e-06 loss)
I0623 14:27:20.675204 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 1.53482e-06 (* 0.0909091 = 1.39529e-07 loss)
I0623 14:27:20.675216 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.25
I0623 14:27:20.675228 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0
I0623 14:27:20.675249 10365 solver.cpp:245] Train net output #149: total_confidence = 0.046828
I0623 14:27:20.675263 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.0284861
I0623 14:27:20.675276 10365 sgd_solver.cpp:106] Iteration 1000, lr = 0.001
I0623 14:29:23.664837 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 38.874 > 30) by scale factor 0.771725
I0623 14:30:48.724439 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 36.3493 > 30) by scale factor 0.825326
I0623 14:31:12.488049 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 49.8042 > 30) by scale factor 0.602359
I0623 14:33:43.876998 10365 solver.cpp:229] Iteration 1500, loss = 4.99068
I0623 14:33:43.877152 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.436893
I0623 14:33:43.877172 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0623 14:33:43.877185 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0623 14:33:43.877198 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0623 14:33:43.877209 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0623 14:33:43.877221 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.125
I0623 14:33:43.877233 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0623 14:33:43.877245 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.375
I0623 14:33:43.877257 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.5
I0623 14:33:43.877280 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.375
I0623 14:33:43.877298 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.375
I0623 14:33:43.877311 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.375
I0623 14:33:43.877322 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.25
I0623 14:33:43.877334 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.625
I0623 14:33:43.877346 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.625
I0623 14:33:43.877358 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.5
I0623 14:33:43.877370 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.5
I0623 14:33:43.877382 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875
I0623 14:33:43.877394 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 0.875
I0623 14:33:43.877405 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 14:33:43.877418 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 14:33:43.877429 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 14:33:43.877441 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 14:33:43.877452 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.659091
I0623 14:33:43.877465 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.76699
I0623 14:33:43.877482 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.63592 (* 0.3 = 0.490776 loss)
I0623 14:33:43.877497 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.99772 (* 0.3 = 0.299316 loss)
I0623 14:33:43.877512 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.35398 (* 0.0272727 = 0.00965401 loss)
I0623 14:33:43.877526 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 1.51821 (* 0.0272727 = 0.0414058 loss)
I0623 14:33:43.877540 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.72349 (* 0.0272727 = 0.0470044 loss)
I0623 14:33:43.877554 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.80135 (* 0.0272727 = 0.0491277 loss)
I0623 14:33:43.877569 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 2.1189 (* 0.0272727 = 0.0577882 loss)
I0623 14:33:43.877583 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 2.21734 (* 0.0272727 = 0.0604728 loss)
I0623 14:33:43.877596 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.60432 (* 0.0272727 = 0.0437542 loss)
I0623 14:33:43.877610 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.35414 (* 0.0272727 = 0.0369312 loss)
I0623 14:33:43.877624 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 2.20818 (* 0.0272727 = 0.0602232 loss)
I0623 14:33:43.877638 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 2.20143 (* 0.0272727 = 0.060039 loss)
I0623 14:33:43.877651 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.63611 (* 0.0272727 = 0.0446211 loss)
I0623 14:33:43.877665 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.94855 (* 0.0272727 = 0.0531422 loss)
I0623 14:33:43.877701 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.67807 (* 0.0272727 = 0.0457655 loss)
I0623 14:33:43.877715 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.71274 (* 0.0272727 = 0.0467112 loss)
I0623 14:33:43.877728 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 1.37181 (* 0.0272727 = 0.0374129 loss)
I0623 14:33:43.877743 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 1.20252 (* 0.0272727 = 0.032796 loss)
I0623 14:33:43.877756 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.48925 (* 0.0272727 = 0.0133432 loss)
I0623 14:33:43.877770 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.448091 (* 0.0272727 = 0.0122207 loss)
I0623 14:33:43.877784 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00811442 (* 0.0272727 = 0.000221302 loss)
I0623 14:33:43.877799 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00415387 (* 0.0272727 = 0.000113287 loss)
I0623 14:33:43.877813 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000825719 (* 0.0272727 = 2.25196e-05 loss)
I0623 14:33:43.877828 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 5.03877e-05 (* 0.0272727 = 1.37421e-06 loss)
I0623 14:33:43.877840 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.524272
I0623 14:33:43.877853 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0623 14:33:43.877866 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 1
I0623 14:33:43.877876 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75
I0623 14:33:43.877888 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.875
I0623 14:33:43.877900 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0623 14:33:43.877912 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0623 14:33:43.877921 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0623 14:33:43.877929 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.5
I0623 14:33:43.877943 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.75
I0623 14:33:43.877954 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.5
I0623 14:33:43.877966 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.5
I0623 14:33:43.877977 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.25
I0623 14:33:43.877990 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.75
I0623 14:33:43.878001 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.375
I0623 14:33:43.878012 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.5
I0623 14:33:43.878024 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.75
I0623 14:33:43.878036 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875
I0623 14:33:43.878046 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 0.875
I0623 14:33:43.878057 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 14:33:43.878069 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 14:33:43.878080 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 14:33:43.878093 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 14:33:43.878103 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.704545
I0623 14:33:43.878115 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.825243
I0623 14:33:43.878129 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.24201 (* 0.3 = 0.372604 loss)
I0623 14:33:43.878144 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.75484 (* 0.3 = 0.226452 loss)
I0623 14:33:43.878157 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.326613 (* 0.0272727 = 0.00890763 loss)
I0623 14:33:43.878188 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.11451 (* 0.0272727 = 0.003123 loss)
I0623 14:33:43.878224 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.858004 (* 0.0272727 = 0.0234001 loss)
I0623 14:33:43.878240 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.14072 (* 0.0272727 = 0.0311106 loss)
I0623 14:33:43.878254 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.07329 (* 0.0272727 = 0.0292716 loss)
I0623 14:33:43.878268 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.50703 (* 0.0272727 = 0.0411007 loss)
I0623 14:33:43.878283 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.20357 (* 0.0272727 = 0.0328247 loss)
I0623 14:33:43.878295 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.34352 (* 0.0272727 = 0.0366415 loss)
I0623 14:33:43.878309 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.2565 (* 0.0272727 = 0.0342683 loss)
I0623 14:33:43.878326 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.54333 (* 0.0272727 = 0.0420908 loss)
I0623 14:33:43.878340 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.30628 (* 0.0272727 = 0.0356259 loss)
I0623 14:33:43.878355 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.66233 (* 0.0272727 = 0.0453363 loss)
I0623 14:33:43.878367 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 0.859647 (* 0.0272727 = 0.0234449 loss)
I0623 14:33:43.878381 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.6104 (* 0.0272727 = 0.0439201 loss)
I0623 14:33:43.878396 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 1.54237 (* 0.0272727 = 0.0420646 loss)
I0623 14:33:43.878409 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.867605 (* 0.0272727 = 0.023662 loss)
I0623 14:33:43.878422 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.428251 (* 0.0272727 = 0.0116796 loss)
I0623 14:33:43.878437 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.360381 (* 0.0272727 = 0.00982856 loss)
I0623 14:33:43.878450 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0439134 (* 0.0272727 = 0.00119764 loss)
I0623 14:33:43.878464 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00346557 (* 0.0272727 = 9.45157e-05 loss)
I0623 14:33:43.878479 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00228619 (* 0.0272727 = 6.23506e-05 loss)
I0623 14:33:43.878494 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00054124 (* 0.0272727 = 1.47611e-05 loss)
I0623 14:33:43.878505 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.708738
I0623 14:33:43.878517 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 14:33:43.878530 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 14:33:43.878541 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875
I0623 14:33:43.878553 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0623 14:33:43.878566 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0623 14:33:43.878576 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0623 14:33:43.878588 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0623 14:33:43.878600 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0623 14:33:43.878612 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.625
I0623 14:33:43.878624 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.5
I0623 14:33:43.878635 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.5
I0623 14:33:43.878648 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.625
I0623 14:33:43.878659 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.625
I0623 14:33:43.878670 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.375
I0623 14:33:43.878682 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.5
I0623 14:33:43.878695 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.75
I0623 14:33:43.878716 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.75
I0623 14:33:43.878729 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 0.875
I0623 14:33:43.878741 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 14:33:43.878753 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 14:33:43.878765 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 14:33:43.878777 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 14:33:43.878788 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.8125
I0623 14:33:43.878800 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.92233
I0623 14:33:43.878814 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.919121 (* 1 = 0.919121 loss)
I0623 14:33:43.878829 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.580445 (* 1 = 0.580445 loss)
I0623 14:33:43.878842 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0695891 (* 0.0909091 = 0.00632628 loss)
I0623 14:33:43.878857 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0775979 (* 0.0909091 = 0.00705436 loss)
I0623 14:33:43.878871 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.994121 (* 0.0909091 = 0.0903746 loss)
I0623 14:33:43.878885 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.743891 (* 0.0909091 = 0.0676265 loss)
I0623 14:33:43.878900 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.836761 (* 0.0909091 = 0.0760692 loss)
I0623 14:33:43.878913 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.574879 (* 0.0909091 = 0.0522618 loss)
I0623 14:33:43.878927 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.614564 (* 0.0909091 = 0.0558695 loss)
I0623 14:33:43.878942 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.520687 (* 0.0909091 = 0.0473352 loss)
I0623 14:33:43.878955 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 1.28832 (* 0.0909091 = 0.11712 loss)
I0623 14:33:43.878969 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 1.1674 (* 0.0909091 = 0.106127 loss)
I0623 14:33:43.878983 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 1.11603 (* 0.0909091 = 0.101457 loss)
I0623 14:33:43.878996 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.10812 (* 0.0909091 = 0.100738 loss)
I0623 14:33:43.879010 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 1.05021 (* 0.0909091 = 0.0954736 loss)
I0623 14:33:43.879024 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 1.49 (* 0.0909091 = 0.135455 loss)
I0623 14:33:43.879039 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.917307 (* 0.0909091 = 0.0833915 loss)
I0623 14:33:43.879052 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.69531 (* 0.0909091 = 0.06321 loss)
I0623 14:33:43.879066 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.621631 (* 0.0909091 = 0.0565119 loss)
I0623 14:33:43.879081 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.485634 (* 0.0909091 = 0.0441486 loss)
I0623 14:33:43.879094 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0202815 (* 0.0909091 = 0.00184377 loss)
I0623 14:33:43.879108 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00393216 (* 0.0909091 = 0.000357469 loss)
I0623 14:33:43.879123 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00140446 (* 0.0909091 = 0.000127678 loss)
I0623 14:33:43.879137 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000310339 (* 0.0909091 = 2.82127e-05 loss)
I0623 14:33:43.879150 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.25
I0623 14:33:43.879161 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0623 14:33:43.879173 10365 solver.cpp:245] Train net output #149: total_confidence = 0.224659
I0623 14:33:43.879195 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.22658
I0623 14:33:43.879212 10365 sgd_solver.cpp:106] Iteration 1500, lr = 0.001
I0623 14:34:59.331606 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 38.986 > 30) by scale factor 0.769506
I0623 14:40:07.028699 10365 solver.cpp:229] Iteration 2000, loss = 4.96318
I0623 14:40:07.028813 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.505155
I0623 14:40:07.028832 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 1
I0623 14:40:07.028846 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0623 14:40:07.028857 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625
I0623 14:40:07.028869 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0623 14:40:07.028882 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0623 14:40:07.028893 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0623 14:40:07.028905 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.375
I0623 14:40:07.028918 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.5
I0623 14:40:07.028928 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.625
I0623 14:40:07.028940 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.625
I0623 14:40:07.028952 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.25
I0623 14:40:07.028964 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.625
I0623 14:40:07.028975 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.5
I0623 14:40:07.028987 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.75
I0623 14:40:07.028998 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.625
I0623 14:40:07.029011 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.75
I0623 14:40:07.029022 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 14:40:07.029033 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 14:40:07.029045 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 14:40:07.029058 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 14:40:07.029072 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 14:40:07.029083 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 14:40:07.029094 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.704545
I0623 14:40:07.029106 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.742268
I0623 14:40:07.029122 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.52434 (* 0.3 = 0.457301 loss)
I0623 14:40:07.029137 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.901596 (* 0.3 = 0.270479 loss)
I0623 14:40:07.029152 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.154487 (* 0.0272727 = 0.00421327 loss)
I0623 14:40:07.029166 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 1.39093 (* 0.0272727 = 0.0379345 loss)
I0623 14:40:07.029181 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.29701 (* 0.0272727 = 0.035373 loss)
I0623 14:40:07.029194 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 2.01864 (* 0.0272727 = 0.0550539 loss)
I0623 14:40:07.029208 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 1.55337 (* 0.0272727 = 0.0423645 loss)
I0623 14:40:07.029222 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 1.84741 (* 0.0272727 = 0.0503838 loss)
I0623 14:40:07.029237 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 2.24955 (* 0.0272727 = 0.0613515 loss)
I0623 14:40:07.029250 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 2.01946 (* 0.0272727 = 0.0550762 loss)
I0623 14:40:07.029263 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.25868 (* 0.0272727 = 0.0343276 loss)
I0623 14:40:07.029278 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.35633 (* 0.0272727 = 0.0369908 loss)
I0623 14:40:07.029291 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.84703 (* 0.0272727 = 0.0503736 loss)
I0623 14:40:07.029304 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.38104 (* 0.0272727 = 0.0376647 loss)
I0623 14:40:07.029335 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.21026 (* 0.0272727 = 0.0330072 loss)
I0623 14:40:07.029350 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 0.564738 (* 0.0272727 = 0.0154019 loss)
I0623 14:40:07.029364 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 1.0343 (* 0.0272727 = 0.0282082 loss)
I0623 14:40:07.029377 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 1.05757 (* 0.0272727 = 0.0288428 loss)
I0623 14:40:07.029392 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00716972 (* 0.0272727 = 0.000195538 loss)
I0623 14:40:07.029407 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000416087 (* 0.0272727 = 1.13478e-05 loss)
I0623 14:40:07.029420 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 6.06702e-05 (* 0.0272727 = 1.65464e-06 loss)
I0623 14:40:07.029434 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 1.7122e-05 (* 0.0272727 = 4.66964e-07 loss)
I0623 14:40:07.029448 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 2.65242e-06 (* 0.0272727 = 7.23387e-08 loss)
I0623 14:40:07.029463 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 6.36291e-06 (* 0.0272727 = 1.73534e-07 loss)
I0623 14:40:07.029474 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.536082
I0623 14:40:07.029486 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0623 14:40:07.029498 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5
I0623 14:40:07.029510 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625
I0623 14:40:07.029520 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0623 14:40:07.029532 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0623 14:40:07.029543 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375
I0623 14:40:07.029556 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5
I0623 14:40:07.029567 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.375
I0623 14:40:07.029577 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.5
I0623 14:40:07.029589 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.625
I0623 14:40:07.029600 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.5
I0623 14:40:07.029611 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.75
I0623 14:40:07.029623 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.625
I0623 14:40:07.029634 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.75
I0623 14:40:07.029645 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.625
I0623 14:40:07.029657 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.75
I0623 14:40:07.029669 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 14:40:07.029680 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 14:40:07.029690 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 14:40:07.029705 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 14:40:07.029716 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 14:40:07.029727 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 14:40:07.029739 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.727273
I0623 14:40:07.029752 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.845361
I0623 14:40:07.029765 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.27407 (* 0.3 = 0.382221 loss)
I0623 14:40:07.029778 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.749142 (* 0.3 = 0.224743 loss)
I0623 14:40:07.029793 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.289582 (* 0.0272727 = 0.00789769 loss)
I0623 14:40:07.029808 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 1.12146 (* 0.0272727 = 0.0305852 loss)
I0623 14:40:07.029832 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 1.23205 (* 0.0272727 = 0.0336015 loss)
I0623 14:40:07.029847 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 0.98002 (* 0.0272727 = 0.0267278 loss)
I0623 14:40:07.029860 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.08595 (* 0.0272727 = 0.0296167 loss)
I0623 14:40:07.029875 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 2.41348 (* 0.0272727 = 0.0658221 loss)
I0623 14:40:07.029888 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.34985 (* 0.0272727 = 0.036814 loss)
I0623 14:40:07.029901 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.67264 (* 0.0272727 = 0.0456173 loss)
I0623 14:40:07.029916 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.36723 (* 0.0272727 = 0.0372882 loss)
I0623 14:40:07.029928 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.29962 (* 0.0272727 = 0.0354442 loss)
I0623 14:40:07.029942 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.4849 (* 0.0272727 = 0.0404972 loss)
I0623 14:40:07.029956 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.00619 (* 0.0272727 = 0.0274414 loss)
I0623 14:40:07.029970 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.18223 (* 0.0272727 = 0.0322426 loss)
I0623 14:40:07.029980 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 0.75579 (* 0.0272727 = 0.0206124 loss)
I0623 14:40:07.029995 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 1.12627 (* 0.0272727 = 0.0307163 loss)
I0623 14:40:07.030009 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.731459 (* 0.0272727 = 0.0199489 loss)
I0623 14:40:07.030024 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00600807 (* 0.0272727 = 0.000163856 loss)
I0623 14:40:07.030038 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000911532 (* 0.0272727 = 2.486e-05 loss)
I0623 14:40:07.030052 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000379858 (* 0.0272727 = 1.03598e-05 loss)
I0623 14:40:07.030066 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000172318 (* 0.0272727 = 4.69958e-06 loss)
I0623 14:40:07.030081 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 8.93462e-05 (* 0.0272727 = 2.43672e-06 loss)
I0623 14:40:07.030094 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 3.42399e-05 (* 0.0272727 = 9.33816e-07 loss)
I0623 14:40:07.030105 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.783505
I0623 14:40:07.030120 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 14:40:07.030133 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 14:40:07.030144 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875
I0623 14:40:07.030155 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0623 14:40:07.030166 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0623 14:40:07.030177 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0623 14:40:07.030189 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0623 14:40:07.030200 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0623 14:40:07.030211 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75
I0623 14:40:07.030223 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0623 14:40:07.030235 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.75
I0623 14:40:07.030246 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.75
I0623 14:40:07.030256 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.75
I0623 14:40:07.030268 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.75
I0623 14:40:07.030279 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.75
I0623 14:40:07.030290 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875
I0623 14:40:07.030311 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 14:40:07.030324 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 14:40:07.030335 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 14:40:07.030347 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 14:40:07.030359 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 14:40:07.030369 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 14:40:07.030380 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.875
I0623 14:40:07.030392 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.969072
I0623 14:40:07.030405 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.617477 (* 1 = 0.617477 loss)
I0623 14:40:07.030419 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.355193 (* 1 = 0.355193 loss)
I0623 14:40:07.030433 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.048981 (* 0.0909091 = 0.00445282 loss)
I0623 14:40:07.030447 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.160332 (* 0.0909091 = 0.0145757 loss)
I0623 14:40:07.030462 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.648969 (* 0.0909091 = 0.0589972 loss)
I0623 14:40:07.030475 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.326771 (* 0.0909091 = 0.0297065 loss)
I0623 14:40:07.030488 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.106711 (* 0.0909091 = 0.00970104 loss)
I0623 14:40:07.030503 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.559422 (* 0.0909091 = 0.0508566 loss)
I0623 14:40:07.030516 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.594721 (* 0.0909091 = 0.0540655 loss)
I0623 14:40:07.030529 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 1.08508 (* 0.0909091 = 0.098644 loss)
I0623 14:40:07.030544 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 1.16768 (* 0.0909091 = 0.106153 loss)
I0623 14:40:07.030557 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.815407 (* 0.0909091 = 0.0741279 loss)
I0623 14:40:07.030570 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 0.818788 (* 0.0909091 = 0.0744353 loss)
I0623 14:40:07.030585 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 0.80094 (* 0.0909091 = 0.0728128 loss)
I0623 14:40:07.030597 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 0.702165 (* 0.0909091 = 0.0638332 loss)
I0623 14:40:07.030611 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.563488 (* 0.0909091 = 0.0512262 loss)
I0623 14:40:07.030625 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.59477 (* 0.0909091 = 0.05407 loss)
I0623 14:40:07.030638 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.294131 (* 0.0909091 = 0.0267392 loss)
I0623 14:40:07.030652 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.020137 (* 0.0909091 = 0.00183063 loss)
I0623 14:40:07.030666 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00129659 (* 0.0909091 = 0.000117872 loss)
I0623 14:40:07.030680 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000211465 (* 0.0909091 = 1.92241e-05 loss)
I0623 14:40:07.030694 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 8.47347e-05 (* 0.0909091 = 7.70316e-06 loss)
I0623 14:40:07.030709 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 9.73994e-05 (* 0.0909091 = 8.85449e-06 loss)
I0623 14:40:07.030722 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 1.54678e-05 (* 0.0909091 = 1.40617e-06 loss)
I0623 14:40:07.030735 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.375
I0623 14:40:07.030746 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375
I0623 14:40:07.030771 10365 solver.cpp:245] Train net output #149: total_confidence = 0.142096
I0623 14:40:07.030786 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.122268
I0623 14:40:07.030798 10365 sgd_solver.cpp:106] Iteration 2000, lr = 0.001
I0623 14:41:37.035840 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 45.1753 > 30) by scale factor 0.66408
I0623 14:41:43.169929 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 32.2328 > 30) by scale factor 0.930729
I0623 14:46:30.048812 10365 solver.cpp:229] Iteration 2500, loss = 4.94346
I0623 14:46:30.048944 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.458716
I0623 14:46:30.048976 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0623 14:46:30.049000 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75
I0623 14:46:30.049021 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0623 14:46:30.049043 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0623 14:46:30.049067 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0623 14:46:30.049090 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.125
I0623 14:46:30.049113 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.375
I0623 14:46:30.049134 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.125
I0623 14:46:30.049154 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.25
I0623 14:46:30.049175 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.25
I0623 14:46:30.049196 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.125
I0623 14:46:30.049218 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.25
I0623 14:46:30.049239 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.125
I0623 14:46:30.049263 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.375
I0623 14:46:30.049286 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0623 14:46:30.049307 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875
I0623 14:46:30.049329 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 14:46:30.049350 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 14:46:30.049371 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 14:46:30.049393 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 14:46:30.049417 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 14:46:30.049438 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 14:46:30.049459 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.659091
I0623 14:46:30.049481 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.752294
I0623 14:46:30.049510 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.65286 (* 0.3 = 0.495859 loss)
I0623 14:46:30.049535 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.0534 (* 0.3 = 0.316021 loss)
I0623 14:46:30.049563 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.332442 (* 0.0272727 = 0.00906661 loss)
I0623 14:46:30.049590 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 0.74377 (* 0.0272727 = 0.0202846 loss)
I0623 14:46:30.049617 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.78767 (* 0.0272727 = 0.0487547 loss)
I0623 14:46:30.049641 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.83659 (* 0.0272727 = 0.0500888 loss)
I0623 14:46:30.049667 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 2.10959 (* 0.0272727 = 0.0575343 loss)
I0623 14:46:30.049693 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 2.24122 (* 0.0272727 = 0.0611243 loss)
I0623 14:46:30.049720 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 2.02527 (* 0.0272727 = 0.0552346 loss)
I0623 14:46:30.049746 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 2.68539 (* 0.0272727 = 0.0732379 loss)
I0623 14:46:30.049770 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 2.55994 (* 0.0272727 = 0.0698164 loss)
I0623 14:46:30.049796 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 2.7932 (* 0.0272727 = 0.0761783 loss)
I0623 14:46:30.049821 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 2.7438 (* 0.0272727 = 0.0748308 loss)
I0623 14:46:30.049846 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 2.09966 (* 0.0272727 = 0.0572634 loss)
I0623 14:46:30.049896 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 2.25319 (* 0.0272727 = 0.0614506 loss)
I0623 14:46:30.049923 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.79734 (* 0.0272727 = 0.0490183 loss)
I0623 14:46:30.049949 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.307537 (* 0.0272727 = 0.00838738 loss)
I0623 14:46:30.049981 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.238412 (* 0.0272727 = 0.00650213 loss)
I0623 14:46:30.050009 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00769272 (* 0.0272727 = 0.000209801 loss)
I0623 14:46:30.050036 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00262171 (* 0.0272727 = 7.15013e-05 loss)
I0623 14:46:30.050062 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00128659 (* 0.0272727 = 3.50889e-05 loss)
I0623 14:46:30.050089 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00174246 (* 0.0272727 = 4.75217e-05 loss)
I0623 14:46:30.050114 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000290219 (* 0.0272727 = 7.91506e-06 loss)
I0623 14:46:30.050140 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 1.63474e-05 (* 0.0272727 = 4.45837e-07 loss)
I0623 14:46:30.050163 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.541284
I0623 14:46:30.050184 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0623 14:46:30.050206 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0623 14:46:30.050227 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75
I0623 14:46:30.050247 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0623 14:46:30.050269 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0623 14:46:30.050289 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0623 14:46:30.050313 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5
I0623 14:46:30.050336 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.125
I0623 14:46:30.050356 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.375
I0623 14:46:30.050379 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.125
I0623 14:46:30.050400 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.375
I0623 14:46:30.050422 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.125
I0623 14:46:30.050447 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.375
I0623 14:46:30.050472 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.5
I0623 14:46:30.050493 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875
I0623 14:46:30.050514 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875
I0623 14:46:30.050535 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 14:46:30.050555 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 14:46:30.050576 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 14:46:30.050597 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 14:46:30.050618 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 14:46:30.050639 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 14:46:30.050660 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.704545
I0623 14:46:30.050681 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.853211
I0623 14:46:30.050706 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.36306 (* 0.3 = 0.408919 loss)
I0623 14:46:30.050731 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.882276 (* 0.3 = 0.264683 loss)
I0623 14:46:30.050757 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.129856 (* 0.0272727 = 0.00354153 loss)
I0623 14:46:30.050782 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.314755 (* 0.0272727 = 0.00858423 loss)
I0623 14:46:30.050824 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 1.61505 (* 0.0272727 = 0.0440467 loss)
I0623 14:46:30.050851 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.34749 (* 0.0272727 = 0.0367496 loss)
I0623 14:46:30.050876 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.35053 (* 0.0272727 = 0.0368326 loss)
I0623 14:46:30.050901 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.63173 (* 0.0272727 = 0.0445017 loss)
I0623 14:46:30.050925 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.469 (* 0.0272727 = 0.0400635 loss)
I0623 14:46:30.050950 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 2.39347 (* 0.0272727 = 0.0652764 loss)
I0623 14:46:30.050976 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.80129 (* 0.0272727 = 0.049126 loss)
I0623 14:46:30.050999 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 2.54239 (* 0.0272727 = 0.0693378 loss)
I0623 14:46:30.051030 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 2.06496 (* 0.0272727 = 0.056317 loss)
I0623 14:46:30.051057 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 2.47508 (* 0.0272727 = 0.0675022 loss)
I0623 14:46:30.051082 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.89046 (* 0.0272727 = 0.0515581 loss)
I0623 14:46:30.051107 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.69731 (* 0.0272727 = 0.0462902 loss)
I0623 14:46:30.051133 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.300582 (* 0.0272727 = 0.00819768 loss)
I0623 14:46:30.051157 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.204932 (* 0.0272727 = 0.00558905 loss)
I0623 14:46:30.051183 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00578984 (* 0.0272727 = 0.000157905 loss)
I0623 14:46:30.051208 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00145277 (* 0.0272727 = 3.96211e-05 loss)
I0623 14:46:30.051234 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000764299 (* 0.0272727 = 2.08445e-05 loss)
I0623 14:46:30.051257 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000429066 (* 0.0272727 = 1.17018e-05 loss)
I0623 14:46:30.051283 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000126682 (* 0.0272727 = 3.45495e-06 loss)
I0623 14:46:30.051308 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 7.36114e-05 (* 0.0272727 = 2.00758e-06 loss)
I0623 14:46:30.051331 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.834862
I0623 14:46:30.051352 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 14:46:30.051376 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 14:46:30.051396 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875
I0623 14:46:30.051417 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 14:46:30.051439 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0623 14:46:30.051458 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0623 14:46:30.051478 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0623 14:46:30.051499 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0623 14:46:30.051520 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.625
I0623 14:46:30.051542 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0623 14:46:30.051561 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.25
I0623 14:46:30.051583 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.5
I0623 14:46:30.051625 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.25
I0623 14:46:30.051650 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.625
I0623 14:46:30.051671 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0623 14:46:30.051709 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875
I0623 14:46:30.051731 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 14:46:30.051753 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 14:46:30.051774 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 14:46:30.051794 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 14:46:30.051813 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 14:46:30.051833 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 14:46:30.051854 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.897727
I0623 14:46:30.051875 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.990826
I0623 14:46:30.051899 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.494439 (* 1 = 0.494439 loss)
I0623 14:46:30.051925 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.310383 (* 1 = 0.310383 loss)
I0623 14:46:30.051950 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0250574 (* 0.0909091 = 0.00227794 loss)
I0623 14:46:30.051976 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0381695 (* 0.0909091 = 0.00346995 loss)
I0623 14:46:30.052002 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.731704 (* 0.0909091 = 0.0665186 loss)
I0623 14:46:30.052027 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.136593 (* 0.0909091 = 0.0124175 loss)
I0623 14:46:30.052052 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.208606 (* 0.0909091 = 0.0189641 loss)
I0623 14:46:30.052083 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.436378 (* 0.0909091 = 0.0396707 loss)
I0623 14:46:30.052109 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.271636 (* 0.0909091 = 0.0246942 loss)
I0623 14:46:30.052135 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.610426 (* 0.0909091 = 0.0554933 loss)
I0623 14:46:30.052160 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 1.0013 (* 0.0909091 = 0.0910276 loss)
I0623 14:46:30.052186 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.632721 (* 0.0909091 = 0.0575201 loss)
I0623 14:46:30.052211 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 1.62459 (* 0.0909091 = 0.14769 loss)
I0623 14:46:30.052237 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.37371 (* 0.0909091 = 0.124883 loss)
I0623 14:46:30.052261 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 2.02801 (* 0.0909091 = 0.184365 loss)
I0623 14:46:30.052286 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 1.04196 (* 0.0909091 = 0.094724 loss)
I0623 14:46:30.052311 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.143899 (* 0.0909091 = 0.0130817 loss)
I0623 14:46:30.052336 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.250614 (* 0.0909091 = 0.0227831 loss)
I0623 14:46:30.052361 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0108264 (* 0.0909091 = 0.000984214 loss)
I0623 14:46:30.052387 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000755582 (* 0.0909091 = 6.86893e-05 loss)
I0623 14:46:30.052412 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000127671 (* 0.0909091 = 1.16065e-05 loss)
I0623 14:46:30.052443 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 3.37465e-05 (* 0.0909091 = 3.06786e-06 loss)
I0623 14:46:30.052469 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 1.93276e-05 (* 0.0909091 = 1.75706e-06 loss)
I0623 14:46:30.052495 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 4.38098e-06 (* 0.0909091 = 3.98271e-07 loss)
I0623 14:46:30.052516 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0623 14:46:30.052537 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0
I0623 14:46:30.052575 10365 solver.cpp:245] Train net output #149: total_confidence = 0.0256491
I0623 14:46:30.052599 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.00997235
I0623 14:46:30.052621 10365 sgd_solver.cpp:106] Iteration 2500, lr = 0.001
I0623 14:46:48.023708 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 53.4176 > 30) by scale factor 0.561612
I0623 14:51:23.551838 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 35.856 > 30) by scale factor 0.83668
I0623 14:52:03.353504 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 35.6474 > 30) by scale factor 0.841576
I0623 14:52:15.609285 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.3726 > 30) by scale factor 0.987732
I0623 14:52:52.738499 10365 solver.cpp:229] Iteration 3000, loss = 4.81239
I0623 14:52:52.738693 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.40566
I0623 14:52:52.738714 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0623 14:52:52.738728 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0623 14:52:52.738740 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0623 14:52:52.738752 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.625
I0623 14:52:52.738765 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.125
I0623 14:52:52.738776 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0623 14:52:52.738788 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0
I0623 14:52:52.738801 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625
I0623 14:52:52.738812 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.375
I0623 14:52:52.738823 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.125
I0623 14:52:52.738836 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.625
I0623 14:52:52.738847 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.375
I0623 14:52:52.738859 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.5
I0623 14:52:52.738872 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.75
I0623 14:52:52.738883 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0623 14:52:52.738894 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.75
I0623 14:52:52.738906 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 14:52:52.738917 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 14:52:52.738929 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 14:52:52.738940 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 14:52:52.738951 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 14:52:52.738963 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 14:52:52.738975 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.602273
I0623 14:52:52.738986 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.764151
I0623 14:52:52.739004 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.7083 (* 0.3 = 0.51249 loss)
I0623 14:52:52.739019 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.13982 (* 0.3 = 0.341945 loss)
I0623 14:52:52.739033 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.440445 (* 0.0272727 = 0.0120121 loss)
I0623 14:52:52.739048 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 2.26076 (* 0.0272727 = 0.061657 loss)
I0623 14:52:52.739061 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.89772 (* 0.0272727 = 0.0517559 loss)
I0623 14:52:52.739075 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.83502 (* 0.0272727 = 0.050046 loss)
I0623 14:52:52.739089 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 2.11274 (* 0.0272727 = 0.0576202 loss)
I0623 14:52:52.739104 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 1.98587 (* 0.0272727 = 0.05416 loss)
I0623 14:52:52.739117 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 3.20005 (* 0.0272727 = 0.0872741 loss)
I0623 14:52:52.739140 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.92236 (* 0.0272727 = 0.0524279 loss)
I0623 14:52:52.739156 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 2.00636 (* 0.0272727 = 0.054719 loss)
I0623 14:52:52.739169 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 2.13686 (* 0.0272727 = 0.058278 loss)
I0623 14:52:52.739183 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.64007 (* 0.0272727 = 0.0447291 loss)
I0623 14:52:52.739197 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.90232 (* 0.0272727 = 0.0518815 loss)
I0623 14:52:52.739212 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 2.16639 (* 0.0272727 = 0.0590832 loss)
I0623 14:52:52.739248 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.05631 (* 0.0272727 = 0.0288084 loss)
I0623 14:52:52.739264 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.511445 (* 0.0272727 = 0.0139485 loss)
I0623 14:52:52.739279 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.667652 (* 0.0272727 = 0.0182087 loss)
I0623 14:52:52.739295 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.152876 (* 0.0272727 = 0.00416936 loss)
I0623 14:52:52.739308 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0573011 (* 0.0272727 = 0.00156276 loss)
I0623 14:52:52.739322 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0224864 (* 0.0272727 = 0.000613264 loss)
I0623 14:52:52.739337 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00142196 (* 0.0272727 = 3.87807e-05 loss)
I0623 14:52:52.739351 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000250147 (* 0.0272727 = 6.82219e-06 loss)
I0623 14:52:52.739367 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 5.07369e-05 (* 0.0272727 = 1.38373e-06 loss)
I0623 14:52:52.739378 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.528302
I0623 14:52:52.739392 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0623 14:52:52.739403 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0623 14:52:52.739414 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75
I0623 14:52:52.739426 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.75
I0623 14:52:52.739439 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25
I0623 14:52:52.739450 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.25
I0623 14:52:52.739462 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.375
I0623 14:52:52.739473 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625
I0623 14:52:52.739485 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.25
I0623 14:52:52.739497 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.375
I0623 14:52:52.739508 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.375
I0623 14:52:52.739521 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.625
I0623 14:52:52.739531 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.375
I0623 14:52:52.739543 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.5
I0623 14:52:52.739555 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.75
I0623 14:52:52.739568 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875
I0623 14:52:52.739579 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 14:52:52.739591 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 14:52:52.739616 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 14:52:52.739629 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 14:52:52.739641 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 14:52:52.739653 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 14:52:52.739665 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.704545
I0623 14:52:52.739677 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.858491
I0623 14:52:52.739691 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.29741 (* 0.3 = 0.389222 loss)
I0623 14:52:52.739708 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.818423 (* 0.3 = 0.245527 loss)
I0623 14:52:52.739723 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.267801 (* 0.0272727 = 0.00730367 loss)
I0623 14:52:52.739738 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.382662 (* 0.0272727 = 0.0104362 loss)
I0623 14:52:52.739764 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.861127 (* 0.0272727 = 0.0234853 loss)
I0623 14:52:52.739780 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 0.853439 (* 0.0272727 = 0.0232756 loss)
I0623 14:52:52.739794 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.91908 (* 0.0272727 = 0.0523384 loss)
I0623 14:52:52.739809 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.79485 (* 0.0272727 = 0.0489506 loss)
I0623 14:52:52.739821 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 2.67437 (* 0.0272727 = 0.0729374 loss)
I0623 14:52:52.739835 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.5347 (* 0.0272727 = 0.0418554 loss)
I0623 14:52:52.739850 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.65995 (* 0.0272727 = 0.0452714 loss)
I0623 14:52:52.739863 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.89547 (* 0.0272727 = 0.0516946 loss)
I0623 14:52:52.739874 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 2.11307 (* 0.0272727 = 0.0576292 loss)
I0623 14:52:52.739883 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.36235 (* 0.0272727 = 0.0371549 loss)
I0623 14:52:52.739893 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.4795 (* 0.0272727 = 0.04035 loss)
I0623 14:52:52.739907 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.33441 (* 0.0272727 = 0.036393 loss)
I0623 14:52:52.739922 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.548604 (* 0.0272727 = 0.0149619 loss)
I0623 14:52:52.739936 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.363595 (* 0.0272727 = 0.00991624 loss)
I0623 14:52:52.739956 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0089043 (* 0.0272727 = 0.000242844 loss)
I0623 14:52:52.739971 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00556622 (* 0.0272727 = 0.000151806 loss)
I0623 14:52:52.739985 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00191248 (* 0.0272727 = 5.21587e-05 loss)
I0623 14:52:52.740000 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000505539 (* 0.0272727 = 1.37874e-05 loss)
I0623 14:52:52.740013 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 6.95917e-05 (* 0.0272727 = 1.89795e-06 loss)
I0623 14:52:52.740027 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000112214 (* 0.0272727 = 3.06037e-06 loss)
I0623 14:52:52.740041 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.877358
I0623 14:52:52.740052 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 14:52:52.740063 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 14:52:52.740074 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 14:52:52.740087 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 14:52:52.740097 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0623 14:52:52.740108 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0623 14:52:52.740120 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0623 14:52:52.740131 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0623 14:52:52.740142 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0623 14:52:52.740154 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75
I0623 14:52:52.740166 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.5
I0623 14:52:52.740178 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.375
I0623 14:52:52.740190 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.375
I0623 14:52:52.740201 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.75
I0623 14:52:52.740212 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875
I0623 14:52:52.740224 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0623 14:52:52.740245 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 14:52:52.740258 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 14:52:52.740270 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 14:52:52.740283 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 14:52:52.740293 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 14:52:52.740305 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 14:52:52.740319 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.909091
I0623 14:52:52.740331 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.990566
I0623 14:52:52.740345 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.408787 (* 1 = 0.408787 loss)
I0623 14:52:52.740360 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.28637 (* 1 = 0.28637 loss)
I0623 14:52:52.740375 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.102309 (* 0.0909091 = 0.00930086 loss)
I0623 14:52:52.740389 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0741905 (* 0.0909091 = 0.00674459 loss)
I0623 14:52:52.740404 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0925174 (* 0.0909091 = 0.00841068 loss)
I0623 14:52:52.740418 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.139711 (* 0.0909091 = 0.012701 loss)
I0623 14:52:52.740432 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.060201 (* 0.0909091 = 0.00547281 loss)
I0623 14:52:52.740447 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.133415 (* 0.0909091 = 0.0121286 loss)
I0623 14:52:52.740461 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.0823182 (* 0.0909091 = 0.00748348 loss)
I0623 14:52:52.740475 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.30457 (* 0.0909091 = 0.0276882 loss)
I0623 14:52:52.740489 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.51384 (* 0.0909091 = 0.0467127 loss)
I0623 14:52:52.740504 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.780804 (* 0.0909091 = 0.0709821 loss)
I0623 14:52:52.740516 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 1.19866 (* 0.0909091 = 0.108969 loss)
I0623 14:52:52.740530 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.94527 (* 0.0909091 = 0.176843 loss)
I0623 14:52:52.740550 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 1.26344 (* 0.0909091 = 0.114859 loss)
I0623 14:52:52.740576 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.726534 (* 0.0909091 = 0.0660486 loss)
I0623 14:52:52.740592 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.413277 (* 0.0909091 = 0.0375707 loss)
I0623 14:52:52.740607 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.101109 (* 0.0909091 = 0.00919169 loss)
I0623 14:52:52.740622 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0285528 (* 0.0909091 = 0.00259571 loss)
I0623 14:52:52.740636 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00150093 (* 0.0909091 = 0.000136448 loss)
I0623 14:52:52.740650 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000403559 (* 0.0909091 = 3.66872e-05 loss)
I0623 14:52:52.740665 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 6.15639e-05 (* 0.0909091 = 5.59672e-06 loss)
I0623 14:52:52.740679 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 2.57208e-05 (* 0.0909091 = 2.33825e-06 loss)
I0623 14:52:52.740694 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 1.25471e-05 (* 0.0909091 = 1.14065e-06 loss)
I0623 14:52:52.740706 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.25
I0623 14:52:52.740718 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0623 14:52:52.740731 10365 solver.cpp:245] Train net output #149: total_confidence = 0.0608495
I0623 14:52:52.740757 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.0372617
I0623 14:52:52.740773 10365 sgd_solver.cpp:106] Iteration 3000, lr = 0.001
I0623 14:59:15.378171 10365 solver.cpp:229] Iteration 3500, loss = 4.89668
I0623 14:59:15.378301 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4375
I0623 14:59:15.378321 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0623 14:59:15.378334 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0623 14:59:15.378346 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0623 14:59:15.378358 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0623 14:59:15.378371 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0623 14:59:15.378383 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0623 14:59:15.378396 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.25
I0623 14:59:15.378407 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.125
I0623 14:59:15.378419 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.5
I0623 14:59:15.378430 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.5
I0623 14:59:15.378443 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.625
I0623 14:59:15.378454 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.375
I0623 14:59:15.378465 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.5
I0623 14:59:15.378478 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.625
I0623 14:59:15.378489 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875
I0623 14:59:15.378501 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875
I0623 14:59:15.378512 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 14:59:15.378525 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 14:59:15.378535 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 14:59:15.378547 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 14:59:15.378558 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 14:59:15.378569 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 14:59:15.378582 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.681818
I0623 14:59:15.378592 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.802083
I0623 14:59:15.378608 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.69347 (* 0.3 = 0.508041 loss)
I0623 14:59:15.378623 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.972951 (* 0.3 = 0.291885 loss)
I0623 14:59:15.378638 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.656143 (* 0.0272727 = 0.0178948 loss)
I0623 14:59:15.378651 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 1.38512 (* 0.0272727 = 0.037776 loss)
I0623 14:59:15.378665 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.96425 (* 0.0272727 = 0.0535703 loss)
I0623 14:59:15.378679 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.62156 (* 0.0272727 = 0.0442244 loss)
I0623 14:59:15.378692 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 2.28502 (* 0.0272727 = 0.0623186 loss)
I0623 14:59:15.378706 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 1.71377 (* 0.0272727 = 0.0467392 loss)
I0623 14:59:15.378720 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 2.09839 (* 0.0272727 = 0.0572287 loss)
I0623 14:59:15.378733 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 2.65771 (* 0.0272727 = 0.072483 loss)
I0623 14:59:15.378746 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.65907 (* 0.0272727 = 0.0452473 loss)
I0623 14:59:15.378760 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.79907 (* 0.0272727 = 0.0490656 loss)
I0623 14:59:15.378774 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.43016 (* 0.0272727 = 0.0390043 loss)
I0623 14:59:15.378787 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.51645 (* 0.0272727 = 0.0413577 loss)
I0623 14:59:15.378818 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.17933 (* 0.0272727 = 0.0321636 loss)
I0623 14:59:15.378834 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.16761 (* 0.0272727 = 0.0318438 loss)
I0623 14:59:15.378847 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.665982 (* 0.0272727 = 0.0181631 loss)
I0623 14:59:15.378861 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.41184 (* 0.0272727 = 0.011232 loss)
I0623 14:59:15.378875 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00993008 (* 0.0272727 = 0.00027082 loss)
I0623 14:59:15.378890 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00128075 (* 0.0272727 = 3.49296e-05 loss)
I0623 14:59:15.378904 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000160468 (* 0.0272727 = 4.37641e-06 loss)
I0623 14:59:15.378918 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 2.51985e-05 (* 0.0272727 = 6.87231e-07 loss)
I0623 14:59:15.378932 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 2.66443e-05 (* 0.0272727 = 7.26663e-07 loss)
I0623 14:59:15.378947 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 3.50179e-06 (* 0.0272727 = 9.55033e-08 loss)
I0623 14:59:15.378958 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.59375
I0623 14:59:15.378970 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0623 14:59:15.378981 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 1
I0623 14:59:15.378993 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.875
I0623 14:59:15.379004 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.75
I0623 14:59:15.379015 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0623 14:59:15.379026 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375
I0623 14:59:15.379039 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.375
I0623 14:59:15.379050 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.125
I0623 14:59:15.379060 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.625
I0623 14:59:15.379072 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.25
I0623 14:59:15.379083 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.25
I0623 14:59:15.379094 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.5
I0623 14:59:15.379106 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.625
I0623 14:59:15.379117 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.625
I0623 14:59:15.379128 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875
I0623 14:59:15.379139 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875
I0623 14:59:15.379150 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 14:59:15.379163 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 14:59:15.379173 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 14:59:15.379184 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 14:59:15.379195 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 14:59:15.379207 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 14:59:15.379218 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.761364
I0623 14:59:15.379230 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.895833
I0623 14:59:15.379243 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.18819 (* 0.3 = 0.356456 loss)
I0623 14:59:15.379257 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.707515 (* 0.3 = 0.212254 loss)
I0623 14:59:15.379276 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.397564 (* 0.0272727 = 0.0108427 loss)
I0623 14:59:15.379289 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.267576 (* 0.0272727 = 0.00729752 loss)
I0623 14:59:15.379317 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.457735 (* 0.0272727 = 0.0124837 loss)
I0623 14:59:15.379333 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 0.7306 (* 0.0272727 = 0.0199255 loss)
I0623 14:59:15.379346 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.38243 (* 0.0272727 = 0.0377025 loss)
I0623 14:59:15.379360 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.72218 (* 0.0272727 = 0.0469686 loss)
I0623 14:59:15.379374 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.32987 (* 0.0272727 = 0.0362693 loss)
I0623 14:59:15.379389 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 2.49933 (* 0.0272727 = 0.0681636 loss)
I0623 14:59:15.379401 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.08446 (* 0.0272727 = 0.0295762 loss)
I0623 14:59:15.379415 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.66457 (* 0.0272727 = 0.0453972 loss)
I0623 14:59:15.379429 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.93683 (* 0.0272727 = 0.0528225 loss)
I0623 14:59:15.379439 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.26982 (* 0.0272727 = 0.0346315 loss)
I0623 14:59:15.379448 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 0.93142 (* 0.0272727 = 0.0254024 loss)
I0623 14:59:15.379462 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.16356 (* 0.0272727 = 0.0317336 loss)
I0623 14:59:15.379477 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.557932 (* 0.0272727 = 0.0152163 loss)
I0623 14:59:15.379490 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.419746 (* 0.0272727 = 0.0114476 loss)
I0623 14:59:15.379504 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0407682 (* 0.0272727 = 0.00111186 loss)
I0623 14:59:15.379518 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00311974 (* 0.0272727 = 8.50837e-05 loss)
I0623 14:59:15.379533 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0013185 (* 0.0272727 = 3.5959e-05 loss)
I0623 14:59:15.379545 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000438077 (* 0.0272727 = 1.19476e-05 loss)
I0623 14:59:15.379560 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00010142 (* 0.0272727 = 2.766e-06 loss)
I0623 14:59:15.379573 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 8.50598e-05 (* 0.0272727 = 2.31981e-06 loss)
I0623 14:59:15.379585 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.885417
I0623 14:59:15.379617 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 14:59:15.379632 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 14:59:15.379644 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 14:59:15.379655 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 14:59:15.379667 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0623 14:59:15.379678 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0623 14:59:15.379689 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0623 14:59:15.379700 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0623 14:59:15.379711 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.375
I0623 14:59:15.379722 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.625
I0623 14:59:15.379734 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.75
I0623 14:59:15.379745 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.5
I0623 14:59:15.379756 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0623 14:59:15.379767 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875
I0623 14:59:15.379778 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0623 14:59:15.379789 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875
I0623 14:59:15.379812 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 14:59:15.379825 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 14:59:15.379837 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 14:59:15.379848 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 14:59:15.379858 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 14:59:15.379870 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 14:59:15.379881 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.9375
I0623 14:59:15.379892 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.979167
I0623 14:59:15.379906 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.415226 (* 1 = 0.415226 loss)
I0623 14:59:15.379920 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.233742 (* 1 = 0.233742 loss)
I0623 14:59:15.379935 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.103762 (* 0.0909091 = 0.00943293 loss)
I0623 14:59:15.379948 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0679485 (* 0.0909091 = 0.00617714 loss)
I0623 14:59:15.379962 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.137116 (* 0.0909091 = 0.0124651 loss)
I0623 14:59:15.379976 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.158172 (* 0.0909091 = 0.0143793 loss)
I0623 14:59:15.379989 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.108909 (* 0.0909091 = 0.00990086 loss)
I0623 14:59:15.380003 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.119962 (* 0.0909091 = 0.0109057 loss)
I0623 14:59:15.380017 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.389655 (* 0.0909091 = 0.0354232 loss)
I0623 14:59:15.380030 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.447159 (* 0.0909091 = 0.0406508 loss)
I0623 14:59:15.380043 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 1.00276 (* 0.0909091 = 0.0911601 loss)
I0623 14:59:15.380058 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.839829 (* 0.0909091 = 0.0763481 loss)
I0623 14:59:15.380071 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 1.50242 (* 0.0909091 = 0.136583 loss)
I0623 14:59:15.380084 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.10702 (* 0.0909091 = 0.100638 loss)
I0623 14:59:15.380098 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 0.392737 (* 0.0909091 = 0.0357034 loss)
I0623 14:59:15.380111 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.830633 (* 0.0909091 = 0.0755121 loss)
I0623 14:59:15.380125 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.15395 (* 0.0909091 = 0.0139954 loss)
I0623 14:59:15.380138 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.343277 (* 0.0909091 = 0.031207 loss)
I0623 14:59:15.380152 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00760761 (* 0.0909091 = 0.000691601 loss)
I0623 14:59:15.380167 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00118204 (* 0.0909091 = 0.000107458 loss)
I0623 14:59:15.380182 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000276157 (* 0.0909091 = 2.51052e-05 loss)
I0623 14:59:15.380194 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000101284 (* 0.0909091 = 9.2076e-06 loss)
I0623 14:59:15.380208 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 9.17041e-05 (* 0.0909091 = 8.33673e-06 loss)
I0623 14:59:15.380223 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 5.69719e-05 (* 0.0909091 = 5.17927e-06 loss)
I0623 14:59:15.380234 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.25
I0623 14:59:15.380246 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0623 14:59:15.380257 10365 solver.cpp:245] Train net output #149: total_confidence = 0.134066
I0623 14:59:15.380280 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.0841617
I0623 14:59:15.380295 10365 sgd_solver.cpp:106] Iteration 3500, lr = 0.001
I0623 15:00:57.489078 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.7825 > 30) by scale factor 0.943917
I0623 15:01:06.678267 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.607 > 30) by scale factor 0.949158
I0623 15:01:18.913363 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 38.4911 > 30) by scale factor 0.779401
I0623 15:05:37.941593 10365 solver.cpp:229] Iteration 4000, loss = 4.7189
I0623 15:05:37.941735 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.343434
I0623 15:05:37.941756 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0623 15:05:37.941768 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.25
I0623 15:05:37.941781 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0623 15:05:37.941792 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.125
I0623 15:05:37.941803 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0623 15:05:37.941815 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0623 15:05:37.941828 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.125
I0623 15:05:37.941839 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.375
I0623 15:05:37.941851 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.25
I0623 15:05:37.941864 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.625
I0623 15:05:37.941875 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.25
I0623 15:05:37.941886 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.375
I0623 15:05:37.941898 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.375
I0623 15:05:37.941910 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.5
I0623 15:05:37.941921 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.625
I0623 15:05:37.941933 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.75
I0623 15:05:37.941944 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.75
I0623 15:05:37.941956 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 0.875
I0623 15:05:37.941967 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 15:05:37.941979 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 15:05:37.941990 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 15:05:37.942003 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 15:05:37.942013 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.556818
I0623 15:05:37.942025 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.636364
I0623 15:05:37.942042 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.97195 (* 0.3 = 0.591586 loss)
I0623 15:05:37.942056 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.56886 (* 0.3 = 0.470657 loss)
I0623 15:05:37.942073 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 1.37548 (* 0.0272727 = 0.0375132 loss)
I0623 15:05:37.942087 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 2.6714 (* 0.0272727 = 0.0728564 loss)
I0623 15:05:37.942101 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 2.27999 (* 0.0272727 = 0.0621816 loss)
I0623 15:05:37.942114 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 3.90989 (* 0.0272727 = 0.106633 loss)
I0623 15:05:37.942128 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 2.25643 (* 0.0272727 = 0.061539 loss)
I0623 15:05:37.942142 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 2.31426 (* 0.0272727 = 0.0631162 loss)
I0623 15:05:37.942157 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 2.75914 (* 0.0272727 = 0.0752493 loss)
I0623 15:05:37.942170 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.96325 (* 0.0272727 = 0.0535432 loss)
I0623 15:05:37.942184 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 2.08682 (* 0.0272727 = 0.0569133 loss)
I0623 15:05:37.942198 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.80577 (* 0.0272727 = 0.0492482 loss)
I0623 15:05:37.942211 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 2.2623 (* 0.0272727 = 0.0616992 loss)
I0623 15:05:37.942224 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.81972 (* 0.0272727 = 0.0496286 loss)
I0623 15:05:37.942251 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.6073 (* 0.0272727 = 0.0438355 loss)
I0623 15:05:37.942270 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.35362 (* 0.0272727 = 0.036917 loss)
I0623 15:05:37.942284 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 1.05002 (* 0.0272727 = 0.0286369 loss)
I0623 15:05:37.942298 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.814023 (* 0.0272727 = 0.0222006 loss)
I0623 15:05:37.942312 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.791333 (* 0.0272727 = 0.0215818 loss)
I0623 15:05:37.942325 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.336407 (* 0.0272727 = 0.00917474 loss)
I0623 15:05:37.942339 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.136067 (* 0.0272727 = 0.00371092 loss)
I0623 15:05:37.942353 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.0621995 (* 0.0272727 = 0.00169635 loss)
I0623 15:05:37.942366 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.0048601 (* 0.0272727 = 0.000132548 loss)
I0623 15:05:37.942380 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 8.88681e-05 (* 0.0272727 = 2.42367e-06 loss)
I0623 15:05:37.942394 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.464646
I0623 15:05:37.942405 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0623 15:05:37.942416 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0623 15:05:37.942427 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5
I0623 15:05:37.942440 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0623 15:05:37.942451 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0623 15:05:37.942461 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0623 15:05:37.942472 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.125
I0623 15:05:37.942484 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.5
I0623 15:05:37.942495 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.25
I0623 15:05:37.942507 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.625
I0623 15:05:37.942517 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.375
I0623 15:05:37.942529 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.25
I0623 15:05:37.942540 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.5
I0623 15:05:37.942551 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.5
I0623 15:05:37.942562 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.625
I0623 15:05:37.942574 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.5
I0623 15:05:37.942585 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.75
I0623 15:05:37.942596 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 0.875
I0623 15:05:37.942607 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 15:05:37.942620 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 15:05:37.942631 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 15:05:37.942641 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 15:05:37.942652 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.625
I0623 15:05:37.942664 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.79798
I0623 15:05:37.942677 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.64319 (* 0.3 = 0.492958 loss)
I0623 15:05:37.942692 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 1.35236 (* 0.3 = 0.405709 loss)
I0623 15:05:37.942705 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 1.74263 (* 0.0272727 = 0.0475262 loss)
I0623 15:05:37.942719 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.891262 (* 0.0272727 = 0.0243071 loss)
I0623 15:05:37.942744 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 2.23443 (* 0.0272727 = 0.060939 loss)
I0623 15:05:37.942762 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 3.55954 (* 0.0272727 = 0.0970784 loss)
I0623 15:05:37.942776 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.89693 (* 0.0272727 = 0.0517344 loss)
I0623 15:05:37.942790 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.95617 (* 0.0272727 = 0.05335 loss)
I0623 15:05:37.942803 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 3.26143 (* 0.0272727 = 0.0889481 loss)
I0623 15:05:37.942816 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 2.26939 (* 0.0272727 = 0.0618923 loss)
I0623 15:05:37.942829 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 2.17293 (* 0.0272727 = 0.0592617 loss)
I0623 15:05:37.942843 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.78501 (* 0.0272727 = 0.0486822 loss)
I0623 15:05:37.942857 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.9837 (* 0.0272727 = 0.054101 loss)
I0623 15:05:37.942870 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.34215 (* 0.0272727 = 0.0366041 loss)
I0623 15:05:37.942883 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.49029 (* 0.0272727 = 0.0406443 loss)
I0623 15:05:37.942896 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.85396 (* 0.0272727 = 0.0505626 loss)
I0623 15:05:37.942910 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 1.2933 (* 0.0272727 = 0.0352719 loss)
I0623 15:05:37.942924 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 1.20277 (* 0.0272727 = 0.0328029 loss)
I0623 15:05:37.942937 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.750674 (* 0.0272727 = 0.0204729 loss)
I0623 15:05:37.942950 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.396116 (* 0.0272727 = 0.0108032 loss)
I0623 15:05:37.942965 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.101589 (* 0.0272727 = 0.0027706 loss)
I0623 15:05:37.942978 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.0467076 (* 0.0272727 = 0.00127384 loss)
I0623 15:05:37.942992 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00156432 (* 0.0272727 = 4.26634e-05 loss)
I0623 15:05:37.943006 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00111674 (* 0.0272727 = 3.04566e-05 loss)
I0623 15:05:37.943017 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.636364
I0623 15:05:37.943030 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0623 15:05:37.943042 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0623 15:05:37.943053 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75
I0623 15:05:37.943064 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75
I0623 15:05:37.943075 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75
I0623 15:05:37.943087 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625
I0623 15:05:37.943099 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.5
I0623 15:05:37.943110 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.625
I0623 15:05:37.943123 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.25
I0623 15:05:37.943136 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75
I0623 15:05:37.943147 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.125
I0623 15:05:37.943159 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.25
I0623 15:05:37.943171 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.375
I0623 15:05:37.943183 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.375
I0623 15:05:37.943192 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.625
I0623 15:05:37.943199 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.625
I0623 15:05:37.943222 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.75
I0623 15:05:37.943234 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 15:05:37.943245 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 15:05:37.943256 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 15:05:37.943267 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 15:05:37.943279 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 15:05:37.943289 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.721591
I0623 15:05:37.943301 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.959596
I0623 15:05:37.943315 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.16799 (* 1 = 1.16799 loss)
I0623 15:05:37.943328 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 1.11914 (* 1 = 1.11914 loss)
I0623 15:05:37.943341 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 1.26992 (* 0.0909091 = 0.115448 loss)
I0623 15:05:37.943356 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 1.13651 (* 0.0909091 = 0.103319 loss)
I0623 15:05:37.943368 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 1.5697 (* 0.0909091 = 0.1427 loss)
I0623 15:05:37.943382 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 1.70312 (* 0.0909091 = 0.15483 loss)
I0623 15:05:37.943395 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 1.22748 (* 0.0909091 = 0.111589 loss)
I0623 15:05:37.943409 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 2.64739 (* 0.0909091 = 0.240672 loss)
I0623 15:05:37.943423 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 2.34839 (* 0.0909091 = 0.21349 loss)
I0623 15:05:37.943435 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 1.75045 (* 0.0909091 = 0.159131 loss)
I0623 15:05:37.943449 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 2.01441 (* 0.0909091 = 0.183128 loss)
I0623 15:05:37.943461 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 1.22626 (* 0.0909091 = 0.111478 loss)
I0623 15:05:37.943475 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 1.95582 (* 0.0909091 = 0.177802 loss)
I0623 15:05:37.943488 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.81106 (* 0.0909091 = 0.164642 loss)
I0623 15:05:37.943501 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 1.31545 (* 0.0909091 = 0.119587 loss)
I0623 15:05:37.943514 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 1.26388 (* 0.0909091 = 0.114899 loss)
I0623 15:05:37.943527 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 1.12719 (* 0.0909091 = 0.102471 loss)
I0623 15:05:37.943541 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.783099 (* 0.0909091 = 0.0711908 loss)
I0623 15:05:37.943553 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.550135 (* 0.0909091 = 0.0500123 loss)
I0623 15:05:37.943567 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0983122 (* 0.0909091 = 0.00893748 loss)
I0623 15:05:37.943580 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0177637 (* 0.0909091 = 0.00161488 loss)
I0623 15:05:37.943593 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00703782 (* 0.0909091 = 0.000639802 loss)
I0623 15:05:37.943624 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 0.001339 (* 0.0909091 = 0.000121727 loss)
I0623 15:05:37.943637 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 4.79349e-05 (* 0.0909091 = 4.35772e-06 loss)
I0623 15:05:37.943650 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0623 15:05:37.943660 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0623 15:05:37.943672 10365 solver.cpp:245] Train net output #149: total_confidence = 0.124627
I0623 15:05:37.943696 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.127342
I0623 15:05:37.943709 10365 sgd_solver.cpp:106] Iteration 4000, lr = 0.001
I0623 15:06:53.232090 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 62.8073 > 30) by scale factor 0.477651
I0623 15:07:12.369156 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 37.0164 > 30) by scale factor 0.810451
I0623 15:11:01.956571 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 35.2599 > 30) by scale factor 0.850824
I0623 15:11:44.034663 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 33.9961 > 30) by scale factor 0.882453
I0623 15:12:00.529906 10365 solver.cpp:229] Iteration 4500, loss = 4.75575
I0623 15:12:00.529971 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.521277
I0623 15:12:00.529989 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0623 15:12:00.530002 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75
I0623 15:12:00.530014 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625
I0623 15:12:00.530026 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0623 15:12:00.530038 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0623 15:12:00.530050 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0623 15:12:00.530062 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.375
I0623 15:12:00.530076 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.5
I0623 15:12:00.530089 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.625
I0623 15:12:00.530100 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.25
I0623 15:12:00.530112 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.5
I0623 15:12:00.530123 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.375
I0623 15:12:00.530135 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.5
I0623 15:12:00.530146 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.625
I0623 15:12:00.530158 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875
I0623 15:12:00.530170 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875
I0623 15:12:00.530181 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 15:12:00.530194 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 15:12:00.530205 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 15:12:00.530215 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 15:12:00.530227 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 15:12:00.530238 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 15:12:00.530251 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.727273
I0623 15:12:00.530262 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.776596
I0623 15:12:00.530278 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.46941 (* 0.3 = 0.440823 loss)
I0623 15:12:00.530292 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.837564 (* 0.3 = 0.251269 loss)
I0623 15:12:00.530306 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.537703 (* 0.0272727 = 0.0146646 loss)
I0623 15:12:00.530320 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 1.2214 (* 0.0272727 = 0.0333109 loss)
I0623 15:12:00.530334 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 0.9079 (* 0.0272727 = 0.0247609 loss)
I0623 15:12:00.530349 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.45341 (* 0.0272727 = 0.0396386 loss)
I0623 15:12:00.530361 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 2.19488 (* 0.0272727 = 0.0598604 loss)
I0623 15:12:00.530375 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 1.53633 (* 0.0272727 = 0.0418998 loss)
I0623 15:12:00.530390 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 2.28028 (* 0.0272727 = 0.0621895 loss)
I0623 15:12:00.530403 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.25325 (* 0.0272727 = 0.0341796 loss)
I0623 15:12:00.530416 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.37647 (* 0.0272727 = 0.0375402 loss)
I0623 15:12:00.530429 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 2.12058 (* 0.0272727 = 0.0578339 loss)
I0623 15:12:00.530443 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.75101 (* 0.0272727 = 0.0477547 loss)
I0623 15:12:00.530457 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.43266 (* 0.0272727 = 0.0390725 loss)
I0623 15:12:00.530500 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.40447 (* 0.0272727 = 0.0383037 loss)
I0623 15:12:00.530525 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.10244 (* 0.0272727 = 0.0300666 loss)
I0623 15:12:00.530539 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.597345 (* 0.0272727 = 0.0162912 loss)
I0623 15:12:00.530553 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.797813 (* 0.0272727 = 0.0217585 loss)
I0623 15:12:00.530567 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00693995 (* 0.0272727 = 0.000189271 loss)
I0623 15:12:00.530581 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00114927 (* 0.0272727 = 3.13438e-05 loss)
I0623 15:12:00.530596 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0002945 (* 0.0272727 = 8.03183e-06 loss)
I0623 15:12:00.530609 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 6.41628e-05 (* 0.0272727 = 1.74989e-06 loss)
I0623 15:12:00.530623 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 1.62427e-05 (* 0.0272727 = 4.42983e-07 loss)
I0623 15:12:00.530637 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 4.27667e-06 (* 0.0272727 = 1.16636e-07 loss)
I0623 15:12:00.530650 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.606383
I0623 15:12:00.530663 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0623 15:12:00.530673 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0623 15:12:00.530685 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.875
I0623 15:12:00.530696 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625
I0623 15:12:00.530707 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.125
I0623 15:12:00.530719 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0623 15:12:00.530730 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.375
I0623 15:12:00.530742 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625
I0623 15:12:00.530756 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.25
I0623 15:12:00.530768 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.75
I0623 15:12:00.530779 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.5
I0623 15:12:00.530791 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.625
I0623 15:12:00.530802 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.5
I0623 15:12:00.530813 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.625
I0623 15:12:00.530824 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875
I0623 15:12:00.530836 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875
I0623 15:12:00.530848 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 15:12:00.530858 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 15:12:00.530869 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 15:12:00.530880 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 15:12:00.530892 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 15:12:00.530902 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 15:12:00.530915 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.789773
I0623 15:12:00.530925 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.882979
I0623 15:12:00.530939 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.16585 (* 0.3 = 0.349755 loss)
I0623 15:12:00.530952 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.638165 (* 0.3 = 0.19145 loss)
I0623 15:12:00.530966 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.363134 (* 0.0272727 = 0.00990364 loss)
I0623 15:12:00.530992 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.462497 (* 0.0272727 = 0.0126136 loss)
I0623 15:12:00.531008 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.394001 (* 0.0272727 = 0.0107455 loss)
I0623 15:12:00.531021 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 0.971272 (* 0.0272727 = 0.0264892 loss)
I0623 15:12:00.531034 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 2.14806 (* 0.0272727 = 0.0585835 loss)
I0623 15:12:00.531049 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.2416 (* 0.0272727 = 0.0338618 loss)
I0623 15:12:00.531061 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.97814 (* 0.0272727 = 0.0539492 loss)
I0623 15:12:00.531075 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.19017 (* 0.0272727 = 0.0324592 loss)
I0623 15:12:00.531088 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.75951 (* 0.0272727 = 0.0479867 loss)
I0623 15:12:00.531101 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.30373 (* 0.0272727 = 0.0355562 loss)
I0623 15:12:00.531114 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.43326 (* 0.0272727 = 0.0390888 loss)
I0623 15:12:00.531131 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.45376 (* 0.0272727 = 0.0396481 loss)
I0623 15:12:00.531146 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.10756 (* 0.0272727 = 0.0302061 loss)
I0623 15:12:00.531158 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 0.798834 (* 0.0272727 = 0.0217864 loss)
I0623 15:12:00.531172 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.568323 (* 0.0272727 = 0.0154997 loss)
I0623 15:12:00.531185 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.513104 (* 0.0272727 = 0.0139937 loss)
I0623 15:12:00.531199 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00900011 (* 0.0272727 = 0.000245458 loss)
I0623 15:12:00.531213 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00131582 (* 0.0272727 = 3.58861e-05 loss)
I0623 15:12:00.531226 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 5.15837e-05 (* 0.0272727 = 1.40683e-06 loss)
I0623 15:12:00.531240 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 1.23981e-05 (* 0.0272727 = 3.38129e-07 loss)
I0623 15:12:00.531255 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 4.90252e-06 (* 0.0272727 = 1.33705e-07 loss)
I0623 15:12:00.531268 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 3.69553e-06 (* 0.0272727 = 1.00787e-07 loss)
I0623 15:12:00.531280 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.904255
I0623 15:12:00.531292 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 15:12:00.531304 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 15:12:00.531316 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 15:12:00.531327 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 15:12:00.531338 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0623 15:12:00.531349 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0623 15:12:00.531360 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0623 15:12:00.531371 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0623 15:12:00.531383 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75
I0623 15:12:00.531394 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75
I0623 15:12:00.531406 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875
I0623 15:12:00.531417 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.625
I0623 15:12:00.531429 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.75
I0623 15:12:00.531443 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.75
I0623 15:12:00.531455 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.625
I0623 15:12:00.531476 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875
I0623 15:12:00.531489 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 15:12:00.531500 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 15:12:00.531510 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 15:12:00.531522 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 15:12:00.531533 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 15:12:00.531543 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 15:12:00.531554 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.926136
I0623 15:12:00.531566 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1
I0623 15:12:00.531579 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.291806 (* 1 = 0.291806 loss)
I0623 15:12:00.531592 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.188262 (* 1 = 0.188262 loss)
I0623 15:12:00.531621 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0282195 (* 0.0909091 = 0.00256541 loss)
I0623 15:12:00.531635 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0808289 (* 0.0909091 = 0.00734808 loss)
I0623 15:12:00.531649 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0501915 (* 0.0909091 = 0.00456286 loss)
I0623 15:12:00.531663 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.07595 (* 0.0909091 = 0.00690454 loss)
I0623 15:12:00.531677 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.114051 (* 0.0909091 = 0.0103682 loss)
I0623 15:12:00.531690 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.103858 (* 0.0909091 = 0.0094416 loss)
I0623 15:12:00.531704 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.0960977 (* 0.0909091 = 0.00873615 loss)
I0623 15:12:00.531718 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.743839 (* 0.0909091 = 0.0676217 loss)
I0623 15:12:00.531731 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.749018 (* 0.0909091 = 0.0680925 loss)
I0623 15:12:00.531744 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.742976 (* 0.0909091 = 0.0675432 loss)
I0623 15:12:00.531757 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 0.556033 (* 0.0909091 = 0.0505484 loss)
I0623 15:12:00.531771 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 0.868181 (* 0.0909091 = 0.0789256 loss)
I0623 15:12:00.531785 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 0.661758 (* 0.0909091 = 0.0601598 loss)
I0623 15:12:00.531797 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.789923 (* 0.0909091 = 0.0718112 loss)
I0623 15:12:00.531815 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.641951 (* 0.0909091 = 0.0583592 loss)
I0623 15:12:00.531828 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.198909 (* 0.0909091 = 0.0180826 loss)
I0623 15:12:00.531841 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00485608 (* 0.0909091 = 0.000441462 loss)
I0623 15:12:00.531855 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000565632 (* 0.0909091 = 5.14211e-05 loss)
I0623 15:12:00.531868 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 7.45254e-05 (* 0.0909091 = 6.77504e-06 loss)
I0623 15:12:00.531883 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 3.76723e-05 (* 0.0909091 = 3.42475e-06 loss)
I0623 15:12:00.531895 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 2.35898e-05 (* 0.0909091 = 2.14453e-06 loss)
I0623 15:12:00.531909 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 3.6359e-06 (* 0.0909091 = 3.30536e-07 loss)
I0623 15:12:00.531921 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.25
I0623 15:12:00.531934 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0623 15:12:00.531957 10365 solver.cpp:245] Train net output #149: total_confidence = 0.147452
I0623 15:12:00.531970 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.121225
I0623 15:12:00.531983 10365 sgd_solver.cpp:106] Iteration 4500, lr = 0.001
I0623 15:12:18.493130 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 36.3915 > 30) by scale factor 0.824368
I0623 15:13:15.864212 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 33.4634 > 30) by scale factor 0.896503
I0623 15:14:10.181311 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 37.0829 > 30) by scale factor 0.808998
I0623 15:15:03.746193 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 35.2962 > 30) by scale factor 0.849951
I0623 15:15:41.224390 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.909 > 30) by scale factor 0.97059
I0623 15:18:22.618973 10365 solver.cpp:338] Iteration 5000, Testing net (#0)
I0623 15:19:19.799612 10365 solver.cpp:393] Test loss: 4.13349
I0623 15:19:19.799731 10365 solver.cpp:406] Test net output #0: loss1/accuracy = 0.50051
I0623 15:19:19.799751 10365 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.923
I0623 15:19:19.799764 10365 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.761
I0623 15:19:19.799777 10365 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.533
I0623 15:19:19.799788 10365 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.428
I0623 15:19:19.799800 10365 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.4
I0623 15:19:19.799811 10365 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.402
I0623 15:19:19.799823 10365 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.359
I0623 15:19:19.799834 10365 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.478
I0623 15:19:19.799846 10365 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.416
I0623 15:19:19.799857 10365 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.41
I0623 15:19:19.799868 10365 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.39
I0623 15:19:19.799880 10365 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.484
I0623 15:19:19.799891 10365 solver.cpp:406] Test net output #13: loss1/accuracy13 = 0.591
I0623 15:19:19.799902 10365 solver.cpp:406] Test net output #14: loss1/accuracy14 = 0.671
I0623 15:19:19.799913 10365 solver.cpp:406] Test net output #15: loss1/accuracy15 = 0.769
I0623 15:19:19.799924 10365 solver.cpp:406] Test net output #16: loss1/accuracy16 = 0.827
I0623 15:19:19.799935 10365 solver.cpp:406] Test net output #17: loss1/accuracy17 = 0.902
I0623 15:19:19.799947 10365 solver.cpp:406] Test net output #18: loss1/accuracy18 = 0.949
I0623 15:19:19.799957 10365 solver.cpp:406] Test net output #19: loss1/accuracy19 = 0.972
I0623 15:19:19.799969 10365 solver.cpp:406] Test net output #20: loss1/accuracy20 = 0.987
I0623 15:19:19.799980 10365 solver.cpp:406] Test net output #21: loss1/accuracy21 = 0.999
I0623 15:19:19.799991 10365 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1
I0623 15:19:19.800003 10365 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.694182
I0623 15:19:19.800014 10365 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.83487
I0623 15:19:19.800029 10365 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.45476 (* 0.3 = 0.436429 loss)
I0623 15:19:19.800043 10365 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.894121 (* 0.3 = 0.268236 loss)
I0623 15:19:19.800058 10365 solver.cpp:406] Test net output #27: loss1/loss01 = 0.343591 (* 0.0272727 = 0.00937065 loss)
I0623 15:19:19.800072 10365 solver.cpp:406] Test net output #28: loss1/loss02 = 0.814289 (* 0.0272727 = 0.0222079 loss)
I0623 15:19:19.800086 10365 solver.cpp:406] Test net output #29: loss1/loss03 = 1.47671 (* 0.0272727 = 0.0402738 loss)
I0623 15:19:19.800099 10365 solver.cpp:406] Test net output #30: loss1/loss04 = 1.65237 (* 0.0272727 = 0.0450646 loss)
I0623 15:19:19.800112 10365 solver.cpp:406] Test net output #31: loss1/loss05 = 1.79879 (* 0.0272727 = 0.0490578 loss)
I0623 15:19:19.800127 10365 solver.cpp:406] Test net output #32: loss1/loss06 = 1.89115 (* 0.0272727 = 0.0515768 loss)
I0623 15:19:19.800139 10365 solver.cpp:406] Test net output #33: loss1/loss07 = 1.90352 (* 0.0272727 = 0.0519142 loss)
I0623 15:19:19.800153 10365 solver.cpp:406] Test net output #34: loss1/loss08 = 1.6837 (* 0.0272727 = 0.045919 loss)
I0623 15:19:19.800165 10365 solver.cpp:406] Test net output #35: loss1/loss09 = 1.77611 (* 0.0272727 = 0.0484394 loss)
I0623 15:19:19.800179 10365 solver.cpp:406] Test net output #36: loss1/loss10 = 1.80655 (* 0.0272727 = 0.0492694 loss)
I0623 15:19:19.800192 10365 solver.cpp:406] Test net output #37: loss1/loss11 = 1.89256 (* 0.0272727 = 0.0516152 loss)
I0623 15:19:19.800205 10365 solver.cpp:406] Test net output #38: loss1/loss12 = 1.56893 (* 0.0272727 = 0.042789 loss)
I0623 15:19:19.800218 10365 solver.cpp:406] Test net output #39: loss1/loss13 = 1.25648 (* 0.0272727 = 0.0342676 loss)
I0623 15:19:19.800251 10365 solver.cpp:406] Test net output #40: loss1/loss14 = 0.972732 (* 0.0272727 = 0.0265291 loss)
I0623 15:19:19.800269 10365 solver.cpp:406] Test net output #41: loss1/loss15 = 0.693935 (* 0.0272727 = 0.0189255 loss)
I0623 15:19:19.800283 10365 solver.cpp:406] Test net output #42: loss1/loss16 = 0.534658 (* 0.0272727 = 0.0145816 loss)
I0623 15:19:19.800297 10365 solver.cpp:406] Test net output #43: loss1/loss17 = 0.341222 (* 0.0272727 = 0.00930606 loss)
I0623 15:19:19.800312 10365 solver.cpp:406] Test net output #44: loss1/loss18 = 0.198091 (* 0.0272727 = 0.00540249 loss)
I0623 15:19:19.800324 10365 solver.cpp:406] Test net output #45: loss1/loss19 = 0.126552 (* 0.0272727 = 0.00345142 loss)
I0623 15:19:19.800338 10365 solver.cpp:406] Test net output #46: loss1/loss20 = 0.0713861 (* 0.0272727 = 0.00194689 loss)
I0623 15:19:19.800351 10365 solver.cpp:406] Test net output #47: loss1/loss21 = 0.00713148 (* 0.0272727 = 0.000194495 loss)
I0623 15:19:19.800365 10365 solver.cpp:406] Test net output #48: loss1/loss22 = 8.71755e-05 (* 0.0272727 = 2.37751e-06 loss)
I0623 15:19:19.800377 10365 solver.cpp:406] Test net output #49: loss2/accuracy = 0.61994
I0623 15:19:19.800389 10365 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.971
I0623 15:19:19.800400 10365 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.945
I0623 15:19:19.800411 10365 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.832
I0623 15:19:19.800422 10365 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.704
I0623 15:19:19.800433 10365 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.537
I0623 15:19:19.800444 10365 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.484
I0623 15:19:19.800456 10365 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.454
I0623 15:19:19.800467 10365 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.506
I0623 15:19:19.800477 10365 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.473
I0623 15:19:19.800488 10365 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.42
I0623 15:19:19.800499 10365 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.414
I0623 15:19:19.800510 10365 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.524
I0623 15:19:19.800521 10365 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.61
I0623 15:19:19.800532 10365 solver.cpp:406] Test net output #63: loss2/accuracy14 = 0.693
I0623 15:19:19.800544 10365 solver.cpp:406] Test net output #64: loss2/accuracy15 = 0.778
I0623 15:19:19.800554 10365 solver.cpp:406] Test net output #65: loss2/accuracy16 = 0.839
I0623 15:19:19.800565 10365 solver.cpp:406] Test net output #66: loss2/accuracy17 = 0.905
I0623 15:19:19.800576 10365 solver.cpp:406] Test net output #67: loss2/accuracy18 = 0.95
I0623 15:19:19.800587 10365 solver.cpp:406] Test net output #68: loss2/accuracy19 = 0.972
I0623 15:19:19.800598 10365 solver.cpp:406] Test net output #69: loss2/accuracy20 = 0.987
I0623 15:19:19.800609 10365 solver.cpp:406] Test net output #70: loss2/accuracy21 = 0.999
I0623 15:19:19.800621 10365 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1
I0623 15:19:19.800631 10365 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.759409
I0623 15:19:19.800643 10365 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.900178
I0623 15:19:19.800657 10365 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 1.09847 (* 0.3 = 0.32954 loss)
I0623 15:19:19.800669 10365 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.691491 (* 0.3 = 0.207447 loss)
I0623 15:19:19.800684 10365 solver.cpp:406] Test net output #76: loss2/loss01 = 0.195611 (* 0.0272727 = 0.00533484 loss)
I0623 15:19:19.800698 10365 solver.cpp:406] Test net output #77: loss2/loss02 = 0.290989 (* 0.0272727 = 0.00793606 loss)
I0623 15:19:19.800722 10365 solver.cpp:406] Test net output #78: loss2/loss03 = 0.624667 (* 0.0272727 = 0.0170364 loss)
I0623 15:19:19.800740 10365 solver.cpp:406] Test net output #79: loss2/loss04 = 0.966282 (* 0.0272727 = 0.0263531 loss)
I0623 15:19:19.800752 10365 solver.cpp:406] Test net output #80: loss2/loss05 = 1.26002 (* 0.0272727 = 0.0343641 loss)
I0623 15:19:19.800766 10365 solver.cpp:406] Test net output #81: loss2/loss06 = 1.51084 (* 0.0272727 = 0.0412047 loss)
I0623 15:19:19.800779 10365 solver.cpp:406] Test net output #82: loss2/loss07 = 1.60048 (* 0.0272727 = 0.0436496 loss)
I0623 15:19:19.800792 10365 solver.cpp:406] Test net output #83: loss2/loss08 = 1.49974 (* 0.0272727 = 0.040902 loss)
I0623 15:19:19.800806 10365 solver.cpp:406] Test net output #84: loss2/loss09 = 1.56109 (* 0.0272727 = 0.0425752 loss)
I0623 15:19:19.800819 10365 solver.cpp:406] Test net output #85: loss2/loss10 = 1.64685 (* 0.0272727 = 0.044914 loss)
I0623 15:19:19.800832 10365 solver.cpp:406] Test net output #86: loss2/loss11 = 1.71539 (* 0.0272727 = 0.0467835 loss)
I0623 15:19:19.800845 10365 solver.cpp:406] Test net output #87: loss2/loss12 = 1.38885 (* 0.0272727 = 0.0378777 loss)
I0623 15:19:19.800858 10365 solver.cpp:406] Test net output #88: loss2/loss13 = 1.14341 (* 0.0272727 = 0.031184 loss)
I0623 15:19:19.800871 10365 solver.cpp:406] Test net output #89: loss2/loss14 = 0.869613 (* 0.0272727 = 0.0237167 loss)
I0623 15:19:19.800884 10365 solver.cpp:406] Test net output #90: loss2/loss15 = 0.629922 (* 0.0272727 = 0.0171797 loss)
I0623 15:19:19.800897 10365 solver.cpp:406] Test net output #91: loss2/loss16 = 0.470202 (* 0.0272727 = 0.0128237 loss)
I0623 15:19:19.800910 10365 solver.cpp:406] Test net output #92: loss2/loss17 = 0.322601 (* 0.0272727 = 0.0087982 loss)
I0623 15:19:19.800925 10365 solver.cpp:406] Test net output #93: loss2/loss18 = 0.177043 (* 0.0272727 = 0.00482843 loss)
I0623 15:19:19.800937 10365 solver.cpp:406] Test net output #94: loss2/loss19 = 0.111702 (* 0.0272727 = 0.00304642 loss)
I0623 15:19:19.800951 10365 solver.cpp:406] Test net output #95: loss2/loss20 = 0.0664249 (* 0.0272727 = 0.00181159 loss)
I0623 15:19:19.800964 10365 solver.cpp:406] Test net output #96: loss2/loss21 = 0.00825273 (* 0.0272727 = 0.000225074 loss)
I0623 15:19:19.800977 10365 solver.cpp:406] Test net output #97: loss2/loss22 = 7.74321e-05 (* 0.0272727 = 2.11178e-06 loss)
I0623 15:19:19.800989 10365 solver.cpp:406] Test net output #98: loss3/accuracy = 0.869437
I0623 15:19:19.801000 10365 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.975
I0623 15:19:19.801012 10365 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.97
I0623 15:19:19.801023 10365 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.953
I0623 15:19:19.801033 10365 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.945
I0623 15:19:19.801044 10365 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.933
I0623 15:19:19.801055 10365 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.899
I0623 15:19:19.801065 10365 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.893
I0623 15:19:19.801076 10365 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.869
I0623 15:19:19.801087 10365 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.786
I0623 15:19:19.801097 10365 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.639
I0623 15:19:19.801108 10365 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.574
I0623 15:19:19.801120 10365 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.633
I0623 15:19:19.801131 10365 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.678
I0623 15:19:19.801141 10365 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.74
I0623 15:19:19.801151 10365 solver.cpp:406] Test net output #113: loss3/accuracy15 = 0.824
I0623 15:19:19.801162 10365 solver.cpp:406] Test net output #114: loss3/accuracy16 = 0.874
I0623 15:19:19.801183 10365 solver.cpp:406] Test net output #115: loss3/accuracy17 = 0.921
I0623 15:19:19.801195 10365 solver.cpp:406] Test net output #116: loss3/accuracy18 = 0.966
I0623 15:19:19.801206 10365 solver.cpp:406] Test net output #117: loss3/accuracy19 = 0.976
I0623 15:19:19.801218 10365 solver.cpp:406] Test net output #118: loss3/accuracy20 = 0.987
I0623 15:19:19.801229 10365 solver.cpp:406] Test net output #119: loss3/accuracy21 = 0.999
I0623 15:19:19.801240 10365 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1
I0623 15:19:19.801251 10365 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.909274
I0623 15:19:19.801264 10365 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.966978
I0623 15:19:19.801276 10365 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.537938 (* 1 = 0.537938 loss)
I0623 15:19:19.801290 10365 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.351334 (* 1 = 0.351334 loss)
I0623 15:19:19.801303 10365 solver.cpp:406] Test net output #125: loss3/loss01 = 0.155262 (* 0.0909091 = 0.0141148 loss)
I0623 15:19:19.801319 10365 solver.cpp:406] Test net output #126: loss3/loss02 = 0.18181 (* 0.0909091 = 0.0165282 loss)
I0623 15:19:19.801333 10365 solver.cpp:406] Test net output #127: loss3/loss03 = 0.31223 (* 0.0909091 = 0.0283846 loss)
I0623 15:19:19.801347 10365 solver.cpp:406] Test net output #128: loss3/loss04 = 0.359497 (* 0.0909091 = 0.0326816 loss)
I0623 15:19:19.801360 10365 solver.cpp:406] Test net output #129: loss3/loss05 = 0.380586 (* 0.0909091 = 0.0345987 loss)
I0623 15:19:19.801373 10365 solver.cpp:406] Test net output #130: loss3/loss06 = 0.498533 (* 0.0909091 = 0.0453212 loss)
I0623 15:19:19.801386 10365 solver.cpp:406] Test net output #131: loss3/loss07 = 0.547753 (* 0.0909091 = 0.0497957 loss)
I0623 15:19:19.801400 10365 solver.cpp:406] Test net output #132: loss3/loss08 = 0.55748 (* 0.0909091 = 0.05068 loss)
I0623 15:19:19.801414 10365 solver.cpp:406] Test net output #133: loss3/loss09 = 0.74361 (* 0.0909091 = 0.0676009 loss)
I0623 15:19:19.801427 10365 solver.cpp:406] Test net output #134: loss3/loss10 = 1.01823 (* 0.0909091 = 0.0925663 loss)
I0623 15:19:19.801440 10365 solver.cpp:406] Test net output #135: loss3/loss11 = 1.16624 (* 0.0909091 = 0.106022 loss)
I0623 15:19:19.801453 10365 solver.cpp:406] Test net output #136: loss3/loss12 = 0.969957 (* 0.0909091 = 0.0881779 loss)
I0623 15:19:19.801466 10365 solver.cpp:406] Test net output #137: loss3/loss13 = 0.880675 (* 0.0909091 = 0.0800614 loss)
I0623 15:19:19.801479 10365 solver.cpp:406] Test net output #138: loss3/loss14 = 0.674098 (* 0.0909091 = 0.0612817 loss)
I0623 15:19:19.801493 10365 solver.cpp:406] Test net output #139: loss3/loss15 = 0.479104 (* 0.0909091 = 0.0435549 loss)
I0623 15:19:19.801506 10365 solver.cpp:406] Test net output #140: loss3/loss16 = 0.366366 (* 0.0909091 = 0.033306 loss)
I0623 15:19:19.801519 10365 solver.cpp:406] Test net output #141: loss3/loss17 = 0.219897 (* 0.0909091 = 0.0199906 loss)
I0623 15:19:19.801532 10365 solver.cpp:406] Test net output #142: loss3/loss18 = 0.130909 (* 0.0909091 = 0.0119008 loss)
I0623 15:19:19.801545 10365 solver.cpp:406] Test net output #143: loss3/loss19 = 0.0752946 (* 0.0909091 = 0.00684496 loss)
I0623 15:19:19.801559 10365 solver.cpp:406] Test net output #144: loss3/loss20 = 0.0434854 (* 0.0909091 = 0.00395322 loss)
I0623 15:19:19.801573 10365 solver.cpp:406] Test net output #145: loss3/loss21 = 0.00593866 (* 0.0909091 = 0.000539878 loss)
I0623 15:19:19.801585 10365 solver.cpp:406] Test net output #146: loss3/loss22 = 9.62999e-05 (* 0.0909091 = 8.75453e-06 loss)
I0623 15:19:19.801597 10365 solver.cpp:406] Test net output #147: total_accuracy = 0.385
I0623 15:19:19.801609 10365 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.2
I0623 15:19:19.801620 10365 solver.cpp:406] Test net output #149: total_confidence = 0.213189
I0623 15:19:19.801640 10365 solver.cpp:406] Test net output #150: total_confidence_not_rec = 0.14209
I0623 15:19:20.161268 10365 solver.cpp:229] Iteration 5000, loss = 4.7188
I0623 15:19:20.161355 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.417391
I0623 15:19:20.161373 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 1
I0623 15:19:20.161386 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375
I0623 15:19:20.161401 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0623 15:19:20.161412 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0623 15:19:20.161424 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0623 15:19:20.161437 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0623 15:19:20.161448 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.25
I0623 15:19:20.161460 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.375
I0623 15:19:20.161473 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.375
I0623 15:19:20.161484 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.125
I0623 15:19:20.161495 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.125
I0623 15:19:20.161507 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.25
I0623 15:19:20.161519 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.75
I0623 15:19:20.161530 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.625
I0623 15:19:20.161541 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.5
I0623 15:19:20.161553 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.625
I0623 15:19:20.161566 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875
I0623 15:19:20.161576 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 0.875
I0623 15:19:20.161588 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 0.875
I0623 15:19:20.161600 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 15:19:20.161612 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 15:19:20.161624 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 15:19:20.161635 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.613636
I0623 15:19:20.161648 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.713043
I0623 15:19:20.161664 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.69963 (* 0.3 = 0.509889 loss)
I0623 15:19:20.161684 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.16432 (* 0.3 = 0.349296 loss)
I0623 15:19:20.161700 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.333522 (* 0.0272727 = 0.00909606 loss)
I0623 15:19:20.161715 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 1.92532 (* 0.0272727 = 0.0525086 loss)
I0623 15:19:20.161727 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 2.49203 (* 0.0272727 = 0.0679644 loss)
I0623 15:19:20.161741 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 2.56014 (* 0.0272727 = 0.0698221 loss)
I0623 15:19:20.161756 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 1.89854 (* 0.0272727 = 0.0517783 loss)
I0623 15:19:20.161769 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 2.01699 (* 0.0272727 = 0.0550088 loss)
I0623 15:19:20.161783 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 2.04414 (* 0.0272727 = 0.0557494 loss)
I0623 15:19:20.161798 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 2.41501 (* 0.0272727 = 0.0658638 loss)
I0623 15:19:20.161811 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.8097 (* 0.0272727 = 0.0493555 loss)
I0623 15:19:20.161825 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 2.15007 (* 0.0272727 = 0.0586384 loss)
I0623 15:19:20.161839 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 2.60141 (* 0.0272727 = 0.0709474 loss)
I0623 15:19:20.161888 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.81612 (* 0.0272727 = 0.0495306 loss)
I0623 15:19:20.161903 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.40165 (* 0.0272727 = 0.0382268 loss)
I0623 15:19:20.161917 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.50374 (* 0.0272727 = 0.0410111 loss)
I0623 15:19:20.161931 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 1.21501 (* 0.0272727 = 0.0331366 loss)
I0623 15:19:20.161944 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 1.25864 (* 0.0272727 = 0.0343265 loss)
I0623 15:19:20.161957 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.498472 (* 0.0272727 = 0.0135947 loss)
I0623 15:19:20.161972 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.30975 (* 0.0272727 = 0.00844773 loss)
I0623 15:19:20.161985 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.495 (* 0.0272727 = 0.0135 loss)
I0623 15:19:20.162000 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.0340772 (* 0.0272727 = 0.000929379 loss)
I0623 15:19:20.162014 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00990222 (* 0.0272727 = 0.00027006 loss)
I0623 15:19:20.162029 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 0.00381439 (* 0.0272727 = 0.000104029 loss)
I0623 15:19:20.162041 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.504348
I0623 15:19:20.162053 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0623 15:19:20.162065 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625
I0623 15:19:20.162076 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75
I0623 15:19:20.162088 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0623 15:19:20.162099 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25
I0623 15:19:20.162114 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0623 15:19:20.162127 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0
I0623 15:19:20.162138 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.375
I0623 15:19:20.162150 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.5
I0623 15:19:20.162161 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.375
I0623 15:19:20.162173 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.125
I0623 15:19:20.162184 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.625
I0623 15:19:20.162196 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.375
I0623 15:19:20.162209 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.5
I0623 15:19:20.162220 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.375
I0623 15:19:20.162231 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.625
I0623 15:19:20.162243 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875
I0623 15:19:20.162256 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 0.875
I0623 15:19:20.162267 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 0.875
I0623 15:19:20.162279 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 15:19:20.162292 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 15:19:20.162302 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 15:19:20.162314 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.664773
I0623 15:19:20.162327 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.8
I0623 15:19:20.162340 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.44305 (* 0.3 = 0.432914 loss)
I0623 15:19:20.162354 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.983509 (* 0.3 = 0.295053 loss)
I0623 15:19:20.162379 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.337775 (* 0.0272727 = 0.00921204 loss)
I0623 15:19:20.162395 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.874984 (* 0.0272727 = 0.0238632 loss)
I0623 15:19:20.162410 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 1.03524 (* 0.0272727 = 0.0282338 loss)
I0623 15:19:20.162423 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.93825 (* 0.0272727 = 0.0528613 loss)
I0623 15:19:20.162437 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.64474 (* 0.0272727 = 0.0448565 loss)
I0623 15:19:20.162451 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.36846 (* 0.0272727 = 0.0373217 loss)
I0623 15:19:20.162464 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.89831 (* 0.0272727 = 0.0517721 loss)
I0623 15:19:20.162478 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.76296 (* 0.0272727 = 0.0480807 loss)
I0623 15:19:20.162492 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.60928 (* 0.0272727 = 0.0438894 loss)
I0623 15:19:20.162506 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 2.14028 (* 0.0272727 = 0.0583712 loss)
I0623 15:19:20.162519 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 2.25287 (* 0.0272727 = 0.0614418 loss)
I0623 15:19:20.162533 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.34344 (* 0.0272727 = 0.0366394 loss)
I0623 15:19:20.162547 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.60849 (* 0.0272727 = 0.0438678 loss)
I0623 15:19:20.162557 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.58687 (* 0.0272727 = 0.0432782 loss)
I0623 15:19:20.162566 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 1.48817 (* 0.0272727 = 0.0405866 loss)
I0623 15:19:20.162581 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 1.08494 (* 0.0272727 = 0.0295894 loss)
I0623 15:19:20.162595 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.363457 (* 0.0272727 = 0.00991245 loss)
I0623 15:19:20.162611 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.544343 (* 0.0272727 = 0.0148457 loss)
I0623 15:19:20.162624 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.581936 (* 0.0272727 = 0.015871 loss)
I0623 15:19:20.162638 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00933229 (* 0.0272727 = 0.000254517 loss)
I0623 15:19:20.162652 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.0101916 (* 0.0272727 = 0.000277952 loss)
I0623 15:19:20.162667 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00301476 (* 0.0272727 = 8.22207e-05 loss)
I0623 15:19:20.162678 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.808696
I0623 15:19:20.162690 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 15:19:20.162703 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0623 15:19:20.162714 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 15:19:20.162729 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 15:19:20.162740 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0623 15:19:20.162752 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0623 15:19:20.162765 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0623 15:19:20.162775 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0623 15:19:20.162787 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75
I0623 15:19:20.162798 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.25
I0623 15:19:20.162811 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.375
I0623 15:19:20.162822 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.375
I0623 15:19:20.162833 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.5
I0623 15:19:20.162844 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.375
I0623 15:19:20.162866 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.75
I0623 15:19:20.162879 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.75
I0623 15:19:20.162891 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.875
I0623 15:19:20.162902 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 0.875
I0623 15:19:20.162914 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 0.875
I0623 15:19:20.162926 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 15:19:20.162938 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 15:19:20.162950 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 15:19:20.162961 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.869318
I0623 15:19:20.162972 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.973913
I0623 15:19:20.162986 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.608941 (* 1 = 0.608941 loss)
I0623 15:19:20.163000 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.417189 (* 1 = 0.417189 loss)
I0623 15:19:20.163014 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0335909 (* 0.0909091 = 0.00305372 loss)
I0623 15:19:20.163029 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.327839 (* 0.0909091 = 0.0298035 loss)
I0623 15:19:20.163043 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.098568 (* 0.0909091 = 0.00896073 loss)
I0623 15:19:20.163058 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.171783 (* 0.0909091 = 0.0156167 loss)
I0623 15:19:20.163072 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.202277 (* 0.0909091 = 0.0183888 loss)
I0623 15:19:20.163086 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 1.02522 (* 0.0909091 = 0.0932015 loss)
I0623 15:19:20.163100 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.751781 (* 0.0909091 = 0.0683437 loss)
I0623 15:19:20.163113 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.60902 (* 0.0909091 = 0.0553654 loss)
I0623 15:19:20.163127 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.81373 (* 0.0909091 = 0.0739754 loss)
I0623 15:19:20.163141 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 1.33284 (* 0.0909091 = 0.121167 loss)
I0623 15:19:20.163154 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 1.41742 (* 0.0909091 = 0.128857 loss)
I0623 15:19:20.163172 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.43507 (* 0.0909091 = 0.130461 loss)
I0623 15:19:20.163185 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 1.30581 (* 0.0909091 = 0.11871 loss)
I0623 15:19:20.163199 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 1.15319 (* 0.0909091 = 0.104836 loss)
I0623 15:19:20.163213 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.839881 (* 0.0909091 = 0.0763528 loss)
I0623 15:19:20.163226 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.665887 (* 0.0909091 = 0.0605352 loss)
I0623 15:19:20.163240 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.2318 (* 0.0909091 = 0.0210727 loss)
I0623 15:19:20.163254 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.184697 (* 0.0909091 = 0.0167907 loss)
I0623 15:19:20.163269 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.304962 (* 0.0909091 = 0.0277238 loss)
I0623 15:19:20.163283 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.0105208 (* 0.0909091 = 0.00095644 loss)
I0623 15:19:20.163297 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000712472 (* 0.0909091 = 6.47702e-05 loss)
I0623 15:19:20.163311 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 8.0147e-05 (* 0.0909091 = 7.28609e-06 loss)
I0623 15:19:20.163323 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0623 15:19:20.163346 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0
I0623 15:19:20.163358 10365 solver.cpp:245] Train net output #149: total_confidence = 0.044765
I0623 15:19:20.163370 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.00965546
I0623 15:19:20.163383 10365 sgd_solver.cpp:106] Iteration 5000, lr = 0.001
I0623 15:21:12.172736 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 34.7262 > 30) by scale factor 0.863902
I0623 15:21:15.999522 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 33.2059 > 30) by scale factor 0.903454
I0623 15:23:49.033006 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 32.9108 > 30) by scale factor 0.911555
I0623 15:23:58.210072 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 32.3036 > 30) by scale factor 0.92869
I0623 15:25:42.724093 10365 solver.cpp:229] Iteration 5500, loss = 4.75394
I0623 15:25:42.724231 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.391753
I0623 15:25:42.724251 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0623 15:25:42.724267 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0623 15:25:42.724279 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0623 15:25:42.724290 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0623 15:25:42.724303 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0623 15:25:42.724314 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.125
I0623 15:25:42.724326 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.375
I0623 15:25:42.724339 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.5
I0623 15:25:42.724350 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.5
I0623 15:25:42.724361 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.625
I0623 15:25:42.724373 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.375
I0623 15:25:42.724385 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.5
I0623 15:25:42.724397 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.625
I0623 15:25:42.724408 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.75
I0623 15:25:42.724421 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.75
I0623 15:25:42.724432 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.75
I0623 15:25:42.724444 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.75
I0623 15:25:42.724455 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 0.875
I0623 15:25:42.724467 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 15:25:42.724479 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 15:25:42.724490 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 15:25:42.724503 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 15:25:42.724514 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.659091
I0623 15:25:42.724525 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.721649
I0623 15:25:42.724541 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.74601 (* 0.3 = 0.523803 loss)
I0623 15:25:42.724556 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.993634 (* 0.3 = 0.29809 loss)
I0623 15:25:42.724570 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 1.19863 (* 0.0272727 = 0.0326899 loss)
I0623 15:25:42.724584 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 2.85807 (* 0.0272727 = 0.0779475 loss)
I0623 15:25:42.724598 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.6554 (* 0.0272727 = 0.0451472 loss)
I0623 15:25:42.724612 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 2.55574 (* 0.0272727 = 0.0697019 loss)
I0623 15:25:42.724625 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 1.33869 (* 0.0272727 = 0.0365098 loss)
I0623 15:25:42.724639 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 2.61065 (* 0.0272727 = 0.0711996 loss)
I0623 15:25:42.724653 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.61111 (* 0.0272727 = 0.0439393 loss)
I0623 15:25:42.724668 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.53333 (* 0.0272727 = 0.041818 loss)
I0623 15:25:42.724680 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.63054 (* 0.0272727 = 0.0444693 loss)
I0623 15:25:42.724694 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.31601 (* 0.0272727 = 0.0358913 loss)
I0623 15:25:42.724707 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.48303 (* 0.0272727 = 0.0404461 loss)
I0623 15:25:42.724721 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.31371 (* 0.0272727 = 0.0358283 loss)
I0623 15:25:42.724753 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 0.91021 (* 0.0272727 = 0.0248239 loss)
I0623 15:25:42.724768 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 0.997999 (* 0.0272727 = 0.0272182 loss)
I0623 15:25:42.724782 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.764995 (* 0.0272727 = 0.0208635 loss)
I0623 15:25:42.724795 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.905079 (* 0.0272727 = 0.024684 loss)
I0623 15:25:42.724808 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 1.32977 (* 0.0272727 = 0.0362664 loss)
I0623 15:25:42.724822 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.626482 (* 0.0272727 = 0.0170859 loss)
I0623 15:25:42.724836 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00485043 (* 0.0272727 = 0.000132284 loss)
I0623 15:25:42.724850 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00105324 (* 0.0272727 = 2.87248e-05 loss)
I0623 15:25:42.724864 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 5.25747e-05 (* 0.0272727 = 1.43385e-06 loss)
I0623 15:25:42.724879 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 6.21394e-06 (* 0.0272727 = 1.69471e-07 loss)
I0623 15:25:42.724890 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.494845
I0623 15:25:42.724902 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.625
I0623 15:25:42.724915 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0623 15:25:42.724925 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.875
I0623 15:25:42.724937 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0623 15:25:42.724948 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0623 15:25:42.724959 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.125
I0623 15:25:42.724972 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.375
I0623 15:25:42.724982 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.375
I0623 15:25:42.724993 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.5
I0623 15:25:42.725005 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.375
I0623 15:25:42.725016 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.625
I0623 15:25:42.725028 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.5
I0623 15:25:42.725040 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.75
I0623 15:25:42.725051 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.625
I0623 15:25:42.725062 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.75
I0623 15:25:42.725075 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.75
I0623 15:25:42.725085 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.75
I0623 15:25:42.725097 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 0.875
I0623 15:25:42.725108 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 15:25:42.725119 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 15:25:42.725131 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 15:25:42.725142 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 15:25:42.725153 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.715909
I0623 15:25:42.725164 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.845361
I0623 15:25:42.725178 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.41664 (* 0.3 = 0.424992 loss)
I0623 15:25:42.725191 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.817349 (* 0.3 = 0.245205 loss)
I0623 15:25:42.725205 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.7052 (* 0.0272727 = 0.0192327 loss)
I0623 15:25:42.725219 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.918984 (* 0.0272727 = 0.0250632 loss)
I0623 15:25:42.725246 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 1.08882 (* 0.0272727 = 0.0296952 loss)
I0623 15:25:42.725262 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.09458 (* 0.0272727 = 0.0298522 loss)
I0623 15:25:42.725276 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.52452 (* 0.0272727 = 0.0415779 loss)
I0623 15:25:42.725289 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 2.33411 (* 0.0272727 = 0.0636576 loss)
I0623 15:25:42.725303 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.68542 (* 0.0272727 = 0.0459661 loss)
I0623 15:25:42.725319 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.51067 (* 0.0272727 = 0.0412002 loss)
I0623 15:25:42.725333 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.55532 (* 0.0272727 = 0.0424179 loss)
I0623 15:25:42.725347 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.65683 (* 0.0272727 = 0.0451863 loss)
I0623 15:25:42.725360 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.21799 (* 0.0272727 = 0.033218 loss)
I0623 15:25:42.725373 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.31052 (* 0.0272727 = 0.0357415 loss)
I0623 15:25:42.725388 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 0.930739 (* 0.0272727 = 0.0253838 loss)
I0623 15:25:42.725401 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.00695 (* 0.0272727 = 0.0274622 loss)
I0623 15:25:42.725414 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.761906 (* 0.0272727 = 0.0207792 loss)
I0623 15:25:42.725428 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.550763 (* 0.0272727 = 0.0150208 loss)
I0623 15:25:42.725442 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.931605 (* 0.0272727 = 0.0254074 loss)
I0623 15:25:42.725456 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.59707 (* 0.0272727 = 0.0162837 loss)
I0623 15:25:42.725471 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0175272 (* 0.0272727 = 0.000478015 loss)
I0623 15:25:42.725483 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.0059995 (* 0.0272727 = 0.000163623 loss)
I0623 15:25:42.725497 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00450868 (* 0.0272727 = 0.000122964 loss)
I0623 15:25:42.725512 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00486746 (* 0.0272727 = 0.000132749 loss)
I0623 15:25:42.725524 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.804124
I0623 15:25:42.725536 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0623 15:25:42.725548 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0623 15:25:42.725560 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 15:25:42.725571 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 15:25:42.725584 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0623 15:25:42.725594 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0623 15:25:42.725605 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0623 15:25:42.725617 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.625
I0623 15:25:42.725628 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75
I0623 15:25:42.725641 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.5
I0623 15:25:42.725651 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.75
I0623 15:25:42.725663 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.75
I0623 15:25:42.725674 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875
I0623 15:25:42.725689 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.75
I0623 15:25:42.725697 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.75
I0623 15:25:42.725709 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.75
I0623 15:25:42.725731 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.75
I0623 15:25:42.725744 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 0.875
I0623 15:25:42.725755 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 15:25:42.725767 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 15:25:42.725778 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 15:25:42.725790 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 15:25:42.725800 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.886364
I0623 15:25:42.725811 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.958763
I0623 15:25:42.725826 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.697048 (* 1 = 0.697048 loss)
I0623 15:25:42.725838 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.408282 (* 1 = 0.408282 loss)
I0623 15:25:42.725852 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.432122 (* 0.0909091 = 0.0392838 loss)
I0623 15:25:42.725865 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.617548 (* 0.0909091 = 0.0561408 loss)
I0623 15:25:42.725879 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0431997 (* 0.0909091 = 0.00392724 loss)
I0623 15:25:42.725893 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0898517 (* 0.0909091 = 0.00816834 loss)
I0623 15:25:42.725908 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.165389 (* 0.0909091 = 0.0150354 loss)
I0623 15:25:42.725920 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.202094 (* 0.0909091 = 0.0183722 loss)
I0623 15:25:42.725934 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.0942208 (* 0.0909091 = 0.00856552 loss)
I0623 15:25:42.725947 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 1.03226 (* 0.0909091 = 0.0938422 loss)
I0623 15:25:42.725960 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.917506 (* 0.0909091 = 0.0834096 loss)
I0623 15:25:42.725975 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.892831 (* 0.0909091 = 0.0811665 loss)
I0623 15:25:42.725987 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 0.885709 (* 0.0909091 = 0.080519 loss)
I0623 15:25:42.726001 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 0.740749 (* 0.0909091 = 0.0673408 loss)
I0623 15:25:42.726013 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 0.479557 (* 0.0909091 = 0.0435961 loss)
I0623 15:25:42.726027 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.548719 (* 0.0909091 = 0.0498835 loss)
I0623 15:25:42.726040 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.798879 (* 0.0909091 = 0.0726253 loss)
I0623 15:25:42.726053 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.444022 (* 0.0909091 = 0.0403656 loss)
I0623 15:25:42.726066 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.679818 (* 0.0909091 = 0.0618016 loss)
I0623 15:25:42.726079 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.385992 (* 0.0909091 = 0.0350902 loss)
I0623 15:25:42.726094 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0057015 (* 0.0909091 = 0.000518318 loss)
I0623 15:25:42.726106 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000726757 (* 0.0909091 = 6.60688e-05 loss)
I0623 15:25:42.726120 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 9.58675e-05 (* 0.0909091 = 8.71523e-06 loss)
I0623 15:25:42.726135 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 4.02335e-06 (* 0.0909091 = 3.65759e-07 loss)
I0623 15:25:42.726146 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.5
I0623 15:25:42.726157 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375
I0623 15:25:42.726178 10365 solver.cpp:245] Train net output #149: total_confidence = 0.201012
I0623 15:25:42.726191 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.141955
I0623 15:25:42.726204 10365 sgd_solver.cpp:106] Iteration 5500, lr = 0.001
I0623 15:26:17.526067 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 45.5883 > 30) by scale factor 0.658063
I0623 15:29:06.677770 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 32.0608 > 30) by scale factor 0.935722
I0623 15:30:02.555660 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.3234 > 30) by scale factor 0.989334
I0623 15:32:05.430155 10365 solver.cpp:229] Iteration 6000, loss = 4.79713
I0623 15:32:05.430241 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.428571
I0623 15:32:05.430260 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0623 15:32:05.430274 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75
I0623 15:32:05.430285 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0623 15:32:05.430297 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0623 15:32:05.430310 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0623 15:32:05.430321 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.25
I0623 15:32:05.430333 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.375
I0623 15:32:05.430344 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0623 15:32:05.430356 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.375
I0623 15:32:05.430368 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.25
I0623 15:32:05.430379 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.25
I0623 15:32:05.430392 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.375
I0623 15:32:05.430402 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.25
I0623 15:32:05.430418 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.375
I0623 15:32:05.430431 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.625
I0623 15:32:05.430443 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.75
I0623 15:32:05.430454 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.75
I0623 15:32:05.430465 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 0.875
I0623 15:32:05.430477 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 15:32:05.430488 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 15:32:05.430500 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 15:32:05.430511 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 15:32:05.430523 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.636364
I0623 15:32:05.430536 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.758929
I0623 15:32:05.430552 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.71509 (* 0.3 = 0.514527 loss)
I0623 15:32:05.430567 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.10384 (* 0.3 = 0.331152 loss)
I0623 15:32:05.430582 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.703296 (* 0.0272727 = 0.0191808 loss)
I0623 15:32:05.430594 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 1.11372 (* 0.0272727 = 0.0303742 loss)
I0623 15:32:05.430608 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.50726 (* 0.0272727 = 0.0411071 loss)
I0623 15:32:05.430622 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.96125 (* 0.0272727 = 0.0534887 loss)
I0623 15:32:05.430635 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 1.82822 (* 0.0272727 = 0.0498604 loss)
I0623 15:32:05.430649 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 2.40689 (* 0.0272727 = 0.0656424 loss)
I0623 15:32:05.430663 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.65458 (* 0.0272727 = 0.0451248 loss)
I0623 15:32:05.430676 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.06152 (* 0.0272727 = 0.0289506 loss)
I0623 15:32:05.430690 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.57807 (* 0.0272727 = 0.0430383 loss)
I0623 15:32:05.430703 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 2.44656 (* 0.0272727 = 0.0667244 loss)
I0623 15:32:05.430717 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.92636 (* 0.0272727 = 0.0525371 loss)
I0623 15:32:05.430730 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 2.14511 (* 0.0272727 = 0.058503 loss)
I0623 15:32:05.430762 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.92399 (* 0.0272727 = 0.0524725 loss)
I0623 15:32:05.430776 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.79701 (* 0.0272727 = 0.0490094 loss)
I0623 15:32:05.430789 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 1.62368 (* 0.0272727 = 0.0442823 loss)
I0623 15:32:05.430804 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 1.74415 (* 0.0272727 = 0.0475679 loss)
I0623 15:32:05.430816 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.796531 (* 0.0272727 = 0.0217236 loss)
I0623 15:32:05.430830 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.418922 (* 0.0272727 = 0.0114251 loss)
I0623 15:32:05.430845 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0154965 (* 0.0272727 = 0.000422631 loss)
I0623 15:32:05.430857 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.0060456 (* 0.0272727 = 0.00016488 loss)
I0623 15:32:05.430871 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00124953 (* 0.0272727 = 3.4078e-05 loss)
I0623 15:32:05.430886 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000187931 (* 0.0272727 = 5.12539e-06 loss)
I0623 15:32:05.430897 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.544643
I0623 15:32:05.430909 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0623 15:32:05.430922 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 1
I0623 15:32:05.430932 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.875
I0623 15:32:05.430943 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.125
I0623 15:32:05.430954 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0623 15:32:05.430966 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.25
I0623 15:32:05.430977 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5
I0623 15:32:05.430989 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0623 15:32:05.431000 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.375
I0623 15:32:05.431011 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.375
I0623 15:32:05.431022 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.375
I0623 15:32:05.431033 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.25
I0623 15:32:05.431044 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.5
I0623 15:32:05.431056 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.375
I0623 15:32:05.431066 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.5
I0623 15:32:05.431078 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.625
I0623 15:32:05.431089 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.75
I0623 15:32:05.431100 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 0.875
I0623 15:32:05.431113 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 15:32:05.431126 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 15:32:05.431138 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 15:32:05.431149 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 15:32:05.431161 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.704545
I0623 15:32:05.431172 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.830357
I0623 15:32:05.431186 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.31315 (* 0.3 = 0.393944 loss)
I0623 15:32:05.431200 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.865611 (* 0.3 = 0.259683 loss)
I0623 15:32:05.431215 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.0621485 (* 0.0272727 = 0.00169496 loss)
I0623 15:32:05.431228 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.258923 (* 0.0272727 = 0.00706154 loss)
I0623 15:32:05.431253 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.469636 (* 0.0272727 = 0.0128083 loss)
I0623 15:32:05.431264 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.42965 (* 0.0272727 = 0.0389906 loss)
I0623 15:32:05.431280 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.17808 (* 0.0272727 = 0.0321295 loss)
I0623 15:32:05.431294 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 2.16226 (* 0.0272727 = 0.0589706 loss)
I0623 15:32:05.431308 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.28974 (* 0.0272727 = 0.0351748 loss)
I0623 15:32:05.431321 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 0.995711 (* 0.0272727 = 0.0271558 loss)
I0623 15:32:05.431335 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 2.06 (* 0.0272727 = 0.0561818 loss)
I0623 15:32:05.431349 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.72041 (* 0.0272727 = 0.0469203 loss)
I0623 15:32:05.431362 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.90653 (* 0.0272727 = 0.0519963 loss)
I0623 15:32:05.431375 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.90007 (* 0.0272727 = 0.05182 loss)
I0623 15:32:05.431390 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.5692 (* 0.0272727 = 0.0427965 loss)
I0623 15:32:05.431402 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.57978 (* 0.0272727 = 0.0430849 loss)
I0623 15:32:05.431416 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 1.44494 (* 0.0272727 = 0.0394075 loss)
I0623 15:32:05.431429 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 1.45359 (* 0.0272727 = 0.0396433 loss)
I0623 15:32:05.431443 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 1.13185 (* 0.0272727 = 0.0308687 loss)
I0623 15:32:05.431459 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.428844 (* 0.0272727 = 0.0116957 loss)
I0623 15:32:05.431474 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.110426 (* 0.0272727 = 0.00301162 loss)
I0623 15:32:05.431488 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.0208824 (* 0.0272727 = 0.000569521 loss)
I0623 15:32:05.431502 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000454058 (* 0.0272727 = 1.23834e-05 loss)
I0623 15:32:05.431516 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000301367 (* 0.0272727 = 8.21911e-06 loss)
I0623 15:32:05.431529 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.785714
I0623 15:32:05.431540 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 15:32:05.431552 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 15:32:05.431563 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 15:32:05.431574 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0623 15:32:05.431586 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0623 15:32:05.431608 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0623 15:32:05.431623 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0623 15:32:05.431634 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0623 15:32:05.431645 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.625
I0623 15:32:05.431656 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.625
I0623 15:32:05.431668 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.75
I0623 15:32:05.431679 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.5
I0623 15:32:05.431689 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.375
I0623 15:32:05.431700 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.625
I0623 15:32:05.431711 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.625
I0623 15:32:05.431722 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.75
I0623 15:32:05.431746 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.75
I0623 15:32:05.431758 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 15:32:05.431769 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 15:32:05.431782 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 15:32:05.431792 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 15:32:05.431804 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 15:32:05.431815 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.857955
I0623 15:32:05.431828 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.928571
I0623 15:32:05.431841 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.845292 (* 1 = 0.845292 loss)
I0623 15:32:05.431854 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.550699 (* 1 = 0.550699 loss)
I0623 15:32:05.431869 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.065958 (* 0.0909091 = 0.00599619 loss)
I0623 15:32:05.431884 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.091803 (* 0.0909091 = 0.00834573 loss)
I0623 15:32:05.431897 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.116386 (* 0.0909091 = 0.0105805 loss)
I0623 15:32:05.431911 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.954307 (* 0.0909091 = 0.0867552 loss)
I0623 15:32:05.431924 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 1.33051 (* 0.0909091 = 0.120955 loss)
I0623 15:32:05.431938 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.567433 (* 0.0909091 = 0.0515848 loss)
I0623 15:32:05.431951 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.757357 (* 0.0909091 = 0.0688507 loss)
I0623 15:32:05.431965 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.905916 (* 0.0909091 = 0.082356 loss)
I0623 15:32:05.431978 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.70195 (* 0.0909091 = 0.0638136 loss)
I0623 15:32:05.431993 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 1.30862 (* 0.0909091 = 0.118965 loss)
I0623 15:32:05.432005 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 0.729234 (* 0.0909091 = 0.066294 loss)
I0623 15:32:05.432019 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.49972 (* 0.0909091 = 0.136338 loss)
I0623 15:32:05.432032 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 1.28786 (* 0.0909091 = 0.117078 loss)
I0623 15:32:05.432045 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.974184 (* 0.0909091 = 0.0885622 loss)
I0623 15:32:05.432060 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 1.1472 (* 0.0909091 = 0.104291 loss)
I0623 15:32:05.432072 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 1.11932 (* 0.0909091 = 0.101756 loss)
I0623 15:32:05.432085 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.644907 (* 0.0909091 = 0.0586279 loss)
I0623 15:32:05.432099 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.119513 (* 0.0909091 = 0.0108648 loss)
I0623 15:32:05.432112 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0298295 (* 0.0909091 = 0.00271177 loss)
I0623 15:32:05.432126 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00511299 (* 0.0909091 = 0.000464817 loss)
I0623 15:32:05.432140 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000878784 (* 0.0909091 = 7.98895e-05 loss)
I0623 15:32:05.432154 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000179678 (* 0.0909091 = 1.63344e-05 loss)
I0623 15:32:05.432166 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.375
I0623 15:32:05.432180 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0623 15:32:05.432193 10365 solver.cpp:245] Train net output #149: total_confidence = 0.129099
I0623 15:32:05.432214 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.122155
I0623 15:32:05.432229 10365 sgd_solver.cpp:106] Iteration 6000, lr = 0.001
I0623 15:35:28.628430 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 32.0452 > 30) by scale factor 0.936178
I0623 15:36:37.461820 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.0939 > 30) by scale factor 0.99688
I0623 15:37:35.604140 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 40.0115 > 30) by scale factor 0.749784
I0623 15:38:10.033852 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 32.0766 > 30) by scale factor 0.935263
I0623 15:38:22.287458 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 74.6614 > 30) by scale factor 0.401814
I0623 15:38:27.642467 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.6114 > 30) by scale factor 0.980027
I0623 15:38:28.045498 10365 solver.cpp:229] Iteration 6500, loss = 4.72525
I0623 15:38:28.045560 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.476744
I0623 15:38:28.045578 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5
I0623 15:38:28.045591 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0623 15:38:28.045603 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0623 15:38:28.045615 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0623 15:38:28.045627 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0623 15:38:28.045639 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75
I0623 15:38:28.045650 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5
I0623 15:38:28.045662 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.5
I0623 15:38:28.045675 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.5
I0623 15:38:28.045686 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.375
I0623 15:38:28.045698 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.5
I0623 15:38:28.045709 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.375
I0623 15:38:28.045722 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875
I0623 15:38:28.045733 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.75
I0623 15:38:28.045745 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.75
I0623 15:38:28.045756 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875
I0623 15:38:28.045775 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875
I0623 15:38:28.045789 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 0.875
I0623 15:38:28.045800 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 15:38:28.045812 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 15:38:28.045824 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 15:38:28.045835 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 15:38:28.045846 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.721591
I0623 15:38:28.045858 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.790698
I0623 15:38:28.045874 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.70567 (* 0.3 = 0.511702 loss)
I0623 15:38:28.045888 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.91993 (* 0.3 = 0.275979 loss)
I0623 15:38:28.045903 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.982489 (* 0.0272727 = 0.0267951 loss)
I0623 15:38:28.045917 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 0.917617 (* 0.0272727 = 0.0250259 loss)
I0623 15:38:28.045930 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.64848 (* 0.0272727 = 0.0449585 loss)
I0623 15:38:28.045943 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.94969 (* 0.0272727 = 0.0531734 loss)
I0623 15:38:28.045958 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 1.68912 (* 0.0272727 = 0.0460669 loss)
I0623 15:38:28.045971 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 0.956929 (* 0.0272727 = 0.0260981 loss)
I0623 15:38:28.045985 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.23358 (* 0.0272727 = 0.0336431 loss)
I0623 15:38:28.045999 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.0695 (* 0.0272727 = 0.0291682 loss)
I0623 15:38:28.046012 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.98409 (* 0.0272727 = 0.0541115 loss)
I0623 15:38:28.046025 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 2.51929 (* 0.0272727 = 0.068708 loss)
I0623 15:38:28.046069 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.2397 (* 0.0272727 = 0.0338101 loss)
I0623 15:38:28.046088 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 2.02618 (* 0.0272727 = 0.0552594 loss)
I0623 15:38:28.046103 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 0.689284 (* 0.0272727 = 0.0187986 loss)
I0623 15:38:28.046118 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 0.761297 (* 0.0272727 = 0.0207627 loss)
I0623 15:38:28.046131 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.847566 (* 0.0272727 = 0.0231154 loss)
I0623 15:38:28.046150 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.567552 (* 0.0272727 = 0.0154787 loss)
I0623 15:38:28.046165 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.397152 (* 0.0272727 = 0.0108314 loss)
I0623 15:38:28.046178 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.611525 (* 0.0272727 = 0.016678 loss)
I0623 15:38:28.046193 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0095666 (* 0.0272727 = 0.000260907 loss)
I0623 15:38:28.046207 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00132539 (* 0.0272727 = 3.61471e-05 loss)
I0623 15:38:28.046221 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000109502 (* 0.0272727 = 2.98643e-06 loss)
I0623 15:38:28.046236 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 9.05853e-05 (* 0.0272727 = 2.47051e-06 loss)
I0623 15:38:28.046247 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.546512
I0623 15:38:28.046260 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0623 15:38:28.046272 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0623 15:38:28.046283 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.875
I0623 15:38:28.046293 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.875
I0623 15:38:28.046305 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0623 15:38:28.046316 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75
I0623 15:38:28.046327 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5
I0623 15:38:28.046339 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0623 15:38:28.046350 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.5
I0623 15:38:28.046361 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.375
I0623 15:38:28.046372 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.625
I0623 15:38:28.046383 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.625
I0623 15:38:28.046394 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875
I0623 15:38:28.046406 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.75
I0623 15:38:28.046421 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.625
I0623 15:38:28.046432 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875
I0623 15:38:28.046443 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875
I0623 15:38:28.046454 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 0.875
I0623 15:38:28.046466 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 15:38:28.046478 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 15:38:28.046489 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 15:38:28.046499 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 15:38:28.046511 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.75
I0623 15:38:28.046522 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.813953
I0623 15:38:28.046536 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.63633 (* 0.3 = 0.490899 loss)
I0623 15:38:28.046561 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.905752 (* 0.3 = 0.271726 loss)
I0623 15:38:28.046576 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.415692 (* 0.0272727 = 0.0113371 loss)
I0623 15:38:28.046589 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.859269 (* 0.0272727 = 0.0234346 loss)
I0623 15:38:28.046603 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.430459 (* 0.0272727 = 0.0117398 loss)
I0623 15:38:28.046617 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 0.775417 (* 0.0272727 = 0.0211477 loss)
I0623 15:38:28.046629 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 0.979529 (* 0.0272727 = 0.0267144 loss)
I0623 15:38:28.046643 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 0.98069 (* 0.0272727 = 0.0267461 loss)
I0623 15:38:28.046656 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.48037 (* 0.0272727 = 0.0403737 loss)
I0623 15:38:28.046669 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.13236 (* 0.0272727 = 0.0308826 loss)
I0623 15:38:28.046684 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.46582 (* 0.0272727 = 0.039977 loss)
I0623 15:38:28.046697 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 2.7236 (* 0.0272727 = 0.0742801 loss)
I0623 15:38:28.046710 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 2.05898 (* 0.0272727 = 0.0561539 loss)
I0623 15:38:28.046723 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.78303 (* 0.0272727 = 0.048628 loss)
I0623 15:38:28.046736 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 0.876809 (* 0.0272727 = 0.023913 loss)
I0623 15:38:28.046751 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 0.840859 (* 0.0272727 = 0.0229325 loss)
I0623 15:38:28.046763 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.68487 (* 0.0272727 = 0.0186783 loss)
I0623 15:38:28.046777 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.666831 (* 0.0272727 = 0.0181863 loss)
I0623 15:38:28.046792 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.237709 (* 0.0272727 = 0.00648297 loss)
I0623 15:38:28.046804 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.245159 (* 0.0272727 = 0.00668616 loss)
I0623 15:38:28.046818 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.11026 (* 0.0272727 = 0.00300709 loss)
I0623 15:38:28.046833 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.0100985 (* 0.0272727 = 0.000275414 loss)
I0623 15:38:28.046845 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000180117 (* 0.0272727 = 4.91229e-06 loss)
I0623 15:38:28.046859 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000177411 (* 0.0272727 = 4.83848e-06 loss)
I0623 15:38:28.046871 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.848837
I0623 15:38:28.046883 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 15:38:28.046895 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 15:38:28.046905 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 15:38:28.046917 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 15:38:28.046928 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0623 15:38:28.046939 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0623 15:38:28.046952 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0623 15:38:28.046962 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0623 15:38:28.046974 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75
I0623 15:38:28.046985 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75
I0623 15:38:28.046996 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.5
I0623 15:38:28.047008 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.5
I0623 15:38:28.047029 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.75
I0623 15:38:28.047042 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.625
I0623 15:38:28.047055 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.75
I0623 15:38:28.047065 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875
I0623 15:38:28.047076 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 15:38:28.047088 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 0.875
I0623 15:38:28.047099 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 15:38:28.047111 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 15:38:28.047122 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 15:38:28.047137 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 15:38:28.047149 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.909091
I0623 15:38:28.047161 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.930233
I0623 15:38:28.047174 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.7538 (* 1 = 0.7538 loss)
I0623 15:38:28.047188 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.45852 (* 1 = 0.45852 loss)
I0623 15:38:28.047202 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0874193 (* 0.0909091 = 0.00794721 loss)
I0623 15:38:28.047221 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0993055 (* 0.0909091 = 0.00902777 loss)
I0623 15:38:28.047231 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.04321 (* 0.0909091 = 0.00392818 loss)
I0623 15:38:28.047246 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.161609 (* 0.0909091 = 0.0146918 loss)
I0623 15:38:28.047260 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.0896466 (* 0.0909091 = 0.00814969 loss)
I0623 15:38:28.047273 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.0699376 (* 0.0909091 = 0.00635796 loss)
I0623 15:38:28.047286 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.117124 (* 0.0909091 = 0.0106477 loss)
I0623 15:38:28.047299 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 1.4086 (* 0.0909091 = 0.128054 loss)
I0623 15:38:28.047312 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 1.24603 (* 0.0909091 = 0.113276 loss)
I0623 15:38:28.047327 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 1.25002 (* 0.0909091 = 0.113638 loss)
I0623 15:38:28.047339 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 1.86153 (* 0.0909091 = 0.16923 loss)
I0623 15:38:28.047353 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.6854 (* 0.0909091 = 0.153218 loss)
I0623 15:38:28.047365 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 1.00365 (* 0.0909091 = 0.0912407 loss)
I0623 15:38:28.047379 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 1.03137 (* 0.0909091 = 0.0937607 loss)
I0623 15:38:28.047391 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.690088 (* 0.0909091 = 0.0627353 loss)
I0623 15:38:28.047405 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.261861 (* 0.0909091 = 0.0238056 loss)
I0623 15:38:28.047417 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.144741 (* 0.0909091 = 0.0131582 loss)
I0623 15:38:28.047430 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.209772 (* 0.0909091 = 0.0190702 loss)
I0623 15:38:28.047444 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0526559 (* 0.0909091 = 0.0047869 loss)
I0623 15:38:28.047457 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00464296 (* 0.0909091 = 0.000422087 loss)
I0623 15:38:28.047474 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00103849 (* 0.0909091 = 9.44086e-05 loss)
I0623 15:38:28.047499 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000162309 (* 0.0909091 = 1.47553e-05 loss)
I0623 15:38:28.047513 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.375
I0623 15:38:28.047523 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375
I0623 15:38:28.047534 10365 solver.cpp:245] Train net output #149: total_confidence = 0.293246
I0623 15:38:28.047546 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.277908
I0623 15:38:28.047559 10365 sgd_solver.cpp:106] Iteration 6500, lr = 0.001
I0623 15:39:11.242823 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.2046 > 30) by scale factor 0.993226
I0623 15:41:10.601804 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 42.3447 > 30) by scale factor 0.708472
I0623 15:44:50.546919 10365 solver.cpp:229] Iteration 7000, loss = 4.75963
I0623 15:44:50.547081 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.526316
I0623 15:44:50.547102 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0623 15:44:50.547116 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0623 15:44:50.547129 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0623 15:44:50.547142 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.75
I0623 15:44:50.547153 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0623 15:44:50.547165 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.25
I0623 15:44:50.547178 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.25
I0623 15:44:50.547189 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.25
I0623 15:44:50.547201 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.375
I0623 15:44:50.547212 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.375
I0623 15:44:50.547224 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.5
I0623 15:44:50.547236 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.625
I0623 15:44:50.547248 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875
I0623 15:44:50.547262 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0623 15:44:50.547276 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0623 15:44:50.547287 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0623 15:44:50.547299 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 15:44:50.547312 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 15:44:50.547322 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 15:44:50.547334 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 15:44:50.547346 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 15:44:50.547358 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 15:44:50.547370 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.727273
I0623 15:44:50.547381 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.776316
I0623 15:44:50.547399 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.39913 (* 0.3 = 0.419738 loss)
I0623 15:44:50.547413 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.93372 (* 0.3 = 0.280116 loss)
I0623 15:44:50.547427 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.399251 (* 0.0272727 = 0.0108887 loss)
I0623 15:44:50.547441 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 1.27266 (* 0.0272727 = 0.0347089 loss)
I0623 15:44:50.547456 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.57527 (* 0.0272727 = 0.042962 loss)
I0623 15:44:50.547469 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.38877 (* 0.0272727 = 0.0378756 loss)
I0623 15:44:50.547482 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 2.68884 (* 0.0272727 = 0.0733319 loss)
I0623 15:44:50.547497 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 2.13637 (* 0.0272727 = 0.0582646 loss)
I0623 15:44:50.547510 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 2.24127 (* 0.0272727 = 0.0611256 loss)
I0623 15:44:50.547523 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 2.08357 (* 0.0272727 = 0.0568247 loss)
I0623 15:44:50.547538 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.97273 (* 0.0272727 = 0.0538018 loss)
I0623 15:44:50.547551 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 2.17084 (* 0.0272727 = 0.0592048 loss)
I0623 15:44:50.547565 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.60199 (* 0.0272727 = 0.0436908 loss)
I0623 15:44:50.547579 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.00566 (* 0.0272727 = 0.0274271 loss)
I0623 15:44:50.547592 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 0.441624 (* 0.0272727 = 0.0120443 loss)
I0623 15:44:50.547643 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 0.247733 (* 0.0272727 = 0.00675635 loss)
I0623 15:44:50.547659 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.12045 (* 0.0272727 = 0.00328499 loss)
I0623 15:44:50.547673 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0395577 (* 0.0272727 = 0.00107885 loss)
I0623 15:44:50.547688 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00874344 (* 0.0272727 = 0.000238457 loss)
I0623 15:44:50.547703 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00227453 (* 0.0272727 = 6.20326e-05 loss)
I0623 15:44:50.547715 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000765658 (* 0.0272727 = 2.08816e-05 loss)
I0623 15:44:50.547729 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00105247 (* 0.0272727 = 2.87037e-05 loss)
I0623 15:44:50.547744 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000452772 (* 0.0272727 = 1.23483e-05 loss)
I0623 15:44:50.547757 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 1.70182e-05 (* 0.0272727 = 4.64133e-07 loss)
I0623 15:44:50.547770 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.618421
I0623 15:44:50.547782 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0623 15:44:50.547794 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 1
I0623 15:44:50.547806 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5
I0623 15:44:50.547817 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.875
I0623 15:44:50.547829 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0623 15:44:50.547842 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.25
I0623 15:44:50.547853 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.25
I0623 15:44:50.547864 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.5
I0623 15:44:50.547876 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.5
I0623 15:44:50.547888 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.25
I0623 15:44:50.547899 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.5
I0623 15:44:50.547912 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.75
I0623 15:44:50.547924 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875
I0623 15:44:50.547935 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0623 15:44:50.547947 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0623 15:44:50.547960 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0623 15:44:50.547971 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 15:44:50.547981 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 15:44:50.547993 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 15:44:50.548005 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 15:44:50.548017 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 15:44:50.548028 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 15:44:50.548040 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.784091
I0623 15:44:50.548053 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.907895
I0623 15:44:50.548066 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.06263 (* 0.3 = 0.318788 loss)
I0623 15:44:50.548080 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.759796 (* 0.3 = 0.227939 loss)
I0623 15:44:50.548099 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.397989 (* 0.0272727 = 0.0108542 loss)
I0623 15:44:50.548110 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.140483 (* 0.0272727 = 0.00383136 loss)
I0623 15:44:50.548135 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.938287 (* 0.0272727 = 0.0255896 loss)
I0623 15:44:50.548151 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 0.340482 (* 0.0272727 = 0.00928587 loss)
I0623 15:44:50.548166 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 2.12352 (* 0.0272727 = 0.0579143 loss)
I0623 15:44:50.548179 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 2.0913 (* 0.0272727 = 0.0570355 loss)
I0623 15:44:50.548193 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 2.00061 (* 0.0272727 = 0.0545622 loss)
I0623 15:44:50.548207 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.91423 (* 0.0272727 = 0.0522063 loss)
I0623 15:44:50.548220 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.89495 (* 0.0272727 = 0.0516804 loss)
I0623 15:44:50.548234 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 2.58408 (* 0.0272727 = 0.070475 loss)
I0623 15:44:50.548249 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 2.04669 (* 0.0272727 = 0.0558188 loss)
I0623 15:44:50.548261 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 0.70846 (* 0.0272727 = 0.0193216 loss)
I0623 15:44:50.548275 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 0.330112 (* 0.0272727 = 0.00900306 loss)
I0623 15:44:50.548290 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 0.103528 (* 0.0272727 = 0.0028235 loss)
I0623 15:44:50.548305 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0163748 (* 0.0272727 = 0.000446585 loss)
I0623 15:44:50.548321 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00242281 (* 0.0272727 = 6.60766e-05 loss)
I0623 15:44:50.548336 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000236806 (* 0.0272727 = 6.45834e-06 loss)
I0623 15:44:50.548349 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 1.94917e-05 (* 0.0272727 = 5.31592e-07 loss)
I0623 15:44:50.548363 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 4.18996e-05 (* 0.0272727 = 1.14272e-06 loss)
I0623 15:44:50.548377 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 4.47041e-06 (* 0.0272727 = 1.2192e-07 loss)
I0623 15:44:50.548391 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 2.65242e-06 (* 0.0272727 = 7.23388e-08 loss)
I0623 15:44:50.548404 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 5.51344e-07 (* 0.0272727 = 1.50366e-08 loss)
I0623 15:44:50.548418 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.921053
I0623 15:44:50.548429 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 15:44:50.548441 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0623 15:44:50.548452 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875
I0623 15:44:50.548463 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 15:44:50.548475 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0623 15:44:50.548486 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0623 15:44:50.548498 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0623 15:44:50.548509 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0623 15:44:50.548521 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75
I0623 15:44:50.548532 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.5
I0623 15:44:50.548544 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.5
I0623 15:44:50.548557 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875
I0623 15:44:50.548568 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875
I0623 15:44:50.548579 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0623 15:44:50.548591 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0623 15:44:50.548602 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0623 15:44:50.548624 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 15:44:50.548637 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 15:44:50.548650 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 15:44:50.548661 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 15:44:50.548672 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 15:44:50.548684 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 15:44:50.548696 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.914773
I0623 15:44:50.548708 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1
I0623 15:44:50.548722 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.262818 (* 1 = 0.262818 loss)
I0623 15:44:50.548737 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.331497 (* 1 = 0.331497 loss)
I0623 15:44:50.548750 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.028078 (* 0.0909091 = 0.00255255 loss)
I0623 15:44:50.548765 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.370313 (* 0.0909091 = 0.0336648 loss)
I0623 15:44:50.548779 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.210992 (* 0.0909091 = 0.0191811 loss)
I0623 15:44:50.548794 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.140233 (* 0.0909091 = 0.0127484 loss)
I0623 15:44:50.548807 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.637109 (* 0.0909091 = 0.057919 loss)
I0623 15:44:50.548821 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.577113 (* 0.0909091 = 0.0524648 loss)
I0623 15:44:50.548835 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.757726 (* 0.0909091 = 0.0688842 loss)
I0623 15:44:50.548848 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.772375 (* 0.0909091 = 0.0702159 loss)
I0623 15:44:50.548862 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 1.20879 (* 0.0909091 = 0.10989 loss)
I0623 15:44:50.548877 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 1.26506 (* 0.0909091 = 0.115005 loss)
I0623 15:44:50.548890 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 1.27729 (* 0.0909091 = 0.116117 loss)
I0623 15:44:50.548904 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 0.648553 (* 0.0909091 = 0.0589593 loss)
I0623 15:44:50.548918 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 0.180039 (* 0.0909091 = 0.0163672 loss)
I0623 15:44:50.548933 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.0124664 (* 0.0909091 = 0.00113331 loss)
I0623 15:44:50.548946 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000258479 (* 0.0909091 = 2.34981e-05 loss)
I0623 15:44:50.548960 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 7.77852e-06 (* 0.0909091 = 7.07138e-07 loss)
I0623 15:44:50.548975 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 3.35278e-06 (* 0.0909091 = 3.04798e-07 loss)
I0623 15:44:50.548990 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 7.15256e-07 (* 0.0909091 = 6.50233e-08 loss)
I0623 15:44:50.549003 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 1.78814e-07 (* 0.0909091 = 1.62558e-08 loss)
I0623 15:44:50.549018 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 4.61937e-07 (* 0.0909091 = 4.19942e-08 loss)
I0623 15:44:50.549032 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 3.12924e-07 (* 0.0909091 = 2.84477e-08 loss)
I0623 15:44:50.549047 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 2.23517e-07 (* 0.0909091 = 2.03198e-08 loss)
I0623 15:44:50.549059 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.5
I0623 15:44:50.549072 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0623 15:44:50.549093 10365 solver.cpp:245] Train net output #149: total_confidence = 0.221147
I0623 15:44:50.549105 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.158233
I0623 15:44:50.549119 10365 sgd_solver.cpp:106] Iteration 7000, lr = 0.001
I0623 15:48:56.617259 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 38.5383 > 30) by scale factor 0.778447
I0623 15:48:58.147083 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 34.8699 > 30) by scale factor 0.860342
I0623 15:51:13.311424 10365 solver.cpp:229] Iteration 7500, loss = 4.62319
I0623 15:51:13.311558 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.414141
I0623 15:51:13.311578 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0623 15:51:13.311591 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0623 15:51:13.311604 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0623 15:51:13.311615 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0623 15:51:13.311627 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0623 15:51:13.311638 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0623 15:51:13.311650 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.125
I0623 15:51:13.311662 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0623 15:51:13.311687 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.25
I0623 15:51:13.311702 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.375
I0623 15:51:13.311714 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.125
I0623 15:51:13.311725 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.375
I0623 15:51:13.311738 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.625
I0623 15:51:13.311748 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.625
I0623 15:51:13.311760 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.75
I0623 15:51:13.311772 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875
I0623 15:51:13.311784 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 15:51:13.311795 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 15:51:13.311807 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 15:51:13.311818 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 15:51:13.311830 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 15:51:13.311841 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 15:51:13.311852 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.664773
I0623 15:51:13.311863 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.727273
I0623 15:51:13.311879 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.74015 (* 0.3 = 0.522046 loss)
I0623 15:51:13.311894 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.01783 (* 0.3 = 0.30535 loss)
I0623 15:51:13.311908 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.628164 (* 0.0272727 = 0.0171318 loss)
I0623 15:51:13.311923 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 1.27755 (* 0.0272727 = 0.0348423 loss)
I0623 15:51:13.311936 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.49126 (* 0.0272727 = 0.0406707 loss)
I0623 15:51:13.311950 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.84121 (* 0.0272727 = 0.0502148 loss)
I0623 15:51:13.311964 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 1.66026 (* 0.0272727 = 0.0452798 loss)
I0623 15:51:13.311977 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 3.036 (* 0.0272727 = 0.0828001 loss)
I0623 15:51:13.311991 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 2.66301 (* 0.0272727 = 0.0726276 loss)
I0623 15:51:13.312005 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.11827 (* 0.0272727 = 0.0304982 loss)
I0623 15:51:13.312018 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 2.2488 (* 0.0272727 = 0.061331 loss)
I0623 15:51:13.312032 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.81383 (* 0.0272727 = 0.0494682 loss)
I0623 15:51:13.312046 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 2.20901 (* 0.0272727 = 0.0602458 loss)
I0623 15:51:13.312059 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.62495 (* 0.0272727 = 0.0443168 loss)
I0623 15:51:13.312091 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 0.96823 (* 0.0272727 = 0.0264063 loss)
I0623 15:51:13.312108 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.0812 (* 0.0272727 = 0.0294873 loss)
I0623 15:51:13.312121 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.615381 (* 0.0272727 = 0.0167831 loss)
I0623 15:51:13.312135 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.677687 (* 0.0272727 = 0.0184824 loss)
I0623 15:51:13.312150 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0286284 (* 0.0272727 = 0.000780774 loss)
I0623 15:51:13.312163 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00223901 (* 0.0272727 = 6.1064e-05 loss)
I0623 15:51:13.312177 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000793321 (* 0.0272727 = 2.1636e-05 loss)
I0623 15:51:13.312191 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000120309 (* 0.0272727 = 3.28115e-06 loss)
I0623 15:51:13.312206 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 3.95428e-05 (* 0.0272727 = 1.07844e-06 loss)
I0623 15:51:13.312219 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 1.64667e-05 (* 0.0272727 = 4.49092e-07 loss)
I0623 15:51:13.312232 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.545455
I0623 15:51:13.312243 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0623 15:51:13.312255 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 1
I0623 15:51:13.312269 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.875
I0623 15:51:13.312281 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.75
I0623 15:51:13.312293 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25
I0623 15:51:13.312304 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375
I0623 15:51:13.312314 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.125
I0623 15:51:13.312326 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0623 15:51:13.312337 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.125
I0623 15:51:13.312348 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.5
I0623 15:51:13.312360 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.5
I0623 15:51:13.312371 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.5
I0623 15:51:13.312382 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.5
I0623 15:51:13.312393 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.5
I0623 15:51:13.312404 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875
I0623 15:51:13.312415 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.75
I0623 15:51:13.312427 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 15:51:13.312438 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 15:51:13.312448 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 15:51:13.312459 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 15:51:13.312471 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 15:51:13.312482 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 15:51:13.312492 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.732955
I0623 15:51:13.312505 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.808081
I0623 15:51:13.312517 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.30774 (* 0.3 = 0.392321 loss)
I0623 15:51:13.312531 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.778157 (* 0.3 = 0.233447 loss)
I0623 15:51:13.312544 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.400737 (* 0.0272727 = 0.0109292 loss)
I0623 15:51:13.312558 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.301631 (* 0.0272727 = 0.00822629 loss)
I0623 15:51:13.312587 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.54892 (* 0.0272727 = 0.0149705 loss)
I0623 15:51:13.312602 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 0.909195 (* 0.0272727 = 0.0247962 loss)
I0623 15:51:13.312616 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.93779 (* 0.0272727 = 0.0528487 loss)
I0623 15:51:13.312630 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 2.02357 (* 0.0272727 = 0.0551883 loss)
I0623 15:51:13.312644 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 2.25887 (* 0.0272727 = 0.0616054 loss)
I0623 15:51:13.312657 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 0.959831 (* 0.0272727 = 0.0261772 loss)
I0623 15:51:13.312670 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 2.77152 (* 0.0272727 = 0.0755869 loss)
I0623 15:51:13.312685 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.487 (* 0.0272727 = 0.0405546 loss)
I0623 15:51:13.312697 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.47962 (* 0.0272727 = 0.0403534 loss)
I0623 15:51:13.312711 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.31943 (* 0.0272727 = 0.0359844 loss)
I0623 15:51:13.312724 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.11823 (* 0.0272727 = 0.0304972 loss)
I0623 15:51:13.312737 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.16624 (* 0.0272727 = 0.0318064 loss)
I0623 15:51:13.312752 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.637171 (* 0.0272727 = 0.0173774 loss)
I0623 15:51:13.312764 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.824463 (* 0.0272727 = 0.0224854 loss)
I0623 15:51:13.312778 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0592322 (* 0.0272727 = 0.00161542 loss)
I0623 15:51:13.312793 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0218118 (* 0.0272727 = 0.000594868 loss)
I0623 15:51:13.312806 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0082962 (* 0.0272727 = 0.00022626 loss)
I0623 15:51:13.312820 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00178129 (* 0.0272727 = 4.85806e-05 loss)
I0623 15:51:13.312834 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000726518 (* 0.0272727 = 1.98141e-05 loss)
I0623 15:51:13.312849 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 1.23385e-05 (* 0.0272727 = 3.36504e-07 loss)
I0623 15:51:13.312861 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.848485
I0623 15:51:13.312873 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 15:51:13.312885 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 15:51:13.312896 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 15:51:13.312907 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 15:51:13.312918 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0623 15:51:13.312929 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0623 15:51:13.312942 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0623 15:51:13.312952 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0623 15:51:13.312963 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.375
I0623 15:51:13.312975 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.5
I0623 15:51:13.312986 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.75
I0623 15:51:13.312997 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.625
I0623 15:51:13.313009 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0623 15:51:13.313020 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.625
I0623 15:51:13.313031 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.625
I0623 15:51:13.313043 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875
I0623 15:51:13.313065 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.875
I0623 15:51:13.313077 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 15:51:13.313088 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 15:51:13.313100 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 15:51:13.313112 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 15:51:13.313123 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 15:51:13.313134 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.903409
I0623 15:51:13.313146 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.979798
I0623 15:51:13.313159 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.575714 (* 1 = 0.575714 loss)
I0623 15:51:13.313174 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.347227 (* 1 = 0.347227 loss)
I0623 15:51:13.313186 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.110935 (* 0.0909091 = 0.010085 loss)
I0623 15:51:13.313200 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0613462 (* 0.0909091 = 0.00557693 loss)
I0623 15:51:13.313215 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.09217 (* 0.0909091 = 0.00837909 loss)
I0623 15:51:13.313228 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.186683 (* 0.0909091 = 0.0169712 loss)
I0623 15:51:13.313242 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.224123 (* 0.0909091 = 0.0203748 loss)
I0623 15:51:13.313256 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.10579 (* 0.0909091 = 0.00961724 loss)
I0623 15:51:13.313271 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 1.57188 (* 0.0909091 = 0.142898 loss)
I0623 15:51:13.313284 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.393054 (* 0.0909091 = 0.0357322 loss)
I0623 15:51:13.313303 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 2.16067 (* 0.0909091 = 0.196425 loss)
I0623 15:51:13.313320 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 1.33495 (* 0.0909091 = 0.121359 loss)
I0623 15:51:13.313334 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 1.24061 (* 0.0909091 = 0.112783 loss)
I0623 15:51:13.313349 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.0873 (* 0.0909091 = 0.0988459 loss)
I0623 15:51:13.313361 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 0.323039 (* 0.0909091 = 0.0293672 loss)
I0623 15:51:13.313374 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.925735 (* 0.0909091 = 0.0841577 loss)
I0623 15:51:13.313388 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.550536 (* 0.0909091 = 0.0500487 loss)
I0623 15:51:13.313401 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.25512 (* 0.0909091 = 0.0231927 loss)
I0623 15:51:13.313415 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.166457 (* 0.0909091 = 0.0151324 loss)
I0623 15:51:13.313428 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0199539 (* 0.0909091 = 0.00181399 loss)
I0623 15:51:13.313442 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00644312 (* 0.0909091 = 0.000585738 loss)
I0623 15:51:13.313457 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000230736 (* 0.0909091 = 2.0976e-05 loss)
I0623 15:51:13.313469 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 5.16352e-05 (* 0.0909091 = 4.69411e-06 loss)
I0623 15:51:13.313483 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 8.50867e-06 (* 0.0909091 = 7.73516e-07 loss)
I0623 15:51:13.313495 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.375
I0623 15:51:13.313506 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0623 15:51:13.313518 10365 solver.cpp:245] Train net output #149: total_confidence = 0.159252
I0623 15:51:13.313539 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.128584
I0623 15:51:13.313552 10365 sgd_solver.cpp:106] Iteration 7500, lr = 0.001
I0623 15:57:35.845955 10365 solver.cpp:229] Iteration 8000, loss = 4.68155
I0623 15:57:35.846097 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.5
I0623 15:57:35.846117 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0623 15:57:35.846129 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0623 15:57:35.846141 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625
I0623 15:57:35.846153 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0623 15:57:35.846164 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0623 15:57:35.846176 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0623 15:57:35.846189 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.375
I0623 15:57:35.846200 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625
I0623 15:57:35.846211 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.625
I0623 15:57:35.846223 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.5
I0623 15:57:35.846235 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.5
I0623 15:57:35.846246 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.5
I0623 15:57:35.846258 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.375
I0623 15:57:35.846272 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.5
I0623 15:57:35.846284 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.625
I0623 15:57:35.846297 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.75
I0623 15:57:35.846307 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875
I0623 15:57:35.846326 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 0.875
I0623 15:57:35.846339 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 15:57:35.846351 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 15:57:35.846362 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 15:57:35.846374 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 15:57:35.846385 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.715909
I0623 15:57:35.846397 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.81
I0623 15:57:35.846415 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.46102 (* 0.3 = 0.438305 loss)
I0623 15:57:35.846429 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.846506 (* 0.3 = 0.253952 loss)
I0623 15:57:35.846443 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.53186 (* 0.0272727 = 0.0145053 loss)
I0623 15:57:35.846457 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 1.72384 (* 0.0272727 = 0.0470139 loss)
I0623 15:57:35.846470 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.0939 (* 0.0272727 = 0.0298335 loss)
I0623 15:57:35.846483 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.44572 (* 0.0272727 = 0.0394286 loss)
I0623 15:57:35.846498 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 1.51999 (* 0.0272727 = 0.0414543 loss)
I0623 15:57:35.846511 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 1.74619 (* 0.0272727 = 0.0476233 loss)
I0623 15:57:35.846524 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.79543 (* 0.0272727 = 0.0489662 loss)
I0623 15:57:35.846539 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.31697 (* 0.0272727 = 0.0359174 loss)
I0623 15:57:35.846551 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.80473 (* 0.0272727 = 0.0492198 loss)
I0623 15:57:35.846565 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.86194 (* 0.0272727 = 0.0507802 loss)
I0623 15:57:35.846580 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.64077 (* 0.0272727 = 0.0447484 loss)
I0623 15:57:35.846592 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.54266 (* 0.0272727 = 0.0420726 loss)
I0623 15:57:35.846624 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 2.0383 (* 0.0272727 = 0.0555899 loss)
I0623 15:57:35.846639 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.55534 (* 0.0272727 = 0.0424183 loss)
I0623 15:57:35.846653 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.761938 (* 0.0272727 = 0.0207801 loss)
I0623 15:57:35.846673 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.92381 (* 0.0272727 = 0.0251948 loss)
I0623 15:57:35.846686 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.378178 (* 0.0272727 = 0.0103139 loss)
I0623 15:57:35.846700 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.726886 (* 0.0272727 = 0.0198242 loss)
I0623 15:57:35.846714 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00698432 (* 0.0272727 = 0.000190481 loss)
I0623 15:57:35.846727 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00275545 (* 0.0272727 = 7.51486e-05 loss)
I0623 15:57:35.846742 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000389427 (* 0.0272727 = 1.06207e-05 loss)
I0623 15:57:35.846756 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 2.77773e-05 (* 0.0272727 = 7.57563e-07 loss)
I0623 15:57:35.846768 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.6
I0623 15:57:35.846781 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0623 15:57:35.846791 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 1
I0623 15:57:35.846802 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 1
I0623 15:57:35.846813 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.75
I0623 15:57:35.846824 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0623 15:57:35.846837 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0623 15:57:35.846848 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0623 15:57:35.846858 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625
I0623 15:57:35.846869 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.625
I0623 15:57:35.846881 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.375
I0623 15:57:35.846892 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.75
I0623 15:57:35.846904 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.625
I0623 15:57:35.846915 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.5
I0623 15:57:35.846926 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.625
I0623 15:57:35.846937 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.625
I0623 15:57:35.846948 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.75
I0623 15:57:35.846959 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875
I0623 15:57:35.846971 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 0.875
I0623 15:57:35.846982 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 15:57:35.846993 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 15:57:35.847004 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 15:57:35.847015 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 15:57:35.847026 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.767045
I0623 15:57:35.847038 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.8
I0623 15:57:35.847050 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.26179 (* 0.3 = 0.378538 loss)
I0623 15:57:35.847064 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.731649 (* 0.3 = 0.219495 loss)
I0623 15:57:35.847079 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.165604 (* 0.0272727 = 0.00451647 loss)
I0623 15:57:35.847091 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.22812 (* 0.0272727 = 0.00622145 loss)
I0623 15:57:35.847121 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.290041 (* 0.0272727 = 0.0079102 loss)
I0623 15:57:35.847136 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 0.697065 (* 0.0272727 = 0.0190109 loss)
I0623 15:57:35.847149 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.88426 (* 0.0272727 = 0.051389 loss)
I0623 15:57:35.847162 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 0.92622 (* 0.0272727 = 0.0252606 loss)
I0623 15:57:35.847177 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.11846 (* 0.0272727 = 0.0305034 loss)
I0623 15:57:35.847189 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.0575 (* 0.0272727 = 0.0288409 loss)
I0623 15:57:35.847203 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.33321 (* 0.0272727 = 0.0363602 loss)
I0623 15:57:35.847218 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.61566 (* 0.0272727 = 0.0440635 loss)
I0623 15:57:35.847230 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.07024 (* 0.0272727 = 0.0291885 loss)
I0623 15:57:35.847244 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.33093 (* 0.0272727 = 0.036298 loss)
I0623 15:57:35.847257 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.47105 (* 0.0272727 = 0.0401196 loss)
I0623 15:57:35.847270 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.0876 (* 0.0272727 = 0.0296617 loss)
I0623 15:57:35.847283 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.891502 (* 0.0272727 = 0.0243137 loss)
I0623 15:57:35.847297 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.924082 (* 0.0272727 = 0.0252022 loss)
I0623 15:57:35.847314 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.404324 (* 0.0272727 = 0.011027 loss)
I0623 15:57:35.847328 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.619371 (* 0.0272727 = 0.0168919 loss)
I0623 15:57:35.847342 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0407015 (* 0.0272727 = 0.00111004 loss)
I0623 15:57:35.847355 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.010894 (* 0.0272727 = 0.00029711 loss)
I0623 15:57:35.847369 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00543741 (* 0.0272727 = 0.000148293 loss)
I0623 15:57:35.847383 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000397865 (* 0.0272727 = 1.08509e-05 loss)
I0623 15:57:35.847395 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.82
I0623 15:57:35.847407 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 15:57:35.847419 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 15:57:35.847430 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 15:57:35.847441 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 15:57:35.847452 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0623 15:57:35.847463 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0623 15:57:35.847475 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0623 15:57:35.847486 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0623 15:57:35.847496 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0623 15:57:35.847507 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.5
I0623 15:57:35.847519 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.625
I0623 15:57:35.847530 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.375
I0623 15:57:35.847542 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.75
I0623 15:57:35.847553 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.625
I0623 15:57:35.847563 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.75
I0623 15:57:35.847575 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.625
I0623 15:57:35.847607 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.875
I0623 15:57:35.847622 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 15:57:35.847635 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 15:57:35.847645 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 15:57:35.847656 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 15:57:35.847667 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 15:57:35.847678 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.897727
I0623 15:57:35.847690 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.98
I0623 15:57:35.847704 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.530456 (* 1 = 0.530456 loss)
I0623 15:57:35.847718 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.305773 (* 1 = 0.305773 loss)
I0623 15:57:35.847733 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.143345 (* 0.0909091 = 0.0130313 loss)
I0623 15:57:35.847745 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.045043 (* 0.0909091 = 0.00409482 loss)
I0623 15:57:35.847759 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0404457 (* 0.0909091 = 0.00367688 loss)
I0623 15:57:35.847772 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0420678 (* 0.0909091 = 0.00382435 loss)
I0623 15:57:35.847786 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.367247 (* 0.0909091 = 0.0333861 loss)
I0623 15:57:35.847800 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.112264 (* 0.0909091 = 0.0102058 loss)
I0623 15:57:35.847813 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.198991 (* 0.0909091 = 0.0180901 loss)
I0623 15:57:35.847831 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.247533 (* 0.0909091 = 0.022503 loss)
I0623 15:57:35.847846 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.317606 (* 0.0909091 = 0.0288733 loss)
I0623 15:57:35.847858 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 1.19004 (* 0.0909091 = 0.108185 loss)
I0623 15:57:35.847872 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 0.991041 (* 0.0909091 = 0.0900946 loss)
I0623 15:57:35.847892 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.23722 (* 0.0909091 = 0.112474 loss)
I0623 15:57:35.847910 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 1.24999 (* 0.0909091 = 0.113635 loss)
I0623 15:57:35.847924 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 1.04352 (* 0.0909091 = 0.094865 loss)
I0623 15:57:35.847937 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.881719 (* 0.0909091 = 0.0801563 loss)
I0623 15:57:35.847950 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.915944 (* 0.0909091 = 0.0832677 loss)
I0623 15:57:35.847965 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.343161 (* 0.0909091 = 0.0311964 loss)
I0623 15:57:35.847977 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.12338 (* 0.0909091 = 0.0112163 loss)
I0623 15:57:35.847991 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0504273 (* 0.0909091 = 0.0045843 loss)
I0623 15:57:35.848004 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00599441 (* 0.0909091 = 0.000544946 loss)
I0623 15:57:35.848018 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000208473 (* 0.0909091 = 1.89521e-05 loss)
I0623 15:57:35.848031 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 3.61161e-05 (* 0.0909091 = 3.28328e-06 loss)
I0623 15:57:35.848043 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.375
I0623 15:57:35.848054 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375
I0623 15:57:35.848065 10365 solver.cpp:245] Train net output #149: total_confidence = 0.260431
I0623 15:57:35.848088 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.240707
I0623 15:57:35.848103 10365 sgd_solver.cpp:106] Iteration 8000, lr = 0.001
I0623 15:59:24.895273 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 35.8639 > 30) by scale factor 0.836496
I0623 16:03:58.516383 10365 solver.cpp:229] Iteration 8500, loss = 4.72581
I0623 16:03:58.516505 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.412844
I0623 16:03:58.516525 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 1
I0623 16:03:58.516537 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0623 16:03:58.516549 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0623 16:03:58.516562 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.125
I0623 16:03:58.516574 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0623 16:03:58.516587 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0623 16:03:58.516598 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.125
I0623 16:03:58.516610 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625
I0623 16:03:58.516623 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.25
I0623 16:03:58.516633 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.375
I0623 16:03:58.516645 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.25
I0623 16:03:58.516657 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.25
I0623 16:03:58.516669 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.25
I0623 16:03:58.516680 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.375
I0623 16:03:58.516692 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.375
I0623 16:03:58.516705 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.5
I0623 16:03:58.516716 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875
I0623 16:03:58.516728 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 0.875
I0623 16:03:58.516741 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 16:03:58.516752 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 16:03:58.516763 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 16:03:58.516774 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 16:03:58.516787 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.607955
I0623 16:03:58.516798 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.752294
I0623 16:03:58.516813 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.81143 (* 0.3 = 0.54343 loss)
I0623 16:03:58.516827 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.22757 (* 0.3 = 0.368271 loss)
I0623 16:03:58.516842 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.159736 (* 0.0272727 = 0.00435643 loss)
I0623 16:03:58.516855 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 1.57357 (* 0.0272727 = 0.0429155 loss)
I0623 16:03:58.516870 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 2.46015 (* 0.0272727 = 0.067095 loss)
I0623 16:03:58.516882 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 2.0689 (* 0.0272727 = 0.0564245 loss)
I0623 16:03:58.516897 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 3.34504 (* 0.0272727 = 0.0912283 loss)
I0623 16:03:58.516912 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 2.74757 (* 0.0272727 = 0.0749337 loss)
I0623 16:03:58.516926 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 2.80093 (* 0.0272727 = 0.076389 loss)
I0623 16:03:58.516940 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.53418 (* 0.0272727 = 0.0418412 loss)
I0623 16:03:58.516954 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 2.06577 (* 0.0272727 = 0.0563393 loss)
I0623 16:03:58.516968 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.73879 (* 0.0272727 = 0.0474216 loss)
I0623 16:03:58.516981 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.8282 (* 0.0272727 = 0.0498599 loss)
I0623 16:03:58.516994 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 3.13639 (* 0.0272727 = 0.085538 loss)
I0623 16:03:58.517026 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 2.2457 (* 0.0272727 = 0.0612465 loss)
I0623 16:03:58.517041 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 2.17106 (* 0.0272727 = 0.0592107 loss)
I0623 16:03:58.517055 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 1.48922 (* 0.0272727 = 0.0406151 loss)
I0623 16:03:58.517068 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 1.22992 (* 0.0272727 = 0.0335432 loss)
I0623 16:03:58.517082 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.517913 (* 0.0272727 = 0.0141249 loss)
I0623 16:03:58.517096 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.684784 (* 0.0272727 = 0.0186759 loss)
I0623 16:03:58.517109 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0020206 (* 0.0272727 = 5.51073e-05 loss)
I0623 16:03:58.517124 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00119467 (* 0.0272727 = 3.2582e-05 loss)
I0623 16:03:58.517138 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000768324 (* 0.0272727 = 2.09543e-05 loss)
I0623 16:03:58.517153 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 5.32022e-05 (* 0.0272727 = 1.45097e-06 loss)
I0623 16:03:58.517164 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.504587
I0623 16:03:58.517176 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0623 16:03:58.517187 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0623 16:03:58.517199 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375
I0623 16:03:58.517210 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0623 16:03:58.517222 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0623 16:03:58.517233 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0623 16:03:58.517244 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.375
I0623 16:03:58.517256 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.375
I0623 16:03:58.517271 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.5
I0623 16:03:58.517282 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.375
I0623 16:03:58.517293 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.25
I0623 16:03:58.517304 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.25
I0623 16:03:58.517315 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.5
I0623 16:03:58.517328 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.5
I0623 16:03:58.517338 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.5
I0623 16:03:58.517349 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.625
I0623 16:03:58.517361 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875
I0623 16:03:58.517372 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 0.875
I0623 16:03:58.517384 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 16:03:58.517395 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 16:03:58.517406 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 16:03:58.517417 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 16:03:58.517428 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.670455
I0623 16:03:58.517439 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.752294
I0623 16:03:58.517453 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.67751 (* 0.3 = 0.503253 loss)
I0623 16:03:58.517467 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 1.13514 (* 0.3 = 0.340543 loss)
I0623 16:03:58.517482 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.295679 (* 0.0272727 = 0.00806396 loss)
I0623 16:03:58.517495 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.793564 (* 0.0272727 = 0.0216427 loss)
I0623 16:03:58.517524 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 1.63619 (* 0.0272727 = 0.0446235 loss)
I0623 16:03:58.517539 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.48718 (* 0.0272727 = 0.0405594 loss)
I0623 16:03:58.517554 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 2.13427 (* 0.0272727 = 0.0582073 loss)
I0623 16:03:58.517567 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 2.26047 (* 0.0272727 = 0.0616491 loss)
I0623 16:03:58.517580 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 2.27143 (* 0.0272727 = 0.061948 loss)
I0623 16:03:58.517595 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.56141 (* 0.0272727 = 0.042584 loss)
I0623 16:03:58.517607 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.7155 (* 0.0272727 = 0.0467864 loss)
I0623 16:03:58.517621 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 2.04313 (* 0.0272727 = 0.0557217 loss)
I0623 16:03:58.517635 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 2.22732 (* 0.0272727 = 0.0607452 loss)
I0623 16:03:58.517648 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 2.72389 (* 0.0272727 = 0.0742879 loss)
I0623 16:03:58.517662 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.9101 (* 0.0272727 = 0.0520936 loss)
I0623 16:03:58.517675 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.66185 (* 0.0272727 = 0.0453233 loss)
I0623 16:03:58.517688 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 1.1148 (* 0.0272727 = 0.0304037 loss)
I0623 16:03:58.517702 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 1.40222 (* 0.0272727 = 0.0382424 loss)
I0623 16:03:58.517716 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.335867 (* 0.0272727 = 0.00916 loss)
I0623 16:03:58.517729 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.501614 (* 0.0272727 = 0.0136804 loss)
I0623 16:03:58.517743 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.044311 (* 0.0272727 = 0.00120848 loss)
I0623 16:03:58.517757 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00855597 (* 0.0272727 = 0.000233345 loss)
I0623 16:03:58.517771 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00484023 (* 0.0272727 = 0.000132006 loss)
I0623 16:03:58.517786 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00117267 (* 0.0272727 = 3.19819e-05 loss)
I0623 16:03:58.517798 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.733945
I0623 16:03:58.517812 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 16:03:58.517820 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 16:03:58.517828 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 16:03:58.517840 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0623 16:03:58.517853 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0623 16:03:58.517863 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0623 16:03:58.517875 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625
I0623 16:03:58.517886 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.625
I0623 16:03:58.517897 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0623 16:03:58.517909 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.5
I0623 16:03:58.517920 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.625
I0623 16:03:58.517931 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.25
I0623 16:03:58.517942 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.625
I0623 16:03:58.517953 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.625
I0623 16:03:58.517964 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.75
I0623 16:03:58.517976 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875
I0623 16:03:58.517997 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 16:03:58.518009 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 0.875
I0623 16:03:58.518021 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 16:03:58.518033 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 16:03:58.518043 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 16:03:58.518054 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 16:03:58.518065 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.8125
I0623 16:03:58.518077 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.908257
I0623 16:03:58.518090 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.909569 (* 1 = 0.909569 loss)
I0623 16:03:58.518105 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.665732 (* 1 = 0.665732 loss)
I0623 16:03:58.518118 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.069955 (* 0.0909091 = 0.00635954 loss)
I0623 16:03:58.518132 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0516536 (* 0.0909091 = 0.00469579 loss)
I0623 16:03:58.518146 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.209125 (* 0.0909091 = 0.0190114 loss)
I0623 16:03:58.518159 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.531319 (* 0.0909091 = 0.0483017 loss)
I0623 16:03:58.518172 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.928384 (* 0.0909091 = 0.0843985 loss)
I0623 16:03:58.518185 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 1.42315 (* 0.0909091 = 0.129377 loss)
I0623 16:03:58.518199 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.767156 (* 0.0909091 = 0.0697414 loss)
I0623 16:03:58.518213 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 1.90489 (* 0.0909091 = 0.173172 loss)
I0623 16:03:58.518225 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.876104 (* 0.0909091 = 0.0796458 loss)
I0623 16:03:58.518239 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 1.17596 (* 0.0909091 = 0.106906 loss)
I0623 16:03:58.518252 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 1.30905 (* 0.0909091 = 0.119004 loss)
I0623 16:03:58.518265 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 2.05956 (* 0.0909091 = 0.187232 loss)
I0623 16:03:58.518280 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 1.45365 (* 0.0909091 = 0.13215 loss)
I0623 16:03:58.518293 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 1.21017 (* 0.0909091 = 0.110016 loss)
I0623 16:03:58.518306 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.71372 (* 0.0909091 = 0.0648836 loss)
I0623 16:03:58.518323 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.423355 (* 0.0909091 = 0.0384868 loss)
I0623 16:03:58.518337 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.176054 (* 0.0909091 = 0.0160049 loss)
I0623 16:03:58.518352 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.350088 (* 0.0909091 = 0.0318262 loss)
I0623 16:03:58.518365 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0219449 (* 0.0909091 = 0.001995 loss)
I0623 16:03:58.518379 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00597292 (* 0.0909091 = 0.000542993 loss)
I0623 16:03:58.518393 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000903855 (* 0.0909091 = 8.21686e-05 loss)
I0623 16:03:58.518407 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000128208 (* 0.0909091 = 1.16553e-05 loss)
I0623 16:03:58.518419 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0623 16:03:58.518431 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0623 16:03:58.518442 10365 solver.cpp:245] Train net output #149: total_confidence = 0.0911826
I0623 16:03:58.518463 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.0790213
I0623 16:03:58.518478 10365 sgd_solver.cpp:106] Iteration 8500, lr = 0.001
I0623 16:10:21.061769 10365 solver.cpp:229] Iteration 9000, loss = 4.6969
I0623 16:10:21.061908 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.43
I0623 16:10:21.061928 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 1
I0623 16:10:21.061939 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0623 16:10:21.061952 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.125
I0623 16:10:21.061964 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0623 16:10:21.061976 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.125
I0623 16:10:21.061987 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.25
I0623 16:10:21.062000 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.25
I0623 16:10:21.062011 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.5
I0623 16:10:21.062022 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.25
I0623 16:10:21.062034 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.375
I0623 16:10:21.062047 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.5
I0623 16:10:21.062057 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.375
I0623 16:10:21.062069 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.625
I0623 16:10:21.062082 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.5
I0623 16:10:21.062093 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875
I0623 16:10:21.062104 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875
I0623 16:10:21.062115 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875
I0623 16:10:21.062126 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 16:10:21.062139 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 16:10:21.062150 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 16:10:21.062160 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 16:10:21.062171 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 16:10:21.062183 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.664773
I0623 16:10:21.062194 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.76
I0623 16:10:21.062211 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.67442 (* 0.3 = 0.502327 loss)
I0623 16:10:21.062225 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.00564 (* 0.3 = 0.301692 loss)
I0623 16:10:21.062240 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.333739 (* 0.0272727 = 0.00910197 loss)
I0623 16:10:21.062255 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 0.991449 (* 0.0272727 = 0.0270395 loss)
I0623 16:10:21.062273 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.96557 (* 0.0272727 = 0.0536064 loss)
I0623 16:10:21.062286 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.61437 (* 0.0272727 = 0.0440283 loss)
I0623 16:10:21.062300 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 2.05065 (* 0.0272727 = 0.0559268 loss)
I0623 16:10:21.062314 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 2.30687 (* 0.0272727 = 0.0629147 loss)
I0623 16:10:21.062327 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 2.24649 (* 0.0272727 = 0.0612679 loss)
I0623 16:10:21.062340 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.79593 (* 0.0272727 = 0.0489798 loss)
I0623 16:10:21.062355 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 2.77877 (* 0.0272727 = 0.0757847 loss)
I0623 16:10:21.062367 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.84256 (* 0.0272727 = 0.0502516 loss)
I0623 16:10:21.062381 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.56808 (* 0.0272727 = 0.0427659 loss)
I0623 16:10:21.062396 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.40566 (* 0.0272727 = 0.0383362 loss)
I0623 16:10:21.062425 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 0.975662 (* 0.0272727 = 0.026609 loss)
I0623 16:10:21.062440 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.78961 (* 0.0272727 = 0.0488077 loss)
I0623 16:10:21.062454 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.740884 (* 0.0272727 = 0.0202059 loss)
I0623 16:10:21.062469 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.28068 (* 0.0272727 = 0.00765492 loss)
I0623 16:10:21.062482 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.681794 (* 0.0272727 = 0.0185944 loss)
I0623 16:10:21.062496 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00203049 (* 0.0272727 = 5.53771e-05 loss)
I0623 16:10:21.062510 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00103173 (* 0.0272727 = 2.81382e-05 loss)
I0623 16:10:21.062525 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000237043 (* 0.0272727 = 6.4648e-06 loss)
I0623 16:10:21.062538 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000187803 (* 0.0272727 = 5.12189e-06 loss)
I0623 16:10:21.062552 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 7.48904e-05 (* 0.0272727 = 2.04247e-06 loss)
I0623 16:10:21.062564 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.55
I0623 16:10:21.062577 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0623 16:10:21.062588 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0623 16:10:21.062599 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75
I0623 16:10:21.062610 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.75
I0623 16:10:21.062623 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0623 16:10:21.062633 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375
I0623 16:10:21.062644 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5
I0623 16:10:21.062655 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.375
I0623 16:10:21.062667 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.25
I0623 16:10:21.062679 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.5
I0623 16:10:21.062690 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.5
I0623 16:10:21.062700 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.5
I0623 16:10:21.062711 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.75
I0623 16:10:21.062722 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.625
I0623 16:10:21.062733 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.75
I0623 16:10:21.062744 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0623 16:10:21.062755 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875
I0623 16:10:21.062767 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 16:10:21.062778 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 16:10:21.062789 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 16:10:21.062800 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 16:10:21.062813 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 16:10:21.062824 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.727273
I0623 16:10:21.062835 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.86
I0623 16:10:21.062849 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.29535 (* 0.3 = 0.388606 loss)
I0623 16:10:21.062862 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.790853 (* 0.3 = 0.237256 loss)
I0623 16:10:21.062876 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.289238 (* 0.0272727 = 0.00788831 loss)
I0623 16:10:21.062891 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.455389 (* 0.0272727 = 0.0124197 loss)
I0623 16:10:21.062914 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.599016 (* 0.0272727 = 0.0163368 loss)
I0623 16:10:21.062934 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.03947 (* 0.0272727 = 0.0283491 loss)
I0623 16:10:21.062948 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.42266 (* 0.0272727 = 0.0387999 loss)
I0623 16:10:21.062963 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 2.00589 (* 0.0272727 = 0.0547061 loss)
I0623 16:10:21.062975 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.59493 (* 0.0272727 = 0.043498 loss)
I0623 16:10:21.062989 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.7714 (* 0.0272727 = 0.0483108 loss)
I0623 16:10:21.063004 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.73712 (* 0.0272727 = 0.047376 loss)
I0623 16:10:21.063020 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.87536 (* 0.0272727 = 0.0511462 loss)
I0623 16:10:21.063030 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.39363 (* 0.0272727 = 0.0380082 loss)
I0623 16:10:21.063045 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.96765 (* 0.0272727 = 0.0536633 loss)
I0623 16:10:21.063057 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.16817 (* 0.0272727 = 0.0318593 loss)
I0623 16:10:21.063071 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.47961 (* 0.0272727 = 0.040353 loss)
I0623 16:10:21.063084 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.459394 (* 0.0272727 = 0.0125289 loss)
I0623 16:10:21.063098 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.171985 (* 0.0272727 = 0.00469051 loss)
I0623 16:10:21.063112 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.342981 (* 0.0272727 = 0.00935403 loss)
I0623 16:10:21.063125 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00243756 (* 0.0272727 = 6.64788e-05 loss)
I0623 16:10:21.063139 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000827083 (* 0.0272727 = 2.25568e-05 loss)
I0623 16:10:21.063153 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000291766 (* 0.0272727 = 7.95725e-06 loss)
I0623 16:10:21.063166 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 9.69804e-05 (* 0.0272727 = 2.64492e-06 loss)
I0623 16:10:21.063180 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 2.39322e-05 (* 0.0272727 = 6.52695e-07 loss)
I0623 16:10:21.063192 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.78
I0623 16:10:21.063205 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 16:10:21.063215 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 16:10:21.063226 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 16:10:21.063237 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0623 16:10:21.063249 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0623 16:10:21.063261 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0623 16:10:21.063271 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0623 16:10:21.063282 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.5
I0623 16:10:21.063293 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.625
I0623 16:10:21.063304 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75
I0623 16:10:21.063318 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.625
I0623 16:10:21.063330 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.5
I0623 16:10:21.063341 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.5
I0623 16:10:21.063352 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.625
I0623 16:10:21.063364 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.75
I0623 16:10:21.063375 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0623 16:10:21.063401 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.875
I0623 16:10:21.063415 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 16:10:21.063426 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 16:10:21.063436 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 16:10:21.063447 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 16:10:21.063458 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 16:10:21.063469 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.857955
I0623 16:10:21.063482 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.97
I0623 16:10:21.063494 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.693111 (* 1 = 0.693111 loss)
I0623 16:10:21.063508 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.470906 (* 1 = 0.470906 loss)
I0623 16:10:21.063522 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0307177 (* 0.0909091 = 0.00279252 loss)
I0623 16:10:21.063536 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0446406 (* 0.0909091 = 0.00405824 loss)
I0623 16:10:21.063550 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.095436 (* 0.0909091 = 0.008676 loss)
I0623 16:10:21.063565 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.269438 (* 0.0909091 = 0.0244943 loss)
I0623 16:10:21.063577 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.15458 (* 0.0909091 = 0.0140528 loss)
I0623 16:10:21.063591 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.389128 (* 0.0909091 = 0.0353753 loss)
I0623 16:10:21.063619 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.923048 (* 0.0909091 = 0.0839135 loss)
I0623 16:10:21.063634 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 1.57666 (* 0.0909091 = 0.143333 loss)
I0623 16:10:21.063648 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 1.33221 (* 0.0909091 = 0.12111 loss)
I0623 16:10:21.063662 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 1.1767 (* 0.0909091 = 0.106973 loss)
I0623 16:10:21.063675 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 0.701452 (* 0.0909091 = 0.0637684 loss)
I0623 16:10:21.063689 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.47664 (* 0.0909091 = 0.13424 loss)
I0623 16:10:21.063704 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 1.10597 (* 0.0909091 = 0.100543 loss)
I0623 16:10:21.063716 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.728813 (* 0.0909091 = 0.0662557 loss)
I0623 16:10:21.063730 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.469843 (* 0.0909091 = 0.042713 loss)
I0623 16:10:21.063743 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.154088 (* 0.0909091 = 0.014008 loss)
I0623 16:10:21.063757 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.613136 (* 0.0909091 = 0.0557397 loss)
I0623 16:10:21.063771 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00167606 (* 0.0909091 = 0.000152369 loss)
I0623 16:10:21.063786 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000315785 (* 0.0909091 = 2.87078e-05 loss)
I0623 16:10:21.063801 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000234458 (* 0.0909091 = 2.13144e-05 loss)
I0623 16:10:21.063814 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000119388 (* 0.0909091 = 1.08535e-05 loss)
I0623 16:10:21.063828 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 3.2039e-05 (* 0.0909091 = 2.91263e-06 loss)
I0623 16:10:21.063840 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0623 16:10:21.063853 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0
I0623 16:10:21.063863 10365 solver.cpp:245] Train net output #149: total_confidence = 0.0670325
I0623 16:10:21.063886 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.0499258
I0623 16:10:21.063901 10365 sgd_solver.cpp:106] Iteration 9000, lr = 0.001
I0623 16:10:47.465718 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 36.6642 > 30) by scale factor 0.818238
I0623 16:12:59.889624 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 33.2974 > 30) by scale factor 0.900971
I0623 16:16:33.703344 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 32.6692 > 30) by scale factor 0.918295
I0623 16:16:44.059309 10365 solver.cpp:229] Iteration 9500, loss = 4.5458
I0623 16:16:44.059370 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.542857
I0623 16:16:44.059387 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 1
I0623 16:16:44.059399 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 1
I0623 16:16:44.059412 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0623 16:16:44.059423 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0623 16:16:44.059435 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0623 16:16:44.059448 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0623 16:16:44.059460 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0623 16:16:44.059473 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0623 16:16:44.059484 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0623 16:16:44.059495 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.625
I0623 16:16:44.059506 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.75
I0623 16:16:44.059519 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875
I0623 16:16:44.059530 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.75
I0623 16:16:44.059541 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875
I0623 16:16:44.059553 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0623 16:16:44.059564 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0623 16:16:44.059576 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 16:16:44.059587 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 16:16:44.059613 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 16:16:44.059628 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 16:16:44.059639 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 16:16:44.059650 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 16:16:44.059662 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.795455
I0623 16:16:44.059674 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.857143
I0623 16:16:44.059689 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.27754 (* 0.3 = 0.383262 loss)
I0623 16:16:44.059705 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.572564 (* 0.3 = 0.171769 loss)
I0623 16:16:44.059718 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.255881 (* 0.0272727 = 0.00697858 loss)
I0623 16:16:44.059732 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 0.363017 (* 0.0272727 = 0.00990047 loss)
I0623 16:16:44.059746 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.98508 (* 0.0272727 = 0.0541385 loss)
I0623 16:16:44.059761 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.9615 (* 0.0272727 = 0.0534954 loss)
I0623 16:16:44.059774 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 2.05241 (* 0.0272727 = 0.0559748 loss)
I0623 16:16:44.059788 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 1.07021 (* 0.0272727 = 0.0291876 loss)
I0623 16:16:44.059808 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 0.813809 (* 0.0272727 = 0.0221948 loss)
I0623 16:16:44.059823 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 0.720888 (* 0.0272727 = 0.0196606 loss)
I0623 16:16:44.059835 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 0.965097 (* 0.0272727 = 0.0263208 loss)
I0623 16:16:44.059849 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 0.903991 (* 0.0272727 = 0.0246543 loss)
I0623 16:16:44.059864 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.08253 (* 0.0272727 = 0.0295234 loss)
I0623 16:16:44.059876 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 0.820828 (* 0.0272727 = 0.0223862 loss)
I0623 16:16:44.059929 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 0.622284 (* 0.0272727 = 0.0169714 loss)
I0623 16:16:44.059945 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 0.353993 (* 0.0272727 = 0.00965434 loss)
I0623 16:16:44.059959 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0327933 (* 0.0272727 = 0.000894364 loss)
I0623 16:16:44.059973 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00621857 (* 0.0272727 = 0.000169597 loss)
I0623 16:16:44.059988 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000489933 (* 0.0272727 = 1.33618e-05 loss)
I0623 16:16:44.060001 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 5.08111e-05 (* 0.0272727 = 1.38576e-06 loss)
I0623 16:16:44.060015 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 5.84131e-06 (* 0.0272727 = 1.59309e-07 loss)
I0623 16:16:44.060029 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 1.53482e-06 (* 0.0272727 = 4.18588e-08 loss)
I0623 16:16:44.060045 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 2.5332e-07 (* 0.0272727 = 6.90872e-09 loss)
I0623 16:16:44.060058 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 1.49012e-08 (* 0.0272727 = 4.06395e-10 loss)
I0623 16:16:44.060070 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.628571
I0623 16:16:44.060082 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0623 16:16:44.060094 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 1
I0623 16:16:44.060106 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75
I0623 16:16:44.060117 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625
I0623 16:16:44.060128 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0623 16:16:44.060139 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875
I0623 16:16:44.060153 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5
I0623 16:16:44.060165 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0623 16:16:44.060176 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.625
I0623 16:16:44.060189 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.75
I0623 16:16:44.060199 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.625
I0623 16:16:44.060210 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.75
I0623 16:16:44.060221 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.75
I0623 16:16:44.060232 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875
I0623 16:16:44.060245 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0623 16:16:44.060256 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0623 16:16:44.060266 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 16:16:44.060278 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 16:16:44.060289 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 16:16:44.060300 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 16:16:44.060312 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 16:16:44.060322 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 16:16:44.060333 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.852273
I0623 16:16:44.060344 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.985714
I0623 16:16:44.060359 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.851176 (* 0.3 = 0.255353 loss)
I0623 16:16:44.060371 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.3561 (* 0.3 = 0.10683 loss)
I0623 16:16:44.060385 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.370202 (* 0.0272727 = 0.0100964 loss)
I0623 16:16:44.060411 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.12406 (* 0.0272727 = 0.00338345 loss)
I0623 16:16:44.060427 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.552757 (* 0.0272727 = 0.0150752 loss)
I0623 16:16:44.060441 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 0.633004 (* 0.0272727 = 0.0172637 loss)
I0623 16:16:44.060454 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.05418 (* 0.0272727 = 0.0287504 loss)
I0623 16:16:44.060467 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 0.557308 (* 0.0272727 = 0.0151993 loss)
I0623 16:16:44.060482 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 0.984795 (* 0.0272727 = 0.026858 loss)
I0623 16:16:44.060494 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 0.937023 (* 0.0272727 = 0.0255552 loss)
I0623 16:16:44.060508 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 0.724883 (* 0.0272727 = 0.0197695 loss)
I0623 16:16:44.060521 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 0.754706 (* 0.0272727 = 0.0205829 loss)
I0623 16:16:44.060534 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 0.844284 (* 0.0272727 = 0.0230259 loss)
I0623 16:16:44.060547 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 0.823833 (* 0.0272727 = 0.0224682 loss)
I0623 16:16:44.060561 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 0.602939 (* 0.0272727 = 0.0164438 loss)
I0623 16:16:44.060575 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 0.341434 (* 0.0272727 = 0.00931184 loss)
I0623 16:16:44.060587 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0568495 (* 0.0272727 = 0.00155044 loss)
I0623 16:16:44.060601 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00406943 (* 0.0272727 = 0.000110985 loss)
I0623 16:16:44.060616 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000447914 (* 0.0272727 = 1.22158e-05 loss)
I0623 16:16:44.060629 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 5.91568e-05 (* 0.0272727 = 1.61337e-06 loss)
I0623 16:16:44.060643 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 4.06861e-05 (* 0.0272727 = 1.10962e-06 loss)
I0623 16:16:44.060657 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 3.44635e-05 (* 0.0272727 = 9.39913e-07 loss)
I0623 16:16:44.060672 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 7.10912e-05 (* 0.0272727 = 1.93885e-06 loss)
I0623 16:16:44.060685 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 1.08485e-05 (* 0.0272727 = 2.95869e-07 loss)
I0623 16:16:44.060698 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.957143
I0623 16:16:44.060709 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 16:16:44.060720 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 16:16:44.060732 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 16:16:44.060745 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 16:16:44.060755 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0623 16:16:44.060763 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0623 16:16:44.060770 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0623 16:16:44.060782 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0623 16:16:44.060794 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.625
I0623 16:16:44.060806 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0623 16:16:44.060817 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875
I0623 16:16:44.060834 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.625
I0623 16:16:44.060847 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875
I0623 16:16:44.060865 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875
I0623 16:16:44.060878 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0623 16:16:44.060899 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0623 16:16:44.060912 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 16:16:44.060923 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 16:16:44.060935 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 16:16:44.060945 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 16:16:44.060956 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 16:16:44.060967 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 16:16:44.060979 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.977273
I0623 16:16:44.060991 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1
I0623 16:16:44.061004 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.227967 (* 1 = 0.227967 loss)
I0623 16:16:44.061017 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0989907 (* 1 = 0.0989907 loss)
I0623 16:16:44.061033 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0202005 (* 0.0909091 = 0.00183641 loss)
I0623 16:16:44.061046 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0227557 (* 0.0909091 = 0.0020687 loss)
I0623 16:16:44.061059 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0495575 (* 0.0909091 = 0.00450522 loss)
I0623 16:16:44.061074 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.132721 (* 0.0909091 = 0.0120656 loss)
I0623 16:16:44.061086 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.200183 (* 0.0909091 = 0.0181985 loss)
I0623 16:16:44.061100 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.0466679 (* 0.0909091 = 0.00424253 loss)
I0623 16:16:44.061115 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.319111 (* 0.0909091 = 0.0290101 loss)
I0623 16:16:44.061127 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.231085 (* 0.0909091 = 0.0210078 loss)
I0623 16:16:44.061141 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.883469 (* 0.0909091 = 0.0803154 loss)
I0623 16:16:44.061154 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.533005 (* 0.0909091 = 0.048455 loss)
I0623 16:16:44.061168 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 0.395526 (* 0.0909091 = 0.0359569 loss)
I0623 16:16:44.061182 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 0.73791 (* 0.0909091 = 0.0670827 loss)
I0623 16:16:44.061197 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 0.221911 (* 0.0909091 = 0.0201737 loss)
I0623 16:16:44.061211 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.332089 (* 0.0909091 = 0.0301899 loss)
I0623 16:16:44.061225 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.0632447 (* 0.0909091 = 0.00574952 loss)
I0623 16:16:44.061239 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000708894 (* 0.0909091 = 6.44449e-05 loss)
I0623 16:16:44.061252 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000163486 (* 0.0909091 = 1.48624e-05 loss)
I0623 16:16:44.061266 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 3.63552e-05 (* 0.0909091 = 3.30502e-06 loss)
I0623 16:16:44.061280 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 6.95892e-06 (* 0.0909091 = 6.32629e-07 loss)
I0623 16:16:44.061295 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 6.25855e-06 (* 0.0909091 = 5.68959e-07 loss)
I0623 16:16:44.061308 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 2.51831e-06 (* 0.0909091 = 2.28937e-07 loss)
I0623 16:16:44.061323 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 8.7917e-07 (* 0.0909091 = 7.99246e-08 loss)
I0623 16:16:44.061336 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.625
I0623 16:16:44.061357 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5
I0623 16:16:44.061369 10365 solver.cpp:245] Train net output #149: total_confidence = 0.465604
I0623 16:16:44.061381 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.457815
I0623 16:16:44.061394 10365 sgd_solver.cpp:106] Iteration 9500, lr = 0.001
I0623 16:17:29.647814 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 45.032 > 30) by scale factor 0.666193
I0623 16:18:04.892212 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 34.9309 > 30) by scale factor 0.858839
I0623 16:19:03.893671 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 43.015 > 30) by scale factor 0.697432
I0623 16:19:21.527099 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 42.0719 > 30) by scale factor 0.713064
I0623 16:21:20.329627 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.7698 > 30) by scale factor 0.944292
I0623 16:21:27.226963 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 39.9294 > 30) by scale factor 0.751325
I0623 16:23:06.900810 10365 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm22_iter_10000.caffemodel
I0623 16:23:07.620676 10365 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm22_iter_10000.solverstate
I0623 16:23:08.036142 10365 solver.cpp:338] Iteration 10000, Testing net (#0)
I0623 16:24:05.061308 10365 solver.cpp:393] Test loss: 3.98854
I0623 16:24:05.061450 10365 solver.cpp:406] Test net output #0: loss1/accuracy = 0.532218
I0623 16:24:05.061470 10365 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.937
I0623 16:24:05.061483 10365 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.786
I0623 16:24:05.061496 10365 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.545
I0623 16:24:05.061508 10365 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.47
I0623 16:24:05.061520 10365 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.407
I0623 16:24:05.061533 10365 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.439
I0623 16:24:05.061545 10365 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.387
I0623 16:24:05.061558 10365 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.482
I0623 16:24:05.061569 10365 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.427
I0623 16:24:05.061580 10365 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.406
I0623 16:24:05.061592 10365 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.407
I0623 16:24:05.061604 10365 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.479
I0623 16:24:05.061616 10365 solver.cpp:406] Test net output #13: loss1/accuracy13 = 0.609
I0623 16:24:05.061627 10365 solver.cpp:406] Test net output #14: loss1/accuracy14 = 0.684
I0623 16:24:05.061640 10365 solver.cpp:406] Test net output #15: loss1/accuracy15 = 0.777
I0623 16:24:05.061650 10365 solver.cpp:406] Test net output #16: loss1/accuracy16 = 0.83
I0623 16:24:05.061662 10365 solver.cpp:406] Test net output #17: loss1/accuracy17 = 0.906
I0623 16:24:05.061673 10365 solver.cpp:406] Test net output #18: loss1/accuracy18 = 0.952
I0623 16:24:05.061684 10365 solver.cpp:406] Test net output #19: loss1/accuracy19 = 0.972
I0623 16:24:05.061696 10365 solver.cpp:406] Test net output #20: loss1/accuracy20 = 0.987
I0623 16:24:05.061707 10365 solver.cpp:406] Test net output #21: loss1/accuracy21 = 0.999
I0623 16:24:05.061718 10365 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1
I0623 16:24:05.061729 10365 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.712499
I0623 16:24:05.061741 10365 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.851939
I0623 16:24:05.061756 10365 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.37422 (* 0.3 = 0.412265 loss)
I0623 16:24:05.061774 10365 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.847342 (* 0.3 = 0.254202 loss)
I0623 16:24:05.061802 10365 solver.cpp:406] Test net output #27: loss1/loss01 = 0.319289 (* 0.0272727 = 0.00870787 loss)
I0623 16:24:05.061823 10365 solver.cpp:406] Test net output #28: loss1/loss02 = 0.738935 (* 0.0272727 = 0.0201528 loss)
I0623 16:24:05.061838 10365 solver.cpp:406] Test net output #29: loss1/loss03 = 1.39047 (* 0.0272727 = 0.037922 loss)
I0623 16:24:05.061851 10365 solver.cpp:406] Test net output #30: loss1/loss04 = 1.5678 (* 0.0272727 = 0.0427581 loss)
I0623 16:24:05.061866 10365 solver.cpp:406] Test net output #31: loss1/loss05 = 1.71954 (* 0.0272727 = 0.0468965 loss)
I0623 16:24:05.061879 10365 solver.cpp:406] Test net output #32: loss1/loss06 = 1.79468 (* 0.0272727 = 0.0489457 loss)
I0623 16:24:05.061892 10365 solver.cpp:406] Test net output #33: loss1/loss07 = 1.82852 (* 0.0272727 = 0.0498688 loss)
I0623 16:24:05.061906 10365 solver.cpp:406] Test net output #34: loss1/loss08 = 1.64946 (* 0.0272727 = 0.0449853 loss)
I0623 16:24:05.061919 10365 solver.cpp:406] Test net output #35: loss1/loss09 = 1.73591 (* 0.0272727 = 0.047343 loss)
I0623 16:24:05.061933 10365 solver.cpp:406] Test net output #36: loss1/loss10 = 1.77777 (* 0.0272727 = 0.0484846 loss)
I0623 16:24:05.061946 10365 solver.cpp:406] Test net output #37: loss1/loss11 = 1.83573 (* 0.0272727 = 0.0500655 loss)
I0623 16:24:05.061959 10365 solver.cpp:406] Test net output #38: loss1/loss12 = 1.52782 (* 0.0272727 = 0.0416679 loss)
I0623 16:24:05.061992 10365 solver.cpp:406] Test net output #39: loss1/loss13 = 1.22786 (* 0.0272727 = 0.0334872 loss)
I0623 16:24:05.062007 10365 solver.cpp:406] Test net output #40: loss1/loss14 = 0.940703 (* 0.0272727 = 0.0256555 loss)
I0623 16:24:05.062021 10365 solver.cpp:406] Test net output #41: loss1/loss15 = 0.680672 (* 0.0272727 = 0.0185638 loss)
I0623 16:24:05.062034 10365 solver.cpp:406] Test net output #42: loss1/loss16 = 0.515077 (* 0.0272727 = 0.0140475 loss)
I0623 16:24:05.062048 10365 solver.cpp:406] Test net output #43: loss1/loss17 = 0.319658 (* 0.0272727 = 0.00871796 loss)
I0623 16:24:05.062062 10365 solver.cpp:406] Test net output #44: loss1/loss18 = 0.189945 (* 0.0272727 = 0.00518031 loss)
I0623 16:24:05.062075 10365 solver.cpp:406] Test net output #45: loss1/loss19 = 0.119191 (* 0.0272727 = 0.00325066 loss)
I0623 16:24:05.062089 10365 solver.cpp:406] Test net output #46: loss1/loss20 = 0.0684475 (* 0.0272727 = 0.00186675 loss)
I0623 16:24:05.062103 10365 solver.cpp:406] Test net output #47: loss1/loss21 = 0.00772684 (* 0.0272727 = 0.000210732 loss)
I0623 16:24:05.062116 10365 solver.cpp:406] Test net output #48: loss1/loss22 = 9.33472e-05 (* 0.0272727 = 2.54583e-06 loss)
I0623 16:24:05.062129 10365 solver.cpp:406] Test net output #49: loss2/accuracy = 0.637264
I0623 16:24:05.062140 10365 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.972
I0623 16:24:05.062152 10365 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.94
I0623 16:24:05.062163 10365 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.858
I0623 16:24:05.062175 10365 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.721
I0623 16:24:05.062186 10365 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.546
I0623 16:24:05.062197 10365 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.51
I0623 16:24:05.062209 10365 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.491
I0623 16:24:05.062221 10365 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.517
I0623 16:24:05.062232 10365 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.484
I0623 16:24:05.062242 10365 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.435
I0623 16:24:05.062253 10365 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.427
I0623 16:24:05.062268 10365 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.516
I0623 16:24:05.062279 10365 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.615
I0623 16:24:05.062291 10365 solver.cpp:406] Test net output #63: loss2/accuracy14 = 0.707
I0623 16:24:05.062302 10365 solver.cpp:406] Test net output #64: loss2/accuracy15 = 0.788
I0623 16:24:05.062314 10365 solver.cpp:406] Test net output #65: loss2/accuracy16 = 0.842
I0623 16:24:05.062325 10365 solver.cpp:406] Test net output #66: loss2/accuracy17 = 0.906
I0623 16:24:05.062336 10365 solver.cpp:406] Test net output #67: loss2/accuracy18 = 0.95
I0623 16:24:05.062347 10365 solver.cpp:406] Test net output #68: loss2/accuracy19 = 0.972
I0623 16:24:05.062358 10365 solver.cpp:406] Test net output #69: loss2/accuracy20 = 0.987
I0623 16:24:05.062371 10365 solver.cpp:406] Test net output #70: loss2/accuracy21 = 0.999
I0623 16:24:05.062381 10365 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1
I0623 16:24:05.062392 10365 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.770228
I0623 16:24:05.062403 10365 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.911242
I0623 16:24:05.062417 10365 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 1.05466 (* 0.3 = 0.316399 loss)
I0623 16:24:05.062432 10365 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.661178 (* 0.3 = 0.198353 loss)
I0623 16:24:05.062445 10365 solver.cpp:406] Test net output #76: loss2/loss01 = 0.19347 (* 0.0272727 = 0.00527646 loss)
I0623 16:24:05.062459 10365 solver.cpp:406] Test net output #77: loss2/loss02 = 0.288499 (* 0.0272727 = 0.00786815 loss)
I0623 16:24:05.062490 10365 solver.cpp:406] Test net output #78: loss2/loss03 = 0.581203 (* 0.0272727 = 0.015851 loss)
I0623 16:24:05.062501 10365 solver.cpp:406] Test net output #79: loss2/loss04 = 0.931626 (* 0.0272727 = 0.025408 loss)
I0623 16:24:05.062511 10365 solver.cpp:406] Test net output #80: loss2/loss05 = 1.22226 (* 0.0272727 = 0.0333343 loss)
I0623 16:24:05.062525 10365 solver.cpp:406] Test net output #81: loss2/loss06 = 1.4445 (* 0.0272727 = 0.0393956 loss)
I0623 16:24:05.062538 10365 solver.cpp:406] Test net output #82: loss2/loss07 = 1.53993 (* 0.0272727 = 0.0419982 loss)
I0623 16:24:05.062551 10365 solver.cpp:406] Test net output #83: loss2/loss08 = 1.45799 (* 0.0272727 = 0.0397633 loss)
I0623 16:24:05.062566 10365 solver.cpp:406] Test net output #84: loss2/loss09 = 1.53595 (* 0.0272727 = 0.0418895 loss)
I0623 16:24:05.062578 10365 solver.cpp:406] Test net output #85: loss2/loss10 = 1.61512 (* 0.0272727 = 0.0440486 loss)
I0623 16:24:05.062592 10365 solver.cpp:406] Test net output #86: loss2/loss11 = 1.65639 (* 0.0272727 = 0.0451743 loss)
I0623 16:24:05.062605 10365 solver.cpp:406] Test net output #87: loss2/loss12 = 1.35708 (* 0.0272727 = 0.0370113 loss)
I0623 16:24:05.062618 10365 solver.cpp:406] Test net output #88: loss2/loss13 = 1.11395 (* 0.0272727 = 0.0303803 loss)
I0623 16:24:05.062633 10365 solver.cpp:406] Test net output #89: loss2/loss14 = 0.849185 (* 0.0272727 = 0.0231596 loss)
I0623 16:24:05.062645 10365 solver.cpp:406] Test net output #90: loss2/loss15 = 0.620886 (* 0.0272727 = 0.0169333 loss)
I0623 16:24:05.062659 10365 solver.cpp:406] Test net output #91: loss2/loss16 = 0.460988 (* 0.0272727 = 0.0125724 loss)
I0623 16:24:05.062671 10365 solver.cpp:406] Test net output #92: loss2/loss17 = 0.303104 (* 0.0272727 = 0.00826646 loss)
I0623 16:24:05.062685 10365 solver.cpp:406] Test net output #93: loss2/loss18 = 0.169109 (* 0.0272727 = 0.00461205 loss)
I0623 16:24:05.062698 10365 solver.cpp:406] Test net output #94: loss2/loss19 = 0.107455 (* 0.0272727 = 0.00293058 loss)
I0623 16:24:05.062711 10365 solver.cpp:406] Test net output #95: loss2/loss20 = 0.0638529 (* 0.0272727 = 0.00174144 loss)
I0623 16:24:05.062726 10365 solver.cpp:406] Test net output #96: loss2/loss21 = 0.00766872 (* 0.0272727 = 0.000209147 loss)
I0623 16:24:05.062738 10365 solver.cpp:406] Test net output #97: loss2/loss22 = 9.43917e-05 (* 0.0272727 = 2.57432e-06 loss)
I0623 16:24:05.062750 10365 solver.cpp:406] Test net output #98: loss3/accuracy = 0.868335
I0623 16:24:05.062762 10365 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.978
I0623 16:24:05.062773 10365 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.969
I0623 16:24:05.062784 10365 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.955
I0623 16:24:05.062795 10365 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.941
I0623 16:24:05.062808 10365 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.936
I0623 16:24:05.062819 10365 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.914
I0623 16:24:05.062829 10365 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.904
I0623 16:24:05.062839 10365 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.879
I0623 16:24:05.062851 10365 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.788
I0623 16:24:05.062861 10365 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.663
I0623 16:24:05.062872 10365 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.594
I0623 16:24:05.062883 10365 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.645
I0623 16:24:05.062894 10365 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.68
I0623 16:24:05.062906 10365 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.757
I0623 16:24:05.062916 10365 solver.cpp:406] Test net output #113: loss3/accuracy15 = 0.831
I0623 16:24:05.062927 10365 solver.cpp:406] Test net output #114: loss3/accuracy16 = 0.876
I0623 16:24:05.062948 10365 solver.cpp:406] Test net output #115: loss3/accuracy17 = 0.928
I0623 16:24:05.062961 10365 solver.cpp:406] Test net output #116: loss3/accuracy18 = 0.963
I0623 16:24:05.062973 10365 solver.cpp:406] Test net output #117: loss3/accuracy19 = 0.975
I0623 16:24:05.062984 10365 solver.cpp:406] Test net output #118: loss3/accuracy20 = 0.987
I0623 16:24:05.062995 10365 solver.cpp:406] Test net output #119: loss3/accuracy21 = 0.999
I0623 16:24:05.063006 10365 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1
I0623 16:24:05.063017 10365 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.911228
I0623 16:24:05.063030 10365 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.969168
I0623 16:24:05.063042 10365 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.530596 (* 1 = 0.530596 loss)
I0623 16:24:05.063056 10365 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.340269 (* 1 = 0.340269 loss)
I0623 16:24:05.063071 10365 solver.cpp:406] Test net output #125: loss3/loss01 = 0.149585 (* 0.0909091 = 0.0135987 loss)
I0623 16:24:05.063084 10365 solver.cpp:406] Test net output #126: loss3/loss02 = 0.183549 (* 0.0909091 = 0.0166863 loss)
I0623 16:24:05.063098 10365 solver.cpp:406] Test net output #127: loss3/loss03 = 0.3055 (* 0.0909091 = 0.0277728 loss)
I0623 16:24:05.063112 10365 solver.cpp:406] Test net output #128: loss3/loss04 = 0.360835 (* 0.0909091 = 0.0328032 loss)
I0623 16:24:05.063125 10365 solver.cpp:406] Test net output #129: loss3/loss05 = 0.360737 (* 0.0909091 = 0.0327942 loss)
I0623 16:24:05.063139 10365 solver.cpp:406] Test net output #130: loss3/loss06 = 0.467246 (* 0.0909091 = 0.0424769 loss)
I0623 16:24:05.063153 10365 solver.cpp:406] Test net output #131: loss3/loss07 = 0.517786 (* 0.0909091 = 0.0470714 loss)
I0623 16:24:05.063166 10365 solver.cpp:406] Test net output #132: loss3/loss08 = 0.538317 (* 0.0909091 = 0.0489379 loss)
I0623 16:24:05.063179 10365 solver.cpp:406] Test net output #133: loss3/loss09 = 0.72638 (* 0.0909091 = 0.0660346 loss)
I0623 16:24:05.063194 10365 solver.cpp:406] Test net output #134: loss3/loss10 = 0.980019 (* 0.0909091 = 0.0890927 loss)
I0623 16:24:05.063206 10365 solver.cpp:406] Test net output #135: loss3/loss11 = 1.12027 (* 0.0909091 = 0.101843 loss)
I0623 16:24:05.063220 10365 solver.cpp:406] Test net output #136: loss3/loss12 = 0.958663 (* 0.0909091 = 0.0871511 loss)
I0623 16:24:05.063233 10365 solver.cpp:406] Test net output #137: loss3/loss13 = 0.851221 (* 0.0909091 = 0.0773838 loss)
I0623 16:24:05.063247 10365 solver.cpp:406] Test net output #138: loss3/loss14 = 0.649027 (* 0.0909091 = 0.0590024 loss)
I0623 16:24:05.063261 10365 solver.cpp:406] Test net output #139: loss3/loss15 = 0.471805 (* 0.0909091 = 0.0428913 loss)
I0623 16:24:05.063274 10365 solver.cpp:406] Test net output #140: loss3/loss16 = 0.362535 (* 0.0909091 = 0.0329578 loss)
I0623 16:24:05.063288 10365 solver.cpp:406] Test net output #141: loss3/loss17 = 0.20972 (* 0.0909091 = 0.0190655 loss)
I0623 16:24:05.063302 10365 solver.cpp:406] Test net output #142: loss3/loss18 = 0.125947 (* 0.0909091 = 0.0114497 loss)
I0623 16:24:05.063318 10365 solver.cpp:406] Test net output #143: loss3/loss19 = 0.0714735 (* 0.0909091 = 0.00649759 loss)
I0623 16:24:05.063333 10365 solver.cpp:406] Test net output #144: loss3/loss20 = 0.0413603 (* 0.0909091 = 0.00376003 loss)
I0623 16:24:05.063347 10365 solver.cpp:406] Test net output #145: loss3/loss21 = 0.00622251 (* 0.0909091 = 0.000565683 loss)
I0623 16:24:05.063361 10365 solver.cpp:406] Test net output #146: loss3/loss22 = 0.000112198 (* 0.0909091 = 1.01998e-05 loss)
I0623 16:24:05.063374 10365 solver.cpp:406] Test net output #147: total_accuracy = 0.42
I0623 16:24:05.063385 10365 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.223
I0623 16:24:05.063396 10365 solver.cpp:406] Test net output #149: total_confidence = 0.221943
I0623 16:24:05.063418 10365 solver.cpp:406] Test net output #150: total_confidence_not_rec = 0.141333
I0623 16:24:05.422760 10365 solver.cpp:229] Iteration 10000, loss = 4.57648
I0623 16:24:05.422819 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.458716
I0623 16:24:05.422837 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 1
I0623 16:24:05.422850 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375
I0623 16:24:05.422864 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625
I0623 16:24:05.422878 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0623 16:24:05.422890 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0623 16:24:05.422904 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0623 16:24:05.422916 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0623 16:24:05.422930 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.25
I0623 16:24:05.422941 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.5
I0623 16:24:05.422955 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.375
I0623 16:24:05.422966 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.25
I0623 16:24:05.422979 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.125
I0623 16:24:05.422991 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.625
I0623 16:24:05.423003 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.375
I0623 16:24:05.423015 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.75
I0623 16:24:05.423027 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875
I0623 16:24:05.423038 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875
I0623 16:24:05.423049 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 16:24:05.423061 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 16:24:05.423074 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 16:24:05.423085 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 16:24:05.423097 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 16:24:05.423110 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.659091
I0623 16:24:05.423122 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.788991
I0623 16:24:05.423141 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.74489 (* 0.3 = 0.523467 loss)
I0623 16:24:05.423156 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.11388 (* 0.3 = 0.334163 loss)
I0623 16:24:05.423171 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.450962 (* 0.0272727 = 0.012299 loss)
I0623 16:24:05.423185 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 2.14368 (* 0.0272727 = 0.0584641 loss)
I0623 16:24:05.423199 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.19577 (* 0.0272727 = 0.0326118 loss)
I0623 16:24:05.423213 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.6977 (* 0.0272727 = 0.046301 loss)
I0623 16:24:05.423228 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 2.16535 (* 0.0272727 = 0.059055 loss)
I0623 16:24:05.423241 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 2.22471 (* 0.0272727 = 0.060674 loss)
I0623 16:24:05.423255 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.68133 (* 0.0272727 = 0.0458546 loss)
I0623 16:24:05.423269 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 2.23312 (* 0.0272727 = 0.0609032 loss)
I0623 16:24:05.423283 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 2.2657 (* 0.0272727 = 0.0617918 loss)
I0623 16:24:05.423296 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 2.32461 (* 0.0272727 = 0.0633983 loss)
I0623 16:24:05.423310 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 2.16664 (* 0.0272727 = 0.0590902 loss)
I0623 16:24:05.423351 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 2.58286 (* 0.0272727 = 0.0704418 loss)
I0623 16:24:05.423365 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.32545 (* 0.0272727 = 0.0361486 loss)
I0623 16:24:05.423379 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.61845 (* 0.0272727 = 0.0441396 loss)
I0623 16:24:05.423393 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.795135 (* 0.0272727 = 0.0216855 loss)
I0623 16:24:05.423408 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.48919 (* 0.0272727 = 0.0133415 loss)
I0623 16:24:05.423421 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.299296 (* 0.0272727 = 0.00816261 loss)
I0623 16:24:05.423435 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.093602 (* 0.0272727 = 0.00255278 loss)
I0623 16:24:05.423449 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0230499 (* 0.0272727 = 0.000628634 loss)
I0623 16:24:05.423463 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00464083 (* 0.0272727 = 0.000126568 loss)
I0623 16:24:05.423477 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00152757 (* 0.0272727 = 4.16609e-05 loss)
I0623 16:24:05.423492 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000311863 (* 0.0272727 = 8.50536e-06 loss)
I0623 16:24:05.423504 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.53211
I0623 16:24:05.423517 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0623 16:24:05.423529 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.375
I0623 16:24:05.423542 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.875
I0623 16:24:05.423552 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625
I0623 16:24:05.423564 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0623 16:24:05.423576 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375
I0623 16:24:05.423588 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.125
I0623 16:24:05.423617 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.25
I0623 16:24:05.423631 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.375
I0623 16:24:05.423643 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.125
I0623 16:24:05.423655 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.25
I0623 16:24:05.423666 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.25
I0623 16:24:05.423678 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.625
I0623 16:24:05.423689 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.375
I0623 16:24:05.423702 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.625
I0623 16:24:05.423713 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875
I0623 16:24:05.423725 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 16:24:05.423738 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 16:24:05.423753 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 16:24:05.423763 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 16:24:05.423771 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 16:24:05.423779 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 16:24:05.423790 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.681818
I0623 16:24:05.423802 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.834862
I0623 16:24:05.423816 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.3249 (* 0.3 = 0.397469 loss)
I0623 16:24:05.423830 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.933592 (* 0.3 = 0.280078 loss)
I0623 16:24:05.423857 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.192369 (* 0.0272727 = 0.00524642 loss)
I0623 16:24:05.423872 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 1.35021 (* 0.0272727 = 0.036824 loss)
I0623 16:24:05.423887 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.625674 (* 0.0272727 = 0.0170638 loss)
I0623 16:24:05.423900 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 0.923492 (* 0.0272727 = 0.0251861 loss)
I0623 16:24:05.423914 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.60636 (* 0.0272727 = 0.0438098 loss)
I0623 16:24:05.423928 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.63755 (* 0.0272727 = 0.0446603 loss)
I0623 16:24:05.423943 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.86431 (* 0.0272727 = 0.0508448 loss)
I0623 16:24:05.423956 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 2.07205 (* 0.0272727 = 0.0565105 loss)
I0623 16:24:05.423969 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 2.21501 (* 0.0272727 = 0.0604094 loss)
I0623 16:24:05.423984 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 2.17824 (* 0.0272727 = 0.0594066 loss)
I0623 16:24:05.423996 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 2.16743 (* 0.0272727 = 0.0591116 loss)
I0623 16:24:05.424010 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 2.01547 (* 0.0272727 = 0.0549673 loss)
I0623 16:24:05.424024 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.24768 (* 0.0272727 = 0.0340278 loss)
I0623 16:24:05.424037 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.63972 (* 0.0272727 = 0.0447196 loss)
I0623 16:24:05.424052 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 1.01652 (* 0.0272727 = 0.0277234 loss)
I0623 16:24:05.424065 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.477879 (* 0.0272727 = 0.0130331 loss)
I0623 16:24:05.424079 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.271905 (* 0.0272727 = 0.0074156 loss)
I0623 16:24:05.424093 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0926642 (* 0.0272727 = 0.00252721 loss)
I0623 16:24:05.424108 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0121776 (* 0.0272727 = 0.000332116 loss)
I0623 16:24:05.424121 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00288717 (* 0.0272727 = 7.87411e-05 loss)
I0623 16:24:05.424135 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00115313 (* 0.0272727 = 3.14491e-05 loss)
I0623 16:24:05.424149 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000201699 (* 0.0272727 = 5.50088e-06 loss)
I0623 16:24:05.424161 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.807339
I0623 16:24:05.424173 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 16:24:05.424188 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0623 16:24:05.424199 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 16:24:05.424211 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 16:24:05.424222 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0623 16:24:05.424234 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0623 16:24:05.424245 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625
I0623 16:24:05.424257 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.625
I0623 16:24:05.424269 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0623 16:24:05.424280 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0623 16:24:05.424293 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.375
I0623 16:24:05.424304 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.5
I0623 16:24:05.424315 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.75
I0623 16:24:05.424326 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.625
I0623 16:24:05.424350 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.75
I0623 16:24:05.424363 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875
I0623 16:24:05.424376 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.875
I0623 16:24:05.424387 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 16:24:05.424398 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 16:24:05.424410 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 16:24:05.424422 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 16:24:05.424433 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 16:24:05.424444 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.875
I0623 16:24:05.424458 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.981651
I0623 16:24:05.424471 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.555443 (* 1 = 0.555443 loss)
I0623 16:24:05.424485 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.368694 (* 1 = 0.368694 loss)
I0623 16:24:05.424500 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0584147 (* 0.0909091 = 0.00531043 loss)
I0623 16:24:05.424515 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.17155 (* 0.0909091 = 0.0155955 loss)
I0623 16:24:05.424530 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0813092 (* 0.0909091 = 0.00739174 loss)
I0623 16:24:05.424543 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0907369 (* 0.0909091 = 0.00824881 loss)
I0623 16:24:05.424558 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.4546 (* 0.0909091 = 0.0413272 loss)
I0623 16:24:05.424572 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.162305 (* 0.0909091 = 0.014755 loss)
I0623 16:24:05.424587 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.630506 (* 0.0909091 = 0.0573187 loss)
I0623 16:24:05.424600 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 1.01999 (* 0.0909091 = 0.0927261 loss)
I0623 16:24:05.424613 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.692019 (* 0.0909091 = 0.0629108 loss)
I0623 16:24:05.424628 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.854129 (* 0.0909091 = 0.0776481 loss)
I0623 16:24:05.424641 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 1.3035 (* 0.0909091 = 0.1185 loss)
I0623 16:24:05.424655 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.8915 (* 0.0909091 = 0.171954 loss)
I0623 16:24:05.424669 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 0.931036 (* 0.0909091 = 0.0846397 loss)
I0623 16:24:05.424682 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 1.14917 (* 0.0909091 = 0.10447 loss)
I0623 16:24:05.424696 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 1.19928 (* 0.0909091 = 0.109025 loss)
I0623 16:24:05.424710 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.234849 (* 0.0909091 = 0.0213499 loss)
I0623 16:24:05.424724 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.21675 (* 0.0909091 = 0.0197046 loss)
I0623 16:24:05.424738 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0395051 (* 0.0909091 = 0.00359137 loss)
I0623 16:24:05.424752 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00157899 (* 0.0909091 = 0.000143545 loss)
I0623 16:24:05.424767 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000821444 (* 0.0909091 = 7.46767e-05 loss)
I0623 16:24:05.424780 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000147607 (* 0.0909091 = 1.34188e-05 loss)
I0623 16:24:05.424799 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 1.20999e-05 (* 0.0909091 = 1.09999e-06 loss)
I0623 16:24:05.424823 10365 solver.cpp:245] Train net output #147: total_accuracy = 0
I0623 16:24:05.424836 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0
I0623 16:24:05.424849 10365 solver.cpp:245] Train net output #149: total_confidence = 0.0240825
I0623 16:24:05.424860 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.00388674
I0623 16:24:05.424873 10365 sgd_solver.cpp:106] Iteration 10000, lr = 0.001
I0623 16:25:06.311198 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 36.5416 > 30) by scale factor 0.820983
I0623 16:30:28.603117 10365 solver.cpp:229] Iteration 10500, loss = 4.64449
I0623 16:30:28.603221 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.462366
I0623 16:30:28.603241 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0623 16:30:28.603255 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75
I0623 16:30:28.603267 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0623 16:30:28.603279 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0623 16:30:28.603292 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0623 16:30:28.603305 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.25
I0623 16:30:28.603318 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5
I0623 16:30:28.603330 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.375
I0623 16:30:28.603343 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.375
I0623 16:30:28.603355 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.375
I0623 16:30:28.603368 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.125
I0623 16:30:28.603380 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.75
I0623 16:30:28.603392 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.625
I0623 16:30:28.603404 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.75
I0623 16:30:28.603415 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.625
I0623 16:30:28.603427 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875
I0623 16:30:28.603440 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 16:30:28.603451 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 16:30:28.603463 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 16:30:28.603474 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 16:30:28.603485 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 16:30:28.603497 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 16:30:28.603509 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.6875
I0623 16:30:28.603520 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.784946
I0623 16:30:28.603538 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.53317 (* 0.3 = 0.459952 loss)
I0623 16:30:28.603551 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.892533 (* 0.3 = 0.26776 loss)
I0623 16:30:28.603566 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.400655 (* 0.0272727 = 0.010927 loss)
I0623 16:30:28.603580 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 0.675188 (* 0.0272727 = 0.0184142 loss)
I0623 16:30:28.603593 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.46454 (* 0.0272727 = 0.0399419 loss)
I0623 16:30:28.603623 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.71894 (* 0.0272727 = 0.0468801 loss)
I0623 16:30:28.603639 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 1.59532 (* 0.0272727 = 0.0435089 loss)
I0623 16:30:28.603654 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 1.83153 (* 0.0272727 = 0.0499509 loss)
I0623 16:30:28.603668 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.80553 (* 0.0272727 = 0.0492416 loss)
I0623 16:30:28.603682 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 2.15216 (* 0.0272727 = 0.0586954 loss)
I0623 16:30:28.603696 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.86782 (* 0.0272727 = 0.0509405 loss)
I0623 16:30:28.603710 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.61111 (* 0.0272727 = 0.0439394 loss)
I0623 16:30:28.603724 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 2.00333 (* 0.0272727 = 0.0546363 loss)
I0623 16:30:28.603739 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.59528 (* 0.0272727 = 0.0435077 loss)
I0623 16:30:28.603771 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 0.878454 (* 0.0272727 = 0.0239578 loss)
I0623 16:30:28.603786 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 0.865628 (* 0.0272727 = 0.023608 loss)
I0623 16:30:28.603801 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 1.04104 (* 0.0272727 = 0.0283919 loss)
I0623 16:30:28.603814 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.612728 (* 0.0272727 = 0.0167108 loss)
I0623 16:30:28.603828 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0348289 (* 0.0272727 = 0.00094988 loss)
I0623 16:30:28.603842 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00743639 (* 0.0272727 = 0.000202811 loss)
I0623 16:30:28.603857 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00197824 (* 0.0272727 = 5.39519e-05 loss)
I0623 16:30:28.603871 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000513801 (* 0.0272727 = 1.40128e-05 loss)
I0623 16:30:28.603886 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000126422 (* 0.0272727 = 3.44788e-06 loss)
I0623 16:30:28.603900 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 3.6719e-05 (* 0.0272727 = 1.00143e-06 loss)
I0623 16:30:28.603912 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.591398
I0623 16:30:28.603925 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0623 16:30:28.603937 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 1
I0623 16:30:28.603948 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.875
I0623 16:30:28.603960 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625
I0623 16:30:28.603972 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0623 16:30:28.603983 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375
I0623 16:30:28.603996 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5
I0623 16:30:28.604007 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.375
I0623 16:30:28.604018 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.375
I0623 16:30:28.604029 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.25
I0623 16:30:28.604041 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.5
I0623 16:30:28.604053 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.625
I0623 16:30:28.604064 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.75
I0623 16:30:28.604075 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.75
I0623 16:30:28.604087 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.75
I0623 16:30:28.604099 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875
I0623 16:30:28.604110 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 16:30:28.604121 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 16:30:28.604133 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 16:30:28.604145 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 16:30:28.604156 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 16:30:28.604167 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 16:30:28.604178 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.772727
I0623 16:30:28.604197 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.88172
I0623 16:30:28.604210 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.19882 (* 0.3 = 0.359645 loss)
I0623 16:30:28.604224 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.665486 (* 0.3 = 0.199646 loss)
I0623 16:30:28.604238 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.284842 (* 0.0272727 = 0.00776843 loss)
I0623 16:30:28.604252 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.0837156 (* 0.0272727 = 0.00228315 loss)
I0623 16:30:28.604277 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.46297 (* 0.0272727 = 0.0126264 loss)
I0623 16:30:28.604292 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.50091 (* 0.0272727 = 0.0409339 loss)
I0623 16:30:28.604306 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.28822 (* 0.0272727 = 0.0351333 loss)
I0623 16:30:28.604321 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.40879 (* 0.0272727 = 0.0384215 loss)
I0623 16:30:28.604334 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.7337 (* 0.0272727 = 0.0472826 loss)
I0623 16:30:28.604348 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 2.04861 (* 0.0272727 = 0.0558712 loss)
I0623 16:30:28.604362 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.42889 (* 0.0272727 = 0.0389699 loss)
I0623 16:30:28.604375 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.28764 (* 0.0272727 = 0.0351174 loss)
I0623 16:30:28.604389 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.423 (* 0.0272727 = 0.038809 loss)
I0623 16:30:28.604403 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.13419 (* 0.0272727 = 0.0309325 loss)
I0623 16:30:28.604416 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 0.714474 (* 0.0272727 = 0.0194857 loss)
I0623 16:30:28.604430 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 0.871151 (* 0.0272727 = 0.0237587 loss)
I0623 16:30:28.604444 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.781869 (* 0.0272727 = 0.0213237 loss)
I0623 16:30:28.604459 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.516202 (* 0.0272727 = 0.0140782 loss)
I0623 16:30:28.604471 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0160319 (* 0.0272727 = 0.000437233 loss)
I0623 16:30:28.604485 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0019126 (* 0.0272727 = 5.21618e-05 loss)
I0623 16:30:28.604501 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000800948 (* 0.0272727 = 2.1844e-05 loss)
I0623 16:30:28.604514 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000231675 (* 0.0272727 = 6.3184e-06 loss)
I0623 16:30:28.604528 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000181545 (* 0.0272727 = 4.95122e-06 loss)
I0623 16:30:28.604539 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000146656 (* 0.0272727 = 3.99971e-06 loss)
I0623 16:30:28.604547 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.827957
I0623 16:30:28.604560 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 16:30:28.604573 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 16:30:28.604584 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 16:30:28.604596 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 16:30:28.604607 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0623 16:30:28.604619 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0623 16:30:28.604629 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0623 16:30:28.604640 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0623 16:30:28.604651 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75
I0623 16:30:28.604663 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0623 16:30:28.604674 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.625
I0623 16:30:28.604686 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.75
I0623 16:30:28.604697 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0623 16:30:28.604708 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0623 16:30:28.604719 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875
I0623 16:30:28.604730 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875
I0623 16:30:28.604751 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 16:30:28.604764 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 16:30:28.604776 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 16:30:28.604787 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 16:30:28.604799 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 16:30:28.604810 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 16:30:28.604821 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.903409
I0623 16:30:28.604832 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1
I0623 16:30:28.604846 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.424685 (* 1 = 0.424685 loss)
I0623 16:30:28.604859 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.242343 (* 1 = 0.242343 loss)
I0623 16:30:28.604873 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.023922 (* 0.0909091 = 0.00217473 loss)
I0623 16:30:28.604887 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0277651 (* 0.0909091 = 0.0025241 loss)
I0623 16:30:28.604902 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0849593 (* 0.0909091 = 0.00772357 loss)
I0623 16:30:28.604915 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.057655 (* 0.0909091 = 0.00524136 loss)
I0623 16:30:28.604929 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.0723471 (* 0.0909091 = 0.00657701 loss)
I0623 16:30:28.604943 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.127385 (* 0.0909091 = 0.0115805 loss)
I0623 16:30:28.604956 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.179361 (* 0.0909091 = 0.0163056 loss)
I0623 16:30:28.604969 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.292653 (* 0.0909091 = 0.0266048 loss)
I0623 16:30:28.604982 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.809077 (* 0.0909091 = 0.0735524 loss)
I0623 16:30:28.604996 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.705206 (* 0.0909091 = 0.0641097 loss)
I0623 16:30:28.605010 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 0.786393 (* 0.0909091 = 0.0714903 loss)
I0623 16:30:28.605023 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 0.581398 (* 0.0909091 = 0.0528544 loss)
I0623 16:30:28.605036 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 0.338749 (* 0.0909091 = 0.0307954 loss)
I0623 16:30:28.605051 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.292125 (* 0.0909091 = 0.0265568 loss)
I0623 16:30:28.605064 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.411417 (* 0.0909091 = 0.0374015 loss)
I0623 16:30:28.605077 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.204928 (* 0.0909091 = 0.0186298 loss)
I0623 16:30:28.605092 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0108389 (* 0.0909091 = 0.000985358 loss)
I0623 16:30:28.605105 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000966391 (* 0.0909091 = 8.78537e-05 loss)
I0623 16:30:28.605119 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000126899 (* 0.0909091 = 1.15363e-05 loss)
I0623 16:30:28.605134 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 5.63329e-05 (* 0.0909091 = 5.12118e-06 loss)
I0623 16:30:28.605147 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 1.94916e-05 (* 0.0909091 = 1.77196e-06 loss)
I0623 16:30:28.605161 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 2.32024e-05 (* 0.0909091 = 2.10931e-06 loss)
I0623 16:30:28.605175 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.375
I0623 16:30:28.605185 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375
I0623 16:30:28.605197 10365 solver.cpp:245] Train net output #149: total_confidence = 0.210835
I0623 16:30:28.605219 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.147144
I0623 16:30:28.605239 10365 sgd_solver.cpp:106] Iteration 10500, lr = 0.001
I0623 16:30:48.127117 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.4909 > 30) by scale factor 0.9839
I0623 16:32:03.246161 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 36.4885 > 30) by scale factor 0.822176
I0623 16:36:51.758781 10365 solver.cpp:229] Iteration 11000, loss = 4.52815
I0623 16:36:51.758922 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4625
I0623 16:36:51.758944 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0623 16:36:51.758956 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75
I0623 16:36:51.758970 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0623 16:36:51.758982 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0623 16:36:51.758994 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0623 16:36:51.759007 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75
I0623 16:36:51.759019 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5
I0623 16:36:51.759032 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0623 16:36:51.759045 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.625
I0623 16:36:51.759057 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.625
I0623 16:36:51.759070 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0623 16:36:51.759083 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.625
I0623 16:36:51.759094 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875
I0623 16:36:51.759105 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875
I0623 16:36:51.759117 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.75
I0623 16:36:51.759130 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.75
I0623 16:36:51.759141 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 16:36:51.759152 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 16:36:51.759165 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 16:36:51.759176 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 16:36:51.759187 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 16:36:51.759198 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 16:36:51.759210 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.744318
I0623 16:36:51.759222 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.8125
I0623 16:36:51.759239 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.4564 (* 0.3 = 0.436919 loss)
I0623 16:36:51.759253 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.692674 (* 0.3 = 0.207802 loss)
I0623 16:36:51.759271 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.439044 (* 0.0272727 = 0.0119739 loss)
I0623 16:36:51.759286 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 0.904371 (* 0.0272727 = 0.0246647 loss)
I0623 16:36:51.759299 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.01481 (* 0.0272727 = 0.0276767 loss)
I0623 16:36:51.759313 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 2.17318 (* 0.0272727 = 0.0592686 loss)
I0623 16:36:51.759327 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 1.44038 (* 0.0272727 = 0.0392831 loss)
I0623 16:36:51.759341 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 1.11727 (* 0.0272727 = 0.030471 loss)
I0623 16:36:51.759356 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.25985 (* 0.0272727 = 0.0343597 loss)
I0623 16:36:51.759368 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 0.402099 (* 0.0272727 = 0.0109663 loss)
I0623 16:36:51.759382 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.61591 (* 0.0272727 = 0.0440701 loss)
I0623 16:36:51.759397 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.20607 (* 0.0272727 = 0.0328928 loss)
I0623 16:36:51.759410 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 0.869026 (* 0.0272727 = 0.0237007 loss)
I0623 16:36:51.759423 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.25632 (* 0.0272727 = 0.0342632 loss)
I0623 16:36:51.759455 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 0.563433 (* 0.0272727 = 0.0153664 loss)
I0623 16:36:51.759470 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 0.594583 (* 0.0272727 = 0.0162159 loss)
I0623 16:36:51.759485 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.693661 (* 0.0272727 = 0.018918 loss)
I0623 16:36:51.759500 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.867401 (* 0.0272727 = 0.0236564 loss)
I0623 16:36:51.759513 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0174819 (* 0.0272727 = 0.000476778 loss)
I0623 16:36:51.759527 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00554597 (* 0.0272727 = 0.000151254 loss)
I0623 16:36:51.759541 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00145996 (* 0.0272727 = 3.98172e-05 loss)
I0623 16:36:51.759555 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000469959 (* 0.0272727 = 1.28171e-05 loss)
I0623 16:36:51.759569 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000473097 (* 0.0272727 = 1.29027e-05 loss)
I0623 16:36:51.759583 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000149324 (* 0.0272727 = 4.07247e-06 loss)
I0623 16:36:51.759606 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.625
I0623 16:36:51.759621 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0623 16:36:51.759634 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0623 16:36:51.759645 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.875
I0623 16:36:51.759656 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 1
I0623 16:36:51.759668 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0623 16:36:51.759680 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0623 16:36:51.759690 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0623 16:36:51.759702 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0623 16:36:51.759713 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.5
I0623 16:36:51.759724 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.5
I0623 16:36:51.759737 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.625
I0623 16:36:51.759747 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875
I0623 16:36:51.759758 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.75
I0623 16:36:51.759769 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875
I0623 16:36:51.759780 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.75
I0623 16:36:51.759793 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.75
I0623 16:36:51.759804 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 16:36:51.759814 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 16:36:51.759825 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 16:36:51.759836 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 16:36:51.759848 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 16:36:51.759860 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 16:36:51.759871 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.8125
I0623 16:36:51.759881 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.85
I0623 16:36:51.759896 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.14542 (* 0.3 = 0.343625 loss)
I0623 16:36:51.759908 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.561101 (* 0.3 = 0.16833 loss)
I0623 16:36:51.759922 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.0185273 (* 0.0272727 = 0.000505291 loss)
I0623 16:36:51.759939 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.641501 (* 0.0272727 = 0.0174955 loss)
I0623 16:36:51.759966 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.441964 (* 0.0272727 = 0.0120536 loss)
I0623 16:36:51.759981 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 0.588651 (* 0.0272727 = 0.0160541 loss)
I0623 16:36:51.759994 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.01523 (* 0.0272727 = 0.027688 loss)
I0623 16:36:51.760009 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.34773 (* 0.0272727 = 0.0367562 loss)
I0623 16:36:51.760021 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.09926 (* 0.0272727 = 0.0299798 loss)
I0623 16:36:51.760035 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 0.311083 (* 0.0272727 = 0.00848408 loss)
I0623 16:36:51.760049 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.3194 (* 0.0272727 = 0.0359836 loss)
I0623 16:36:51.760063 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.60414 (* 0.0272727 = 0.0437492 loss)
I0623 16:36:51.760076 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.07306 (* 0.0272727 = 0.0292652 loss)
I0623 16:36:51.760090 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 0.810996 (* 0.0272727 = 0.0221181 loss)
I0623 16:36:51.760104 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 0.421194 (* 0.0272727 = 0.0114871 loss)
I0623 16:36:51.760118 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 0.359911 (* 0.0272727 = 0.00981576 loss)
I0623 16:36:51.760133 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 1.11798 (* 0.0272727 = 0.0304905 loss)
I0623 16:36:51.760146 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 1.12606 (* 0.0272727 = 0.0307108 loss)
I0623 16:36:51.760160 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0115497 (* 0.0272727 = 0.000314993 loss)
I0623 16:36:51.760174 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00114349 (* 0.0272727 = 3.11862e-05 loss)
I0623 16:36:51.760188 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000185766 (* 0.0272727 = 5.06635e-06 loss)
I0623 16:36:51.760202 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 1.54383e-05 (* 0.0272727 = 4.21045e-07 loss)
I0623 16:36:51.760216 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 1.83285e-06 (* 0.0272727 = 4.99869e-08 loss)
I0623 16:36:51.760231 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 1.04308e-07 (* 0.0272727 = 2.84477e-09 loss)
I0623 16:36:51.760243 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.85
I0623 16:36:51.760256 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 16:36:51.760267 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 16:36:51.760279 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 16:36:51.760290 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 16:36:51.760301 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0623 16:36:51.760315 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0623 16:36:51.760327 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0623 16:36:51.760339 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0623 16:36:51.760351 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0623 16:36:51.760362 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.625
I0623 16:36:51.760375 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0623 16:36:51.760386 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875
I0623 16:36:51.760397 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.75
I0623 16:36:51.760409 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875
I0623 16:36:51.760421 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.75
I0623 16:36:51.760432 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875
I0623 16:36:51.760453 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 16:36:51.760467 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 16:36:51.760478 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 16:36:51.760489 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 16:36:51.760501 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 16:36:51.760512 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 16:36:51.760524 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.926136
I0623 16:36:51.760535 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.9875
I0623 16:36:51.760550 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.501931 (* 1 = 0.501931 loss)
I0623 16:36:51.760563 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.245108 (* 1 = 0.245108 loss)
I0623 16:36:51.760577 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0104423 (* 0.0909091 = 0.000949302 loss)
I0623 16:36:51.760592 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0274545 (* 0.0909091 = 0.00249587 loss)
I0623 16:36:51.760606 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0191145 (* 0.0909091 = 0.00173769 loss)
I0623 16:36:51.760619 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0349495 (* 0.0909091 = 0.00317723 loss)
I0623 16:36:51.760633 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.142307 (* 0.0909091 = 0.012937 loss)
I0623 16:36:51.760648 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.916304 (* 0.0909091 = 0.0833003 loss)
I0623 16:36:51.760661 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.242287 (* 0.0909091 = 0.0220261 loss)
I0623 16:36:51.760675 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0711855 (* 0.0909091 = 0.00647141 loss)
I0623 16:36:51.760689 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.404164 (* 0.0909091 = 0.0367422 loss)
I0623 16:36:51.760704 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.983387 (* 0.0909091 = 0.0893988 loss)
I0623 16:36:51.760717 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 0.381993 (* 0.0909091 = 0.0347267 loss)
I0623 16:36:51.760727 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 0.457131 (* 0.0909091 = 0.0415574 loss)
I0623 16:36:51.760736 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 0.439277 (* 0.0909091 = 0.0399343 loss)
I0623 16:36:51.760751 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.444153 (* 0.0909091 = 0.0403775 loss)
I0623 16:36:51.760764 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 1.07206 (* 0.0909091 = 0.0974597 loss)
I0623 16:36:51.760778 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.442986 (* 0.0909091 = 0.0402714 loss)
I0623 16:36:51.760792 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0672896 (* 0.0909091 = 0.00611724 loss)
I0623 16:36:51.760805 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00544372 (* 0.0909091 = 0.000494884 loss)
I0623 16:36:51.760818 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00119896 (* 0.0909091 = 0.000108996 loss)
I0623 16:36:51.760833 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000692605 (* 0.0909091 = 6.29641e-05 loss)
I0623 16:36:51.760846 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000128231 (* 0.0909091 = 1.16574e-05 loss)
I0623 16:36:51.760859 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 4.15747e-06 (* 0.0909091 = 3.77952e-07 loss)
I0623 16:36:51.760871 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.625
I0623 16:36:51.760884 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5
I0623 16:36:51.760895 10365 solver.cpp:245] Train net output #149: total_confidence = 0.374347
I0623 16:36:51.760915 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.347628
I0623 16:36:51.760929 10365 sgd_solver.cpp:106] Iteration 11000, lr = 0.001
I0623 16:38:56.191293 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.9704 > 30) by scale factor 0.938369
I0623 16:40:07.387783 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.7891 > 30) by scale factor 0.943721
I0623 16:40:19.644819 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.3621 > 30) by scale factor 0.988073
I0623 16:40:48.723675 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 49.211 > 30) by scale factor 0.609619
I0623 16:43:14.692836 10365 solver.cpp:229] Iteration 11500, loss = 4.64708
I0623 16:43:14.692957 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.423423
I0623 16:43:14.692978 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 1
I0623 16:43:14.692992 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0623 16:43:14.693006 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0
I0623 16:43:14.693019 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0623 16:43:14.693032 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0623 16:43:14.693044 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.25
I0623 16:43:14.693058 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.25
I0623 16:43:14.693069 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0623 16:43:14.693083 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.25
I0623 16:43:14.693094 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.25
I0623 16:43:14.693106 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.375
I0623 16:43:14.693120 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.25
I0623 16:43:14.693131 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.5
I0623 16:43:14.693143 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.375
I0623 16:43:14.693156 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.375
I0623 16:43:14.693166 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.75
I0623 16:43:14.693178 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875
I0623 16:43:14.693191 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 16:43:14.693202 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 16:43:14.693213 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 16:43:14.693225 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 16:43:14.693236 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 16:43:14.693248 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.630682
I0623 16:43:14.693262 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.792793
I0623 16:43:14.693280 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.6412 (* 0.3 = 0.49236 loss)
I0623 16:43:14.693295 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.06558 (* 0.3 = 0.319673 loss)
I0623 16:43:14.693310 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.136911 (* 0.0272727 = 0.00373395 loss)
I0623 16:43:14.693325 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 1.43704 (* 0.0272727 = 0.039192 loss)
I0623 16:43:14.693339 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 2.71603 (* 0.0272727 = 0.0740735 loss)
I0623 16:43:14.693353 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.71055 (* 0.0272727 = 0.0466515 loss)
I0623 16:43:14.693368 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 2.22205 (* 0.0272727 = 0.0606014 loss)
I0623 16:43:14.693382 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 2.29792 (* 0.0272727 = 0.0626707 loss)
I0623 16:43:14.693395 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.81028 (* 0.0272727 = 0.0493714 loss)
I0623 16:43:14.693409 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.46528 (* 0.0272727 = 0.0399622 loss)
I0623 16:43:14.693423 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 2.10387 (* 0.0272727 = 0.0573782 loss)
I0623 16:43:14.693437 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.95846 (* 0.0272727 = 0.0534126 loss)
I0623 16:43:14.693450 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.9303 (* 0.0272727 = 0.0526445 loss)
I0623 16:43:14.693464 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 2.12011 (* 0.0272727 = 0.0578212 loss)
I0623 16:43:14.693478 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 2.13468 (* 0.0272727 = 0.0582184 loss)
I0623 16:43:14.693509 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 2.13162 (* 0.0272727 = 0.0581351 loss)
I0623 16:43:14.693526 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 1.50085 (* 0.0272727 = 0.0409322 loss)
I0623 16:43:14.693539 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 1.15826 (* 0.0272727 = 0.031589 loss)
I0623 16:43:14.693552 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.385213 (* 0.0272727 = 0.0105058 loss)
I0623 16:43:14.693567 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0612515 (* 0.0272727 = 0.00167049 loss)
I0623 16:43:14.693581 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.020963 (* 0.0272727 = 0.000571719 loss)
I0623 16:43:14.693595 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00298179 (* 0.0272727 = 8.13217e-05 loss)
I0623 16:43:14.693609 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000168466 (* 0.0272727 = 4.59453e-06 loss)
I0623 16:43:14.693624 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 3.41486e-05 (* 0.0272727 = 9.31326e-07 loss)
I0623 16:43:14.693636 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.54955
I0623 16:43:14.693648 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0623 16:43:14.693660 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0623 16:43:14.693671 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.875
I0623 16:43:14.693683 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625
I0623 16:43:14.693694 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.125
I0623 16:43:14.693706 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0623 16:43:14.693717 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.25
I0623 16:43:14.693728 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0623 16:43:14.693740 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.375
I0623 16:43:14.693752 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.375
I0623 16:43:14.693763 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.375
I0623 16:43:14.693774 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.125
I0623 16:43:14.693785 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.375
I0623 16:43:14.693797 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.625
I0623 16:43:14.693809 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.625
I0623 16:43:14.693820 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.625
I0623 16:43:14.693831 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875
I0623 16:43:14.693843 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 16:43:14.693855 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 16:43:14.693866 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 16:43:14.693876 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 16:43:14.693888 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 16:43:14.693899 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.704545
I0623 16:43:14.693912 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.837838
I0623 16:43:14.693925 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.40075 (* 0.3 = 0.420226 loss)
I0623 16:43:14.693939 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.924138 (* 0.3 = 0.277242 loss)
I0623 16:43:14.693954 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.264932 (* 0.0272727 = 0.00722542 loss)
I0623 16:43:14.693969 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.553454 (* 0.0272727 = 0.0150942 loss)
I0623 16:43:14.693999 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.384293 (* 0.0272727 = 0.0104807 loss)
I0623 16:43:14.694013 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 0.914525 (* 0.0272727 = 0.0249416 loss)
I0623 16:43:14.694027 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.80042 (* 0.0272727 = 0.0491023 loss)
I0623 16:43:14.694041 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.31929 (* 0.0272727 = 0.0359807 loss)
I0623 16:43:14.694056 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.50873 (* 0.0272727 = 0.0411472 loss)
I0623 16:43:14.694069 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.2932 (* 0.0272727 = 0.0352692 loss)
I0623 16:43:14.694083 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.91007 (* 0.0272727 = 0.0520929 loss)
I0623 16:43:14.694097 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.55344 (* 0.0272727 = 0.0423665 loss)
I0623 16:43:14.694110 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.96601 (* 0.0272727 = 0.0536184 loss)
I0623 16:43:14.694124 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 2.24199 (* 0.0272727 = 0.0611451 loss)
I0623 16:43:14.694139 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.78208 (* 0.0272727 = 0.0486022 loss)
I0623 16:43:14.694151 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.74805 (* 0.0272727 = 0.047674 loss)
I0623 16:43:14.694165 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 1.32136 (* 0.0272727 = 0.036037 loss)
I0623 16:43:14.694178 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.885852 (* 0.0272727 = 0.0241596 loss)
I0623 16:43:14.694193 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.342473 (* 0.0272727 = 0.00934017 loss)
I0623 16:43:14.694207 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.035168 (* 0.0272727 = 0.000959128 loss)
I0623 16:43:14.694221 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0114018 (* 0.0272727 = 0.000310958 loss)
I0623 16:43:14.694236 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00491493 (* 0.0272727 = 0.000134044 loss)
I0623 16:43:14.694249 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00426184 (* 0.0272727 = 0.000116232 loss)
I0623 16:43:14.694262 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000318865 (* 0.0272727 = 8.69631e-06 loss)
I0623 16:43:14.694274 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.810811
I0623 16:43:14.694286 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 16:43:14.694298 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 16:43:14.694309 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 16:43:14.694324 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 16:43:14.694335 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0623 16:43:14.694347 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0623 16:43:14.694358 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0623 16:43:14.694370 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0623 16:43:14.694381 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75
I0623 16:43:14.694393 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75
I0623 16:43:14.694404 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.625
I0623 16:43:14.694416 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.375
I0623 16:43:14.694427 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.625
I0623 16:43:14.694438 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.5
I0623 16:43:14.694450 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.75
I0623 16:43:14.694461 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.75
I0623 16:43:14.694488 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.875
I0623 16:43:14.694500 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 16:43:14.694511 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 16:43:14.694524 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 16:43:14.694535 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 16:43:14.694545 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 16:43:14.694557 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.863636
I0623 16:43:14.694568 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.963964
I0623 16:43:14.694582 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.555946 (* 1 = 0.555946 loss)
I0623 16:43:14.694596 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.385645 (* 1 = 0.385645 loss)
I0623 16:43:14.694609 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.112282 (* 0.0909091 = 0.0102075 loss)
I0623 16:43:14.694623 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0966811 (* 0.0909091 = 0.00878919 loss)
I0623 16:43:14.694638 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0702422 (* 0.0909091 = 0.00638565 loss)
I0623 16:43:14.694650 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.139635 (* 0.0909091 = 0.0126941 loss)
I0623 16:43:14.694664 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.776243 (* 0.0909091 = 0.0705676 loss)
I0623 16:43:14.694677 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.17173 (* 0.0909091 = 0.0156118 loss)
I0623 16:43:14.694691 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.447207 (* 0.0909091 = 0.0406552 loss)
I0623 16:43:14.694705 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.268661 (* 0.0909091 = 0.0244237 loss)
I0623 16:43:14.694717 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 1.02407 (* 0.0909091 = 0.0930974 loss)
I0623 16:43:14.694731 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.660553 (* 0.0909091 = 0.0600502 loss)
I0623 16:43:14.694744 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 0.829719 (* 0.0909091 = 0.075429 loss)
I0623 16:43:14.694757 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.44653 (* 0.0909091 = 0.131502 loss)
I0623 16:43:14.694772 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 1.16527 (* 0.0909091 = 0.105934 loss)
I0623 16:43:14.694784 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 1.38038 (* 0.0909091 = 0.125489 loss)
I0623 16:43:14.694798 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.694915 (* 0.0909091 = 0.0631741 loss)
I0623 16:43:14.694811 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.481077 (* 0.0909091 = 0.0437343 loss)
I0623 16:43:14.694825 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.420824 (* 0.0909091 = 0.0382567 loss)
I0623 16:43:14.694839 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0525545 (* 0.0909091 = 0.00477768 loss)
I0623 16:43:14.694852 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00294314 (* 0.0909091 = 0.000267558 loss)
I0623 16:43:14.694867 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000599568 (* 0.0909091 = 5.45062e-05 loss)
I0623 16:43:14.694881 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000321309 (* 0.0909091 = 2.92099e-05 loss)
I0623 16:43:14.694895 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 1.82245e-05 (* 0.0909091 = 1.65678e-06 loss)
I0623 16:43:14.694907 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0623 16:43:14.694919 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0623 16:43:14.694931 10365 solver.cpp:245] Train net output #149: total_confidence = 0.103027
I0623 16:43:14.694952 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.118955
I0623 16:43:14.694967 10365 sgd_solver.cpp:106] Iteration 11500, lr = 0.001
I0623 16:44:04.047317 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.3448 > 30) by scale factor 0.988637
I0623 16:44:20.112308 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 35.102 > 30) by scale factor 0.854652
I0623 16:45:19.842679 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.2993 > 30) by scale factor 0.990121
I0623 16:49:37.670214 10365 solver.cpp:229] Iteration 12000, loss = 4.52634
I0623 16:49:37.670316 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.460177
I0623 16:49:37.670336 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 1
I0623 16:49:37.670349 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0623 16:49:37.670362 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0623 16:49:37.670375 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0623 16:49:37.670387 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0623 16:49:37.670399 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.125
I0623 16:49:37.670413 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5
I0623 16:49:37.670426 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.375
I0623 16:49:37.670439 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.5
I0623 16:49:37.670450 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.375
I0623 16:49:37.670464 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.25
I0623 16:49:37.670475 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.25
I0623 16:49:37.670488 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.375
I0623 16:49:37.670500 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.5
I0623 16:49:37.670511 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.625
I0623 16:49:37.670523 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.625
I0623 16:49:37.670536 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875
I0623 16:49:37.670547 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 16:49:37.670558 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 16:49:37.670569 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 16:49:37.670580 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 16:49:37.670593 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 16:49:37.670603 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.642045
I0623 16:49:37.670615 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.690265
I0623 16:49:37.670632 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.75543 (* 0.3 = 0.526629 loss)
I0623 16:49:37.670647 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.16629 (* 0.3 = 0.349887 loss)
I0623 16:49:37.670662 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.16921 (* 0.0272727 = 0.00461482 loss)
I0623 16:49:37.670676 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 1.63819 (* 0.0272727 = 0.044678 loss)
I0623 16:49:37.670691 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 2.08875 (* 0.0272727 = 0.0569658 loss)
I0623 16:49:37.670704 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.931 (* 0.0272727 = 0.0526637 loss)
I0623 16:49:37.670718 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 2.5953 (* 0.0272727 = 0.0707809 loss)
I0623 16:49:37.670732 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 2.48174 (* 0.0272727 = 0.0676839 loss)
I0623 16:49:37.670745 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.67417 (* 0.0272727 = 0.0456592 loss)
I0623 16:49:37.670759 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 2.32456 (* 0.0272727 = 0.0633971 loss)
I0623 16:49:37.670773 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.99803 (* 0.0272727 = 0.0544919 loss)
I0623 16:49:37.670786 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 2.03548 (* 0.0272727 = 0.0555131 loss)
I0623 16:49:37.670800 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 2.03702 (* 0.0272727 = 0.055555 loss)
I0623 16:49:37.670814 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 2.27031 (* 0.0272727 = 0.0619176 loss)
I0623 16:49:37.670846 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 2.06598 (* 0.0272727 = 0.056345 loss)
I0623 16:49:37.670861 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.44897 (* 0.0272727 = 0.0395174 loss)
I0623 16:49:37.670874 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 1.75902 (* 0.0272727 = 0.0479734 loss)
I0623 16:49:37.670888 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 1.10108 (* 0.0272727 = 0.0300295 loss)
I0623 16:49:37.670902 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.706438 (* 0.0272727 = 0.0192665 loss)
I0623 16:49:37.670915 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0544418 (* 0.0272727 = 0.00148478 loss)
I0623 16:49:37.670929 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.016769 (* 0.0272727 = 0.000457337 loss)
I0623 16:49:37.670943 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00752112 (* 0.0272727 = 0.000205121 loss)
I0623 16:49:37.670958 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00194064 (* 0.0272727 = 5.29265e-05 loss)
I0623 16:49:37.670971 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000561589 (* 0.0272727 = 1.53161e-05 loss)
I0623 16:49:37.670984 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.433628
I0623 16:49:37.670995 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0623 16:49:37.671007 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0623 16:49:37.671018 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75
I0623 16:49:37.671030 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0623 16:49:37.671041 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25
I0623 16:49:37.671052 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.125
I0623 16:49:37.671063 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.375
I0623 16:49:37.671074 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.25
I0623 16:49:37.671085 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.375
I0623 16:49:37.671097 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.625
I0623 16:49:37.671108 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.5
I0623 16:49:37.671119 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.5
I0623 16:49:37.671134 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.375
I0623 16:49:37.671146 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.75
I0623 16:49:37.671157 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.625
I0623 16:49:37.671169 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.5
I0623 16:49:37.671180 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875
I0623 16:49:37.671191 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 16:49:37.671202 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 16:49:37.671214 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 16:49:37.671226 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 16:49:37.671237 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 16:49:37.671248 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.636364
I0623 16:49:37.671260 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.725664
I0623 16:49:37.671273 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.69091 (* 0.3 = 0.507274 loss)
I0623 16:49:37.671288 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 1.11145 (* 0.3 = 0.333435 loss)
I0623 16:49:37.671301 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.73391 (* 0.0272727 = 0.0200157 loss)
I0623 16:49:37.671315 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.960113 (* 0.0272727 = 0.0261849 loss)
I0623 16:49:37.671345 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 1.4012 (* 0.0272727 = 0.0382146 loss)
I0623 16:49:37.671361 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.46361 (* 0.0272727 = 0.0399168 loss)
I0623 16:49:37.671375 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 2.61199 (* 0.0272727 = 0.0712362 loss)
I0623 16:49:37.671388 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 2.29654 (* 0.0272727 = 0.062633 loss)
I0623 16:49:37.671402 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.81873 (* 0.0272727 = 0.0496017 loss)
I0623 16:49:37.671416 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 2.14243 (* 0.0272727 = 0.05843 loss)
I0623 16:49:37.671429 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.7842 (* 0.0272727 = 0.04866 loss)
I0623 16:49:37.671442 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 2.17458 (* 0.0272727 = 0.0593066 loss)
I0623 16:49:37.671455 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.94219 (* 0.0272727 = 0.0529687 loss)
I0623 16:49:37.671469 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.70852 (* 0.0272727 = 0.0465959 loss)
I0623 16:49:37.671479 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 2.04199 (* 0.0272727 = 0.0556906 loss)
I0623 16:49:37.671489 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.18702 (* 0.0272727 = 0.0323733 loss)
I0623 16:49:37.671502 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 1.84987 (* 0.0272727 = 0.0504509 loss)
I0623 16:49:37.671516 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 1.54393 (* 0.0272727 = 0.0421071 loss)
I0623 16:49:37.671530 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.788862 (* 0.0272727 = 0.0215144 loss)
I0623 16:49:37.671545 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0387418 (* 0.0272727 = 0.00105659 loss)
I0623 16:49:37.671557 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0101359 (* 0.0272727 = 0.000276433 loss)
I0623 16:49:37.671571 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00145732 (* 0.0272727 = 3.97451e-05 loss)
I0623 16:49:37.671586 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000579242 (* 0.0272727 = 1.57975e-05 loss)
I0623 16:49:37.671612 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000187417 (* 0.0272727 = 5.11138e-06 loss)
I0623 16:49:37.671627 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.761062
I0623 16:49:37.671638 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0623 16:49:37.671650 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 16:49:37.671661 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 16:49:37.671672 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 16:49:37.671684 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0623 16:49:37.671695 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0623 16:49:37.671706 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0623 16:49:37.671717 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0623 16:49:37.671728 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0623 16:49:37.671739 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75
I0623 16:49:37.671751 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.75
I0623 16:49:37.671762 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875
I0623 16:49:37.671773 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.5
I0623 16:49:37.671784 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.5
I0623 16:49:37.671795 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.5
I0623 16:49:37.671808 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.625
I0623 16:49:37.671830 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 16:49:37.671843 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 16:49:37.671854 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 16:49:37.671865 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 16:49:37.671876 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 16:49:37.671887 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 16:49:37.671898 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.835227
I0623 16:49:37.671911 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.946903
I0623 16:49:37.671923 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.806652 (* 1 = 0.806652 loss)
I0623 16:49:37.671937 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.547894 (* 1 = 0.547894 loss)
I0623 16:49:37.671952 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.634492 (* 0.0909091 = 0.0576811 loss)
I0623 16:49:37.671965 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0702586 (* 0.0909091 = 0.00638714 loss)
I0623 16:49:37.671979 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.248632 (* 0.0909091 = 0.0226029 loss)
I0623 16:49:37.671993 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0507668 (* 0.0909091 = 0.00461516 loss)
I0623 16:49:37.672008 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.908621 (* 0.0909091 = 0.0826019 loss)
I0623 16:49:37.672021 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.272386 (* 0.0909091 = 0.0247624 loss)
I0623 16:49:37.672034 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.828241 (* 0.0909091 = 0.0752946 loss)
I0623 16:49:37.672049 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.890719 (* 0.0909091 = 0.0809745 loss)
I0623 16:49:37.672061 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.695628 (* 0.0909091 = 0.0632389 loss)
I0623 16:49:37.672075 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 1.0149 (* 0.0909091 = 0.0922639 loss)
I0623 16:49:37.672088 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 1.10254 (* 0.0909091 = 0.100231 loss)
I0623 16:49:37.672102 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.07221 (* 0.0909091 = 0.0974739 loss)
I0623 16:49:37.672116 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 1.33645 (* 0.0909091 = 0.121496 loss)
I0623 16:49:37.672129 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 1.47575 (* 0.0909091 = 0.134159 loss)
I0623 16:49:37.672143 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 1.4838 (* 0.0909091 = 0.134891 loss)
I0623 16:49:37.672158 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 1.15384 (* 0.0909091 = 0.104894 loss)
I0623 16:49:37.672170 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.23616 (* 0.0909091 = 0.0214691 loss)
I0623 16:49:37.672188 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0948308 (* 0.0909091 = 0.00862098 loss)
I0623 16:49:37.672202 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00928817 (* 0.0909091 = 0.000844379 loss)
I0623 16:49:37.672216 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00312469 (* 0.0909091 = 0.000284063 loss)
I0623 16:49:37.672230 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00101282 (* 0.0909091 = 9.20747e-05 loss)
I0623 16:49:37.672245 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 9.14792e-05 (* 0.0909091 = 8.31629e-06 loss)
I0623 16:49:37.672257 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.25
I0623 16:49:37.672268 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375
I0623 16:49:37.672281 10365 solver.cpp:245] Train net output #149: total_confidence = 0.0847843
I0623 16:49:37.672302 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.0518543
I0623 16:49:37.672317 10365 sgd_solver.cpp:106] Iteration 12000, lr = 0.001
I0623 16:50:39.387656 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 40.0707 > 30) by scale factor 0.748677
I0623 16:51:06.195912 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.571 > 30) by scale factor 0.981321
I0623 16:51:42.217351 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.0581 > 30) by scale factor 0.998068
I0623 16:52:12.141832 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 36.3044 > 30) by scale factor 0.826347
I0623 16:52:50.448083 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 34.6394 > 30) by scale factor 0.866067
I0623 16:54:13.208590 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 42.3364 > 30) by scale factor 0.70861
I0623 16:54:42.327561 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.0705 > 30) by scale factor 0.997654
I0623 16:56:00.881510 10365 solver.cpp:229] Iteration 12500, loss = 4.49231
I0623 16:56:00.881603 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.454545
I0623 16:56:00.881623 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 1
I0623 16:56:00.881635 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0623 16:56:00.881650 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0623 16:56:00.881662 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0623 16:56:00.881675 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0623 16:56:00.881687 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0623 16:56:00.881700 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0623 16:56:00.881713 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625
I0623 16:56:00.881726 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.5
I0623 16:56:00.881738 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.375
I0623 16:56:00.881750 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.5
I0623 16:56:00.881763 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.375
I0623 16:56:00.881775 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.625
I0623 16:56:00.881788 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.625
I0623 16:56:00.881798 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.75
I0623 16:56:00.881810 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.75
I0623 16:56:00.881821 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.75
I0623 16:56:00.881834 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 0.75
I0623 16:56:00.881845 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 16:56:00.881857 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 16:56:00.881868 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 16:56:00.881880 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 16:56:00.881892 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.681818
I0623 16:56:00.881903 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.818182
I0623 16:56:00.881927 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.51407 (* 0.3 = 0.454222 loss)
I0623 16:56:00.881940 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.89882 (* 0.3 = 0.269646 loss)
I0623 16:56:00.881956 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.34974 (* 0.0272727 = 0.00953835 loss)
I0623 16:56:00.881970 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 0.901743 (* 0.0272727 = 0.024593 loss)
I0623 16:56:00.881984 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.55412 (* 0.0272727 = 0.042385 loss)
I0623 16:56:00.881999 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.96021 (* 0.0272727 = 0.0534602 loss)
I0623 16:56:00.882012 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 1.29869 (* 0.0272727 = 0.0354189 loss)
I0623 16:56:00.882026 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 2.13008 (* 0.0272727 = 0.0580931 loss)
I0623 16:56:00.882040 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.18126 (* 0.0272727 = 0.0322161 loss)
I0623 16:56:00.882053 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.03106 (* 0.0272727 = 0.0281197 loss)
I0623 16:56:00.882069 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.6607 (* 0.0272727 = 0.0452919 loss)
I0623 16:56:00.882084 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.46395 (* 0.0272727 = 0.0399258 loss)
I0623 16:56:00.882098 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.29819 (* 0.0272727 = 0.0354053 loss)
I0623 16:56:00.882112 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.60281 (* 0.0272727 = 0.0437131 loss)
I0623 16:56:00.882144 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.22672 (* 0.0272727 = 0.033456 loss)
I0623 16:56:00.882159 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.27059 (* 0.0272727 = 0.0346524 loss)
I0623 16:56:00.882174 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.743815 (* 0.0272727 = 0.0202859 loss)
I0623 16:56:00.882187 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.943332 (* 0.0272727 = 0.0257272 loss)
I0623 16:56:00.882200 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 1.34065 (* 0.0272727 = 0.0365632 loss)
I0623 16:56:00.882213 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 1.28968 (* 0.0272727 = 0.0351731 loss)
I0623 16:56:00.882228 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0114037 (* 0.0272727 = 0.000311011 loss)
I0623 16:56:00.882242 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000826226 (* 0.0272727 = 2.25334e-05 loss)
I0623 16:56:00.882256 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000104424 (* 0.0272727 = 2.84792e-06 loss)
I0623 16:56:00.882271 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 3.37974e-05 (* 0.0272727 = 9.21747e-07 loss)
I0623 16:56:00.882282 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.525253
I0623 16:56:00.882294 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0623 16:56:00.882307 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 1
I0623 16:56:00.882318 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 1
I0623 16:56:00.882329 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0623 16:56:00.882340 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25
I0623 16:56:00.882352 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0623 16:56:00.882364 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.375
I0623 16:56:00.882376 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625
I0623 16:56:00.882387 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.625
I0623 16:56:00.882400 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.25
I0623 16:56:00.882411 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.75
I0623 16:56:00.882422 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.5
I0623 16:56:00.882433 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.375
I0623 16:56:00.882444 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.625
I0623 16:56:00.882457 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.625
I0623 16:56:00.882467 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.75
I0623 16:56:00.882479 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.625
I0623 16:56:00.882490 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 0.75
I0623 16:56:00.882501 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 16:56:00.882513 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 16:56:00.882524 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 16:56:00.882535 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 16:56:00.882547 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.721591
I0623 16:56:00.882558 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.808081
I0623 16:56:00.882572 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.37026 (* 0.3 = 0.411078 loss)
I0623 16:56:00.882586 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.805218 (* 0.3 = 0.241565 loss)
I0623 16:56:00.882599 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.34969 (* 0.0272727 = 0.009537 loss)
I0623 16:56:00.882613 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.167659 (* 0.0272727 = 0.00457251 loss)
I0623 16:56:00.882638 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.54512 (* 0.0272727 = 0.0148669 loss)
I0623 16:56:00.882653 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.01428 (* 0.0272727 = 0.0276623 loss)
I0623 16:56:00.882668 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 2.05698 (* 0.0272727 = 0.0560994 loss)
I0623 16:56:00.882681 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.61018 (* 0.0272727 = 0.0439139 loss)
I0623 16:56:00.882695 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.44854 (* 0.0272727 = 0.0395057 loss)
I0623 16:56:00.882709 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.13734 (* 0.0272727 = 0.0310183 loss)
I0623 16:56:00.882722 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.60361 (* 0.0272727 = 0.0437348 loss)
I0623 16:56:00.882736 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.49372 (* 0.0272727 = 0.0407378 loss)
I0623 16:56:00.882750 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 0.927388 (* 0.0272727 = 0.0252924 loss)
I0623 16:56:00.882763 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.70964 (* 0.0272727 = 0.0466266 loss)
I0623 16:56:00.882776 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.53219 (* 0.0272727 = 0.0417871 loss)
I0623 16:56:00.882791 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.24755 (* 0.0272727 = 0.0340242 loss)
I0623 16:56:00.882803 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 1.13972 (* 0.0272727 = 0.0310832 loss)
I0623 16:56:00.882817 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.738118 (* 0.0272727 = 0.0201305 loss)
I0623 16:56:00.882830 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 1.26818 (* 0.0272727 = 0.0345868 loss)
I0623 16:56:00.882844 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 1.02597 (* 0.0272727 = 0.0279809 loss)
I0623 16:56:00.882858 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00917371 (* 0.0272727 = 0.000250192 loss)
I0623 16:56:00.882872 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000871216 (* 0.0272727 = 2.37604e-05 loss)
I0623 16:56:00.882886 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 7.9822e-05 (* 0.0272727 = 2.17696e-06 loss)
I0623 16:56:00.882900 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 2.1444e-05 (* 0.0272727 = 5.84837e-07 loss)
I0623 16:56:00.882912 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.818182
I0623 16:56:00.882925 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 16:56:00.882936 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 16:56:00.882948 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 16:56:00.882964 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 16:56:00.882977 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0623 16:56:00.882987 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0623 16:56:00.882999 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0623 16:56:00.883010 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0623 16:56:00.883023 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75
I0623 16:56:00.883033 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.625
I0623 16:56:00.883045 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.75
I0623 16:56:00.883056 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875
I0623 16:56:00.883069 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0623 16:56:00.883080 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.625
I0623 16:56:00.883090 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.625
I0623 16:56:00.883103 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.75
I0623 16:56:00.883127 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.75
I0623 16:56:00.883141 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 0.75
I0623 16:56:00.883153 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 16:56:00.883164 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 16:56:00.883175 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 16:56:00.883188 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 16:56:00.883198 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.892045
I0623 16:56:00.883210 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.929293
I0623 16:56:00.883224 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.626364 (* 1 = 0.626364 loss)
I0623 16:56:00.883237 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.364681 (* 1 = 0.364681 loss)
I0623 16:56:00.883251 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0226147 (* 0.0909091 = 0.00205588 loss)
I0623 16:56:00.883265 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0271061 (* 0.0909091 = 0.00246419 loss)
I0623 16:56:00.883280 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0585525 (* 0.0909091 = 0.00532296 loss)
I0623 16:56:00.883293 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.067429 (* 0.0909091 = 0.00612991 loss)
I0623 16:56:00.883307 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 1.46406 (* 0.0909091 = 0.133096 loss)
I0623 16:56:00.883321 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.091514 (* 0.0909091 = 0.00831945 loss)
I0623 16:56:00.883334 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.0902642 (* 0.0909091 = 0.00820583 loss)
I0623 16:56:00.883348 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.197236 (* 0.0909091 = 0.0179306 loss)
I0623 16:56:00.883363 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.474311 (* 0.0909091 = 0.0431192 loss)
I0623 16:56:00.883376 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.64602 (* 0.0909091 = 0.0587291 loss)
I0623 16:56:00.883389 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 0.866394 (* 0.0909091 = 0.0787631 loss)
I0623 16:56:00.883404 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 0.807648 (* 0.0909091 = 0.0734226 loss)
I0623 16:56:00.883417 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 0.35331 (* 0.0909091 = 0.0321191 loss)
I0623 16:56:00.883430 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.950096 (* 0.0909091 = 0.0863724 loss)
I0623 16:56:00.883445 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.876865 (* 0.0909091 = 0.079715 loss)
I0623 16:56:00.883457 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 1.04649 (* 0.0909091 = 0.0951358 loss)
I0623 16:56:00.883471 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.803938 (* 0.0909091 = 0.0730853 loss)
I0623 16:56:00.883486 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.861179 (* 0.0909091 = 0.078289 loss)
I0623 16:56:00.883499 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0226982 (* 0.0909091 = 0.00206347 loss)
I0623 16:56:00.883513 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00575558 (* 0.0909091 = 0.000523234 loss)
I0623 16:56:00.883527 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00100878 (* 0.0909091 = 9.17071e-05 loss)
I0623 16:56:00.883541 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000111299 (* 0.0909091 = 1.01181e-05 loss)
I0623 16:56:00.883553 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.375
I0623 16:56:00.883565 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0623 16:56:00.883576 10365 solver.cpp:245] Train net output #149: total_confidence = 0.260875
I0623 16:56:00.883611 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.251353
I0623 16:56:00.883630 10365 sgd_solver.cpp:106] Iteration 12500, lr = 0.001
I0623 16:58:30.644220 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 35.0449 > 30) by scale factor 0.856045
I0623 17:02:23.938454 10365 solver.cpp:229] Iteration 13000, loss = 4.56353
I0623 17:02:23.938544 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.356436
I0623 17:02:23.938562 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0623 17:02:23.938575 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0623 17:02:23.938588 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0623 17:02:23.938601 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.125
I0623 17:02:23.938614 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0623 17:02:23.938627 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0623 17:02:23.938639 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5
I0623 17:02:23.938652 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625
I0623 17:02:23.938663 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.25
I0623 17:02:23.938676 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.5
I0623 17:02:23.938688 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.375
I0623 17:02:23.938701 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.375
I0623 17:02:23.938714 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.625
I0623 17:02:23.938724 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.5
I0623 17:02:23.938736 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.5
I0623 17:02:23.938748 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.75
I0623 17:02:23.938760 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875
I0623 17:02:23.938771 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 0.875
I0623 17:02:23.938783 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 0.875
I0623 17:02:23.938796 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 0.875
I0623 17:02:23.938807 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 17:02:23.938818 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 17:02:23.938829 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.590909
I0623 17:02:23.938841 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.712871
I0623 17:02:23.938858 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.85997 (* 0.3 = 0.557991 loss)
I0623 17:02:23.938873 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.18275 (* 0.3 = 0.354824 loss)
I0623 17:02:23.938887 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.734833 (* 0.0272727 = 0.0200409 loss)
I0623 17:02:23.938900 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 1.09891 (* 0.0272727 = 0.0299704 loss)
I0623 17:02:23.938915 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 2.26292 (* 0.0272727 = 0.0617159 loss)
I0623 17:02:23.938927 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.54657 (* 0.0272727 = 0.0421791 loss)
I0623 17:02:23.938941 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 2.60146 (* 0.0272727 = 0.0709489 loss)
I0623 17:02:23.938956 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 1.60786 (* 0.0272727 = 0.0438507 loss)
I0623 17:02:23.938969 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.93875 (* 0.0272727 = 0.052875 loss)
I0623 17:02:23.938982 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.65408 (* 0.0272727 = 0.0451113 loss)
I0623 17:02:23.938997 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.88198 (* 0.0272727 = 0.0513268 loss)
I0623 17:02:23.939009 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.45347 (* 0.0272727 = 0.0396402 loss)
I0623 17:02:23.939023 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.5872 (* 0.0272727 = 0.0432873 loss)
I0623 17:02:23.939038 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.63028 (* 0.0272727 = 0.0444622 loss)
I0623 17:02:23.939069 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.35205 (* 0.0272727 = 0.036874 loss)
I0623 17:02:23.939085 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.65626 (* 0.0272727 = 0.0451706 loss)
I0623 17:02:23.939097 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 1.59847 (* 0.0272727 = 0.0435946 loss)
I0623 17:02:23.939111 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.770556 (* 0.0272727 = 0.0210152 loss)
I0623 17:02:23.939136 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.425662 (* 0.0272727 = 0.011609 loss)
I0623 17:02:23.939163 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.2381 (* 0.0272727 = 0.00649365 loss)
I0623 17:02:23.939180 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.489116 (* 0.0272727 = 0.0133395 loss)
I0623 17:02:23.939194 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.383576 (* 0.0272727 = 0.0104612 loss)
I0623 17:02:23.939209 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00308424 (* 0.0272727 = 8.41158e-05 loss)
I0623 17:02:23.939224 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000516253 (* 0.0272727 = 1.40796e-05 loss)
I0623 17:02:23.939235 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.504951
I0623 17:02:23.939247 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0623 17:02:23.939260 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0623 17:02:23.939271 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375
I0623 17:02:23.939282 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.75
I0623 17:02:23.939294 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0623 17:02:23.939306 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0623 17:02:23.939316 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5
I0623 17:02:23.939328 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625
I0623 17:02:23.939339 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.625
I0623 17:02:23.939352 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.5
I0623 17:02:23.939363 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.5
I0623 17:02:23.939374 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.25
I0623 17:02:23.939385 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.5
I0623 17:02:23.939398 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.625
I0623 17:02:23.939409 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.625
I0623 17:02:23.939420 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.75
I0623 17:02:23.939431 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875
I0623 17:02:23.939442 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 0.875
I0623 17:02:23.939453 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 0.875
I0623 17:02:23.939465 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 0.875
I0623 17:02:23.939477 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 17:02:23.939488 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 17:02:23.939499 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.693182
I0623 17:02:23.939512 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.811881
I0623 17:02:23.939525 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.4448 (* 0.3 = 0.43344 loss)
I0623 17:02:23.939539 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.920838 (* 0.3 = 0.276251 loss)
I0623 17:02:23.939553 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.29178 (* 0.0272727 = 0.00795763 loss)
I0623 17:02:23.939568 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.600669 (* 0.0272727 = 0.0163819 loss)
I0623 17:02:23.939594 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 2.57627 (* 0.0272727 = 0.0702618 loss)
I0623 17:02:23.939625 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 0.865708 (* 0.0272727 = 0.0236102 loss)
I0623 17:02:23.939638 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.94965 (* 0.0272727 = 0.0531722 loss)
I0623 17:02:23.939652 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.68062 (* 0.0272727 = 0.0458352 loss)
I0623 17:02:23.939666 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.49599 (* 0.0272727 = 0.0407997 loss)
I0623 17:02:23.939679 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.24403 (* 0.0272727 = 0.033928 loss)
I0623 17:02:23.939693 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.62951 (* 0.0272727 = 0.0444411 loss)
I0623 17:02:23.939707 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.52166 (* 0.0272727 = 0.0414998 loss)
I0623 17:02:23.939721 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.47785 (* 0.0272727 = 0.0403049 loss)
I0623 17:02:23.939734 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.59805 (* 0.0272727 = 0.0435833 loss)
I0623 17:02:23.939749 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.2795 (* 0.0272727 = 0.0348955 loss)
I0623 17:02:23.939762 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.31954 (* 0.0272727 = 0.0359873 loss)
I0623 17:02:23.939775 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 1.35727 (* 0.0272727 = 0.0370164 loss)
I0623 17:02:23.939790 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.644564 (* 0.0272727 = 0.017579 loss)
I0623 17:02:23.939803 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.621562 (* 0.0272727 = 0.0169517 loss)
I0623 17:02:23.939817 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.435038 (* 0.0272727 = 0.0118647 loss)
I0623 17:02:23.939831 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.550726 (* 0.0272727 = 0.0150198 loss)
I0623 17:02:23.939844 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.658926 (* 0.0272727 = 0.0179707 loss)
I0623 17:02:23.939859 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.0286293 (* 0.0272727 = 0.000780799 loss)
I0623 17:02:23.939873 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00713939 (* 0.0272727 = 0.000194711 loss)
I0623 17:02:23.939885 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.851485
I0623 17:02:23.939898 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 17:02:23.939908 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0623 17:02:23.939920 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875
I0623 17:02:23.939932 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 17:02:23.939944 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0623 17:02:23.939955 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0623 17:02:23.939966 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0623 17:02:23.939977 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0623 17:02:23.939990 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0623 17:02:23.940001 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75
I0623 17:02:23.940012 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.625
I0623 17:02:23.940023 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.5
I0623 17:02:23.940034 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.5
I0623 17:02:23.940047 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.625
I0623 17:02:23.940057 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.75
I0623 17:02:23.940068 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.75
I0623 17:02:23.940093 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.75
I0623 17:02:23.940105 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 0.875
I0623 17:02:23.940117 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 0.875
I0623 17:02:23.940129 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 0.875
I0623 17:02:23.940140 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 17:02:23.940151 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 17:02:23.940162 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.903409
I0623 17:02:23.940174 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.940594
I0623 17:02:23.940191 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.580624 (* 1 = 0.580624 loss)
I0623 17:02:23.940207 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.371603 (* 1 = 0.371603 loss)
I0623 17:02:23.940220 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0623311 (* 0.0909091 = 0.00566646 loss)
I0623 17:02:23.940234 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.159669 (* 0.0909091 = 0.0145154 loss)
I0623 17:02:23.940248 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.658661 (* 0.0909091 = 0.0598783 loss)
I0623 17:02:23.940261 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0810581 (* 0.0909091 = 0.00736892 loss)
I0623 17:02:23.940275 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.164657 (* 0.0909091 = 0.0149689 loss)
I0623 17:02:23.940289 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.456321 (* 0.0909091 = 0.0414838 loss)
I0623 17:02:23.940302 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.0639302 (* 0.0909091 = 0.00581184 loss)
I0623 17:02:23.940316 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.218851 (* 0.0909091 = 0.0198956 loss)
I0623 17:02:23.940330 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.447448 (* 0.0909091 = 0.0406771 loss)
I0623 17:02:23.940343 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.569987 (* 0.0909091 = 0.051817 loss)
I0623 17:02:23.940356 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 0.919186 (* 0.0909091 = 0.0835624 loss)
I0623 17:02:23.940371 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.20239 (* 0.0909091 = 0.109309 loss)
I0623 17:02:23.940383 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 1.18645 (* 0.0909091 = 0.107859 loss)
I0623 17:02:23.940397 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 1.06881 (* 0.0909091 = 0.0971648 loss)
I0623 17:02:23.940412 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 1.06483 (* 0.0909091 = 0.0968028 loss)
I0623 17:02:23.940424 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.491227 (* 0.0909091 = 0.044657 loss)
I0623 17:02:23.940438 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.685921 (* 0.0909091 = 0.0623565 loss)
I0623 17:02:23.940451 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.367355 (* 0.0909091 = 0.0333959 loss)
I0623 17:02:23.940465 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.432365 (* 0.0909091 = 0.0393059 loss)
I0623 17:02:23.940479 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.361712 (* 0.0909091 = 0.0328829 loss)
I0623 17:02:23.940492 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00141603 (* 0.0909091 = 0.00012873 loss)
I0623 17:02:23.940507 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000235236 (* 0.0909091 = 2.13851e-05 loss)
I0623 17:02:23.940520 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.25
I0623 17:02:23.940531 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0623 17:02:23.940542 10365 solver.cpp:245] Train net output #149: total_confidence = 0.207359
I0623 17:02:23.940563 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.203442
I0623 17:02:23.940578 10365 sgd_solver.cpp:106] Iteration 13000, lr = 0.001
I0623 17:06:05.680428 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 40.5556 > 30) by scale factor 0.739726
I0623 17:07:35.340976 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 44.3485 > 30) by scale factor 0.676461
I0623 17:07:58.323185 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.0766 > 30) by scale factor 0.965356
I0623 17:08:07.513934 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 42.1793 > 30) by scale factor 0.711249
I0623 17:08:46.991204 10365 solver.cpp:229] Iteration 13500, loss = 4.41842
I0623 17:08:46.991327 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.493671
I0623 17:08:46.991346 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0623 17:08:46.991360 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75
I0623 17:08:46.991374 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0623 17:08:46.991386 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0623 17:08:46.991399 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0623 17:08:46.991411 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0623 17:08:46.991423 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0623 17:08:46.991436 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0623 17:08:46.991448 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.5
I0623 17:08:46.991461 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.5
I0623 17:08:46.991472 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.625
I0623 17:08:46.991484 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.75
I0623 17:08:46.991497 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.625
I0623 17:08:46.991508 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.625
I0623 17:08:46.991519 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875
I0623 17:08:46.991531 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0623 17:08:46.991544 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 17:08:46.991554 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 17:08:46.991566 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 17:08:46.991577 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 17:08:46.991590 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 17:08:46.991617 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 17:08:46.991632 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.767045
I0623 17:08:46.991644 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.873418
I0623 17:08:46.991660 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.30131 (* 0.3 = 0.390392 loss)
I0623 17:08:46.991675 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.616494 (* 0.3 = 0.184948 loss)
I0623 17:08:46.991689 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.470662 (* 0.0272727 = 0.0128362 loss)
I0623 17:08:46.991703 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 0.861369 (* 0.0272727 = 0.0234919 loss)
I0623 17:08:46.991717 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.3584 (* 0.0272727 = 0.0370473 loss)
I0623 17:08:46.991731 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.087 (* 0.0272727 = 0.0296455 loss)
I0623 17:08:46.991745 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 2.06379 (* 0.0272727 = 0.0562852 loss)
I0623 17:08:46.991758 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 1.24038 (* 0.0272727 = 0.0338285 loss)
I0623 17:08:46.991772 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.49219 (* 0.0272727 = 0.0406961 loss)
I0623 17:08:46.991786 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 0.949796 (* 0.0272727 = 0.0259035 loss)
I0623 17:08:46.991799 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.53658 (* 0.0272727 = 0.0419067 loss)
I0623 17:08:46.991813 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.5903 (* 0.0272727 = 0.0433717 loss)
I0623 17:08:46.991827 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 0.996937 (* 0.0272727 = 0.0271892 loss)
I0623 17:08:46.991842 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 0.952825 (* 0.0272727 = 0.0259861 loss)
I0623 17:08:46.991873 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.13091 (* 0.0272727 = 0.0308431 loss)
I0623 17:08:46.991888 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 0.842102 (* 0.0272727 = 0.0229664 loss)
I0623 17:08:46.991902 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.605672 (* 0.0272727 = 0.0165183 loss)
I0623 17:08:46.991916 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00724254 (* 0.0272727 = 0.000197524 loss)
I0623 17:08:46.991931 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00089125 (* 0.0272727 = 2.43068e-05 loss)
I0623 17:08:46.991945 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 8.60887e-05 (* 0.0272727 = 2.34787e-06 loss)
I0623 17:08:46.991960 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 3.59689e-05 (* 0.0272727 = 9.8097e-07 loss)
I0623 17:08:46.991973 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 3.3975e-06 (* 0.0272727 = 9.26592e-08 loss)
I0623 17:08:46.991987 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 1.92226e-06 (* 0.0272727 = 5.24253e-08 loss)
I0623 17:08:46.992002 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 2.68221e-07 (* 0.0272727 = 7.31512e-09 loss)
I0623 17:08:46.992014 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.632911
I0623 17:08:46.992027 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0623 17:08:46.992038 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0623 17:08:46.992049 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 1
I0623 17:08:46.992060 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.875
I0623 17:08:46.992072 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0623 17:08:46.992084 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875
I0623 17:08:46.992095 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0623 17:08:46.992107 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0623 17:08:46.992118 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.375
I0623 17:08:46.992130 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.5
I0623 17:08:46.992141 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.625
I0623 17:08:46.992153 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.625
I0623 17:08:46.992164 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875
I0623 17:08:46.992177 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875
I0623 17:08:46.992187 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875
I0623 17:08:46.992199 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0623 17:08:46.992210 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 17:08:46.992221 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 17:08:46.992233 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 17:08:46.992244 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 17:08:46.992256 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 17:08:46.992270 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 17:08:46.992281 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.818182
I0623 17:08:46.992293 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.886076
I0623 17:08:46.992307 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.07734 (* 0.3 = 0.323201 loss)
I0623 17:08:46.992321 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.527907 (* 0.3 = 0.158372 loss)
I0623 17:08:46.992334 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.115498 (* 0.0272727 = 0.00314995 loss)
I0623 17:08:46.992352 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.47737 (* 0.0272727 = 0.0130192 loss)
I0623 17:08:46.992378 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.382497 (* 0.0272727 = 0.0104317 loss)
I0623 17:08:46.992393 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 0.570017 (* 0.0272727 = 0.0155459 loss)
I0623 17:08:46.992408 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.39008 (* 0.0272727 = 0.0379114 loss)
I0623 17:08:46.992421 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 0.680459 (* 0.0272727 = 0.018558 loss)
I0623 17:08:46.992434 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 0.83461 (* 0.0272727 = 0.0227621 loss)
I0623 17:08:46.992449 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.29737 (* 0.0272727 = 0.0353828 loss)
I0623 17:08:46.992462 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.90324 (* 0.0272727 = 0.0519065 loss)
I0623 17:08:46.992475 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.95626 (* 0.0272727 = 0.0533524 loss)
I0623 17:08:46.992489 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.10226 (* 0.0272727 = 0.0300616 loss)
I0623 17:08:46.992503 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 0.903734 (* 0.0272727 = 0.0246473 loss)
I0623 17:08:46.992516 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 0.713086 (* 0.0272727 = 0.0194478 loss)
I0623 17:08:46.992530 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 0.681021 (* 0.0272727 = 0.0185733 loss)
I0623 17:08:46.992543 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.476224 (* 0.0272727 = 0.0129879 loss)
I0623 17:08:46.992558 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0148979 (* 0.0272727 = 0.000406308 loss)
I0623 17:08:46.992571 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0023977 (* 0.0272727 = 6.53917e-05 loss)
I0623 17:08:46.992585 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000242876 (* 0.0272727 = 6.62389e-06 loss)
I0623 17:08:46.992599 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 2.51251e-05 (* 0.0272727 = 6.85229e-07 loss)
I0623 17:08:46.992612 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 1.16979e-05 (* 0.0272727 = 3.19034e-07 loss)
I0623 17:08:46.992626 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 4.05318e-06 (* 0.0272727 = 1.10541e-07 loss)
I0623 17:08:46.992640 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 5.36442e-07 (* 0.0272727 = 1.46302e-08 loss)
I0623 17:08:46.992652 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.911392
I0623 17:08:46.992666 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 17:08:46.992676 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 17:08:46.992688 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 17:08:46.992699 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 17:08:46.992710 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0623 17:08:46.992722 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0623 17:08:46.992733 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0623 17:08:46.992744 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0623 17:08:46.992756 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0623 17:08:46.992768 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75
I0623 17:08:46.992779 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875
I0623 17:08:46.992790 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.75
I0623 17:08:46.992802 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.75
I0623 17:08:46.992813 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.75
I0623 17:08:46.992825 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875
I0623 17:08:46.992846 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0623 17:08:46.992859 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 17:08:46.992871 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 17:08:46.992882 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 17:08:46.992894 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 17:08:46.992905 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 17:08:46.992916 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 17:08:46.992928 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.960227
I0623 17:08:46.992939 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.987342
I0623 17:08:46.992954 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.337426 (* 1 = 0.337426 loss)
I0623 17:08:46.992967 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.155006 (* 1 = 0.155006 loss)
I0623 17:08:46.992981 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0177278 (* 0.0909091 = 0.00161162 loss)
I0623 17:08:46.992995 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0261488 (* 0.0909091 = 0.00237717 loss)
I0623 17:08:46.993010 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0190429 (* 0.0909091 = 0.00173117 loss)
I0623 17:08:46.993023 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0606323 (* 0.0909091 = 0.00551202 loss)
I0623 17:08:46.993036 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.235178 (* 0.0909091 = 0.0213798 loss)
I0623 17:08:46.993051 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.0481128 (* 0.0909091 = 0.0043739 loss)
I0623 17:08:46.993063 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.415632 (* 0.0909091 = 0.0377847 loss)
I0623 17:08:46.993077 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.80269 (* 0.0909091 = 0.0729718 loss)
I0623 17:08:46.993090 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.411909 (* 0.0909091 = 0.0374463 loss)
I0623 17:08:46.993104 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 1.24926 (* 0.0909091 = 0.113569 loss)
I0623 17:08:46.993118 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 0.367425 (* 0.0909091 = 0.0334022 loss)
I0623 17:08:46.993131 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 0.416134 (* 0.0909091 = 0.0378304 loss)
I0623 17:08:46.993144 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 0.668186 (* 0.0909091 = 0.0607442 loss)
I0623 17:08:46.993158 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.459282 (* 0.0909091 = 0.0417529 loss)
I0623 17:08:46.993171 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.356034 (* 0.0909091 = 0.0323668 loss)
I0623 17:08:46.993185 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00503363 (* 0.0909091 = 0.000457603 loss)
I0623 17:08:46.993198 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00020704 (* 0.0909091 = 1.88218e-05 loss)
I0623 17:08:46.993212 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 4.54813e-05 (* 0.0909091 = 4.13467e-06 loss)
I0623 17:08:46.993227 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 8.65767e-06 (* 0.0909091 = 7.87061e-07 loss)
I0623 17:08:46.993240 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 9.03021e-06 (* 0.0909091 = 8.20928e-07 loss)
I0623 17:08:46.993254 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 9.96904e-06 (* 0.0909091 = 9.06276e-07 loss)
I0623 17:08:46.993268 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 1.08779e-06 (* 0.0909091 = 9.88898e-08 loss)
I0623 17:08:46.993279 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.625
I0623 17:08:46.993291 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375
I0623 17:08:46.993315 10365 solver.cpp:245] Train net output #149: total_confidence = 0.385994
I0623 17:08:46.993330 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.388949
I0623 17:08:46.993342 10365 sgd_solver.cpp:106] Iteration 13500, lr = 0.001
I0623 17:10:58.324808 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 33.5131 > 30) by scale factor 0.895173
I0623 17:13:23.921828 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 37.0036 > 30) by scale factor 0.810731
I0623 17:14:45.901037 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 33.0999 > 30) by scale factor 0.906348
I0623 17:15:10.055840 10365 solver.cpp:229] Iteration 14000, loss = 4.47865
I0623 17:15:10.055915 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.422018
I0623 17:15:10.055934 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 1
I0623 17:15:10.055948 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75
I0623 17:15:10.055961 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.75
I0623 17:15:10.055974 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.625
I0623 17:15:10.055986 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0623 17:15:10.055999 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.25
I0623 17:15:10.056012 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.375
I0623 17:15:10.056025 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.125
I0623 17:15:10.056038 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.25
I0623 17:15:10.056051 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.25
I0623 17:15:10.056063 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.375
I0623 17:15:10.056077 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.625
I0623 17:15:10.056088 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.625
I0623 17:15:10.056099 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.5
I0623 17:15:10.056114 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.625
I0623 17:15:10.056126 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.5
I0623 17:15:10.056138 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 17:15:10.056149 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 17:15:10.056161 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 17:15:10.056174 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 17:15:10.056185 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 17:15:10.056196 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 17:15:10.056208 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.625
I0623 17:15:10.056219 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.770642
I0623 17:15:10.056236 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.74202 (* 0.3 = 0.522605 loss)
I0623 17:15:10.056252 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.12538 (* 0.3 = 0.337615 loss)
I0623 17:15:10.056265 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.490115 (* 0.0272727 = 0.0133668 loss)
I0623 17:15:10.056279 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 1.32523 (* 0.0272727 = 0.0361426 loss)
I0623 17:15:10.056293 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.22265 (* 0.0272727 = 0.0333449 loss)
I0623 17:15:10.056308 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.39272 (* 0.0272727 = 0.0379834 loss)
I0623 17:15:10.056326 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 2.59087 (* 0.0272727 = 0.07066 loss)
I0623 17:15:10.056341 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 2.18838 (* 0.0272727 = 0.059683 loss)
I0623 17:15:10.056354 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.91904 (* 0.0272727 = 0.0523374 loss)
I0623 17:15:10.056368 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 2.6264 (* 0.0272727 = 0.071629 loss)
I0623 17:15:10.056382 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.70826 (* 0.0272727 = 0.046589 loss)
I0623 17:15:10.056396 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 2.30424 (* 0.0272727 = 0.0628429 loss)
I0623 17:15:10.056411 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.98266 (* 0.0272727 = 0.0540726 loss)
I0623 17:15:10.056423 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.23324 (* 0.0272727 = 0.0336338 loss)
I0623 17:15:10.056469 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.20013 (* 0.0272727 = 0.0327308 loss)
I0623 17:15:10.056484 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.74951 (* 0.0272727 = 0.0477139 loss)
I0623 17:15:10.056499 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.892686 (* 0.0272727 = 0.024346 loss)
I0623 17:15:10.056512 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 1.18568 (* 0.0272727 = 0.0323366 loss)
I0623 17:15:10.056526 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.142273 (* 0.0272727 = 0.00388019 loss)
I0623 17:15:10.056541 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.034059 (* 0.0272727 = 0.000928881 loss)
I0623 17:15:10.056555 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00802562 (* 0.0272727 = 0.00021888 loss)
I0623 17:15:10.056569 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00230327 (* 0.0272727 = 6.28164e-05 loss)
I0623 17:15:10.056584 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000523589 (* 0.0272727 = 1.42797e-05 loss)
I0623 17:15:10.056598 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000134901 (* 0.0272727 = 3.67913e-06 loss)
I0623 17:15:10.056610 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.623853
I0623 17:15:10.056622 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0623 17:15:10.056634 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625
I0623 17:15:10.056645 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.875
I0623 17:15:10.056658 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625
I0623 17:15:10.056668 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0623 17:15:10.056680 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.25
I0623 17:15:10.056692 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.375
I0623 17:15:10.056704 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.125
I0623 17:15:10.056715 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.5
I0623 17:15:10.056726 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.125
I0623 17:15:10.056738 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.5
I0623 17:15:10.056749 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.75
I0623 17:15:10.056761 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.5
I0623 17:15:10.056772 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.5
I0623 17:15:10.056783 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.5
I0623 17:15:10.056795 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.625
I0623 17:15:10.056807 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 17:15:10.056818 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 17:15:10.056829 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 17:15:10.056841 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 17:15:10.056852 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 17:15:10.056864 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 17:15:10.056875 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.761364
I0623 17:15:10.056887 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.825688
I0623 17:15:10.056900 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.32556 (* 0.3 = 0.397668 loss)
I0623 17:15:10.056915 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.845688 (* 0.3 = 0.253706 loss)
I0623 17:15:10.056928 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.286714 (* 0.0272727 = 0.00781947 loss)
I0623 17:15:10.056942 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 1.50007 (* 0.0272727 = 0.040911 loss)
I0623 17:15:10.056967 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.603316 (* 0.0272727 = 0.0164541 loss)
I0623 17:15:10.056982 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.08203 (* 0.0272727 = 0.0295099 loss)
I0623 17:15:10.056996 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.55233 (* 0.0272727 = 0.0423362 loss)
I0623 17:15:10.057010 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 2.00194 (* 0.0272727 = 0.0545985 loss)
I0623 17:15:10.057024 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 2.40059 (* 0.0272727 = 0.0654705 loss)
I0623 17:15:10.057037 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.80461 (* 0.0272727 = 0.0492166 loss)
I0623 17:15:10.057051 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.3042 (* 0.0272727 = 0.035569 loss)
I0623 17:15:10.057065 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 2.18593 (* 0.0272727 = 0.0596162 loss)
I0623 17:15:10.057078 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.53451 (* 0.0272727 = 0.0418504 loss)
I0623 17:15:10.057091 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.14194 (* 0.0272727 = 0.0311438 loss)
I0623 17:15:10.057106 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.17471 (* 0.0272727 = 0.0320376 loss)
I0623 17:15:10.057119 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.13836 (* 0.0272727 = 0.0310461 loss)
I0623 17:15:10.057132 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.872707 (* 0.0272727 = 0.0238011 loss)
I0623 17:15:10.057147 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.922972 (* 0.0272727 = 0.025172 loss)
I0623 17:15:10.057163 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0148237 (* 0.0272727 = 0.000404283 loss)
I0623 17:15:10.057178 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00180797 (* 0.0272727 = 4.93082e-05 loss)
I0623 17:15:10.057193 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000382672 (* 0.0272727 = 1.04365e-05 loss)
I0623 17:15:10.057206 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000174773 (* 0.0272727 = 4.76655e-06 loss)
I0623 17:15:10.057220 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000277712 (* 0.0272727 = 7.57396e-06 loss)
I0623 17:15:10.057235 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000166982 (* 0.0272727 = 4.55406e-06 loss)
I0623 17:15:10.057246 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.807339
I0623 17:15:10.057258 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 17:15:10.057270 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0623 17:15:10.057281 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 17:15:10.057293 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 17:15:10.057304 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0623 17:15:10.057317 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0623 17:15:10.057327 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0623 17:15:10.057339 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0623 17:15:10.057351 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.5
I0623 17:15:10.057363 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.5
I0623 17:15:10.057379 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.625
I0623 17:15:10.057390 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.75
I0623 17:15:10.057402 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.625
I0623 17:15:10.057415 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875
I0623 17:15:10.057426 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.5
I0623 17:15:10.057448 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.625
I0623 17:15:10.057461 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 17:15:10.057472 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 17:15:10.057484 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 17:15:10.057497 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 17:15:10.057509 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 17:15:10.057520 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 17:15:10.057533 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.880682
I0623 17:15:10.057543 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.981651
I0623 17:15:10.057557 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.580686 (* 1 = 0.580686 loss)
I0623 17:15:10.057571 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.366701 (* 1 = 0.366701 loss)
I0623 17:15:10.057585 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.164812 (* 0.0909091 = 0.0149829 loss)
I0623 17:15:10.057600 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.667757 (* 0.0909091 = 0.0607052 loss)
I0623 17:15:10.057613 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.107605 (* 0.0909091 = 0.00978228 loss)
I0623 17:15:10.057627 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.235332 (* 0.0909091 = 0.0213938 loss)
I0623 17:15:10.057641 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.307031 (* 0.0909091 = 0.0279119 loss)
I0623 17:15:10.057656 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.570599 (* 0.0909091 = 0.0518727 loss)
I0623 17:15:10.057668 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.923937 (* 0.0909091 = 0.0839942 loss)
I0623 17:15:10.057682 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.640571 (* 0.0909091 = 0.0582337 loss)
I0623 17:15:10.057696 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 1.12916 (* 0.0909091 = 0.102651 loss)
I0623 17:15:10.057709 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.873837 (* 0.0909091 = 0.0794397 loss)
I0623 17:15:10.057723 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 1.23948 (* 0.0909091 = 0.11268 loss)
I0623 17:15:10.057736 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 0.754054 (* 0.0909091 = 0.0685503 loss)
I0623 17:15:10.057750 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 1.13535 (* 0.0909091 = 0.103214 loss)
I0623 17:15:10.057765 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.623961 (* 0.0909091 = 0.0567237 loss)
I0623 17:15:10.057777 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.915952 (* 0.0909091 = 0.0832684 loss)
I0623 17:15:10.057791 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.546888 (* 0.0909091 = 0.0497171 loss)
I0623 17:15:10.057806 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0337383 (* 0.0909091 = 0.00306712 loss)
I0623 17:15:10.057818 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00326406 (* 0.0909091 = 0.000296733 loss)
I0623 17:15:10.057832 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000845686 (* 0.0909091 = 7.68806e-05 loss)
I0623 17:15:10.057847 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000376596 (* 0.0909091 = 3.4236e-05 loss)
I0623 17:15:10.057862 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 9.37831e-05 (* 0.0909091 = 8.52574e-06 loss)
I0623 17:15:10.057874 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 4.89166e-05 (* 0.0909091 = 4.44696e-06 loss)
I0623 17:15:10.057886 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0623 17:15:10.057898 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0623 17:15:10.057920 10365 solver.cpp:245] Train net output #149: total_confidence = 0.0460726
I0623 17:15:10.057934 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.0279589
I0623 17:15:10.057946 10365 sgd_solver.cpp:106] Iteration 14000, lr = 0.001
I0623 17:15:19.600751 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 48.8729 > 30) by scale factor 0.613837
I0623 17:17:30.564775 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 44.6816 > 30) by scale factor 0.671417
I0623 17:21:33.047780 10365 solver.cpp:229] Iteration 14500, loss = 4.54607
I0623 17:21:33.047876 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.396396
I0623 17:21:33.047895 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0623 17:21:33.047909 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75
I0623 17:21:33.047922 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.125
I0623 17:21:33.047935 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0623 17:21:33.047947 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.125
I0623 17:21:33.047960 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.125
I0623 17:21:33.047972 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.375
I0623 17:21:33.047986 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.125
I0623 17:21:33.047997 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.375
I0623 17:21:33.048009 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.375
I0623 17:21:33.048022 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.375
I0623 17:21:33.048034 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.625
I0623 17:21:33.048046 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.375
I0623 17:21:33.048058 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.5
I0623 17:21:33.048069 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.75
I0623 17:21:33.048081 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.625
I0623 17:21:33.048094 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875
I0623 17:21:33.048105 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 0.875
I0623 17:21:33.048120 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 17:21:33.048133 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 17:21:33.048146 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 17:21:33.048156 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 17:21:33.048168 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.596591
I0623 17:21:33.048179 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.774775
I0623 17:21:33.048197 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.75397 (* 0.3 = 0.526192 loss)
I0623 17:21:33.048212 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.18 (* 0.3 = 0.353999 loss)
I0623 17:21:33.048226 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.612364 (* 0.0272727 = 0.0167008 loss)
I0623 17:21:33.048240 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 0.946152 (* 0.0272727 = 0.0258041 loss)
I0623 17:21:33.048254 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 2.69753 (* 0.0272727 = 0.0735691 loss)
I0623 17:21:33.048267 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 2.47203 (* 0.0272727 = 0.067419 loss)
I0623 17:21:33.048281 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 3.06654 (* 0.0272727 = 0.0836329 loss)
I0623 17:21:33.048295 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 2.00795 (* 0.0272727 = 0.0547624 loss)
I0623 17:21:33.048310 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 2.01568 (* 0.0272727 = 0.054973 loss)
I0623 17:21:33.048323 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 2.6923 (* 0.0272727 = 0.0734264 loss)
I0623 17:21:33.048337 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 2.07022 (* 0.0272727 = 0.0564606 loss)
I0623 17:21:33.048351 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.98509 (* 0.0272727 = 0.0541388 loss)
I0623 17:21:33.048364 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.62614 (* 0.0272727 = 0.0443492 loss)
I0623 17:21:33.048378 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.43982 (* 0.0272727 = 0.0392677 loss)
I0623 17:21:33.048413 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 2.21834 (* 0.0272727 = 0.0605001 loss)
I0623 17:21:33.048429 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.23821 (* 0.0272727 = 0.0337694 loss)
I0623 17:21:33.048442 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 1.69569 (* 0.0272727 = 0.0462462 loss)
I0623 17:21:33.048456 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.90872 (* 0.0272727 = 0.0247833 loss)
I0623 17:21:33.048470 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.5742 (* 0.0272727 = 0.01566 loss)
I0623 17:21:33.048485 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.624521 (* 0.0272727 = 0.0170324 loss)
I0623 17:21:33.048498 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00501168 (* 0.0272727 = 0.000136682 loss)
I0623 17:21:33.048512 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00127739 (* 0.0272727 = 3.4838e-05 loss)
I0623 17:21:33.048527 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000937399 (* 0.0272727 = 2.55654e-05 loss)
I0623 17:21:33.048542 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000248698 (* 0.0272727 = 6.78267e-06 loss)
I0623 17:21:33.048553 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.540541
I0623 17:21:33.048566 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0623 17:21:33.048578 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 1
I0623 17:21:33.048589 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5
I0623 17:21:33.048601 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.75
I0623 17:21:33.048612 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0623 17:21:33.048624 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0623 17:21:33.048635 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.25
I0623 17:21:33.048647 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.125
I0623 17:21:33.048660 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.25
I0623 17:21:33.048671 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.5
I0623 17:21:33.048682 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.75
I0623 17:21:33.048693 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.125
I0623 17:21:33.048705 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.25
I0623 17:21:33.048717 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.5
I0623 17:21:33.048728 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.75
I0623 17:21:33.048739 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.75
I0623 17:21:33.048751 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875
I0623 17:21:33.048763 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 0.875
I0623 17:21:33.048774 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 17:21:33.048785 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 17:21:33.048796 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 17:21:33.048807 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 17:21:33.048820 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.704545
I0623 17:21:33.048830 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.837838
I0623 17:21:33.048845 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.30683 (* 0.3 = 0.392048 loss)
I0623 17:21:33.048858 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.864131 (* 0.3 = 0.259239 loss)
I0623 17:21:33.048872 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.513898 (* 0.0272727 = 0.0140154 loss)
I0623 17:21:33.048885 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.267233 (* 0.0272727 = 0.00728818 loss)
I0623 17:21:33.048910 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.732343 (* 0.0272727 = 0.019973 loss)
I0623 17:21:33.048925 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.05662 (* 0.0272727 = 0.028817 loss)
I0623 17:21:33.048939 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.47354 (* 0.0272727 = 0.0401874 loss)
I0623 17:21:33.048954 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.9493 (* 0.0272727 = 0.0531628 loss)
I0623 17:21:33.048967 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.83533 (* 0.0272727 = 0.0500544 loss)
I0623 17:21:33.048981 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 2.44798 (* 0.0272727 = 0.0667632 loss)
I0623 17:21:33.048995 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.91286 (* 0.0272727 = 0.0521688 loss)
I0623 17:21:33.049007 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.83017 (* 0.0272727 = 0.0499137 loss)
I0623 17:21:33.049021 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.60034 (* 0.0272727 = 0.0436457 loss)
I0623 17:21:33.049034 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 2.31992 (* 0.0272727 = 0.0632704 loss)
I0623 17:21:33.049048 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 2.29135 (* 0.0272727 = 0.0624914 loss)
I0623 17:21:33.049062 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 0.990566 (* 0.0272727 = 0.0270154 loss)
I0623 17:21:33.049075 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 1.31986 (* 0.0272727 = 0.0359961 loss)
I0623 17:21:33.049088 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.743633 (* 0.0272727 = 0.0202809 loss)
I0623 17:21:33.049103 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.445779 (* 0.0272727 = 0.0121576 loss)
I0623 17:21:33.049116 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.226735 (* 0.0272727 = 0.00618369 loss)
I0623 17:21:33.049129 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00935476 (* 0.0272727 = 0.00025513 loss)
I0623 17:21:33.049144 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00269293 (* 0.0272727 = 7.34435e-05 loss)
I0623 17:21:33.049157 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00051283 (* 0.0272727 = 1.39863e-05 loss)
I0623 17:21:33.049175 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000121358 (* 0.0272727 = 3.30977e-06 loss)
I0623 17:21:33.049188 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.810811
I0623 17:21:33.049201 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 17:21:33.049211 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 17:21:33.049223 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 17:21:33.049234 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0623 17:21:33.049247 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0623 17:21:33.049257 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0623 17:21:33.049269 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0623 17:21:33.049280 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.5
I0623 17:21:33.049291 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0623 17:21:33.049304 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.625
I0623 17:21:33.049314 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.5
I0623 17:21:33.049325 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.5
I0623 17:21:33.049337 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.25
I0623 17:21:33.049348 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875
I0623 17:21:33.049360 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.625
I0623 17:21:33.049371 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.75
I0623 17:21:33.049392 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.875
I0623 17:21:33.049407 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 17:21:33.049418 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 17:21:33.049430 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 17:21:33.049441 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 17:21:33.049453 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 17:21:33.049464 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.880682
I0623 17:21:33.049476 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.972973
I0623 17:21:33.049489 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.614184 (* 1 = 0.614184 loss)
I0623 17:21:33.049504 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.39858 (* 1 = 0.39858 loss)
I0623 17:21:33.049517 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0210263 (* 0.0909091 = 0.00191149 loss)
I0623 17:21:33.049531 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0213704 (* 0.0909091 = 0.00194276 loss)
I0623 17:21:33.049546 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0539277 (* 0.0909091 = 0.00490252 loss)
I0623 17:21:33.049559 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.766735 (* 0.0909091 = 0.0697032 loss)
I0623 17:21:33.049573 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.196064 (* 0.0909091 = 0.017824 loss)
I0623 17:21:33.049587 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.490421 (* 0.0909091 = 0.0445838 loss)
I0623 17:21:33.049600 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.313654 (* 0.0909091 = 0.028514 loss)
I0623 17:21:33.049614 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 1.22119 (* 0.0909091 = 0.111018 loss)
I0623 17:21:33.049628 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.523083 (* 0.0909091 = 0.047553 loss)
I0623 17:21:33.049641 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 1.28744 (* 0.0909091 = 0.11704 loss)
I0623 17:21:33.049655 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 1.4624 (* 0.0909091 = 0.132945 loss)
I0623 17:21:33.049669 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.62791 (* 0.0909091 = 0.147992 loss)
I0623 17:21:33.049682 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 1.49462 (* 0.0909091 = 0.135874 loss)
I0623 17:21:33.049696 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.894309 (* 0.0909091 = 0.0813008 loss)
I0623 17:21:33.049710 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 1.05277 (* 0.0909091 = 0.0957061 loss)
I0623 17:21:33.049724 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.516391 (* 0.0909091 = 0.0469446 loss)
I0623 17:21:33.049738 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.145954 (* 0.0909091 = 0.0132686 loss)
I0623 17:21:33.049751 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0983883 (* 0.0909091 = 0.00894439 loss)
I0623 17:21:33.049765 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0124972 (* 0.0909091 = 0.00113611 loss)
I0623 17:21:33.049779 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00172688 (* 0.0909091 = 0.000156989 loss)
I0623 17:21:33.049793 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000739196 (* 0.0909091 = 6.71997e-05 loss)
I0623 17:21:33.049808 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 6.29569e-05 (* 0.0909091 = 5.72336e-06 loss)
I0623 17:21:33.049819 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0623 17:21:33.049831 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0
I0623 17:21:33.049842 10365 solver.cpp:245] Train net output #149: total_confidence = 0.0357764
I0623 17:21:33.049865 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.0192301
I0623 17:21:33.049880 10365 sgd_solver.cpp:106] Iteration 14500, lr = 0.001
I0623 17:22:39.306763 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 39.8523 > 30) by scale factor 0.75278
I0623 17:23:29.122648 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 32.9898 > 30) by scale factor 0.909372
I0623 17:24:05.912299 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 39.7546 > 30) by scale factor 0.75463
I0623 17:24:38.109985 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 41.247 > 30) by scale factor 0.727326
I0623 17:25:17.954161 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 106.089 > 30) by scale factor 0.282781
I0623 17:27:55.729800 10365 solver.cpp:338] Iteration 15000, Testing net (#0)
I0623 17:28:52.903836 10365 solver.cpp:393] Test loss: 3.9476
I0623 17:28:52.903957 10365 solver.cpp:406] Test net output #0: loss1/accuracy = 0.513129
I0623 17:28:52.903978 10365 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.933
I0623 17:28:52.903991 10365 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.798
I0623 17:28:52.904006 10365 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.562
I0623 17:28:52.904017 10365 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.474
I0623 17:28:52.904029 10365 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.405
I0623 17:28:52.904042 10365 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.434
I0623 17:28:52.904053 10365 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.406
I0623 17:28:52.904065 10365 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.487
I0623 17:28:52.904078 10365 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.449
I0623 17:28:52.904091 10365 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.412
I0623 17:28:52.904103 10365 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.41
I0623 17:28:52.904115 10365 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.486
I0623 17:28:52.904127 10365 solver.cpp:406] Test net output #13: loss1/accuracy13 = 0.594
I0623 17:28:52.904139 10365 solver.cpp:406] Test net output #14: loss1/accuracy14 = 0.676
I0623 17:28:52.904150 10365 solver.cpp:406] Test net output #15: loss1/accuracy15 = 0.768
I0623 17:28:52.904161 10365 solver.cpp:406] Test net output #16: loss1/accuracy16 = 0.832
I0623 17:28:52.904172 10365 solver.cpp:406] Test net output #17: loss1/accuracy17 = 0.905
I0623 17:28:52.904183 10365 solver.cpp:406] Test net output #18: loss1/accuracy18 = 0.95
I0623 17:28:52.904194 10365 solver.cpp:406] Test net output #19: loss1/accuracy19 = 0.972
I0623 17:28:52.904206 10365 solver.cpp:406] Test net output #20: loss1/accuracy20 = 0.987
I0623 17:28:52.904217 10365 solver.cpp:406] Test net output #21: loss1/accuracy21 = 0.999
I0623 17:28:52.904228 10365 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1
I0623 17:28:52.904239 10365 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.701772
I0623 17:28:52.904252 10365 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.848627
I0623 17:28:52.904270 10365 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.39484 (* 0.3 = 0.418451 loss)
I0623 17:28:52.904285 10365 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.857432 (* 0.3 = 0.257229 loss)
I0623 17:28:52.904300 10365 solver.cpp:406] Test net output #27: loss1/loss01 = 0.308384 (* 0.0272727 = 0.00841047 loss)
I0623 17:28:52.904314 10365 solver.cpp:406] Test net output #28: loss1/loss02 = 0.718276 (* 0.0272727 = 0.0195893 loss)
I0623 17:28:52.904327 10365 solver.cpp:406] Test net output #29: loss1/loss03 = 1.33856 (* 0.0272727 = 0.0365062 loss)
I0623 17:28:52.904341 10365 solver.cpp:406] Test net output #30: loss1/loss04 = 1.53309 (* 0.0272727 = 0.0418116 loss)
I0623 17:28:52.904355 10365 solver.cpp:406] Test net output #31: loss1/loss05 = 1.67412 (* 0.0272727 = 0.0456578 loss)
I0623 17:28:52.904369 10365 solver.cpp:406] Test net output #32: loss1/loss06 = 1.76757 (* 0.0272727 = 0.0482065 loss)
I0623 17:28:52.904382 10365 solver.cpp:406] Test net output #33: loss1/loss07 = 1.79086 (* 0.0272727 = 0.0488416 loss)
I0623 17:28:52.904397 10365 solver.cpp:406] Test net output #34: loss1/loss08 = 1.6213 (* 0.0272727 = 0.0442172 loss)
I0623 17:28:52.904409 10365 solver.cpp:406] Test net output #35: loss1/loss09 = 1.69879 (* 0.0272727 = 0.0463306 loss)
I0623 17:28:52.904422 10365 solver.cpp:406] Test net output #36: loss1/loss10 = 1.7343 (* 0.0272727 = 0.0472992 loss)
I0623 17:28:52.904436 10365 solver.cpp:406] Test net output #37: loss1/loss11 = 1.81281 (* 0.0272727 = 0.0494402 loss)
I0623 17:28:52.904449 10365 solver.cpp:406] Test net output #38: loss1/loss12 = 1.51392 (* 0.0272727 = 0.0412887 loss)
I0623 17:28:52.904481 10365 solver.cpp:406] Test net output #39: loss1/loss13 = 1.22069 (* 0.0272727 = 0.0332915 loss)
I0623 17:28:52.904496 10365 solver.cpp:406] Test net output #40: loss1/loss14 = 0.941574 (* 0.0272727 = 0.0256793 loss)
I0623 17:28:52.904510 10365 solver.cpp:406] Test net output #41: loss1/loss15 = 0.675854 (* 0.0272727 = 0.0184324 loss)
I0623 17:28:52.904523 10365 solver.cpp:406] Test net output #42: loss1/loss16 = 0.514589 (* 0.0272727 = 0.0140342 loss)
I0623 17:28:52.904537 10365 solver.cpp:406] Test net output #43: loss1/loss17 = 0.324097 (* 0.0272727 = 0.00883901 loss)
I0623 17:28:52.904551 10365 solver.cpp:406] Test net output #44: loss1/loss18 = 0.190667 (* 0.0272727 = 0.0052 loss)
I0623 17:28:52.904566 10365 solver.cpp:406] Test net output #45: loss1/loss19 = 0.120566 (* 0.0272727 = 0.00328816 loss)
I0623 17:28:52.904578 10365 solver.cpp:406] Test net output #46: loss1/loss20 = 0.0691191 (* 0.0272727 = 0.00188507 loss)
I0623 17:28:52.904592 10365 solver.cpp:406] Test net output #47: loss1/loss21 = 0.00695473 (* 0.0272727 = 0.000189675 loss)
I0623 17:28:52.904605 10365 solver.cpp:406] Test net output #48: loss1/loss22 = 6.57153e-05 (* 0.0272727 = 1.79223e-06 loss)
I0623 17:28:52.904618 10365 solver.cpp:406] Test net output #49: loss2/accuracy = 0.625939
I0623 17:28:52.904629 10365 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.975
I0623 17:28:52.904640 10365 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.95
I0623 17:28:52.904652 10365 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.87
I0623 17:28:52.904664 10365 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.734
I0623 17:28:52.904675 10365 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.554
I0623 17:28:52.904685 10365 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.511
I0623 17:28:52.904696 10365 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.498
I0623 17:28:52.904707 10365 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.526
I0623 17:28:52.904718 10365 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.494
I0623 17:28:52.904731 10365 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.453
I0623 17:28:52.904742 10365 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.433
I0623 17:28:52.904752 10365 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.518
I0623 17:28:52.904763 10365 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.604
I0623 17:28:52.904774 10365 solver.cpp:406] Test net output #63: loss2/accuracy14 = 0.695
I0623 17:28:52.904785 10365 solver.cpp:406] Test net output #64: loss2/accuracy15 = 0.778
I0623 17:28:52.904796 10365 solver.cpp:406] Test net output #65: loss2/accuracy16 = 0.836
I0623 17:28:52.904808 10365 solver.cpp:406] Test net output #66: loss2/accuracy17 = 0.904
I0623 17:28:52.904819 10365 solver.cpp:406] Test net output #67: loss2/accuracy18 = 0.95
I0623 17:28:52.904829 10365 solver.cpp:406] Test net output #68: loss2/accuracy19 = 0.972
I0623 17:28:52.904840 10365 solver.cpp:406] Test net output #69: loss2/accuracy20 = 0.987
I0623 17:28:52.904851 10365 solver.cpp:406] Test net output #70: loss2/accuracy21 = 0.999
I0623 17:28:52.904863 10365 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1
I0623 17:28:52.904875 10365 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.763
I0623 17:28:52.904886 10365 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.910811
I0623 17:28:52.904899 10365 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 1.06519 (* 0.3 = 0.319558 loss)
I0623 17:28:52.904912 10365 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.669555 (* 0.3 = 0.200866 loss)
I0623 17:28:52.904927 10365 solver.cpp:406] Test net output #76: loss2/loss01 = 0.186428 (* 0.0272727 = 0.0050844 loss)
I0623 17:28:52.904940 10365 solver.cpp:406] Test net output #77: loss2/loss02 = 0.279208 (* 0.0272727 = 0.00761477 loss)
I0623 17:28:52.904964 10365 solver.cpp:406] Test net output #78: loss2/loss03 = 0.546761 (* 0.0272727 = 0.0149117 loss)
I0623 17:28:52.904983 10365 solver.cpp:406] Test net output #79: loss2/loss04 = 0.891898 (* 0.0272727 = 0.0243245 loss)
I0623 17:28:52.904997 10365 solver.cpp:406] Test net output #80: loss2/loss05 = 1.19127 (* 0.0272727 = 0.0324892 loss)
I0623 17:28:52.905010 10365 solver.cpp:406] Test net output #81: loss2/loss06 = 1.41573 (* 0.0272727 = 0.0386108 loss)
I0623 17:28:52.905025 10365 solver.cpp:406] Test net output #82: loss2/loss07 = 1.49779 (* 0.0272727 = 0.0408489 loss)
I0623 17:28:52.905037 10365 solver.cpp:406] Test net output #83: loss2/loss08 = 1.43084 (* 0.0272727 = 0.039023 loss)
I0623 17:28:52.905051 10365 solver.cpp:406] Test net output #84: loss2/loss09 = 1.4965 (* 0.0272727 = 0.0408135 loss)
I0623 17:28:52.905064 10365 solver.cpp:406] Test net output #85: loss2/loss10 = 1.57877 (* 0.0272727 = 0.0430574 loss)
I0623 17:28:52.905077 10365 solver.cpp:406] Test net output #86: loss2/loss11 = 1.63139 (* 0.0272727 = 0.0444924 loss)
I0623 17:28:52.905091 10365 solver.cpp:406] Test net output #87: loss2/loss12 = 1.35325 (* 0.0272727 = 0.0369068 loss)
I0623 17:28:52.905103 10365 solver.cpp:406] Test net output #88: loss2/loss13 = 1.12253 (* 0.0272727 = 0.0306145 loss)
I0623 17:28:52.905117 10365 solver.cpp:406] Test net output #89: loss2/loss14 = 0.85908 (* 0.0272727 = 0.0234294 loss)
I0623 17:28:52.905129 10365 solver.cpp:406] Test net output #90: loss2/loss15 = 0.623017 (* 0.0272727 = 0.0169914 loss)
I0623 17:28:52.905143 10365 solver.cpp:406] Test net output #91: loss2/loss16 = 0.460758 (* 0.0272727 = 0.0125661 loss)
I0623 17:28:52.905156 10365 solver.cpp:406] Test net output #92: loss2/loss17 = 0.306844 (* 0.0272727 = 0.00836848 loss)
I0623 17:28:52.905170 10365 solver.cpp:406] Test net output #93: loss2/loss18 = 0.16984 (* 0.0272727 = 0.004632 loss)
I0623 17:28:52.905184 10365 solver.cpp:406] Test net output #94: loss2/loss19 = 0.110454 (* 0.0272727 = 0.00301238 loss)
I0623 17:28:52.905197 10365 solver.cpp:406] Test net output #95: loss2/loss20 = 0.0623378 (* 0.0272727 = 0.00170012 loss)
I0623 17:28:52.905210 10365 solver.cpp:406] Test net output #96: loss2/loss21 = 0.00793115 (* 0.0272727 = 0.000216304 loss)
I0623 17:28:52.905225 10365 solver.cpp:406] Test net output #97: loss2/loss22 = 8.68589e-05 (* 0.0272727 = 2.36888e-06 loss)
I0623 17:28:52.905236 10365 solver.cpp:406] Test net output #98: loss3/accuracy = 0.861131
I0623 17:28:52.905247 10365 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.982
I0623 17:28:52.905258 10365 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.973
I0623 17:28:52.905270 10365 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.962
I0623 17:28:52.905282 10365 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.946
I0623 17:28:52.905292 10365 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.938
I0623 17:28:52.905304 10365 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.91
I0623 17:28:52.905318 10365 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.905
I0623 17:28:52.905329 10365 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.874
I0623 17:28:52.905341 10365 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.794
I0623 17:28:52.905352 10365 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.711
I0623 17:28:52.905364 10365 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.611
I0623 17:28:52.905375 10365 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.652
I0623 17:28:52.905385 10365 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.689
I0623 17:28:52.905396 10365 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.744
I0623 17:28:52.905407 10365 solver.cpp:406] Test net output #113: loss3/accuracy15 = 0.813
I0623 17:28:52.905418 10365 solver.cpp:406] Test net output #114: loss3/accuracy16 = 0.871
I0623 17:28:52.905439 10365 solver.cpp:406] Test net output #115: loss3/accuracy17 = 0.923
I0623 17:28:52.905452 10365 solver.cpp:406] Test net output #116: loss3/accuracy18 = 0.966
I0623 17:28:52.905463 10365 solver.cpp:406] Test net output #117: loss3/accuracy19 = 0.977
I0623 17:28:52.905474 10365 solver.cpp:406] Test net output #118: loss3/accuracy20 = 0.987
I0623 17:28:52.905486 10365 solver.cpp:406] Test net output #119: loss3/accuracy21 = 0.999
I0623 17:28:52.905498 10365 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1
I0623 17:28:52.905508 10365 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.907955
I0623 17:28:52.905519 10365 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.970722
I0623 17:28:52.905534 10365 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.523981 (* 1 = 0.523981 loss)
I0623 17:28:52.905547 10365 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.334736 (* 1 = 0.334736 loss)
I0623 17:28:52.905560 10365 solver.cpp:406] Test net output #125: loss3/loss01 = 0.144683 (* 0.0909091 = 0.013153 loss)
I0623 17:28:52.905575 10365 solver.cpp:406] Test net output #126: loss3/loss02 = 0.164218 (* 0.0909091 = 0.0149289 loss)
I0623 17:28:52.905587 10365 solver.cpp:406] Test net output #127: loss3/loss03 = 0.272165 (* 0.0909091 = 0.0247422 loss)
I0623 17:28:52.905601 10365 solver.cpp:406] Test net output #128: loss3/loss04 = 0.33437 (* 0.0909091 = 0.0303973 loss)
I0623 17:28:52.905614 10365 solver.cpp:406] Test net output #129: loss3/loss05 = 0.355665 (* 0.0909091 = 0.0323332 loss)
I0623 17:28:52.905627 10365 solver.cpp:406] Test net output #130: loss3/loss06 = 0.479199 (* 0.0909091 = 0.0435635 loss)
I0623 17:28:52.905640 10365 solver.cpp:406] Test net output #131: loss3/loss07 = 0.515476 (* 0.0909091 = 0.0468615 loss)
I0623 17:28:52.905654 10365 solver.cpp:406] Test net output #132: loss3/loss08 = 0.554469 (* 0.0909091 = 0.0504063 loss)
I0623 17:28:52.905668 10365 solver.cpp:406] Test net output #133: loss3/loss09 = 0.714712 (* 0.0909091 = 0.0649738 loss)
I0623 17:28:52.905680 10365 solver.cpp:406] Test net output #134: loss3/loss10 = 0.896266 (* 0.0909091 = 0.0814787 loss)
I0623 17:28:52.905694 10365 solver.cpp:406] Test net output #135: loss3/loss11 = 1.0653 (* 0.0909091 = 0.0968455 loss)
I0623 17:28:52.905707 10365 solver.cpp:406] Test net output #136: loss3/loss12 = 0.913871 (* 0.0909091 = 0.0830792 loss)
I0623 17:28:52.905720 10365 solver.cpp:406] Test net output #137: loss3/loss13 = 0.831192 (* 0.0909091 = 0.0755629 loss)
I0623 17:28:52.905733 10365 solver.cpp:406] Test net output #138: loss3/loss14 = 0.65294 (* 0.0909091 = 0.0593582 loss)
I0623 17:28:52.905747 10365 solver.cpp:406] Test net output #139: loss3/loss15 = 0.477008 (* 0.0909091 = 0.0433644 loss)
I0623 17:28:52.905761 10365 solver.cpp:406] Test net output #140: loss3/loss16 = 0.358972 (* 0.0909091 = 0.0326338 loss)
I0623 17:28:52.905773 10365 solver.cpp:406] Test net output #141: loss3/loss17 = 0.208151 (* 0.0909091 = 0.0189228 loss)
I0623 17:28:52.905786 10365 solver.cpp:406] Test net output #142: loss3/loss18 = 0.124898 (* 0.0909091 = 0.0113543 loss)
I0623 17:28:52.905800 10365 solver.cpp:406] Test net output #143: loss3/loss19 = 0.0697284 (* 0.0909091 = 0.00633895 loss)
I0623 17:28:52.905814 10365 solver.cpp:406] Test net output #144: loss3/loss20 = 0.0415507 (* 0.0909091 = 0.00377734 loss)
I0623 17:28:52.905827 10365 solver.cpp:406] Test net output #145: loss3/loss21 = 0.00596782 (* 0.0909091 = 0.000542529 loss)
I0623 17:28:52.905841 10365 solver.cpp:406] Test net output #146: loss3/loss22 = 8.71956e-05 (* 0.0909091 = 7.92687e-06 loss)
I0623 17:28:52.905854 10365 solver.cpp:406] Test net output #147: total_accuracy = 0.377
I0623 17:28:52.905866 10365 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.237
I0623 17:28:52.905877 10365 solver.cpp:406] Test net output #149: total_confidence = 0.221642
I0623 17:28:52.905897 10365 solver.cpp:406] Test net output #150: total_confidence_not_rec = 0.141853
I0623 17:28:53.263267 10365 solver.cpp:229] Iteration 15000, loss = 4.53586
I0623 17:28:53.263317 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.38835
I0623 17:28:53.263335 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0623 17:28:53.263348 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0623 17:28:53.263362 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625
I0623 17:28:53.263375 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0623 17:28:53.263386 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0623 17:28:53.263398 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0623 17:28:53.263411 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.375
I0623 17:28:53.263423 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625
I0623 17:28:53.263437 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.5
I0623 17:28:53.263448 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.25
I0623 17:28:53.263460 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.25
I0623 17:28:53.263473 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.25
I0623 17:28:53.263484 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.5
I0623 17:28:53.263496 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.625
I0623 17:28:53.263507 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.625
I0623 17:28:53.263520 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0623 17:28:53.263531 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 17:28:53.263543 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 17:28:53.263555 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 17:28:53.263566 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 17:28:53.263577 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 17:28:53.263589 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 17:28:53.263618 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.630682
I0623 17:28:53.263633 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.776699
I0623 17:28:53.263648 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.57546 (* 0.3 = 0.472639 loss)
I0623 17:28:53.263662 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.96189 (* 0.3 = 0.288567 loss)
I0623 17:28:53.263677 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.583676 (* 0.0272727 = 0.0159184 loss)
I0623 17:28:53.263691 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 0.896728 (* 0.0272727 = 0.0244562 loss)
I0623 17:28:53.263705 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.28521 (* 0.0272727 = 0.0350513 loss)
I0623 17:28:53.263718 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.86228 (* 0.0272727 = 0.0507895 loss)
I0623 17:28:53.263732 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 2.24534 (* 0.0272727 = 0.0612366 loss)
I0623 17:28:53.263746 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 2.54253 (* 0.0272727 = 0.0693417 loss)
I0623 17:28:53.263761 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.76764 (* 0.0272727 = 0.0482083 loss)
I0623 17:28:53.263773 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.44585 (* 0.0272727 = 0.0394322 loss)
I0623 17:28:53.263787 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.51151 (* 0.0272727 = 0.0412229 loss)
I0623 17:28:53.263802 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.4995 (* 0.0272727 = 0.0408955 loss)
I0623 17:28:53.263814 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 2.44033 (* 0.0272727 = 0.0665543 loss)
I0623 17:28:53.263851 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.84161 (* 0.0272727 = 0.0502257 loss)
I0623 17:28:53.263866 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.18112 (* 0.0272727 = 0.0322125 loss)
I0623 17:28:53.263880 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 0.959027 (* 0.0272727 = 0.0261553 loss)
I0623 17:28:53.263895 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 1.22014 (* 0.0272727 = 0.0332766 loss)
I0623 17:28:53.263908 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.182926 (* 0.0272727 = 0.00498889 loss)
I0623 17:28:53.263922 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.012054 (* 0.0272727 = 0.000328746 loss)
I0623 17:28:53.263936 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00180629 (* 0.0272727 = 4.92624e-05 loss)
I0623 17:28:53.263950 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00038362 (* 0.0272727 = 1.04624e-05 loss)
I0623 17:28:53.263965 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000140408 (* 0.0272727 = 3.82932e-06 loss)
I0623 17:28:53.263979 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 8.50864e-06 (* 0.0272727 = 2.32054e-07 loss)
I0623 17:28:53.263993 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 5.96052e-06 (* 0.0272727 = 1.6256e-07 loss)
I0623 17:28:53.264005 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.592233
I0623 17:28:53.264021 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0623 17:28:53.264034 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0623 17:28:53.264045 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75
I0623 17:28:53.264056 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25
I0623 17:28:53.264068 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25
I0623 17:28:53.264080 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0623 17:28:53.264091 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.375
I0623 17:28:53.264102 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625
I0623 17:28:53.264114 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.625
I0623 17:28:53.264125 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.625
I0623 17:28:53.264139 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.375
I0623 17:28:53.264150 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.25
I0623 17:28:53.264163 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.375
I0623 17:28:53.264173 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875
I0623 17:28:53.264185 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.625
I0623 17:28:53.264196 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0623 17:28:53.264209 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 17:28:53.264219 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 17:28:53.264230 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 17:28:53.264242 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 17:28:53.264253 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 17:28:53.264264 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 17:28:53.264276 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.761364
I0623 17:28:53.264286 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.893204
I0623 17:28:53.264300 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.2147 (* 0.3 = 0.364411 loss)
I0623 17:28:53.264314 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.723021 (* 0.3 = 0.216906 loss)
I0623 17:28:53.264339 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.215374 (* 0.0272727 = 0.00587383 loss)
I0623 17:28:53.264354 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.290659 (* 0.0272727 = 0.00792707 loss)
I0623 17:28:53.264369 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 1.19357 (* 0.0272727 = 0.032552 loss)
I0623 17:28:53.264381 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.71224 (* 0.0272727 = 0.0466974 loss)
I0623 17:28:53.264395 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 2.03056 (* 0.0272727 = 0.055379 loss)
I0623 17:28:53.264410 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 2.27185 (* 0.0272727 = 0.0619595 loss)
I0623 17:28:53.264422 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.42014 (* 0.0272727 = 0.038731 loss)
I0623 17:28:53.264436 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.21442 (* 0.0272727 = 0.0331204 loss)
I0623 17:28:53.264449 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.21967 (* 0.0272727 = 0.0332636 loss)
I0623 17:28:53.264463 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.48561 (* 0.0272727 = 0.0405166 loss)
I0623 17:28:53.264477 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.90224 (* 0.0272727 = 0.0518792 loss)
I0623 17:28:53.264489 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.8501 (* 0.0272727 = 0.0504573 loss)
I0623 17:28:53.264503 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.40896 (* 0.0272727 = 0.0384261 loss)
I0623 17:28:53.264516 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 0.6928 (* 0.0272727 = 0.0188945 loss)
I0623 17:28:53.264529 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 1.20926 (* 0.0272727 = 0.0329798 loss)
I0623 17:28:53.264544 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.128833 (* 0.0272727 = 0.00351363 loss)
I0623 17:28:53.264557 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00605171 (* 0.0272727 = 0.000165047 loss)
I0623 17:28:53.264571 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000326895 (* 0.0272727 = 8.91531e-06 loss)
I0623 17:28:53.264585 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 6.93183e-05 (* 0.0272727 = 1.8905e-06 loss)
I0623 17:28:53.264600 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 1.63171e-05 (* 0.0272727 = 4.45013e-07 loss)
I0623 17:28:53.264612 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 7.45073e-06 (* 0.0272727 = 2.03202e-07 loss)
I0623 17:28:53.264626 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 7.5996e-07 (* 0.0272727 = 2.07262e-08 loss)
I0623 17:28:53.264638 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.825243
I0623 17:28:53.264650 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 17:28:53.264662 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 17:28:53.264673 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875
I0623 17:28:53.264684 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0623 17:28:53.264696 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75
I0623 17:28:53.264708 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0623 17:28:53.264719 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0623 17:28:53.264730 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0623 17:28:53.264741 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75
I0623 17:28:53.264753 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0623 17:28:53.264765 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.5
I0623 17:28:53.264776 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.625
I0623 17:28:53.264787 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.75
I0623 17:28:53.264808 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.625
I0623 17:28:53.264822 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.625
I0623 17:28:53.264833 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0623 17:28:53.264845 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 17:28:53.264856 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 17:28:53.264868 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 17:28:53.264879 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 17:28:53.264890 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 17:28:53.264901 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 17:28:53.264914 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.892045
I0623 17:28:53.264925 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.980583
I0623 17:28:53.264940 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.619287 (* 1 = 0.619287 loss)
I0623 17:28:53.264952 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.380476 (* 1 = 0.380476 loss)
I0623 17:28:53.264966 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0193719 (* 0.0909091 = 0.00176108 loss)
I0623 17:28:53.264981 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0167952 (* 0.0909091 = 0.00152684 loss)
I0623 17:28:53.264996 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.980324 (* 0.0909091 = 0.0891204 loss)
I0623 17:28:53.265009 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.590955 (* 0.0909091 = 0.0537232 loss)
I0623 17:28:53.265023 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.811132 (* 0.0909091 = 0.0737393 loss)
I0623 17:28:53.265036 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.559689 (* 0.0909091 = 0.0508809 loss)
I0623 17:28:53.265050 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.10312 (* 0.0909091 = 0.00937454 loss)
I0623 17:28:53.265067 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.735585 (* 0.0909091 = 0.0668714 loss)
I0623 17:28:53.265081 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.53615 (* 0.0909091 = 0.0487409 loss)
I0623 17:28:53.265095 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.658233 (* 0.0909091 = 0.0598394 loss)
I0623 17:28:53.265110 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 1.30224 (* 0.0909091 = 0.118385 loss)
I0623 17:28:53.265122 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.08289 (* 0.0909091 = 0.0984443 loss)
I0623 17:28:53.265136 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 0.662824 (* 0.0909091 = 0.0602567 loss)
I0623 17:28:53.265149 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.772975 (* 0.0909091 = 0.0702704 loss)
I0623 17:28:53.265163 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 1.53553 (* 0.0909091 = 0.139594 loss)
I0623 17:28:53.265177 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.0418765 (* 0.0909091 = 0.00380695 loss)
I0623 17:28:53.265192 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0103875 (* 0.0909091 = 0.000944315 loss)
I0623 17:28:53.265207 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00059918 (* 0.0909091 = 5.44709e-05 loss)
I0623 17:28:53.265220 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 8.3243e-05 (* 0.0909091 = 7.56754e-06 loss)
I0623 17:28:53.265234 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 4.40448e-05 (* 0.0909091 = 4.00408e-06 loss)
I0623 17:28:53.265247 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 3.26885e-05 (* 0.0909091 = 2.97168e-06 loss)
I0623 17:28:53.265261 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 4.72371e-06 (* 0.0909091 = 4.29428e-07 loss)
I0623 17:28:53.265285 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.375
I0623 17:28:53.265297 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0623 17:28:53.265310 10365 solver.cpp:245] Train net output #149: total_confidence = 0.176528
I0623 17:28:53.265321 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.121512
I0623 17:28:53.265334 10365 sgd_solver.cpp:106] Iteration 15000, lr = 0.001
I0623 17:29:22.751054 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 40.3646 > 30) by scale factor 0.743226
I0623 17:29:45.724217 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.9702 > 30) by scale factor 0.968672
I0623 17:30:04.903573 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 41.4752 > 30) by scale factor 0.723324
I0623 17:30:36.316987 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 34.3237 > 30) by scale factor 0.874031
I0623 17:32:41.260399 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 51.1439 > 30) by scale factor 0.58658
I0623 17:34:49.174701 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 42.829 > 30) by scale factor 0.70046
I0623 17:35:16.407706 10365 solver.cpp:229] Iteration 15500, loss = 4.54745
I0623 17:35:16.407775 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.466667
I0623 17:35:16.407794 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0623 17:35:16.407809 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0623 17:35:16.407822 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0623 17:35:16.407835 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0623 17:35:16.407847 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0623 17:35:16.407860 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0623 17:35:16.407872 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.125
I0623 17:35:16.407884 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.375
I0623 17:35:16.407896 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0
I0623 17:35:16.407908 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0
I0623 17:35:16.407920 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.25
I0623 17:35:16.407932 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.625
I0623 17:35:16.407945 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.75
I0623 17:35:16.407956 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875
I0623 17:35:16.407968 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875
I0623 17:35:16.407980 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875
I0623 17:35:16.407992 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 17:35:16.408004 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 17:35:16.408015 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 17:35:16.408026 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 17:35:16.408037 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 17:35:16.408049 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 17:35:16.408061 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.659091
I0623 17:35:16.408072 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.655556
I0623 17:35:16.408089 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.28596 (* 0.3 = 0.685788 loss)
I0623 17:35:16.408104 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.46457 (* 0.3 = 0.439372 loss)
I0623 17:35:16.408121 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 2.93585 (* 0.0272727 = 0.0800685 loss)
I0623 17:35:16.408136 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 2.22823 (* 0.0272727 = 0.06077 loss)
I0623 17:35:16.408150 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 2.18706 (* 0.0272727 = 0.059647 loss)
I0623 17:35:16.408164 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 2.37376 (* 0.0272727 = 0.0647389 loss)
I0623 17:35:16.408177 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 3.02434 (* 0.0272727 = 0.0824819 loss)
I0623 17:35:16.408191 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 2.53562 (* 0.0272727 = 0.0691534 loss)
I0623 17:35:16.408205 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 2.74952 (* 0.0272727 = 0.0749869 loss)
I0623 17:35:16.408220 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 2.62507 (* 0.0272727 = 0.0715929 loss)
I0623 17:35:16.408233 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 2.99846 (* 0.0272727 = 0.0817762 loss)
I0623 17:35:16.408246 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 2.89856 (* 0.0272727 = 0.0790517 loss)
I0623 17:35:16.408260 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 2.23837 (* 0.0272727 = 0.0610465 loss)
I0623 17:35:16.408273 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.73604 (* 0.0272727 = 0.0473466 loss)
I0623 17:35:16.408318 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 0.739951 (* 0.0272727 = 0.0201805 loss)
I0623 17:35:16.408334 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 0.57301 (* 0.0272727 = 0.0156275 loss)
I0623 17:35:16.408349 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.478734 (* 0.0272727 = 0.0130564 loss)
I0623 17:35:16.408362 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.511794 (* 0.0272727 = 0.013958 loss)
I0623 17:35:16.408376 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0155141 (* 0.0272727 = 0.000423111 loss)
I0623 17:35:16.408395 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00557572 (* 0.0272727 = 0.000152065 loss)
I0623 17:35:16.408408 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00144915 (* 0.0272727 = 3.95223e-05 loss)
I0623 17:35:16.408423 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000515403 (* 0.0272727 = 1.40564e-05 loss)
I0623 17:35:16.408437 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000110729 (* 0.0272727 = 3.01987e-06 loss)
I0623 17:35:16.408452 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000125478 (* 0.0272727 = 3.42212e-06 loss)
I0623 17:35:16.408464 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.533333
I0623 17:35:16.408476 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0623 17:35:16.408488 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0623 17:35:16.408500 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75
I0623 17:35:16.408512 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0623 17:35:16.408524 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25
I0623 17:35:16.408535 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.25
I0623 17:35:16.408546 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.375
I0623 17:35:16.408558 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.375
I0623 17:35:16.408570 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.25
I0623 17:35:16.408581 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.375
I0623 17:35:16.408592 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.125
I0623 17:35:16.408604 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.75
I0623 17:35:16.408615 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.625
I0623 17:35:16.408627 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875
I0623 17:35:16.408638 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875
I0623 17:35:16.408650 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875
I0623 17:35:16.408661 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 17:35:16.408674 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 17:35:16.408684 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 17:35:16.408696 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 17:35:16.408709 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 17:35:16.408720 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 17:35:16.408731 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.693182
I0623 17:35:16.408742 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.788889
I0623 17:35:16.408756 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.10909 (* 0.3 = 0.632726 loss)
I0623 17:35:16.408771 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 1.40059 (* 0.3 = 0.420176 loss)
I0623 17:35:16.408784 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 2.00901 (* 0.0272727 = 0.0547911 loss)
I0623 17:35:16.408809 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 2.27652 (* 0.0272727 = 0.062087 loss)
I0623 17:35:16.408824 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 2.01874 (* 0.0272727 = 0.0550567 loss)
I0623 17:35:16.408838 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 2.43882 (* 0.0272727 = 0.0665133 loss)
I0623 17:35:16.408852 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 2.39784 (* 0.0272727 = 0.0653957 loss)
I0623 17:35:16.408865 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 2.1731 (* 0.0272727 = 0.0592663 loss)
I0623 17:35:16.408879 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 2.20226 (* 0.0272727 = 0.0600615 loss)
I0623 17:35:16.408893 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 2.74857 (* 0.0272727 = 0.0749609 loss)
I0623 17:35:16.408907 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 2.96974 (* 0.0272727 = 0.0809929 loss)
I0623 17:35:16.408921 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 2.98137 (* 0.0272727 = 0.0813101 loss)
I0623 17:35:16.408934 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 2.54121 (* 0.0272727 = 0.0693057 loss)
I0623 17:35:16.408948 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.00447 (* 0.0272727 = 0.0273945 loss)
I0623 17:35:16.408962 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.09263 (* 0.0272727 = 0.0297991 loss)
I0623 17:35:16.408977 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 0.504173 (* 0.0272727 = 0.0137502 loss)
I0623 17:35:16.408989 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.300776 (* 0.0272727 = 0.00820299 loss)
I0623 17:35:16.409004 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.290896 (* 0.0272727 = 0.00793354 loss)
I0623 17:35:16.409018 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0182443 (* 0.0272727 = 0.000497572 loss)
I0623 17:35:16.409031 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00292967 (* 0.0272727 = 7.99002e-05 loss)
I0623 17:35:16.409046 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000642305 (* 0.0272727 = 1.75174e-05 loss)
I0623 17:35:16.409060 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000173773 (* 0.0272727 = 4.73927e-06 loss)
I0623 17:35:16.409075 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 3.52829e-05 (* 0.0272727 = 9.6226e-07 loss)
I0623 17:35:16.409088 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 9.01537e-06 (* 0.0272727 = 2.45874e-07 loss)
I0623 17:35:16.409101 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.777778
I0623 17:35:16.409112 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75
I0623 17:35:16.409124 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75
I0623 17:35:16.409135 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875
I0623 17:35:16.409147 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0623 17:35:16.409160 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0623 17:35:16.409173 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0623 17:35:16.409184 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0623 17:35:16.409196 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0623 17:35:16.409207 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.5
I0623 17:35:16.409219 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.375
I0623 17:35:16.409230 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.25
I0623 17:35:16.409242 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.625
I0623 17:35:16.409255 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.625
I0623 17:35:16.409262 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875
I0623 17:35:16.409270 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875
I0623 17:35:16.409291 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0623 17:35:16.409304 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 17:35:16.409315 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 17:35:16.409327 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 17:35:16.409338 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 17:35:16.409349 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 17:35:16.409361 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 17:35:16.409373 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.806818
I0623 17:35:16.409384 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.888889
I0623 17:35:16.409399 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.31245 (* 1 = 1.31245 loss)
I0623 17:35:16.409411 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 1.05854 (* 1 = 1.05854 loss)
I0623 17:35:16.409425 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 1.52684 (* 0.0909091 = 0.138804 loss)
I0623 17:35:16.409443 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 1.87922 (* 0.0909091 = 0.170838 loss)
I0623 17:35:16.409457 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 1.31591 (* 0.0909091 = 0.119628 loss)
I0623 17:35:16.409471 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 1.84772 (* 0.0909091 = 0.167974 loss)
I0623 17:35:16.409484 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 1.55414 (* 0.0909091 = 0.141286 loss)
I0623 17:35:16.409498 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 1.29058 (* 0.0909091 = 0.117326 loss)
I0623 17:35:16.409512 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 1.30882 (* 0.0909091 = 0.118984 loss)
I0623 17:35:16.409525 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 2.22921 (* 0.0909091 = 0.202655 loss)
I0623 17:35:16.409539 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 2.16163 (* 0.0909091 = 0.196512 loss)
I0623 17:35:16.409553 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 2.3957 (* 0.0909091 = 0.217791 loss)
I0623 17:35:16.409566 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 2.71559 (* 0.0909091 = 0.246872 loss)
I0623 17:35:16.409580 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 0.866483 (* 0.0909091 = 0.0787712 loss)
I0623 17:35:16.409593 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 0.949237 (* 0.0909091 = 0.0862943 loss)
I0623 17:35:16.409607 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.418448 (* 0.0909091 = 0.0380407 loss)
I0623 17:35:16.409621 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.190765 (* 0.0909091 = 0.0173423 loss)
I0623 17:35:16.409634 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.0514438 (* 0.0909091 = 0.00467671 loss)
I0623 17:35:16.409648 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.111881 (* 0.0909091 = 0.010171 loss)
I0623 17:35:16.409662 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0150806 (* 0.0909091 = 0.00137097 loss)
I0623 17:35:16.409677 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00185079 (* 0.0909091 = 0.000168254 loss)
I0623 17:35:16.409690 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000328922 (* 0.0909091 = 2.9902e-05 loss)
I0623 17:35:16.409703 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000100428 (* 0.0909091 = 9.12977e-06 loss)
I0623 17:35:16.409718 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 4.11276e-06 (* 0.0909091 = 3.73887e-07 loss)
I0623 17:35:16.409729 10365 solver.cpp:245] Train net output #147: total_accuracy = 0
I0623 17:35:16.409740 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0
I0623 17:35:16.409762 10365 solver.cpp:245] Train net output #149: total_confidence = 0.052811
I0623 17:35:16.409775 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.0359814
I0623 17:35:16.409788 10365 sgd_solver.cpp:106] Iteration 15500, lr = 0.001
I0623 17:36:30.299654 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 43.4475 > 30) by scale factor 0.690488
I0623 17:36:38.723073 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.4381 > 30) by scale factor 0.985608
I0623 17:40:40.784248 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 36.9591 > 30) by scale factor 0.811708
I0623 17:41:09.893095 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.8781 > 30) by scale factor 0.971563
I0623 17:41:39.432080 10365 solver.cpp:229] Iteration 16000, loss = 4.51
I0623 17:41:39.432183 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.455556
I0623 17:41:39.432201 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5
I0623 17:41:39.432214 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75
I0623 17:41:39.432229 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625
I0623 17:41:39.432241 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0623 17:41:39.432255 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0
I0623 17:41:39.432267 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.125
I0623 17:41:39.432279 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5
I0623 17:41:39.432292 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.5
I0623 17:41:39.432304 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0623 17:41:39.432322 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.5
I0623 17:41:39.432334 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.5
I0623 17:41:39.432348 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.75
I0623 17:41:39.432359 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.625
I0623 17:41:39.432370 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.75
I0623 17:41:39.432382 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.75
I0623 17:41:39.432394 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.75
I0623 17:41:39.432405 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 17:41:39.432416 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 17:41:39.432428 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 17:41:39.432440 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 17:41:39.432451 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 17:41:39.432462 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 17:41:39.432474 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.693182
I0623 17:41:39.432487 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.811111
I0623 17:41:39.432503 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.58504 (* 0.3 = 0.475513 loss)
I0623 17:41:39.432518 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.898963 (* 0.3 = 0.269689 loss)
I0623 17:41:39.432533 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 1.62194 (* 0.0272727 = 0.0442348 loss)
I0623 17:41:39.432546 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 1.08082 (* 0.0272727 = 0.029477 loss)
I0623 17:41:39.432559 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.18115 (* 0.0272727 = 0.0322132 loss)
I0623 17:41:39.432574 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.89612 (* 0.0272727 = 0.0517125 loss)
I0623 17:41:39.432587 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 2.64415 (* 0.0272727 = 0.0721132 loss)
I0623 17:41:39.432601 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 1.90363 (* 0.0272727 = 0.0519171 loss)
I0623 17:41:39.432615 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.17232 (* 0.0272727 = 0.0319725 loss)
I0623 17:41:39.432628 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.34754 (* 0.0272727 = 0.0367511 loss)
I0623 17:41:39.432641 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 0.895944 (* 0.0272727 = 0.0244348 loss)
I0623 17:41:39.432656 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 2.28084 (* 0.0272727 = 0.0622047 loss)
I0623 17:41:39.432669 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.36303 (* 0.0272727 = 0.0371735 loss)
I0623 17:41:39.432682 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 0.875732 (* 0.0272727 = 0.0238836 loss)
I0623 17:41:39.432713 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.19028 (* 0.0272727 = 0.0324621 loss)
I0623 17:41:39.432729 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 0.625492 (* 0.0272727 = 0.0170589 loss)
I0623 17:41:39.432742 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 1.37941 (* 0.0272727 = 0.0376204 loss)
I0623 17:41:39.432755 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 1.14794 (* 0.0272727 = 0.0313074 loss)
I0623 17:41:39.432770 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00526318 (* 0.0272727 = 0.000143541 loss)
I0623 17:41:39.432783 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000656226 (* 0.0272727 = 1.78971e-05 loss)
I0623 17:41:39.432798 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000106272 (* 0.0272727 = 2.89833e-06 loss)
I0623 17:41:39.432812 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 2.33959e-05 (* 0.0272727 = 6.3807e-07 loss)
I0623 17:41:39.432826 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 1.9805e-05 (* 0.0272727 = 5.40136e-07 loss)
I0623 17:41:39.432840 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 1.66894e-06 (* 0.0272727 = 4.55165e-08 loss)
I0623 17:41:39.432852 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.566667
I0623 17:41:39.432864 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0623 17:41:39.432878 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0623 17:41:39.432888 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 1
I0623 17:41:39.432900 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.75
I0623 17:41:39.432911 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0623 17:41:39.432924 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375
I0623 17:41:39.432934 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0623 17:41:39.432946 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0623 17:41:39.432958 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.75
I0623 17:41:39.432970 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.5
I0623 17:41:39.432981 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.5
I0623 17:41:39.432992 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.5
I0623 17:41:39.433004 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.75
I0623 17:41:39.433015 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875
I0623 17:41:39.433027 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.75
I0623 17:41:39.433038 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.75
I0623 17:41:39.433049 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 17:41:39.433060 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 17:41:39.433071 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 17:41:39.433084 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 17:41:39.433094 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 17:41:39.433105 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 17:41:39.433116 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.772727
I0623 17:41:39.433128 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.844444
I0623 17:41:39.433141 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.24788 (* 0.3 = 0.374364 loss)
I0623 17:41:39.433156 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.675333 (* 0.3 = 0.2026 loss)
I0623 17:41:39.433171 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 1.11968 (* 0.0272727 = 0.0305368 loss)
I0623 17:41:39.433185 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.524048 (* 0.0272727 = 0.0142922 loss)
I0623 17:41:39.433212 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.191705 (* 0.0272727 = 0.00522833 loss)
I0623 17:41:39.433226 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 0.775424 (* 0.0272727 = 0.0211479 loss)
I0623 17:41:39.433240 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.91093 (* 0.0272727 = 0.0521163 loss)
I0623 17:41:39.433254 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.23119 (* 0.0272727 = 0.0335778 loss)
I0623 17:41:39.433267 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.0429 (* 0.0272727 = 0.0284428 loss)
I0623 17:41:39.433280 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.11421 (* 0.0272727 = 0.0303874 loss)
I0623 17:41:39.433295 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 0.756442 (* 0.0272727 = 0.0206302 loss)
I0623 17:41:39.433307 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.92475 (* 0.0272727 = 0.0524932 loss)
I0623 17:41:39.433321 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.87471 (* 0.0272727 = 0.0511285 loss)
I0623 17:41:39.433334 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.10935 (* 0.0272727 = 0.030255 loss)
I0623 17:41:39.433347 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.10159 (* 0.0272727 = 0.0300434 loss)
I0623 17:41:39.433362 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 0.542901 (* 0.0272727 = 0.0148064 loss)
I0623 17:41:39.433380 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 1.73165 (* 0.0272727 = 0.0472268 loss)
I0623 17:41:39.433394 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.867831 (* 0.0272727 = 0.0236681 loss)
I0623 17:41:39.433408 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0123861 (* 0.0272727 = 0.000337803 loss)
I0623 17:41:39.433421 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00129497 (* 0.0272727 = 3.53173e-05 loss)
I0623 17:41:39.433435 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000553851 (* 0.0272727 = 1.5105e-05 loss)
I0623 17:41:39.433449 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 9.33429e-05 (* 0.0272727 = 2.54572e-06 loss)
I0623 17:41:39.433464 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 1.34117e-05 (* 0.0272727 = 3.65772e-07 loss)
I0623 17:41:39.433477 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 3.4571e-06 (* 0.0272727 = 9.42847e-08 loss)
I0623 17:41:39.433490 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.866667
I0623 17:41:39.433501 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0623 17:41:39.433513 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 17:41:39.433524 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 17:41:39.433537 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 17:41:39.433547 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0623 17:41:39.433559 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0623 17:41:39.433570 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0623 17:41:39.433583 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0623 17:41:39.433593 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0623 17:41:39.433605 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0623 17:41:39.433616 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875
I0623 17:41:39.433629 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875
I0623 17:41:39.433640 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.625
I0623 17:41:39.433650 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.75
I0623 17:41:39.433661 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.75
I0623 17:41:39.433673 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.75
I0623 17:41:39.433696 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 17:41:39.433709 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 17:41:39.433720 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 17:41:39.433732 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 17:41:39.433743 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 17:41:39.433754 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 17:41:39.433765 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.920455
I0623 17:41:39.433778 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.988889
I0623 17:41:39.433790 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.492194 (* 1 = 0.492194 loss)
I0623 17:41:39.433804 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.267416 (* 1 = 0.267416 loss)
I0623 17:41:39.433818 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 1.20024 (* 0.0909091 = 0.109112 loss)
I0623 17:41:39.433832 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0261308 (* 0.0909091 = 0.00237552 loss)
I0623 17:41:39.433842 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0209459 (* 0.0909091 = 0.00190417 loss)
I0623 17:41:39.433852 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0243902 (* 0.0909091 = 0.0022173 loss)
I0623 17:41:39.433866 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.113577 (* 0.0909091 = 0.0103252 loss)
I0623 17:41:39.433881 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.180774 (* 0.0909091 = 0.016434 loss)
I0623 17:41:39.433894 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.140943 (* 0.0909091 = 0.012813 loss)
I0623 17:41:39.433907 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.888942 (* 0.0909091 = 0.0808129 loss)
I0623 17:41:39.433922 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.468491 (* 0.0909091 = 0.0425901 loss)
I0623 17:41:39.433934 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.91449 (* 0.0909091 = 0.0831355 loss)
I0623 17:41:39.433948 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 0.789303 (* 0.0909091 = 0.0717548 loss)
I0623 17:41:39.433961 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 0.520681 (* 0.0909091 = 0.0473346 loss)
I0623 17:41:39.433975 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 1.07106 (* 0.0909091 = 0.0973688 loss)
I0623 17:41:39.433989 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.504619 (* 0.0909091 = 0.0458744 loss)
I0623 17:41:39.434002 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.778453 (* 0.0909091 = 0.0707685 loss)
I0623 17:41:39.434015 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.604533 (* 0.0909091 = 0.0549575 loss)
I0623 17:41:39.434029 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.007127 (* 0.0909091 = 0.000647909 loss)
I0623 17:41:39.434043 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0012936 (* 0.0909091 = 0.0001176 loss)
I0623 17:41:39.434057 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000213831 (* 0.0909091 = 1.94392e-05 loss)
I0623 17:41:39.434072 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000118517 (* 0.0909091 = 1.07743e-05 loss)
I0623 17:41:39.434085 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 3.82927e-05 (* 0.0909091 = 3.48115e-06 loss)
I0623 17:41:39.434099 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 4.09785e-06 (* 0.0909091 = 3.72532e-07 loss)
I0623 17:41:39.434110 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.375
I0623 17:41:39.434123 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375
I0623 17:41:39.434134 10365 solver.cpp:245] Train net output #149: total_confidence = 0.285479
I0623 17:41:39.434155 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.212331
I0623 17:41:39.434170 10365 sgd_solver.cpp:106] Iteration 16000, lr = 0.001
I0623 17:46:37.756687 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 42.2567 > 30) by scale factor 0.709946
I0623 17:46:43.880172 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 34.0532 > 30) by scale factor 0.880975
I0623 17:48:02.473757 10365 solver.cpp:229] Iteration 16500, loss = 4.59404
I0623 17:48:02.473951 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.342105
I0623 17:48:02.473975 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0623 17:48:02.473989 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375
I0623 17:48:02.474002 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0623 17:48:02.474015 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.125
I0623 17:48:02.474028 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0623 17:48:02.474041 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.125
I0623 17:48:02.474056 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.375
I0623 17:48:02.474067 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.25
I0623 17:48:02.474081 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.125
I0623 17:48:02.474094 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.5
I0623 17:48:02.474107 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0
I0623 17:48:02.474119 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.125
I0623 17:48:02.474131 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.25
I0623 17:48:02.474144 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.25
I0623 17:48:02.474156 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.625
I0623 17:48:02.474169 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0623 17:48:02.474180 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 17:48:02.474192 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 17:48:02.474205 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 17:48:02.474216 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 17:48:02.474228 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 17:48:02.474241 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 17:48:02.474251 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.556818
I0623 17:48:02.474267 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.72807
I0623 17:48:02.474284 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.90602 (* 0.3 = 0.571805 loss)
I0623 17:48:02.474300 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.29113 (* 0.3 = 0.387339 loss)
I0623 17:48:02.474314 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.631756 (* 0.0272727 = 0.0172297 loss)
I0623 17:48:02.474328 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 1.86203 (* 0.0272727 = 0.0507826 loss)
I0623 17:48:02.474342 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 2.3251 (* 0.0272727 = 0.0634117 loss)
I0623 17:48:02.474357 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 2.43253 (* 0.0272727 = 0.0663417 loss)
I0623 17:48:02.474371 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 2.62407 (* 0.0272727 = 0.0715655 loss)
I0623 17:48:02.474385 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 2.7407 (* 0.0272727 = 0.0747462 loss)
I0623 17:48:02.474400 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 2.26611 (* 0.0272727 = 0.061803 loss)
I0623 17:48:02.474413 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.92698 (* 0.0272727 = 0.052554 loss)
I0623 17:48:02.474427 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 2.30695 (* 0.0272727 = 0.0629167 loss)
I0623 17:48:02.474442 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 2.37578 (* 0.0272727 = 0.0647941 loss)
I0623 17:48:02.474455 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 2.69803 (* 0.0272727 = 0.0735827 loss)
I0623 17:48:02.474469 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 2.16032 (* 0.0272727 = 0.0589179 loss)
I0623 17:48:02.474509 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 2.11578 (* 0.0272727 = 0.057703 loss)
I0623 17:48:02.474524 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 2.78621 (* 0.0272727 = 0.0759874 loss)
I0623 17:48:02.474537 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 1.35998 (* 0.0272727 = 0.0370903 loss)
I0623 17:48:02.474552 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.24712 (* 0.0272727 = 0.00673964 loss)
I0623 17:48:02.474566 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0854436 (* 0.0272727 = 0.00233028 loss)
I0623 17:48:02.474581 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0164669 (* 0.0272727 = 0.000449097 loss)
I0623 17:48:02.474596 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00318793 (* 0.0272727 = 8.69435e-05 loss)
I0623 17:48:02.474609 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000429785 (* 0.0272727 = 1.17214e-05 loss)
I0623 17:48:02.474624 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000129577 (* 0.0272727 = 3.53392e-06 loss)
I0623 17:48:02.474638 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 3.65095e-05 (* 0.0272727 = 9.95714e-07 loss)
I0623 17:48:02.474650 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.464912
I0623 17:48:02.474663 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0623 17:48:02.474675 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5
I0623 17:48:02.474687 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625
I0623 17:48:02.474699 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0623 17:48:02.474711 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0623 17:48:02.474723 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0623 17:48:02.474736 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.375
I0623 17:48:02.474748 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.25
I0623 17:48:02.474761 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.5
I0623 17:48:02.474772 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.125
I0623 17:48:02.474784 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.125
I0623 17:48:02.474797 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.375
I0623 17:48:02.474808 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.375
I0623 17:48:02.474819 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.25
I0623 17:48:02.474831 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.625
I0623 17:48:02.474844 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0623 17:48:02.474855 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 17:48:02.474867 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 17:48:02.474879 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 17:48:02.474891 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 17:48:02.474905 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 17:48:02.474915 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 17:48:02.474927 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.647727
I0623 17:48:02.474939 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.754386
I0623 17:48:02.474958 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.56781 (* 0.3 = 0.470344 loss)
I0623 17:48:02.474972 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 1.05364 (* 0.3 = 0.316091 loss)
I0623 17:48:02.474987 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.326965 (* 0.0272727 = 0.00891723 loss)
I0623 17:48:02.475003 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 1.21812 (* 0.0272727 = 0.0332214 loss)
I0623 17:48:02.475028 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.812755 (* 0.0272727 = 0.022166 loss)
I0623 17:48:02.475044 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.57434 (* 0.0272727 = 0.0429367 loss)
I0623 17:48:02.475057 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.73693 (* 0.0272727 = 0.0473707 loss)
I0623 17:48:02.475071 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.91344 (* 0.0272727 = 0.0521848 loss)
I0623 17:48:02.475085 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.95928 (* 0.0272727 = 0.0534348 loss)
I0623 17:48:02.475098 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.9801 (* 0.0272727 = 0.0540027 loss)
I0623 17:48:02.475112 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.98284 (* 0.0272727 = 0.0540775 loss)
I0623 17:48:02.475126 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 2.07466 (* 0.0272727 = 0.0565817 loss)
I0623 17:48:02.475141 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 2.67868 (* 0.0272727 = 0.073055 loss)
I0623 17:48:02.475154 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 2.38791 (* 0.0272727 = 0.0651247 loss)
I0623 17:48:02.475167 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 2.83277 (* 0.0272727 = 0.0772574 loss)
I0623 17:48:02.475183 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 2.49633 (* 0.0272727 = 0.0680819 loss)
I0623 17:48:02.475196 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.984696 (* 0.0272727 = 0.0268554 loss)
I0623 17:48:02.475211 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.16739 (* 0.0272727 = 0.00456519 loss)
I0623 17:48:02.475225 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0501484 (* 0.0272727 = 0.00136768 loss)
I0623 17:48:02.475239 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0136613 (* 0.0272727 = 0.000372582 loss)
I0623 17:48:02.475255 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0052132 (* 0.0272727 = 0.000142178 loss)
I0623 17:48:02.475268 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000709621 (* 0.0272727 = 1.93533e-05 loss)
I0623 17:48:02.475282 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000236055 (* 0.0272727 = 6.43785e-06 loss)
I0623 17:48:02.475296 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 2.00429e-05 (* 0.0272727 = 5.46625e-07 loss)
I0623 17:48:02.475308 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.710526
I0623 17:48:02.475323 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 17:48:02.475335 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0623 17:48:02.475348 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875
I0623 17:48:02.475359 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0623 17:48:02.475371 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0623 17:48:02.475383 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0623 17:48:02.475394 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0623 17:48:02.475406 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0623 17:48:02.475419 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.625
I0623 17:48:02.475430 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.625
I0623 17:48:02.475441 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.25
I0623 17:48:02.475453 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.5
I0623 17:48:02.475466 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.375
I0623 17:48:02.475476 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.125
I0623 17:48:02.475488 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.75
I0623 17:48:02.475500 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0623 17:48:02.475522 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 17:48:02.475535 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 17:48:02.475548 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 17:48:02.475559 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 17:48:02.475571 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 17:48:02.475582 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 17:48:02.475594 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.806818
I0623 17:48:02.475622 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.964912
I0623 17:48:02.475637 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.826579 (* 1 = 0.826579 loss)
I0623 17:48:02.475651 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.54792 (* 1 = 0.54792 loss)
I0623 17:48:02.475666 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.26911 (* 0.0909091 = 0.0244645 loss)
I0623 17:48:02.475679 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.716964 (* 0.0909091 = 0.0651786 loss)
I0623 17:48:02.475693 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.289093 (* 0.0909091 = 0.0262811 loss)
I0623 17:48:02.475708 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.361016 (* 0.0909091 = 0.0328196 loss)
I0623 17:48:02.475723 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.330225 (* 0.0909091 = 0.0300204 loss)
I0623 17:48:02.475736 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.368041 (* 0.0909091 = 0.0334582 loss)
I0623 17:48:02.475750 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 1.12028 (* 0.0909091 = 0.101843 loss)
I0623 17:48:02.475761 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 1.07226 (* 0.0909091 = 0.0974782 loss)
I0623 17:48:02.475770 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 1.70184 (* 0.0909091 = 0.154712 loss)
I0623 17:48:02.475785 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 1.59125 (* 0.0909091 = 0.144659 loss)
I0623 17:48:02.475800 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 2.02936 (* 0.0909091 = 0.184487 loss)
I0623 17:48:02.475813 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.70936 (* 0.0909091 = 0.155396 loss)
I0623 17:48:02.475827 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 1.67451 (* 0.0909091 = 0.152228 loss)
I0623 17:48:02.475841 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 2.08177 (* 0.0909091 = 0.189252 loss)
I0623 17:48:02.475854 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.79383 (* 0.0909091 = 0.0721664 loss)
I0623 17:48:02.475868 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.080064 (* 0.0909091 = 0.00727855 loss)
I0623 17:48:02.475883 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0162906 (* 0.0909091 = 0.00148097 loss)
I0623 17:48:02.475898 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000939162 (* 0.0909091 = 8.53784e-05 loss)
I0623 17:48:02.475911 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000151144 (* 0.0909091 = 1.37404e-05 loss)
I0623 17:48:02.475925 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 7.54958e-05 (* 0.0909091 = 6.86326e-06 loss)
I0623 17:48:02.475939 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 3.83572e-05 (* 0.0909091 = 3.48701e-06 loss)
I0623 17:48:02.475955 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 5.78169e-06 (* 0.0909091 = 5.25608e-07 loss)
I0623 17:48:02.475966 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0623 17:48:02.475978 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0
I0623 17:48:02.475991 10365 solver.cpp:245] Train net output #149: total_confidence = 0.0338437
I0623 17:48:02.476019 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.0150467
I0623 17:48:02.476034 10365 sgd_solver.cpp:106] Iteration 16500, lr = 0.001
I0623 17:48:49.566346 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 33.2378 > 30) by scale factor 0.902588
I0623 17:49:20.967878 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 37.4694 > 30) by scale factor 0.800653
I0623 17:50:59.829407 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 50.5313 > 30) by scale factor 0.593691
I0623 17:53:19.283123 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.4745 > 30) by scale factor 0.98443
I0623 17:53:29.233710 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 35.8065 > 30) by scale factor 0.837838
I0623 17:54:25.578884 10365 solver.cpp:229] Iteration 17000, loss = 4.45992
I0623 17:54:25.578979 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.421569
I0623 17:54:25.578999 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 1
I0623 17:54:25.579011 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75
I0623 17:54:25.579025 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0623 17:54:25.579037 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0623 17:54:25.579051 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0623 17:54:25.579062 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0623 17:54:25.579076 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.25
I0623 17:54:25.579087 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.25
I0623 17:54:25.579102 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.375
I0623 17:54:25.579115 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.25
I0623 17:54:25.579128 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.25
I0623 17:54:25.579140 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.625
I0623 17:54:25.579154 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.625
I0623 17:54:25.579165 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.625
I0623 17:54:25.579177 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.75
I0623 17:54:25.579190 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.75
I0623 17:54:25.579201 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875
I0623 17:54:25.579212 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 0.875
I0623 17:54:25.579224 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 17:54:25.579236 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 17:54:25.579247 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 17:54:25.579259 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 17:54:25.579272 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.653409
I0623 17:54:25.579283 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.803922
I0623 17:54:25.579299 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.6809 (* 0.3 = 0.504269 loss)
I0623 17:54:25.579313 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.01045 (* 0.3 = 0.303135 loss)
I0623 17:54:25.579329 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.259098 (* 0.0272727 = 0.0070663 loss)
I0623 17:54:25.579342 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 0.727537 (* 0.0272727 = 0.0198419 loss)
I0623 17:54:25.579356 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 2.39442 (* 0.0272727 = 0.0653024 loss)
I0623 17:54:25.579370 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.92569 (* 0.0272727 = 0.0525187 loss)
I0623 17:54:25.579383 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 2.48099 (* 0.0272727 = 0.0676633 loss)
I0623 17:54:25.579397 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 1.43087 (* 0.0272727 = 0.0390237 loss)
I0623 17:54:25.579411 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 2.15126 (* 0.0272727 = 0.0586708 loss)
I0623 17:54:25.579424 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.874 (* 0.0272727 = 0.051109 loss)
I0623 17:54:25.579438 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.81765 (* 0.0272727 = 0.0495724 loss)
I0623 17:54:25.579452 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.86741 (* 0.0272727 = 0.0509293 loss)
I0623 17:54:25.579465 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 2.10394 (* 0.0272727 = 0.0573802 loss)
I0623 17:54:25.579479 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.19646 (* 0.0272727 = 0.0326307 loss)
I0623 17:54:25.579511 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.15134 (* 0.0272727 = 0.0314001 loss)
I0623 17:54:25.579526 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.19377 (* 0.0272727 = 0.0325573 loss)
I0623 17:54:25.579540 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.449862 (* 0.0272727 = 0.012269 loss)
I0623 17:54:25.579553 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.41403 (* 0.0272727 = 0.0112917 loss)
I0623 17:54:25.579567 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.287194 (* 0.0272727 = 0.00783256 loss)
I0623 17:54:25.579582 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.596937 (* 0.0272727 = 0.0162801 loss)
I0623 17:54:25.579610 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0142284 (* 0.0272727 = 0.000388048 loss)
I0623 17:54:25.579629 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00121278 (* 0.0272727 = 3.30759e-05 loss)
I0623 17:54:25.579643 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 1.84185e-05 (* 0.0272727 = 5.02322e-07 loss)
I0623 17:54:25.579658 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 9.77545e-06 (* 0.0272727 = 2.66603e-07 loss)
I0623 17:54:25.579670 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.490196
I0623 17:54:25.579682 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0623 17:54:25.579694 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0623 17:54:25.579705 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75
I0623 17:54:25.579717 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.875
I0623 17:54:25.579728 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0623 17:54:25.579741 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0623 17:54:25.579752 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.375
I0623 17:54:25.579764 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.375
I0623 17:54:25.579776 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.375
I0623 17:54:25.579787 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.125
I0623 17:54:25.579797 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.375
I0623 17:54:25.579808 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.375
I0623 17:54:25.579820 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.5
I0623 17:54:25.579831 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875
I0623 17:54:25.579843 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875
I0623 17:54:25.579854 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.75
I0623 17:54:25.579865 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875
I0623 17:54:25.579876 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 0.875
I0623 17:54:25.579888 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 17:54:25.579900 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 17:54:25.579911 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 17:54:25.579922 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 17:54:25.579933 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.704545
I0623 17:54:25.579944 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.892157
I0623 17:54:25.579958 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.38124 (* 0.3 = 0.414372 loss)
I0623 17:54:25.579972 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.819376 (* 0.3 = 0.245813 loss)
I0623 17:54:25.579987 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.15543 (* 0.0272727 = 0.004239 loss)
I0623 17:54:25.579999 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.570801 (* 0.0272727 = 0.0155673 loss)
I0623 17:54:25.580026 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 1.21869 (* 0.0272727 = 0.0332369 loss)
I0623 17:54:25.580041 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.30106 (* 0.0272727 = 0.0354836 loss)
I0623 17:54:25.580054 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 2.38203 (* 0.0272727 = 0.0649643 loss)
I0623 17:54:25.580068 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.37355 (* 0.0272727 = 0.0374605 loss)
I0623 17:54:25.580082 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.92756 (* 0.0272727 = 0.0525698 loss)
I0623 17:54:25.580096 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.50637 (* 0.0272727 = 0.0410828 loss)
I0623 17:54:25.580109 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.63654 (* 0.0272727 = 0.044633 loss)
I0623 17:54:25.580122 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.91653 (* 0.0272727 = 0.0522689 loss)
I0623 17:54:25.580137 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 2.13678 (* 0.0272727 = 0.0582757 loss)
I0623 17:54:25.580152 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.46417 (* 0.0272727 = 0.0399318 loss)
I0623 17:54:25.580166 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.0184 (* 0.0272727 = 0.0277745 loss)
I0623 17:54:25.580180 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 0.700636 (* 0.0272727 = 0.0191083 loss)
I0623 17:54:25.580193 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.27372 (* 0.0272727 = 0.00746509 loss)
I0623 17:54:25.580207 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.813301 (* 0.0272727 = 0.0221809 loss)
I0623 17:54:25.580221 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.25356 (* 0.0272727 = 0.00691526 loss)
I0623 17:54:25.580235 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.391748 (* 0.0272727 = 0.010684 loss)
I0623 17:54:25.580250 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00194399 (* 0.0272727 = 5.30179e-05 loss)
I0623 17:54:25.580263 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 7.53776e-05 (* 0.0272727 = 2.05575e-06 loss)
I0623 17:54:25.580277 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 5.51355e-06 (* 0.0272727 = 1.5037e-07 loss)
I0623 17:54:25.580291 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 1.49012e-07 (* 0.0272727 = 4.06395e-09 loss)
I0623 17:54:25.580303 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.833333
I0623 17:54:25.580315 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 17:54:25.580327 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 17:54:25.580338 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875
I0623 17:54:25.580350 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0623 17:54:25.580361 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0623 17:54:25.580373 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0623 17:54:25.580384 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0623 17:54:25.580395 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0623 17:54:25.580407 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0623 17:54:25.580418 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.375
I0623 17:54:25.580430 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.375
I0623 17:54:25.580441 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.625
I0623 17:54:25.580452 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.625
I0623 17:54:25.580464 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875
I0623 17:54:25.580476 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0623 17:54:25.580488 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0623 17:54:25.580509 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.875
I0623 17:54:25.580523 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 0.875
I0623 17:54:25.580533 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 17:54:25.580545 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 17:54:25.580556 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 17:54:25.580567 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 17:54:25.580579 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.897727
I0623 17:54:25.580591 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.960784
I0623 17:54:25.580605 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.725996 (* 1 = 0.725996 loss)
I0623 17:54:25.580618 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.444748 (* 1 = 0.444748 loss)
I0623 17:54:25.580631 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0148518 (* 0.0909091 = 0.00135016 loss)
I0623 17:54:25.580646 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0378752 (* 0.0909091 = 0.0034432 loss)
I0623 17:54:25.580665 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.987357 (* 0.0909091 = 0.0897597 loss)
I0623 17:54:25.580680 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 1.29385 (* 0.0909091 = 0.117623 loss)
I0623 17:54:25.580693 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 1.57983 (* 0.0909091 = 0.14362 loss)
I0623 17:54:25.580708 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.222734 (* 0.0909091 = 0.0202486 loss)
I0623 17:54:25.580721 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 1.26086 (* 0.0909091 = 0.114624 loss)
I0623 17:54:25.580734 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.63508 (* 0.0909091 = 0.0577345 loss)
I0623 17:54:25.580749 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.589944 (* 0.0909091 = 0.0536313 loss)
I0623 17:54:25.580761 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 1.16374 (* 0.0909091 = 0.105795 loss)
I0623 17:54:25.580775 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 1.3742 (* 0.0909091 = 0.124927 loss)
I0623 17:54:25.580790 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.10868 (* 0.0909091 = 0.100789 loss)
I0623 17:54:25.580802 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 0.914521 (* 0.0909091 = 0.0831383 loss)
I0623 17:54:25.580816 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.469686 (* 0.0909091 = 0.0426987 loss)
I0623 17:54:25.580829 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.1412 (* 0.0909091 = 0.0128364 loss)
I0623 17:54:25.580843 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.108474 (* 0.0909091 = 0.00986127 loss)
I0623 17:54:25.580857 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.182879 (* 0.0909091 = 0.0166254 loss)
I0623 17:54:25.580870 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.154912 (* 0.0909091 = 0.0140829 loss)
I0623 17:54:25.580885 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0641493 (* 0.0909091 = 0.00583175 loss)
I0623 17:54:25.580899 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00333933 (* 0.0909091 = 0.000303575 loss)
I0623 17:54:25.580914 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000857602 (* 0.0909091 = 7.79639e-05 loss)
I0623 17:54:25.580926 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 6.60131e-05 (* 0.0909091 = 6.00119e-06 loss)
I0623 17:54:25.580938 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.25
I0623 17:54:25.580950 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0623 17:54:25.580961 10365 solver.cpp:245] Train net output #149: total_confidence = 0.12991
I0623 17:54:25.580983 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.134456
I0623 17:54:25.580998 10365 sgd_solver.cpp:106] Iteration 17000, lr = 0.001
I0623 17:57:20.605973 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 38.2129 > 30) by scale factor 0.785074
I0623 17:59:16.346112 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 38.058 > 30) by scale factor 0.788271
I0623 18:00:48.733796 10365 solver.cpp:229] Iteration 17500, loss = 4.55397
I0623 18:00:48.733893 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.465909
I0623 18:00:48.733913 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5
I0623 18:00:48.733927 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.875
I0623 18:00:48.733939 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0623 18:00:48.733952 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.75
I0623 18:00:48.733964 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0623 18:00:48.733978 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0623 18:00:48.733990 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.375
I0623 18:00:48.734002 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0623 18:00:48.734015 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.5
I0623 18:00:48.734027 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.75
I0623 18:00:48.734041 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.375
I0623 18:00:48.734053 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.375
I0623 18:00:48.734066 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.5
I0623 18:00:48.734081 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.5
I0623 18:00:48.734093 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.75
I0623 18:00:48.734105 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875
I0623 18:00:48.734117 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875
I0623 18:00:48.734128 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 18:00:48.734140 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 18:00:48.734153 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 18:00:48.734166 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 18:00:48.734179 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 18:00:48.734190 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.698864
I0623 18:00:48.734202 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.784091
I0623 18:00:48.734218 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.58247 (* 0.3 = 0.474741 loss)
I0623 18:00:48.734233 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.908175 (* 0.3 = 0.272453 loss)
I0623 18:00:48.734247 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 1.24395 (* 0.0272727 = 0.0339258 loss)
I0623 18:00:48.734261 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 0.671046 (* 0.0272727 = 0.0183012 loss)
I0623 18:00:48.734275 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.90179 (* 0.0272727 = 0.0518671 loss)
I0623 18:00:48.734289 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.02668 (* 0.0272727 = 0.0280005 loss)
I0623 18:00:48.734303 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 1.67903 (* 0.0272727 = 0.0457918 loss)
I0623 18:00:48.734318 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 1.69868 (* 0.0272727 = 0.0463276 loss)
I0623 18:00:48.734330 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.27664 (* 0.0272727 = 0.0348174 loss)
I0623 18:00:48.734344 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 0.736902 (* 0.0272727 = 0.0200973 loss)
I0623 18:00:48.734359 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 2.00499 (* 0.0272727 = 0.0546815 loss)
I0623 18:00:48.734372 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.21174 (* 0.0272727 = 0.0330473 loss)
I0623 18:00:48.734385 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 2.11601 (* 0.0272727 = 0.0577094 loss)
I0623 18:00:48.734400 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.60824 (* 0.0272727 = 0.043861 loss)
I0623 18:00:48.734431 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.5044 (* 0.0272727 = 0.0410291 loss)
I0623 18:00:48.734447 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.95008 (* 0.0272727 = 0.053184 loss)
I0623 18:00:48.734459 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.629642 (* 0.0272727 = 0.017172 loss)
I0623 18:00:48.734474 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.325212 (* 0.0272727 = 0.00886941 loss)
I0623 18:00:48.734488 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.463415 (* 0.0272727 = 0.0126386 loss)
I0623 18:00:48.734503 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0163424 (* 0.0272727 = 0.000445703 loss)
I0623 18:00:48.734516 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00247051 (* 0.0272727 = 6.73775e-05 loss)
I0623 18:00:48.734530 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000204931 (* 0.0272727 = 5.58902e-06 loss)
I0623 18:00:48.734545 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 8.4477e-05 (* 0.0272727 = 2.30392e-06 loss)
I0623 18:00:48.734560 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 3.22575e-05 (* 0.0272727 = 8.79749e-07 loss)
I0623 18:00:48.734571 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.659091
I0623 18:00:48.734583 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0623 18:00:48.734596 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0623 18:00:48.734606 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.875
I0623 18:00:48.734618 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625
I0623 18:00:48.734629 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0623 18:00:48.734642 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0623 18:00:48.734652 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0623 18:00:48.734663 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0623 18:00:48.734675 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.5
I0623 18:00:48.734686 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.625
I0623 18:00:48.734697 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.5
I0623 18:00:48.734709 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.5
I0623 18:00:48.734720 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.5
I0623 18:00:48.734731 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.625
I0623 18:00:48.734742 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.75
I0623 18:00:48.734755 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875
I0623 18:00:48.734766 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875
I0623 18:00:48.734777 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 18:00:48.734788 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 18:00:48.734799 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 18:00:48.734812 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 18:00:48.734822 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 18:00:48.734833 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.795455
I0623 18:00:48.734845 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.852273
I0623 18:00:48.734858 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.14436 (* 0.3 = 0.343308 loss)
I0623 18:00:48.734872 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.738139 (* 0.3 = 0.221442 loss)
I0623 18:00:48.734886 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.360458 (* 0.0272727 = 0.00983068 loss)
I0623 18:00:48.734901 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.257223 (* 0.0272727 = 0.00701518 loss)
I0623 18:00:48.734926 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.490091 (* 0.0272727 = 0.0133661 loss)
I0623 18:00:48.734941 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 0.955415 (* 0.0272727 = 0.0260568 loss)
I0623 18:00:48.734956 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.26903 (* 0.0272727 = 0.0346099 loss)
I0623 18:00:48.734968 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.15263 (* 0.0272727 = 0.0314353 loss)
I0623 18:00:48.734982 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.05207 (* 0.0272727 = 0.0286927 loss)
I0623 18:00:48.734995 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 0.524293 (* 0.0272727 = 0.0142989 loss)
I0623 18:00:48.735009 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.79985 (* 0.0272727 = 0.0490867 loss)
I0623 18:00:48.735023 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 2.13331 (* 0.0272727 = 0.0581812 loss)
I0623 18:00:48.735036 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.45902 (* 0.0272727 = 0.0397915 loss)
I0623 18:00:48.735049 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.20312 (* 0.0272727 = 0.0328124 loss)
I0623 18:00:48.735064 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.60556 (* 0.0272727 = 0.043788 loss)
I0623 18:00:48.735076 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.22588 (* 0.0272727 = 0.0334331 loss)
I0623 18:00:48.735090 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.793331 (* 0.0272727 = 0.0216363 loss)
I0623 18:00:48.735103 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.421267 (* 0.0272727 = 0.0114891 loss)
I0623 18:00:48.735117 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.31259 (* 0.0272727 = 0.00852517 loss)
I0623 18:00:48.735136 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00955757 (* 0.0272727 = 0.000260661 loss)
I0623 18:00:48.735149 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000887116 (* 0.0272727 = 2.41941e-05 loss)
I0623 18:00:48.735164 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000288889 (* 0.0272727 = 7.87878e-06 loss)
I0623 18:00:48.735178 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 1.04907e-05 (* 0.0272727 = 2.86109e-07 loss)
I0623 18:00:48.735193 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 1.1385e-05 (* 0.0272727 = 3.105e-07 loss)
I0623 18:00:48.735204 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.875
I0623 18:00:48.735219 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 18:00:48.735231 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 18:00:48.735244 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 18:00:48.735255 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 18:00:48.735265 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0623 18:00:48.735277 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0623 18:00:48.735288 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0623 18:00:48.735301 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0623 18:00:48.735311 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75
I0623 18:00:48.735323 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0623 18:00:48.735334 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.375
I0623 18:00:48.735347 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.625
I0623 18:00:48.735357 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.75
I0623 18:00:48.735369 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.625
I0623 18:00:48.735380 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.75
I0623 18:00:48.735393 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.75
I0623 18:00:48.735414 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 18:00:48.735426 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 18:00:48.735438 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 18:00:48.735450 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 18:00:48.735461 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 18:00:48.735472 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 18:00:48.735484 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.897727
I0623 18:00:48.735496 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.931818
I0623 18:00:48.735509 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.594083 (* 1 = 0.594083 loss)
I0623 18:00:48.735522 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.460154 (* 1 = 0.460154 loss)
I0623 18:00:48.735538 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0143969 (* 0.0909091 = 0.00130881 loss)
I0623 18:00:48.735551 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.039081 (* 0.0909091 = 0.00355281 loss)
I0623 18:00:48.735564 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.102585 (* 0.0909091 = 0.00932595 loss)
I0623 18:00:48.735579 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.137611 (* 0.0909091 = 0.0125101 loss)
I0623 18:00:48.735592 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.0949161 (* 0.0909091 = 0.00862874 loss)
I0623 18:00:48.735623 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.0379471 (* 0.0909091 = 0.00344974 loss)
I0623 18:00:48.735637 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.0520084 (* 0.0909091 = 0.00472804 loss)
I0623 18:00:48.735652 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.158343 (* 0.0909091 = 0.0143948 loss)
I0623 18:00:48.735666 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 1.61817 (* 0.0909091 = 0.147106 loss)
I0623 18:00:48.735679 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 1.9113 (* 0.0909091 = 0.173754 loss)
I0623 18:00:48.735693 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 2.5526 (* 0.0909091 = 0.232055 loss)
I0623 18:00:48.735707 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.47336 (* 0.0909091 = 0.133942 loss)
I0623 18:00:48.735720 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 1.39707 (* 0.0909091 = 0.127007 loss)
I0623 18:00:48.735733 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 1.6421 (* 0.0909091 = 0.149282 loss)
I0623 18:00:48.735748 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 1.27587 (* 0.0909091 = 0.115988 loss)
I0623 18:00:48.735760 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 1.03158 (* 0.0909091 = 0.0937803 loss)
I0623 18:00:48.735774 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.210846 (* 0.0909091 = 0.0191678 loss)
I0623 18:00:48.735787 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0376946 (* 0.0909091 = 0.00342678 loss)
I0623 18:00:48.735801 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00202212 (* 0.0909091 = 0.000183829 loss)
I0623 18:00:48.735816 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000335729 (* 0.0909091 = 3.05208e-05 loss)
I0623 18:00:48.735829 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000167639 (* 0.0909091 = 1.52399e-05 loss)
I0623 18:00:48.735843 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 7.37623e-06 (* 0.0909091 = 6.70566e-07 loss)
I0623 18:00:48.735855 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.375
I0623 18:00:48.735864 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375
I0623 18:00:48.735872 10365 solver.cpp:245] Train net output #149: total_confidence = 0.271907
I0623 18:00:48.735895 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.239194
I0623 18:00:48.735910 10365 sgd_solver.cpp:106] Iteration 17500, lr = 0.001
I0623 18:00:56.762245 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.7845 > 30) by scale factor 0.974518
I0623 18:02:21.863108 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 40.2111 > 30) by scale factor 0.746063
I0623 18:04:29.864533 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 46.4021 > 30) by scale factor 0.646522
I0623 18:06:12.531642 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.693 > 30) by scale factor 0.94658
I0623 18:07:11.908936 10365 solver.cpp:229] Iteration 18000, loss = 4.48089
I0623 18:07:11.909078 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.544304
I0623 18:07:11.909098 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0623 18:07:11.909112 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0623 18:07:11.909126 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625
I0623 18:07:11.909137 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0623 18:07:11.909152 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0623 18:07:11.909163 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.25
I0623 18:07:11.909176 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5
I0623 18:07:11.909188 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625
I0623 18:07:11.909200 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.375
I0623 18:07:11.909212 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.625
I0623 18:07:11.909224 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.5
I0623 18:07:11.909236 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.625
I0623 18:07:11.909248 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.75
I0623 18:07:11.909262 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.75
I0623 18:07:11.909276 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0623 18:07:11.909287 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0623 18:07:11.909299 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 18:07:11.909310 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 18:07:11.909323 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 18:07:11.909335 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 18:07:11.909346 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 18:07:11.909358 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 18:07:11.909369 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.789773
I0623 18:07:11.909381 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.810127
I0623 18:07:11.909397 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.39967 (* 0.3 = 0.419902 loss)
I0623 18:07:11.909412 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.648673 (* 0.3 = 0.194602 loss)
I0623 18:07:11.909427 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.343728 (* 0.0272727 = 0.00937439 loss)
I0623 18:07:11.909441 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 0.984038 (* 0.0272727 = 0.0268374 loss)
I0623 18:07:11.909456 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.24276 (* 0.0272727 = 0.0338934 loss)
I0623 18:07:11.909469 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.0776 (* 0.0272727 = 0.0293891 loss)
I0623 18:07:11.909482 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 1.20325 (* 0.0272727 = 0.032816 loss)
I0623 18:07:11.909497 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 1.67704 (* 0.0272727 = 0.0457374 loss)
I0623 18:07:11.909510 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.21468 (* 0.0272727 = 0.0331276 loss)
I0623 18:07:11.909524 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.46313 (* 0.0272727 = 0.0399037 loss)
I0623 18:07:11.909538 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.53533 (* 0.0272727 = 0.0418726 loss)
I0623 18:07:11.909553 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.22985 (* 0.0272727 = 0.0335414 loss)
I0623 18:07:11.909565 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.64547 (* 0.0272727 = 0.0448764 loss)
I0623 18:07:11.909579 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.38899 (* 0.0272727 = 0.0378817 loss)
I0623 18:07:11.909610 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 0.952298 (* 0.0272727 = 0.0259717 loss)
I0623 18:07:11.909626 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 0.759527 (* 0.0272727 = 0.0207144 loss)
I0623 18:07:11.909639 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0810432 (* 0.0272727 = 0.00221027 loss)
I0623 18:07:11.909653 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00878042 (* 0.0272727 = 0.000239466 loss)
I0623 18:07:11.909667 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000714553 (* 0.0272727 = 1.94878e-05 loss)
I0623 18:07:11.909682 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 5.26989e-05 (* 0.0272727 = 1.43724e-06 loss)
I0623 18:07:11.909696 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 4.06806e-06 (* 0.0272727 = 1.10947e-07 loss)
I0623 18:07:11.909710 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 1.04308e-06 (* 0.0272727 = 2.84477e-08 loss)
I0623 18:07:11.909724 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 5.36442e-07 (* 0.0272727 = 1.46302e-08 loss)
I0623 18:07:11.909739 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 2.98023e-08 (* 0.0272727 = 8.12791e-10 loss)
I0623 18:07:11.909750 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.696203
I0623 18:07:11.909764 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0623 18:07:11.909775 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0623 18:07:11.909786 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 1
I0623 18:07:11.909798 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.75
I0623 18:07:11.909809 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0623 18:07:11.909821 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0623 18:07:11.909832 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5
I0623 18:07:11.909844 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625
I0623 18:07:11.909855 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.75
I0623 18:07:11.909868 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.75
I0623 18:07:11.909878 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.375
I0623 18:07:11.909889 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.5
I0623 18:07:11.909901 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.625
I0623 18:07:11.909912 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875
I0623 18:07:11.909924 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0623 18:07:11.909935 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0623 18:07:11.909947 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 18:07:11.909958 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 18:07:11.909970 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 18:07:11.909981 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 18:07:11.909992 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 18:07:11.910004 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 18:07:11.910015 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.857955
I0623 18:07:11.910027 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.848101
I0623 18:07:11.910042 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.989374 (* 0.3 = 0.296812 loss)
I0623 18:07:11.910054 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.478526 (* 0.3 = 0.143558 loss)
I0623 18:07:11.910068 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.534094 (* 0.0272727 = 0.0145662 loss)
I0623 18:07:11.910082 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.266665 (* 0.0272727 = 0.00727268 loss)
I0623 18:07:11.910111 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.186941 (* 0.0272727 = 0.00509838 loss)
I0623 18:07:11.910126 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 0.743793 (* 0.0272727 = 0.0202853 loss)
I0623 18:07:11.910140 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.03393 (* 0.0272727 = 0.028198 loss)
I0623 18:07:11.910154 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.09667 (* 0.0272727 = 0.0299091 loss)
I0623 18:07:11.910168 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.40128 (* 0.0272727 = 0.0382166 loss)
I0623 18:07:11.910181 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.04816 (* 0.0272727 = 0.0285862 loss)
I0623 18:07:11.910195 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 0.962212 (* 0.0272727 = 0.0262422 loss)
I0623 18:07:11.910208 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.00578 (* 0.0272727 = 0.0274305 loss)
I0623 18:07:11.910223 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.60848 (* 0.0272727 = 0.0438677 loss)
I0623 18:07:11.910235 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.64047 (* 0.0272727 = 0.0447401 loss)
I0623 18:07:11.910250 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 0.777915 (* 0.0272727 = 0.0212159 loss)
I0623 18:07:11.910264 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 0.798775 (* 0.0272727 = 0.0217848 loss)
I0623 18:07:11.910279 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.114016 (* 0.0272727 = 0.00310954 loss)
I0623 18:07:11.910291 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.013448 (* 0.0272727 = 0.000366763 loss)
I0623 18:07:11.910305 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00176165 (* 0.0272727 = 4.80449e-05 loss)
I0623 18:07:11.910322 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000454417 (* 0.0272727 = 1.23932e-05 loss)
I0623 18:07:11.910336 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 3.9081e-05 (* 0.0272727 = 1.06585e-06 loss)
I0623 18:07:11.910351 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 1.76138e-05 (* 0.0272727 = 4.80377e-07 loss)
I0623 18:07:11.910364 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 9.67099e-06 (* 0.0272727 = 2.63754e-07 loss)
I0623 18:07:11.910379 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 3.24847e-06 (* 0.0272727 = 8.85947e-08 loss)
I0623 18:07:11.910392 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.848101
I0623 18:07:11.910403 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0623 18:07:11.910415 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 18:07:11.910426 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 18:07:11.910439 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 18:07:11.910449 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0623 18:07:11.910461 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0623 18:07:11.910472 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0623 18:07:11.910483 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0623 18:07:11.910495 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75
I0623 18:07:11.910506 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75
I0623 18:07:11.910517 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.625
I0623 18:07:11.910529 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.5
I0623 18:07:11.910540 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.625
I0623 18:07:11.910552 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.75
I0623 18:07:11.910563 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0623 18:07:11.910575 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0623 18:07:11.910596 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 18:07:11.910609 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 18:07:11.910620 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 18:07:11.910631 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 18:07:11.910643 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 18:07:11.910655 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 18:07:11.910665 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.920455
I0623 18:07:11.910677 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.949367
I0623 18:07:11.910691 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.494675 (* 1 = 0.494675 loss)
I0623 18:07:11.910704 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.267532 (* 1 = 0.267532 loss)
I0623 18:07:11.910718 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.485924 (* 0.0909091 = 0.0441749 loss)
I0623 18:07:11.910733 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.064071 (* 0.0909091 = 0.00582463 loss)
I0623 18:07:11.910743 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0258527 (* 0.0909091 = 0.00235024 loss)
I0623 18:07:11.910753 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.046736 (* 0.0909091 = 0.00424873 loss)
I0623 18:07:11.910768 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.0220015 (* 0.0909091 = 0.00200013 loss)
I0623 18:07:11.910781 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.0637698 (* 0.0909091 = 0.00579725 loss)
I0623 18:07:11.910794 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.848043 (* 0.0909091 = 0.0770948 loss)
I0623 18:07:11.910809 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.203326 (* 0.0909091 = 0.0184842 loss)
I0623 18:07:11.910822 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.789733 (* 0.0909091 = 0.071794 loss)
I0623 18:07:11.910835 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.755641 (* 0.0909091 = 0.0686947 loss)
I0623 18:07:11.910850 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 1.19038 (* 0.0909091 = 0.108216 loss)
I0623 18:07:11.910862 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.1577 (* 0.0909091 = 0.105245 loss)
I0623 18:07:11.910876 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 0.969188 (* 0.0909091 = 0.088108 loss)
I0623 18:07:11.910889 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.640839 (* 0.0909091 = 0.0582581 loss)
I0623 18:07:11.910903 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.109741 (* 0.0909091 = 0.00997641 loss)
I0623 18:07:11.910917 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00900497 (* 0.0909091 = 0.000818633 loss)
I0623 18:07:11.910931 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000681151 (* 0.0909091 = 6.19228e-05 loss)
I0623 18:07:11.910945 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000106506 (* 0.0909091 = 9.68236e-06 loss)
I0623 18:07:11.910959 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 3.03633e-05 (* 0.0909091 = 2.7603e-06 loss)
I0623 18:07:11.910972 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 2.43351e-05 (* 0.0909091 = 2.21228e-06 loss)
I0623 18:07:11.910986 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 1.29793e-05 (* 0.0909091 = 1.17994e-06 loss)
I0623 18:07:11.911000 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 9.83478e-07 (* 0.0909091 = 8.94071e-08 loss)
I0623 18:07:11.911012 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.5
I0623 18:07:11.911023 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375
I0623 18:07:11.911044 10365 solver.cpp:245] Train net output #149: total_confidence = 0.329733
I0623 18:07:11.911057 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.27058
I0623 18:07:11.911070 10365 sgd_solver.cpp:106] Iteration 18000, lr = 0.001
I0623 18:09:32.573993 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 43.7649 > 30) by scale factor 0.685481
I0623 18:09:55.588659 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 34.9557 > 30) by scale factor 0.858228
I0623 18:10:36.978855 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 38.427 > 30) by scale factor 0.7807
I0623 18:12:38.825834 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 34.026 > 30) by scale factor 0.881678
I0623 18:13:27.126118 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 67.6652 > 30) by scale factor 0.443359
I0623 18:13:35.215574 10365 solver.cpp:229] Iteration 18500, loss = 4.46008
I0623 18:13:35.215682 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.519231
I0623 18:13:35.215701 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 1
I0623 18:13:35.215715 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.875
I0623 18:13:35.215728 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.875
I0623 18:13:35.215741 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0623 18:13:35.215754 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0623 18:13:35.215767 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.25
I0623 18:13:35.215780 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5
I0623 18:13:35.215793 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.375
I0623 18:13:35.215806 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.375
I0623 18:13:35.215818 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.25
I0623 18:13:35.215831 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.5
I0623 18:13:35.215844 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875
I0623 18:13:35.215857 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.375
I0623 18:13:35.215868 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.5
I0623 18:13:35.215881 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.625
I0623 18:13:35.215893 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.75
I0623 18:13:35.215905 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 18:13:35.215916 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 18:13:35.215929 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 18:13:35.215940 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 18:13:35.215952 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 18:13:35.215965 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 18:13:35.215976 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.698864
I0623 18:13:35.215988 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.798077
I0623 18:13:35.216006 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.28909 (* 0.3 = 0.386728 loss)
I0623 18:13:35.216020 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.817224 (* 0.3 = 0.245167 loss)
I0623 18:13:35.216035 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.104238 (* 0.0272727 = 0.00284285 loss)
I0623 18:13:35.216050 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 0.257711 (* 0.0272727 = 0.00702847 loss)
I0623 18:13:35.216064 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 0.833951 (* 0.0272727 = 0.0227441 loss)
I0623 18:13:35.216078 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.7165 (* 0.0272727 = 0.0468136 loss)
I0623 18:13:35.216092 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 1.26669 (* 0.0272727 = 0.0345461 loss)
I0623 18:13:35.216109 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 1.70862 (* 0.0272727 = 0.0465987 loss)
I0623 18:13:35.216125 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.46257 (* 0.0272727 = 0.0398883 loss)
I0623 18:13:35.216140 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.76732 (* 0.0272727 = 0.0481997 loss)
I0623 18:13:35.216155 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.84279 (* 0.0272727 = 0.0502579 loss)
I0623 18:13:35.216168 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 2.03947 (* 0.0272727 = 0.055622 loss)
I0623 18:13:35.216182 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.70849 (* 0.0272727 = 0.0465953 loss)
I0623 18:13:35.216197 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.2775 (* 0.0272727 = 0.034841 loss)
I0623 18:13:35.216251 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.47958 (* 0.0272727 = 0.0403522 loss)
I0623 18:13:35.216267 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.32747 (* 0.0272727 = 0.0362037 loss)
I0623 18:13:35.216281 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 1.15374 (* 0.0272727 = 0.0314655 loss)
I0623 18:13:35.216295 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.849994 (* 0.0272727 = 0.0231817 loss)
I0623 18:13:35.216310 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0825569 (* 0.0272727 = 0.00225155 loss)
I0623 18:13:35.216325 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0173534 (* 0.0272727 = 0.000473273 loss)
I0623 18:13:35.216339 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00211542 (* 0.0272727 = 5.76932e-05 loss)
I0623 18:13:35.216354 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000403842 (* 0.0272727 = 1.10139e-05 loss)
I0623 18:13:35.216368 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000206977 (* 0.0272727 = 5.64482e-06 loss)
I0623 18:13:35.216387 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 3.85462e-05 (* 0.0272727 = 1.05126e-06 loss)
I0623 18:13:35.216399 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.605769
I0623 18:13:35.216413 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0623 18:13:35.216424 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 1
I0623 18:13:35.216437 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 1
I0623 18:13:35.216449 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.75
I0623 18:13:35.216461 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.875
I0623 18:13:35.216472 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875
I0623 18:13:35.216485 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.375
I0623 18:13:35.216496 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.25
I0623 18:13:35.216508 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.375
I0623 18:13:35.216521 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.5
I0623 18:13:35.216532 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.625
I0623 18:13:35.216544 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.625
I0623 18:13:35.216557 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.625
I0623 18:13:35.216567 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.375
I0623 18:13:35.216579 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.5
I0623 18:13:35.216591 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.75
I0623 18:13:35.216603 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 18:13:35.216614 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 18:13:35.216626 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 18:13:35.216639 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 18:13:35.216650 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 18:13:35.216661 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 18:13:35.216672 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.761364
I0623 18:13:35.216684 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.855769
I0623 18:13:35.216699 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.1533 (* 0.3 = 0.345991 loss)
I0623 18:13:35.216712 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.708994 (* 0.3 = 0.212698 loss)
I0623 18:13:35.216727 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.366384 (* 0.0272727 = 0.00999229 loss)
I0623 18:13:35.216753 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.178486 (* 0.0272727 = 0.00486779 loss)
I0623 18:13:35.216768 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.349324 (* 0.0272727 = 0.00952701 loss)
I0623 18:13:35.216783 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.01338 (* 0.0272727 = 0.0276376 loss)
I0623 18:13:35.216797 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 0.746746 (* 0.0272727 = 0.0203658 loss)
I0623 18:13:35.216811 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.09575 (* 0.0272727 = 0.0298841 loss)
I0623 18:13:35.216825 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.5587 (* 0.0272727 = 0.0425101 loss)
I0623 18:13:35.216840 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.46646 (* 0.0272727 = 0.0399944 loss)
I0623 18:13:35.216852 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.43902 (* 0.0272727 = 0.0392459 loss)
I0623 18:13:35.216866 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.54755 (* 0.0272727 = 0.0422059 loss)
I0623 18:13:35.216881 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.35941 (* 0.0272727 = 0.0370749 loss)
I0623 18:13:35.216893 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.43977 (* 0.0272727 = 0.0392664 loss)
I0623 18:13:35.216907 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.05149 (* 0.0272727 = 0.0286771 loss)
I0623 18:13:35.216922 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.36058 (* 0.0272727 = 0.0371066 loss)
I0623 18:13:35.216935 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 1.09794 (* 0.0272727 = 0.0299438 loss)
I0623 18:13:35.216949 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.609367 (* 0.0272727 = 0.0166191 loss)
I0623 18:13:35.216964 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0531756 (* 0.0272727 = 0.00145024 loss)
I0623 18:13:35.216977 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0212325 (* 0.0272727 = 0.000579067 loss)
I0623 18:13:35.216991 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00342409 (* 0.0272727 = 9.33842e-05 loss)
I0623 18:13:35.217005 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00260366 (* 0.0272727 = 7.10089e-05 loss)
I0623 18:13:35.217020 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00139613 (* 0.0272727 = 3.80763e-05 loss)
I0623 18:13:35.217033 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000998447 (* 0.0272727 = 2.72304e-05 loss)
I0623 18:13:35.217046 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.894231
I0623 18:13:35.217058 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 18:13:35.217069 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 18:13:35.217082 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 18:13:35.217093 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 18:13:35.217104 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0623 18:13:35.217116 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0623 18:13:35.217128 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0623 18:13:35.217139 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0623 18:13:35.217151 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0623 18:13:35.217164 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75
I0623 18:13:35.217178 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.75
I0623 18:13:35.217190 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.625
I0623 18:13:35.217202 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.625
I0623 18:13:35.217214 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.625
I0623 18:13:35.217226 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.5
I0623 18:13:35.217248 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0623 18:13:35.217262 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 18:13:35.217273 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 18:13:35.217286 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 18:13:35.217298 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 18:13:35.217309 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 18:13:35.217321 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 18:13:35.217330 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.926136
I0623 18:13:35.217339 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1
I0623 18:13:35.217347 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.349244 (* 1 = 0.349244 loss)
I0623 18:13:35.217357 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.229314 (* 1 = 0.229314 loss)
I0623 18:13:35.217372 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0177366 (* 0.0909091 = 0.00161242 loss)
I0623 18:13:35.217386 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0323148 (* 0.0909091 = 0.00293771 loss)
I0623 18:13:35.217401 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.044865 (* 0.0909091 = 0.00407864 loss)
I0623 18:13:35.217414 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0768077 (* 0.0909091 = 0.00698252 loss)
I0623 18:13:35.217432 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.0523965 (* 0.0909091 = 0.00476332 loss)
I0623 18:13:35.217447 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.0895117 (* 0.0909091 = 0.00813743 loss)
I0623 18:13:35.217461 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.476593 (* 0.0909091 = 0.0433266 loss)
I0623 18:13:35.217475 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.151705 (* 0.0909091 = 0.0137914 loss)
I0623 18:13:35.217489 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.258067 (* 0.0909091 = 0.0234606 loss)
I0623 18:13:35.217504 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.611302 (* 0.0909091 = 0.0555729 loss)
I0623 18:13:35.217516 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 0.412978 (* 0.0909091 = 0.0375434 loss)
I0623 18:13:35.217530 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 0.815917 (* 0.0909091 = 0.0741743 loss)
I0623 18:13:35.217545 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 0.756472 (* 0.0909091 = 0.0687702 loss)
I0623 18:13:35.217557 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.927886 (* 0.0909091 = 0.0843533 loss)
I0623 18:13:35.217571 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.898386 (* 0.0909091 = 0.0816715 loss)
I0623 18:13:35.217586 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.186753 (* 0.0909091 = 0.0169775 loss)
I0623 18:13:35.217599 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0504796 (* 0.0909091 = 0.00458906 loss)
I0623 18:13:35.217613 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00229147 (* 0.0909091 = 0.000208316 loss)
I0623 18:13:35.217628 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000524091 (* 0.0909091 = 4.76446e-05 loss)
I0623 18:13:35.217641 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000194689 (* 0.0909091 = 1.7699e-05 loss)
I0623 18:13:35.217655 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000149974 (* 0.0909091 = 1.3634e-05 loss)
I0623 18:13:35.217669 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 1.01776e-05 (* 0.0909091 = 9.25235e-07 loss)
I0623 18:13:35.217682 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.25
I0623 18:13:35.217694 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0623 18:13:35.217715 10365 solver.cpp:245] Train net output #149: total_confidence = 0.146849
I0623 18:13:35.217730 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.14585
I0623 18:13:35.217742 10365 sgd_solver.cpp:106] Iteration 18500, lr = 0.001
I0623 18:14:13.173852 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.0437 > 30) by scale factor 0.998544
I0623 18:15:16.778084 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 43.9493 > 30) by scale factor 0.682604
I0623 18:19:12.026722 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 49.7948 > 30) by scale factor 0.602472
I0623 18:19:31.183141 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 36.9614 > 30) by scale factor 0.811658
I0623 18:19:58.394333 10365 solver.cpp:229] Iteration 19000, loss = 4.4366
I0623 18:19:58.394439 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.561798
I0623 18:19:58.394459 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0623 18:19:58.394474 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.875
I0623 18:19:58.394486 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0623 18:19:58.394500 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0623 18:19:58.394513 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.125
I0623 18:19:58.394526 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0623 18:19:58.394538 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5
I0623 18:19:58.394551 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.375
I0623 18:19:58.394562 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.5
I0623 18:19:58.394575 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.5
I0623 18:19:58.394587 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.625
I0623 18:19:58.394600 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875
I0623 18:19:58.394613 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.625
I0623 18:19:58.394623 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.75
I0623 18:19:58.394635 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.75
I0623 18:19:58.394647 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0623 18:19:58.394659 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 18:19:58.394670 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 18:19:58.394682 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 18:19:58.394693 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 18:19:58.394706 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 18:19:58.394716 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 18:19:58.394733 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.761364
I0623 18:19:58.394747 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.808989
I0623 18:19:58.394763 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.4483 (* 0.3 = 0.434491 loss)
I0623 18:19:58.394778 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.800616 (* 0.3 = 0.240185 loss)
I0623 18:19:58.394793 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.496638 (* 0.0272727 = 0.0135447 loss)
I0623 18:19:58.394807 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 0.569521 (* 0.0272727 = 0.0155324 loss)
I0623 18:19:58.394820 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.53689 (* 0.0272727 = 0.0419152 loss)
I0623 18:19:58.394834 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 2.1904 (* 0.0272727 = 0.0597382 loss)
I0623 18:19:58.394848 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 2.28905 (* 0.0272727 = 0.0624286 loss)
I0623 18:19:58.394862 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 1.38138 (* 0.0272727 = 0.0376739 loss)
I0623 18:19:58.394876 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.29429 (* 0.0272727 = 0.0352989 loss)
I0623 18:19:58.394889 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.80908 (* 0.0272727 = 0.0493385 loss)
I0623 18:19:58.394904 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.52983 (* 0.0272727 = 0.0417227 loss)
I0623 18:19:58.394917 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.32082 (* 0.0272727 = 0.0360224 loss)
I0623 18:19:58.394932 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.26478 (* 0.0272727 = 0.0344939 loss)
I0623 18:19:58.394945 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 0.689919 (* 0.0272727 = 0.018816 loss)
I0623 18:19:58.394978 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.37442 (* 0.0272727 = 0.0374841 loss)
I0623 18:19:58.394992 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 0.828773 (* 0.0272727 = 0.0226029 loss)
I0623 18:19:58.395005 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.685733 (* 0.0272727 = 0.0187018 loss)
I0623 18:19:58.395020 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.402437 (* 0.0272727 = 0.0109756 loss)
I0623 18:19:58.395035 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0100637 (* 0.0272727 = 0.000274465 loss)
I0623 18:19:58.395048 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0014355 (* 0.0272727 = 3.915e-05 loss)
I0623 18:19:58.395062 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000408243 (* 0.0272727 = 1.11339e-05 loss)
I0623 18:19:58.395076 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 8.91003e-05 (* 0.0272727 = 2.43001e-06 loss)
I0623 18:19:58.395090 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 1.92235e-05 (* 0.0272727 = 5.24278e-07 loss)
I0623 18:19:58.395105 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 4.72374e-06 (* 0.0272727 = 1.28829e-07 loss)
I0623 18:19:58.395117 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.573034
I0623 18:19:58.395131 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0623 18:19:58.395144 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0623 18:19:58.395156 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.875
I0623 18:19:58.395167 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625
I0623 18:19:58.395179 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0623 18:19:58.395191 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0623 18:19:58.395202 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5
I0623 18:19:58.395215 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625
I0623 18:19:58.395226 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.375
I0623 18:19:58.395236 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.5
I0623 18:19:58.395248 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.75
I0623 18:19:58.395259 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.625
I0623 18:19:58.395270 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.75
I0623 18:19:58.395282 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.75
I0623 18:19:58.395293 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.75
I0623 18:19:58.395305 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.75
I0623 18:19:58.395316 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 18:19:58.395328 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 18:19:58.395339 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 18:19:58.395350 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 18:19:58.395362 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 18:19:58.395373 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 18:19:58.395385 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.75
I0623 18:19:58.395395 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.853933
I0623 18:19:58.395409 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.14068 (* 0.3 = 0.342205 loss)
I0623 18:19:58.395423 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.647838 (* 0.3 = 0.194351 loss)
I0623 18:19:58.395437 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.24778 (* 0.0272727 = 0.00675764 loss)
I0623 18:19:58.395450 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.215671 (* 0.0272727 = 0.00588194 loss)
I0623 18:19:58.395476 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.569533 (* 0.0272727 = 0.0155327 loss)
I0623 18:19:58.395490 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.5444 (* 0.0272727 = 0.0421201 loss)
I0623 18:19:58.395504 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.1354 (* 0.0272727 = 0.0309655 loss)
I0623 18:19:58.395519 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.09117 (* 0.0272727 = 0.0297592 loss)
I0623 18:19:58.395532 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.16903 (* 0.0272727 = 0.0318827 loss)
I0623 18:19:58.395545 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.28953 (* 0.0272727 = 0.0351689 loss)
I0623 18:19:58.395560 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.7634 (* 0.0272727 = 0.0480926 loss)
I0623 18:19:58.395572 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.72798 (* 0.0272727 = 0.0471268 loss)
I0623 18:19:58.395586 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 0.840667 (* 0.0272727 = 0.0229273 loss)
I0623 18:19:58.395613 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 0.907671 (* 0.0272727 = 0.0247547 loss)
I0623 18:19:58.395630 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 0.855826 (* 0.0272727 = 0.0233407 loss)
I0623 18:19:58.395644 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 0.664141 (* 0.0272727 = 0.0181129 loss)
I0623 18:19:58.395658 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.740842 (* 0.0272727 = 0.0202048 loss)
I0623 18:19:58.395671 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.736317 (* 0.0272727 = 0.0200814 loss)
I0623 18:19:58.395685 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.147411 (* 0.0272727 = 0.00402031 loss)
I0623 18:19:58.395699 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0705079 (* 0.0272727 = 0.00192294 loss)
I0623 18:19:58.395712 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0111062 (* 0.0272727 = 0.000302897 loss)
I0623 18:19:58.395726 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00144027 (* 0.0272727 = 3.92801e-05 loss)
I0623 18:19:58.395740 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000361488 (* 0.0272727 = 9.85877e-06 loss)
I0623 18:19:58.395755 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 1.27409e-05 (* 0.0272727 = 3.4748e-07 loss)
I0623 18:19:58.395766 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.831461
I0623 18:19:58.395782 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 18:19:58.395795 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 18:19:58.395807 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 18:19:58.395818 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 18:19:58.395829 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0623 18:19:58.395840 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0623 18:19:58.395853 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0623 18:19:58.395864 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0623 18:19:58.395875 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75
I0623 18:19:58.395886 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.625
I0623 18:19:58.395897 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.75
I0623 18:19:58.395910 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.625
I0623 18:19:58.395920 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.75
I0623 18:19:58.395931 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.625
I0623 18:19:58.395943 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875
I0623 18:19:58.395954 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.75
I0623 18:19:58.395977 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 18:19:58.395990 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 18:19:58.396001 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 18:19:58.396013 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 18:19:58.396024 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 18:19:58.396035 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 18:19:58.396047 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.892045
I0623 18:19:58.396059 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.988764
I0623 18:19:58.396072 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.522394 (* 1 = 0.522394 loss)
I0623 18:19:58.396086 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.337006 (* 1 = 0.337006 loss)
I0623 18:19:58.396100 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0563238 (* 0.0909091 = 0.00512034 loss)
I0623 18:19:58.396114 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0881131 (* 0.0909091 = 0.00801028 loss)
I0623 18:19:58.396128 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.106982 (* 0.0909091 = 0.00972562 loss)
I0623 18:19:58.396142 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.160097 (* 0.0909091 = 0.0145543 loss)
I0623 18:19:58.396155 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.172627 (* 0.0909091 = 0.0156934 loss)
I0623 18:19:58.396169 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.21184 (* 0.0909091 = 0.0192582 loss)
I0623 18:19:58.396185 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.229515 (* 0.0909091 = 0.020865 loss)
I0623 18:19:58.396199 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.723382 (* 0.0909091 = 0.065762 loss)
I0623 18:19:58.396214 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.830792 (* 0.0909091 = 0.0755265 loss)
I0623 18:19:58.396226 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 1.06503 (* 0.0909091 = 0.0968209 loss)
I0623 18:19:58.396240 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 0.535471 (* 0.0909091 = 0.0486792 loss)
I0623 18:19:58.396255 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 0.822923 (* 0.0909091 = 0.0748112 loss)
I0623 18:19:58.396267 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 0.634303 (* 0.0909091 = 0.0576639 loss)
I0623 18:19:58.396281 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.87515 (* 0.0909091 = 0.0795591 loss)
I0623 18:19:58.396294 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.348024 (* 0.0909091 = 0.0316385 loss)
I0623 18:19:58.396308 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.681751 (* 0.0909091 = 0.0619773 loss)
I0623 18:19:58.396322 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00344075 (* 0.0909091 = 0.000312795 loss)
I0623 18:19:58.396335 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000837303 (* 0.0909091 = 7.61184e-05 loss)
I0623 18:19:58.396349 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000116505 (* 0.0909091 = 1.05914e-05 loss)
I0623 18:19:58.396363 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 6.32032e-05 (* 0.0909091 = 5.74574e-06 loss)
I0623 18:19:58.396378 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 3.89692e-05 (* 0.0909091 = 3.54265e-06 loss)
I0623 18:19:58.396391 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 7.28675e-06 (* 0.0909091 = 6.62432e-07 loss)
I0623 18:19:58.396402 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.375
I0623 18:19:58.396414 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375
I0623 18:19:58.396437 10365 solver.cpp:245] Train net output #149: total_confidence = 0.247096
I0623 18:19:58.396450 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.212557
I0623 18:19:58.396463 10365 sgd_solver.cpp:106] Iteration 19000, lr = 0.001
I0623 18:21:19.252107 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 43.0154 > 30) by scale factor 0.697425
I0623 18:24:14.751392 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 36.1141 > 30) by scale factor 0.830702
I0623 18:26:21.609807 10365 solver.cpp:229] Iteration 19500, loss = 4.52639
I0623 18:26:21.609897 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.422222
I0623 18:26:21.609916 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0623 18:26:21.609930 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75
I0623 18:26:21.609942 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0623 18:26:21.609954 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0623 18:26:21.609967 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0623 18:26:21.609979 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0623 18:26:21.609992 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.375
I0623 18:26:21.610005 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625
I0623 18:26:21.610018 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.375
I0623 18:26:21.610030 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.5
I0623 18:26:21.610043 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.375
I0623 18:26:21.610055 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.625
I0623 18:26:21.610067 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.5
I0623 18:26:21.610081 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.625
I0623 18:26:21.610095 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.625
I0623 18:26:21.610106 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.75
I0623 18:26:21.610117 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 18:26:21.610129 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 18:26:21.610141 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 18:26:21.610153 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 18:26:21.610165 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 18:26:21.610177 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 18:26:21.610188 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.693182
I0623 18:26:21.610200 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.788889
I0623 18:26:21.610216 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.62005 (* 0.3 = 0.486016 loss)
I0623 18:26:21.610230 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.877283 (* 0.3 = 0.263185 loss)
I0623 18:26:21.610245 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.634987 (* 0.0272727 = 0.0173178 loss)
I0623 18:26:21.610260 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 0.925613 (* 0.0272727 = 0.025244 loss)
I0623 18:26:21.610273 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 2.58459 (* 0.0272727 = 0.0704889 loss)
I0623 18:26:21.610287 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.34681 (* 0.0272727 = 0.0367311 loss)
I0623 18:26:21.610301 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 1.53748 (* 0.0272727 = 0.0419312 loss)
I0623 18:26:21.610314 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 0.93002 (* 0.0272727 = 0.0253642 loss)
I0623 18:26:21.610328 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.68787 (* 0.0272727 = 0.0460329 loss)
I0623 18:26:21.610343 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.0293 (* 0.0272727 = 0.0280718 loss)
I0623 18:26:21.610357 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.74106 (* 0.0272727 = 0.0474836 loss)
I0623 18:26:21.610371 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.08348 (* 0.0272727 = 0.0295494 loss)
I0623 18:26:21.610385 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.74345 (* 0.0272727 = 0.0475485 loss)
I0623 18:26:21.610399 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.25896 (* 0.0272727 = 0.0343353 loss)
I0623 18:26:21.610430 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.72376 (* 0.0272727 = 0.0470117 loss)
I0623 18:26:21.610445 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.43609 (* 0.0272727 = 0.039166 loss)
I0623 18:26:21.610460 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.729805 (* 0.0272727 = 0.0199038 loss)
I0623 18:26:21.610473 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.603387 (* 0.0272727 = 0.016456 loss)
I0623 18:26:21.610487 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0353391 (* 0.0272727 = 0.000963793 loss)
I0623 18:26:21.610502 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00481085 (* 0.0272727 = 0.000131205 loss)
I0623 18:26:21.610517 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000311905 (* 0.0272727 = 8.5065e-06 loss)
I0623 18:26:21.610535 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 8.59085e-05 (* 0.0272727 = 2.34296e-06 loss)
I0623 18:26:21.610550 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 1.95068e-05 (* 0.0272727 = 5.32005e-07 loss)
I0623 18:26:21.610564 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 6.70553e-07 (* 0.0272727 = 1.82878e-08 loss)
I0623 18:26:21.610576 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.622222
I0623 18:26:21.610589 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0623 18:26:21.610600 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0623 18:26:21.610611 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75
I0623 18:26:21.610623 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 1
I0623 18:26:21.610635 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0623 18:26:21.610646 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0623 18:26:21.610657 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.375
I0623 18:26:21.610669 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.5
I0623 18:26:21.610680 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.5
I0623 18:26:21.610692 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.75
I0623 18:26:21.610703 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.25
I0623 18:26:21.610715 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.375
I0623 18:26:21.610726 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.5
I0623 18:26:21.610738 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.625
I0623 18:26:21.610749 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.625
I0623 18:26:21.610760 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875
I0623 18:26:21.610772 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 18:26:21.610783 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 18:26:21.610795 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 18:26:21.610806 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 18:26:21.610817 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 18:26:21.610829 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 18:26:21.610841 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.789773
I0623 18:26:21.610852 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.8
I0623 18:26:21.610865 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.34022 (* 0.3 = 0.402065 loss)
I0623 18:26:21.610879 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.762504 (* 0.3 = 0.228751 loss)
I0623 18:26:21.610893 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.194981 (* 0.0272727 = 0.00531766 loss)
I0623 18:26:21.610908 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.713218 (* 0.0272727 = 0.0194514 loss)
I0623 18:26:21.610932 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 1.43522 (* 0.0272727 = 0.0391425 loss)
I0623 18:26:21.610947 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 0.503766 (* 0.0272727 = 0.0137391 loss)
I0623 18:26:21.610962 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.71524 (* 0.0272727 = 0.0467794 loss)
I0623 18:26:21.610976 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.18356 (* 0.0272727 = 0.0322789 loss)
I0623 18:26:21.610990 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.7121 (* 0.0272727 = 0.0466936 loss)
I0623 18:26:21.611003 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.38314 (* 0.0272727 = 0.0377219 loss)
I0623 18:26:21.611016 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.38457 (* 0.0272727 = 0.0377611 loss)
I0623 18:26:21.611030 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.27449 (* 0.0272727 = 0.0347587 loss)
I0623 18:26:21.611044 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.4925 (* 0.0272727 = 0.0407046 loss)
I0623 18:26:21.611057 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.46826 (* 0.0272727 = 0.0400434 loss)
I0623 18:26:21.611070 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.33142 (* 0.0272727 = 0.0363115 loss)
I0623 18:26:21.611084 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.32296 (* 0.0272727 = 0.0360807 loss)
I0623 18:26:21.611098 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 1.07046 (* 0.0272727 = 0.0291944 loss)
I0623 18:26:21.611111 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.863502 (* 0.0272727 = 0.0235501 loss)
I0623 18:26:21.611127 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0639322 (* 0.0272727 = 0.00174361 loss)
I0623 18:26:21.611142 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00939828 (* 0.0272727 = 0.000256317 loss)
I0623 18:26:21.611156 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000671022 (* 0.0272727 = 1.83006e-05 loss)
I0623 18:26:21.611171 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000168089 (* 0.0272727 = 4.58425e-06 loss)
I0623 18:26:21.611186 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 3.72058e-05 (* 0.0272727 = 1.0147e-06 loss)
I0623 18:26:21.611199 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 1.98187e-06 (* 0.0272727 = 5.40509e-08 loss)
I0623 18:26:21.611212 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.822222
I0623 18:26:21.611223 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 18:26:21.611234 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0623 18:26:21.611246 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75
I0623 18:26:21.611258 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 18:26:21.611269 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0623 18:26:21.611280 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0623 18:26:21.611292 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0623 18:26:21.611304 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0623 18:26:21.611315 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75
I0623 18:26:21.611327 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0623 18:26:21.611338 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.75
I0623 18:26:21.611351 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.75
I0623 18:26:21.611361 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.5
I0623 18:26:21.611373 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.75
I0623 18:26:21.611384 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.75
I0623 18:26:21.611397 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0623 18:26:21.611418 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 18:26:21.611430 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 18:26:21.611443 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 18:26:21.611454 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 18:26:21.611464 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 18:26:21.611476 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 18:26:21.611487 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.892045
I0623 18:26:21.611500 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.966667
I0623 18:26:21.611513 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.559292 (* 1 = 0.559292 loss)
I0623 18:26:21.611527 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.373348 (* 1 = 0.373348 loss)
I0623 18:26:21.611541 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0253321 (* 0.0909091 = 0.00230292 loss)
I0623 18:26:21.611555 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.575523 (* 0.0909091 = 0.0523203 loss)
I0623 18:26:21.611584 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.285894 (* 0.0909091 = 0.0259903 loss)
I0623 18:26:21.611603 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0659277 (* 0.0909091 = 0.00599342 loss)
I0623 18:26:21.611616 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.721681 (* 0.0909091 = 0.0656074 loss)
I0623 18:26:21.611630 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.31757 (* 0.0909091 = 0.02887 loss)
I0623 18:26:21.611644 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.994358 (* 0.0909091 = 0.0903962 loss)
I0623 18:26:21.611659 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.126681 (* 0.0909091 = 0.0115164 loss)
I0623 18:26:21.611672 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.424916 (* 0.0909091 = 0.0386287 loss)
I0623 18:26:21.611685 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.521495 (* 0.0909091 = 0.0474087 loss)
I0623 18:26:21.611699 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 1.03026 (* 0.0909091 = 0.0936601 loss)
I0623 18:26:21.611712 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 0.891414 (* 0.0909091 = 0.0810376 loss)
I0623 18:26:21.611726 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 1.00409 (* 0.0909091 = 0.0912812 loss)
I0623 18:26:21.611739 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.756903 (* 0.0909091 = 0.0688094 loss)
I0623 18:26:21.611753 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.865219 (* 0.0909091 = 0.0786563 loss)
I0623 18:26:21.611768 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.116198 (* 0.0909091 = 0.0105635 loss)
I0623 18:26:21.611780 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.127184 (* 0.0909091 = 0.0115622 loss)
I0623 18:26:21.611794 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0161266 (* 0.0909091 = 0.00146605 loss)
I0623 18:26:21.611809 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00180237 (* 0.0909091 = 0.000163851 loss)
I0623 18:26:21.611822 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000322933 (* 0.0909091 = 2.93575e-05 loss)
I0623 18:26:21.611836 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000242784 (* 0.0909091 = 2.20713e-05 loss)
I0623 18:26:21.611850 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 6.37517e-05 (* 0.0909091 = 5.79561e-06 loss)
I0623 18:26:21.611862 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.25
I0623 18:26:21.611873 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0623 18:26:21.611886 10365 solver.cpp:245] Train net output #149: total_confidence = 0.19066
I0623 18:26:21.611908 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.144479
I0623 18:26:21.611922 10365 sgd_solver.cpp:106] Iteration 19500, lr = 0.001
I0623 18:27:30.953132 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 37.5821 > 30) by scale factor 0.798251
I0623 18:30:36.458030 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.5687 > 30) by scale factor 0.981395
I0623 18:31:06.356283 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 34.4035 > 30) by scale factor 0.872005
I0623 18:32:44.449863 10365 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm22_iter_20000.caffemodel
I0623 18:32:45.049746 10365 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm22_iter_20000.solverstate
I0623 18:32:45.334161 10365 solver.cpp:338] Iteration 20000, Testing net (#0)
I0623 18:33:42.489037 10365 solver.cpp:393] Test loss: 3.77954
I0623 18:33:42.489163 10365 solver.cpp:406] Test net output #0: loss1/accuracy = 0.537847
I0623 18:33:42.489182 10365 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.937
I0623 18:33:42.489197 10365 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.801
I0623 18:33:42.489209 10365 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.581
I0623 18:33:42.489222 10365 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.502
I0623 18:33:42.489234 10365 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.421
I0623 18:33:42.489246 10365 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.449
I0623 18:33:42.489261 10365 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.427
I0623 18:33:42.489274 10365 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.497
I0623 18:33:42.489286 10365 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.452
I0623 18:33:42.489298 10365 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.427
I0623 18:33:42.489310 10365 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.415
I0623 18:33:42.489322 10365 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.493
I0623 18:33:42.489334 10365 solver.cpp:406] Test net output #13: loss1/accuracy13 = 0.593
I0623 18:33:42.489346 10365 solver.cpp:406] Test net output #14: loss1/accuracy14 = 0.684
I0623 18:33:42.489358 10365 solver.cpp:406] Test net output #15: loss1/accuracy15 = 0.783
I0623 18:33:42.489369 10365 solver.cpp:406] Test net output #16: loss1/accuracy16 = 0.833
I0623 18:33:42.489382 10365 solver.cpp:406] Test net output #17: loss1/accuracy17 = 0.909
I0623 18:33:42.489392 10365 solver.cpp:406] Test net output #18: loss1/accuracy18 = 0.952
I0623 18:33:42.489404 10365 solver.cpp:406] Test net output #19: loss1/accuracy19 = 0.972
I0623 18:33:42.489415 10365 solver.cpp:406] Test net output #20: loss1/accuracy20 = 0.987
I0623 18:33:42.489428 10365 solver.cpp:406] Test net output #21: loss1/accuracy21 = 0.999
I0623 18:33:42.489439 10365 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1
I0623 18:33:42.489450 10365 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.714772
I0623 18:33:42.489462 10365 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.858661
I0623 18:33:42.489480 10365 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.33372 (* 0.3 = 0.400115 loss)
I0623 18:33:42.489493 10365 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.822943 (* 0.3 = 0.246883 loss)
I0623 18:33:42.489507 10365 solver.cpp:406] Test net output #27: loss1/loss01 = 0.300707 (* 0.0272727 = 0.00820111 loss)
I0623 18:33:42.489521 10365 solver.cpp:406] Test net output #28: loss1/loss02 = 0.676593 (* 0.0272727 = 0.0184525 loss)
I0623 18:33:42.489536 10365 solver.cpp:406] Test net output #29: loss1/loss03 = 1.30714 (* 0.0272727 = 0.0356493 loss)
I0623 18:33:42.489549 10365 solver.cpp:406] Test net output #30: loss1/loss04 = 1.47333 (* 0.0272727 = 0.0401817 loss)
I0623 18:33:42.489562 10365 solver.cpp:406] Test net output #31: loss1/loss05 = 1.62145 (* 0.0272727 = 0.0442214 loss)
I0623 18:33:42.489576 10365 solver.cpp:406] Test net output #32: loss1/loss06 = 1.70078 (* 0.0272727 = 0.0463848 loss)
I0623 18:33:42.489589 10365 solver.cpp:406] Test net output #33: loss1/loss07 = 1.73264 (* 0.0272727 = 0.0472538 loss)
I0623 18:33:42.489603 10365 solver.cpp:406] Test net output #34: loss1/loss08 = 1.57808 (* 0.0272727 = 0.0430387 loss)
I0623 18:33:42.489617 10365 solver.cpp:406] Test net output #35: loss1/loss09 = 1.66549 (* 0.0272727 = 0.0454224 loss)
I0623 18:33:42.489630 10365 solver.cpp:406] Test net output #36: loss1/loss10 = 1.70699 (* 0.0272727 = 0.0465543 loss)
I0623 18:33:42.489645 10365 solver.cpp:406] Test net output #37: loss1/loss11 = 1.77548 (* 0.0272727 = 0.0484222 loss)
I0623 18:33:42.489657 10365 solver.cpp:406] Test net output #38: loss1/loss12 = 1.48579 (* 0.0272727 = 0.0405216 loss)
I0623 18:33:42.489689 10365 solver.cpp:406] Test net output #39: loss1/loss13 = 1.19254 (* 0.0272727 = 0.0325238 loss)
I0623 18:33:42.489706 10365 solver.cpp:406] Test net output #40: loss1/loss14 = 0.916804 (* 0.0272727 = 0.0250037 loss)
I0623 18:33:42.489718 10365 solver.cpp:406] Test net output #41: loss1/loss15 = 0.665252 (* 0.0272727 = 0.0181432 loss)
I0623 18:33:42.489732 10365 solver.cpp:406] Test net output #42: loss1/loss16 = 0.503395 (* 0.0272727 = 0.013729 loss)
I0623 18:33:42.489747 10365 solver.cpp:406] Test net output #43: loss1/loss17 = 0.310623 (* 0.0272727 = 0.00847155 loss)
I0623 18:33:42.489759 10365 solver.cpp:406] Test net output #44: loss1/loss18 = 0.184884 (* 0.0272727 = 0.00504229 loss)
I0623 18:33:42.489773 10365 solver.cpp:406] Test net output #45: loss1/loss19 = 0.115352 (* 0.0272727 = 0.00314597 loss)
I0623 18:33:42.489786 10365 solver.cpp:406] Test net output #46: loss1/loss20 = 0.0686231 (* 0.0272727 = 0.00187154 loss)
I0623 18:33:42.489800 10365 solver.cpp:406] Test net output #47: loss1/loss21 = 0.00701989 (* 0.0272727 = 0.000191451 loss)
I0623 18:33:42.489814 10365 solver.cpp:406] Test net output #48: loss1/loss22 = 7.3252e-05 (* 0.0272727 = 1.99778e-06 loss)
I0623 18:33:42.489825 10365 solver.cpp:406] Test net output #49: loss2/accuracy = 0.638041
I0623 18:33:42.489837 10365 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.971
I0623 18:33:42.489848 10365 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.948
I0623 18:33:42.489859 10365 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.866
I0623 18:33:42.489871 10365 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.746
I0623 18:33:42.489882 10365 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.585
I0623 18:33:42.489893 10365 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.539
I0623 18:33:42.489904 10365 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.534
I0623 18:33:42.489915 10365 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.549
I0623 18:33:42.489926 10365 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.486
I0623 18:33:42.489938 10365 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.437
I0623 18:33:42.489949 10365 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.454
I0623 18:33:42.489960 10365 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.539
I0623 18:33:42.489971 10365 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.608
I0623 18:33:42.489982 10365 solver.cpp:406] Test net output #63: loss2/accuracy14 = 0.708
I0623 18:33:42.489995 10365 solver.cpp:406] Test net output #64: loss2/accuracy15 = 0.791
I0623 18:33:42.490005 10365 solver.cpp:406] Test net output #65: loss2/accuracy16 = 0.85
I0623 18:33:42.490016 10365 solver.cpp:406] Test net output #66: loss2/accuracy17 = 0.908
I0623 18:33:42.490027 10365 solver.cpp:406] Test net output #67: loss2/accuracy18 = 0.953
I0623 18:33:42.490038 10365 solver.cpp:406] Test net output #68: loss2/accuracy19 = 0.972
I0623 18:33:42.490049 10365 solver.cpp:406] Test net output #69: loss2/accuracy20 = 0.987
I0623 18:33:42.490061 10365 solver.cpp:406] Test net output #70: loss2/accuracy21 = 0.999
I0623 18:33:42.490072 10365 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1
I0623 18:33:42.490083 10365 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.771409
I0623 18:33:42.490094 10365 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.9189
I0623 18:33:42.490108 10365 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 1.02947 (* 0.3 = 0.308842 loss)
I0623 18:33:42.490121 10365 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.644754 (* 0.3 = 0.193426 loss)
I0623 18:33:42.490135 10365 solver.cpp:406] Test net output #76: loss2/loss01 = 0.19625 (* 0.0272727 = 0.00535226 loss)
I0623 18:33:42.490149 10365 solver.cpp:406] Test net output #77: loss2/loss02 = 0.268124 (* 0.0272727 = 0.00731247 loss)
I0623 18:33:42.490177 10365 solver.cpp:406] Test net output #78: loss2/loss03 = 0.54132 (* 0.0272727 = 0.0147633 loss)
I0623 18:33:42.490193 10365 solver.cpp:406] Test net output #79: loss2/loss04 = 0.854885 (* 0.0272727 = 0.0233151 loss)
I0623 18:33:42.490207 10365 solver.cpp:406] Test net output #80: loss2/loss05 = 1.12717 (* 0.0272727 = 0.030741 loss)
I0623 18:33:42.490221 10365 solver.cpp:406] Test net output #81: loss2/loss06 = 1.35126 (* 0.0272727 = 0.0368524 loss)
I0623 18:33:42.490234 10365 solver.cpp:406] Test net output #82: loss2/loss07 = 1.41486 (* 0.0272727 = 0.0385871 loss)
I0623 18:33:42.490248 10365 solver.cpp:406] Test net output #83: loss2/loss08 = 1.37768 (* 0.0272727 = 0.0375731 loss)
I0623 18:33:42.490262 10365 solver.cpp:406] Test net output #84: loss2/loss09 = 1.46953 (* 0.0272727 = 0.040078 loss)
I0623 18:33:42.490277 10365 solver.cpp:406] Test net output #85: loss2/loss10 = 1.55917 (* 0.0272727 = 0.0425228 loss)
I0623 18:33:42.490289 10365 solver.cpp:406] Test net output #86: loss2/loss11 = 1.59495 (* 0.0272727 = 0.0434987 loss)
I0623 18:33:42.490303 10365 solver.cpp:406] Test net output #87: loss2/loss12 = 1.33204 (* 0.0272727 = 0.0363284 loss)
I0623 18:33:42.490319 10365 solver.cpp:406] Test net output #88: loss2/loss13 = 1.08575 (* 0.0272727 = 0.0296115 loss)
I0623 18:33:42.490332 10365 solver.cpp:406] Test net output #89: loss2/loss14 = 0.83723 (* 0.0272727 = 0.0228336 loss)
I0623 18:33:42.490346 10365 solver.cpp:406] Test net output #90: loss2/loss15 = 0.60647 (* 0.0272727 = 0.0165401 loss)
I0623 18:33:42.490360 10365 solver.cpp:406] Test net output #91: loss2/loss16 = 0.446274 (* 0.0272727 = 0.0121711 loss)
I0623 18:33:42.490373 10365 solver.cpp:406] Test net output #92: loss2/loss17 = 0.29328 (* 0.0272727 = 0.00799854 loss)
I0623 18:33:42.490387 10365 solver.cpp:406] Test net output #93: loss2/loss18 = 0.162741 (* 0.0272727 = 0.00443839 loss)
I0623 18:33:42.490401 10365 solver.cpp:406] Test net output #94: loss2/loss19 = 0.104279 (* 0.0272727 = 0.00284398 loss)
I0623 18:33:42.490414 10365 solver.cpp:406] Test net output #95: loss2/loss20 = 0.0613253 (* 0.0272727 = 0.00167251 loss)
I0623 18:33:42.490428 10365 solver.cpp:406] Test net output #96: loss2/loss21 = 0.00781317 (* 0.0272727 = 0.000213086 loss)
I0623 18:33:42.490442 10365 solver.cpp:406] Test net output #97: loss2/loss22 = 9.60817e-05 (* 0.0272727 = 2.62041e-06 loss)
I0623 18:33:42.490454 10365 solver.cpp:406] Test net output #98: loss3/accuracy = 0.880357
I0623 18:33:42.490465 10365 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.978
I0623 18:33:42.490478 10365 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.978
I0623 18:33:42.490489 10365 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.958
I0623 18:33:42.490499 10365 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.948
I0623 18:33:42.490511 10365 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.94
I0623 18:33:42.490522 10365 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.916
I0623 18:33:42.490533 10365 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.911
I0623 18:33:42.490545 10365 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.881
I0623 18:33:42.490556 10365 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.823
I0623 18:33:42.490566 10365 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.742
I0623 18:33:42.490577 10365 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.648
I0623 18:33:42.490588 10365 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.672
I0623 18:33:42.490599 10365 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.706
I0623 18:33:42.490610 10365 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.769
I0623 18:33:42.490622 10365 solver.cpp:406] Test net output #113: loss3/accuracy15 = 0.837
I0623 18:33:42.490633 10365 solver.cpp:406] Test net output #114: loss3/accuracy16 = 0.882
I0623 18:33:42.490654 10365 solver.cpp:406] Test net output #115: loss3/accuracy17 = 0.934
I0623 18:33:42.490667 10365 solver.cpp:406] Test net output #116: loss3/accuracy18 = 0.965
I0623 18:33:42.490679 10365 solver.cpp:406] Test net output #117: loss3/accuracy19 = 0.977
I0623 18:33:42.490690 10365 solver.cpp:406] Test net output #118: loss3/accuracy20 = 0.987
I0623 18:33:42.490701 10365 solver.cpp:406] Test net output #119: loss3/accuracy21 = 0.999
I0623 18:33:42.490712 10365 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1
I0623 18:33:42.490723 10365 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.918637
I0623 18:33:42.490734 10365 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.972377
I0623 18:33:42.490747 10365 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.492678 (* 1 = 0.492678 loss)
I0623 18:33:42.490761 10365 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.320652 (* 1 = 0.320652 loss)
I0623 18:33:42.490774 10365 solver.cpp:406] Test net output #125: loss3/loss01 = 0.149093 (* 0.0909091 = 0.013554 loss)
I0623 18:33:42.490788 10365 solver.cpp:406] Test net output #126: loss3/loss02 = 0.167129 (* 0.0909091 = 0.0151935 loss)
I0623 18:33:42.490802 10365 solver.cpp:406] Test net output #127: loss3/loss03 = 0.277119 (* 0.0909091 = 0.0251927 loss)
I0623 18:33:42.490815 10365 solver.cpp:406] Test net output #128: loss3/loss04 = 0.327528 (* 0.0909091 = 0.0297752 loss)
I0623 18:33:42.490828 10365 solver.cpp:406] Test net output #129: loss3/loss05 = 0.347202 (* 0.0909091 = 0.0315638 loss)
I0623 18:33:42.490841 10365 solver.cpp:406] Test net output #130: loss3/loss06 = 0.439179 (* 0.0909091 = 0.0399254 loss)
I0623 18:33:42.490855 10365 solver.cpp:406] Test net output #131: loss3/loss07 = 0.479171 (* 0.0909091 = 0.043561 loss)
I0623 18:33:42.490869 10365 solver.cpp:406] Test net output #132: loss3/loss08 = 0.51575 (* 0.0909091 = 0.0468864 loss)
I0623 18:33:42.490881 10365 solver.cpp:406] Test net output #133: loss3/loss09 = 0.644845 (* 0.0909091 = 0.0586223 loss)
I0623 18:33:42.490895 10365 solver.cpp:406] Test net output #134: loss3/loss10 = 0.811556 (* 0.0909091 = 0.0737778 loss)
I0623 18:33:42.490908 10365 solver.cpp:406] Test net output #135: loss3/loss11 = 0.982552 (* 0.0909091 = 0.0893229 loss)
I0623 18:33:42.490921 10365 solver.cpp:406] Test net output #136: loss3/loss12 = 0.874559 (* 0.0909091 = 0.0795054 loss)
I0623 18:33:42.490936 10365 solver.cpp:406] Test net output #137: loss3/loss13 = 0.793505 (* 0.0909091 = 0.0721369 loss)
I0623 18:33:42.490948 10365 solver.cpp:406] Test net output #138: loss3/loss14 = 0.611483 (* 0.0909091 = 0.0555894 loss)
I0623 18:33:42.490962 10365 solver.cpp:406] Test net output #139: loss3/loss15 = 0.467804 (* 0.0909091 = 0.0425277 loss)
I0623 18:33:42.490974 10365 solver.cpp:406] Test net output #140: loss3/loss16 = 0.35022 (* 0.0909091 = 0.0318382 loss)
I0623 18:33:42.490988 10365 solver.cpp:406] Test net output #141: loss3/loss17 = 0.206004 (* 0.0909091 = 0.0187277 loss)
I0623 18:33:42.491001 10365 solver.cpp:406] Test net output #142: loss3/loss18 = 0.120077 (* 0.0909091 = 0.0109161 loss)
I0623 18:33:42.491015 10365 solver.cpp:406] Test net output #143: loss3/loss19 = 0.0700516 (* 0.0909091 = 0.00636833 loss)
I0623 18:33:42.491029 10365 solver.cpp:406] Test net output #144: loss3/loss20 = 0.0408868 (* 0.0909091 = 0.00371699 loss)
I0623 18:33:42.491042 10365 solver.cpp:406] Test net output #145: loss3/loss21 = 0.00614451 (* 0.0909091 = 0.000558592 loss)
I0623 18:33:42.491055 10365 solver.cpp:406] Test net output #146: loss3/loss22 = 9.89341e-05 (* 0.0909091 = 8.99401e-06 loss)
I0623 18:33:42.491067 10365 solver.cpp:406] Test net output #147: total_accuracy = 0.444
I0623 18:33:42.491078 10365 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.242
I0623 18:33:42.491089 10365 solver.cpp:406] Test net output #149: total_confidence = 0.235038
I0623 18:33:42.491109 10365 solver.cpp:406] Test net output #150: total_confidence_not_rec = 0.145771
I0623 18:33:42.849488 10365 solver.cpp:229] Iteration 20000, loss = 4.45801
I0623 18:33:42.849548 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.407767
I0623 18:33:42.849565 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0623 18:33:42.849580 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0623 18:33:42.849592 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0623 18:33:42.849606 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.75
I0623 18:33:42.849618 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0623 18:33:42.849630 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.25
I0623 18:33:42.849642 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.375
I0623 18:33:42.849654 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.375
I0623 18:33:42.849666 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.375
I0623 18:33:42.849679 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.25
I0623 18:33:42.849691 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.125
I0623 18:33:42.849704 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.375
I0623 18:33:42.849715 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.5
I0623 18:33:42.849726 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.625
I0623 18:33:42.849738 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.75
I0623 18:33:42.849750 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875
I0623 18:33:42.849761 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875
I0623 18:33:42.849771 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 0.875
I0623 18:33:42.849783 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 18:33:42.849795 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 18:33:42.849807 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 18:33:42.849818 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 18:33:42.849829 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.647727
I0623 18:33:42.849841 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.699029
I0623 18:33:42.849858 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.71817 (* 0.3 = 0.515452 loss)
I0623 18:33:42.849871 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.02843 (* 0.3 = 0.308529 loss)
I0623 18:33:42.849886 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.439219 (* 0.0272727 = 0.0119787 loss)
I0623 18:33:42.849900 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 1.63014 (* 0.0272727 = 0.0444582 loss)
I0623 18:33:42.849913 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.62636 (* 0.0272727 = 0.0443553 loss)
I0623 18:33:42.849927 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.69922 (* 0.0272727 = 0.0463424 loss)
I0623 18:33:42.849941 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 2.06833 (* 0.0272727 = 0.0564091 loss)
I0623 18:33:42.849956 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 2.12039 (* 0.0272727 = 0.0578289 loss)
I0623 18:33:42.849968 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 2.31819 (* 0.0272727 = 0.0632233 loss)
I0623 18:33:42.849982 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 2.21549 (* 0.0272727 = 0.0604225 loss)
I0623 18:33:42.849997 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.65716 (* 0.0272727 = 0.0451953 loss)
I0623 18:33:42.850010 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 2.13015 (* 0.0272727 = 0.058095 loss)
I0623 18:33:42.850023 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 2.5891 (* 0.0272727 = 0.0706118 loss)
I0623 18:33:42.850062 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 2.3594 (* 0.0272727 = 0.0643472 loss)
I0623 18:33:42.850080 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.44259 (* 0.0272727 = 0.0393435 loss)
I0623 18:33:42.850095 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.17335 (* 0.0272727 = 0.0320004 loss)
I0623 18:33:42.850109 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.632072 (* 0.0272727 = 0.0172383 loss)
I0623 18:33:42.850123 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.387776 (* 0.0272727 = 0.0105757 loss)
I0623 18:33:42.850137 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.428292 (* 0.0272727 = 0.0116807 loss)
I0623 18:33:42.850152 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.225877 (* 0.0272727 = 0.00616027 loss)
I0623 18:33:42.850165 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0569277 (* 0.0272727 = 0.00155257 loss)
I0623 18:33:42.850179 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00928081 (* 0.0272727 = 0.000253113 loss)
I0623 18:33:42.850194 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000628595 (* 0.0272727 = 1.71435e-05 loss)
I0623 18:33:42.850208 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 4.62299e-05 (* 0.0272727 = 1.26082e-06 loss)
I0623 18:33:42.850220 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.504854
I0623 18:33:42.850232 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0623 18:33:42.850244 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0623 18:33:42.850256 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 1
I0623 18:33:42.850267 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0623 18:33:42.850280 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0623 18:33:42.850291 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375
I0623 18:33:42.850302 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5
I0623 18:33:42.850313 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.375
I0623 18:33:42.850325 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.375
I0623 18:33:42.850337 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.5
I0623 18:33:42.850348 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.375
I0623 18:33:42.850359 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.375
I0623 18:33:42.850370 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.625
I0623 18:33:42.850381 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.625
I0623 18:33:42.850394 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875
I0623 18:33:42.850405 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0623 18:33:42.850417 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875
I0623 18:33:42.850428 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 0.875
I0623 18:33:42.850440 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 18:33:42.850451 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 18:33:42.850463 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 18:33:42.850474 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 18:33:42.850491 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.693182
I0623 18:33:42.850502 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.805825
I0623 18:33:42.850517 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.45114 (* 0.3 = 0.435343 loss)
I0623 18:33:42.850530 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.895353 (* 0.3 = 0.268606 loss)
I0623 18:33:42.850555 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.679559 (* 0.0272727 = 0.0185334 loss)
I0623 18:33:42.850570 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 1.02676 (* 0.0272727 = 0.0280026 loss)
I0623 18:33:42.850584 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.211755 (* 0.0272727 = 0.00577514 loss)
I0623 18:33:42.850600 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.99202 (* 0.0272727 = 0.0543277 loss)
I0623 18:33:42.850613 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.41297 (* 0.0272727 = 0.0385356 loss)
I0623 18:33:42.850626 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.57525 (* 0.0272727 = 0.0429613 loss)
I0623 18:33:42.850641 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 2.04138 (* 0.0272727 = 0.0556739 loss)
I0623 18:33:42.850653 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.81936 (* 0.0272727 = 0.049619 loss)
I0623 18:33:42.850667 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 2.03306 (* 0.0272727 = 0.0554472 loss)
I0623 18:33:42.850682 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.97962 (* 0.0272727 = 0.0539896 loss)
I0623 18:33:42.850694 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.85288 (* 0.0272727 = 0.0505331 loss)
I0623 18:33:42.850708 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.64006 (* 0.0272727 = 0.044729 loss)
I0623 18:33:42.850721 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.33047 (* 0.0272727 = 0.0362854 loss)
I0623 18:33:42.850735 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.15627 (* 0.0272727 = 0.0315345 loss)
I0623 18:33:42.850749 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.659573 (* 0.0272727 = 0.0179884 loss)
I0623 18:33:42.850764 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.222237 (* 0.0272727 = 0.006061 loss)
I0623 18:33:42.850777 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.382793 (* 0.0272727 = 0.0104398 loss)
I0623 18:33:42.850790 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.42583 (* 0.0272727 = 0.0116135 loss)
I0623 18:33:42.850805 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0226779 (* 0.0272727 = 0.000618489 loss)
I0623 18:33:42.850819 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.0018586 (* 0.0272727 = 5.06891e-05 loss)
I0623 18:33:42.850833 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000177707 (* 0.0272727 = 4.84656e-06 loss)
I0623 18:33:42.850847 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 1.85228e-05 (* 0.0272727 = 5.05166e-07 loss)
I0623 18:33:42.850859 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.68932
I0623 18:33:42.850872 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0623 18:33:42.850883 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0623 18:33:42.850895 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875
I0623 18:33:42.850906 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625
I0623 18:33:42.850919 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0623 18:33:42.850930 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0623 18:33:42.850941 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0623 18:33:42.850953 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0623 18:33:42.850965 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.5
I0623 18:33:42.850976 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.625
I0623 18:33:42.850987 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.25
I0623 18:33:42.850999 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.375
I0623 18:33:42.851011 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.625
I0623 18:33:42.851032 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875
I0623 18:33:42.851044 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.625
I0623 18:33:42.851057 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875
I0623 18:33:42.851068 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 18:33:42.851079 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 0.875
I0623 18:33:42.851091 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 18:33:42.851102 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 18:33:42.851114 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 18:33:42.851125 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 18:33:42.851140 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.8125
I0623 18:33:42.851152 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.883495
I0623 18:33:42.851166 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.21909 (* 1 = 1.21909 loss)
I0623 18:33:42.851181 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.723777 (* 1 = 0.723777 loss)
I0623 18:33:42.851194 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.489799 (* 0.0909091 = 0.0445272 loss)
I0623 18:33:42.851208 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.462655 (* 0.0909091 = 0.0420596 loss)
I0623 18:33:42.851222 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.474679 (* 0.0909091 = 0.0431526 loss)
I0623 18:33:42.851235 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 1.81521 (* 0.0909091 = 0.165019 loss)
I0623 18:33:42.851249 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.940518 (* 0.0909091 = 0.0855017 loss)
I0623 18:33:42.851263 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 1.36871 (* 0.0909091 = 0.124428 loss)
I0623 18:33:42.851277 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 1.25111 (* 0.0909091 = 0.113737 loss)
I0623 18:33:42.851290 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.950444 (* 0.0909091 = 0.086404 loss)
I0623 18:33:42.851305 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 1.58747 (* 0.0909091 = 0.144315 loss)
I0623 18:33:42.851318 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 1.2655 (* 0.0909091 = 0.115045 loss)
I0623 18:33:42.851331 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 1.76707 (* 0.0909091 = 0.160643 loss)
I0623 18:33:42.851346 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 2.06346 (* 0.0909091 = 0.187588 loss)
I0623 18:33:42.851358 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 0.838388 (* 0.0909091 = 0.0762171 loss)
I0623 18:33:42.851372 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.488011 (* 0.0909091 = 0.0443647 loss)
I0623 18:33:42.851385 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.774001 (* 0.0909091 = 0.0703637 loss)
I0623 18:33:42.851399 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.166547 (* 0.0909091 = 0.0151406 loss)
I0623 18:33:42.851413 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.13781 (* 0.0909091 = 0.0125282 loss)
I0623 18:33:42.851426 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.507906 (* 0.0909091 = 0.0461733 loss)
I0623 18:33:42.851440 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00722897 (* 0.0909091 = 0.000657179 loss)
I0623 18:33:42.851454 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000507185 (* 0.0909091 = 4.61077e-05 loss)
I0623 18:33:42.851469 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 6.69967e-05 (* 0.0909091 = 6.09061e-06 loss)
I0623 18:33:42.851482 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 2.47361e-06 (* 0.0909091 = 2.24874e-07 loss)
I0623 18:33:42.851503 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.25
I0623 18:33:42.851516 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0623 18:33:42.851532 10365 solver.cpp:245] Train net output #149: total_confidence = 0.124154
I0623 18:33:42.851546 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.105737
I0623 18:33:42.851559 10365 sgd_solver.cpp:106] Iteration 20000, lr = 0.001
I0623 18:35:12.915496 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.0829 > 30) by scale factor 0.997245
I0623 18:36:04.232640 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 42.4525 > 30) by scale factor 0.706671
I0623 18:37:32.313570 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 32.2527 > 30) by scale factor 0.930156
I0623 18:38:45.077514 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.7755 > 30) by scale factor 0.974801
I0623 18:40:05.955054 10365 solver.cpp:229] Iteration 20500, loss = 4.34772
I0623 18:40:05.955139 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.505747
I0623 18:40:05.955157 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0623 18:40:05.955170 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375
I0623 18:40:05.955183 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0623 18:40:05.955195 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0623 18:40:05.955209 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0623 18:40:05.955221 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0623 18:40:05.955235 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.375
I0623 18:40:05.955246 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.5
I0623 18:40:05.955258 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75
I0623 18:40:05.955271 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.5
I0623 18:40:05.955283 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.625
I0623 18:40:05.955296 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.5
I0623 18:40:05.955307 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.5
I0623 18:40:05.955318 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.5
I0623 18:40:05.955330 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875
I0623 18:40:05.955343 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875
I0623 18:40:05.955353 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 18:40:05.955365 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 18:40:05.955377 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 18:40:05.955389 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 18:40:05.955400 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 18:40:05.955412 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 18:40:05.955423 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.744318
I0623 18:40:05.955435 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.793103
I0623 18:40:05.955451 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.59723 (* 0.3 = 0.47917 loss)
I0623 18:40:05.955466 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.809651 (* 0.3 = 0.242895 loss)
I0623 18:40:05.955481 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 1.5724 (* 0.0272727 = 0.0428837 loss)
I0623 18:40:05.955493 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 1.10122 (* 0.0272727 = 0.0300333 loss)
I0623 18:40:05.955507 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.68326 (* 0.0272727 = 0.0459071 loss)
I0623 18:40:05.955521 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.2731 (* 0.0272727 = 0.034721 loss)
I0623 18:40:05.955535 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 1.77366 (* 0.0272727 = 0.0483725 loss)
I0623 18:40:05.955549 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 1.93828 (* 0.0272727 = 0.0528622 loss)
I0623 18:40:05.955562 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.24603 (* 0.0272727 = 0.0339826 loss)
I0623 18:40:05.955576 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.24144 (* 0.0272727 = 0.0338576 loss)
I0623 18:40:05.955590 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 0.676724 (* 0.0272727 = 0.0184561 loss)
I0623 18:40:05.955623 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.74247 (* 0.0272727 = 0.0475218 loss)
I0623 18:40:05.955638 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.3072 (* 0.0272727 = 0.0356508 loss)
I0623 18:40:05.955652 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.27399 (* 0.0272727 = 0.0347451 loss)
I0623 18:40:05.955685 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.36896 (* 0.0272727 = 0.0373353 loss)
I0623 18:40:05.955700 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.34129 (* 0.0272727 = 0.0365807 loss)
I0623 18:40:05.955713 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.477847 (* 0.0272727 = 0.0130322 loss)
I0623 18:40:05.955727 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.512905 (* 0.0272727 = 0.0139883 loss)
I0623 18:40:05.955742 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00297387 (* 0.0272727 = 8.11056e-05 loss)
I0623 18:40:05.955756 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000134223 (* 0.0272727 = 3.66062e-06 loss)
I0623 18:40:05.955770 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 9.67097e-06 (* 0.0272727 = 2.63754e-07 loss)
I0623 18:40:05.955785 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 1.49012e-06 (* 0.0272727 = 4.06396e-08 loss)
I0623 18:40:05.955799 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 4.32134e-07 (* 0.0272727 = 1.17855e-08 loss)
I0623 18:40:05.955813 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 2.98023e-08 (* 0.0272727 = 8.12791e-10 loss)
I0623 18:40:05.955826 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.666667
I0623 18:40:05.955837 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0623 18:40:05.955849 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0623 18:40:05.955862 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75
I0623 18:40:05.955873 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0623 18:40:05.955884 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.875
I0623 18:40:05.955895 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0623 18:40:05.955907 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0623 18:40:05.955919 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.5
I0623 18:40:05.955931 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0623 18:40:05.955942 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.5
I0623 18:40:05.955955 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.625
I0623 18:40:05.955965 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.5
I0623 18:40:05.955977 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.375
I0623 18:40:05.955988 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.625
I0623 18:40:05.956001 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.75
I0623 18:40:05.956012 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875
I0623 18:40:05.956022 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 18:40:05.956033 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 18:40:05.956045 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 18:40:05.956056 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 18:40:05.956068 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 18:40:05.956079 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 18:40:05.956090 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.818182
I0623 18:40:05.956102 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.908046
I0623 18:40:05.956116 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.04185 (* 0.3 = 0.312555 loss)
I0623 18:40:05.956130 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.559516 (* 0.3 = 0.167855 loss)
I0623 18:40:05.956143 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 1.03171 (* 0.0272727 = 0.0281374 loss)
I0623 18:40:05.956162 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.475708 (* 0.0272727 = 0.0129738 loss)
I0623 18:40:05.956187 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.648719 (* 0.0272727 = 0.0176923 loss)
I0623 18:40:05.956202 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.21668 (* 0.0272727 = 0.0331822 loss)
I0623 18:40:05.956217 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 0.810416 (* 0.0272727 = 0.0221023 loss)
I0623 18:40:05.956229 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.49563 (* 0.0272727 = 0.04079 loss)
I0623 18:40:05.956243 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 0.908799 (* 0.0272727 = 0.0247854 loss)
I0623 18:40:05.956257 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.17785 (* 0.0272727 = 0.0321231 loss)
I0623 18:40:05.956270 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 0.578638 (* 0.0272727 = 0.015781 loss)
I0623 18:40:05.956284 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.54733 (* 0.0272727 = 0.0422 loss)
I0623 18:40:05.956298 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 0.854463 (* 0.0272727 = 0.0233035 loss)
I0623 18:40:05.956312 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.14849 (* 0.0272727 = 0.0313223 loss)
I0623 18:40:05.956326 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.14533 (* 0.0272727 = 0.0312364 loss)
I0623 18:40:05.956339 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.01977 (* 0.0272727 = 0.0278119 loss)
I0623 18:40:05.956353 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.742505 (* 0.0272727 = 0.0202501 loss)
I0623 18:40:05.956367 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.615304 (* 0.0272727 = 0.016781 loss)
I0623 18:40:05.956380 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0469668 (* 0.0272727 = 0.00128091 loss)
I0623 18:40:05.956394 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0071033 (* 0.0272727 = 0.000193726 loss)
I0623 18:40:05.956408 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00130424 (* 0.0272727 = 3.55701e-05 loss)
I0623 18:40:05.956423 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00030964 (* 0.0272727 = 8.44474e-06 loss)
I0623 18:40:05.956436 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000214458 (* 0.0272727 = 5.84886e-06 loss)
I0623 18:40:05.956450 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 3.01106e-05 (* 0.0272727 = 8.21198e-07 loss)
I0623 18:40:05.956462 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.908046
I0623 18:40:05.956475 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0623 18:40:05.956486 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 18:40:05.956497 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875
I0623 18:40:05.956509 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 18:40:05.956521 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0623 18:40:05.956532 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0623 18:40:05.956543 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0623 18:40:05.956555 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0623 18:40:05.956567 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75
I0623 18:40:05.956578 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75
I0623 18:40:05.956589 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.625
I0623 18:40:05.956601 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.75
I0623 18:40:05.956612 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.625
I0623 18:40:05.956624 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.75
I0623 18:40:05.956635 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.75
I0623 18:40:05.956646 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0623 18:40:05.956668 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 18:40:05.956681 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 18:40:05.956692 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 18:40:05.956704 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 18:40:05.956715 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 18:40:05.956727 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 18:40:05.956737 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.954545
I0623 18:40:05.956749 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.977012
I0623 18:40:05.956763 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.424117 (* 1 = 0.424117 loss)
I0623 18:40:05.956778 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.214997 (* 1 = 0.214997 loss)
I0623 18:40:05.956792 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.968974 (* 0.0909091 = 0.0880886 loss)
I0623 18:40:05.956806 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0952706 (* 0.0909091 = 0.00866096 loss)
I0623 18:40:05.956820 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.540184 (* 0.0909091 = 0.0491077 loss)
I0623 18:40:05.956835 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.126084 (* 0.0909091 = 0.0114622 loss)
I0623 18:40:05.956847 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.103917 (* 0.0909091 = 0.00944704 loss)
I0623 18:40:05.956861 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.403409 (* 0.0909091 = 0.0366735 loss)
I0623 18:40:05.956876 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.0749303 (* 0.0909091 = 0.00681185 loss)
I0623 18:40:05.956889 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.539251 (* 0.0909091 = 0.0490228 loss)
I0623 18:40:05.956902 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.352132 (* 0.0909091 = 0.032012 loss)
I0623 18:40:05.956917 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.466425 (* 0.0909091 = 0.0424023 loss)
I0623 18:40:05.956929 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 0.747306 (* 0.0909091 = 0.0679369 loss)
I0623 18:40:05.956943 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 0.650043 (* 0.0909091 = 0.0590949 loss)
I0623 18:40:05.956957 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 0.619518 (* 0.0909091 = 0.0563198 loss)
I0623 18:40:05.956970 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.587671 (* 0.0909091 = 0.0534247 loss)
I0623 18:40:05.956984 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.448063 (* 0.0909091 = 0.040733 loss)
I0623 18:40:05.956997 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.04482 (* 0.0909091 = 0.00407454 loss)
I0623 18:40:05.957010 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0130088 (* 0.0909091 = 0.00118262 loss)
I0623 18:40:05.957025 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00111991 (* 0.0909091 = 0.00010181 loss)
I0623 18:40:05.957038 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000118997 (* 0.0909091 = 1.08179e-05 loss)
I0623 18:40:05.957052 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 3.76876e-05 (* 0.0909091 = 3.42614e-06 loss)
I0623 18:40:05.957065 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 5.91817e-05 (* 0.0909091 = 5.38016e-06 loss)
I0623 18:40:05.957079 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 4.21707e-06 (* 0.0909091 = 3.8337e-07 loss)
I0623 18:40:05.957092 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.25
I0623 18:40:05.957103 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0623 18:40:05.957124 10365 solver.cpp:245] Train net output #149: total_confidence = 0.326521
I0623 18:40:05.957137 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.303762
I0623 18:40:05.957150 10365 sgd_solver.cpp:106] Iteration 20500, lr = 0.001
I0623 18:41:44.376720 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 84.0854 > 30) by scale factor 0.35678
I0623 18:44:37.604583 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 40.5507 > 30) by scale factor 0.739814
I0623 18:45:15.137598 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.1349 > 30) by scale factor 0.963549
I0623 18:46:20.244386 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 32.8568 > 30) by scale factor 0.913054
I0623 18:46:29.080834 10365 solver.cpp:229] Iteration 21000, loss = 4.35115
I0623 18:46:29.080929 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.419355
I0623 18:46:29.080948 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0623 18:46:29.080962 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0623 18:46:29.080976 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0623 18:46:29.080989 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0623 18:46:29.081007 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0623 18:46:29.081022 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0623 18:46:29.081034 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5
I0623 18:46:29.081046 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.5
I0623 18:46:29.081059 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.25
I0623 18:46:29.081073 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.375
I0623 18:46:29.081084 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.5
I0623 18:46:29.081097 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.5
I0623 18:46:29.081110 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.625
I0623 18:46:29.081122 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875
I0623 18:46:29.081135 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.75
I0623 18:46:29.081146 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875
I0623 18:46:29.081161 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 18:46:29.081173 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 18:46:29.081185 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 18:46:29.081197 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 18:46:29.081209 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 18:46:29.081221 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 18:46:29.081233 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.653409
I0623 18:46:29.081245 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.827957
I0623 18:46:29.081265 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.62704 (* 0.3 = 0.488113 loss)
I0623 18:46:29.081280 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.00935 (* 0.3 = 0.302806 loss)
I0623 18:46:29.081295 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.900881 (* 0.0272727 = 0.0245695 loss)
I0623 18:46:29.081310 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 0.988716 (* 0.0272727 = 0.026965 loss)
I0623 18:46:29.081323 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 2.27145 (* 0.0272727 = 0.0619485 loss)
I0623 18:46:29.081337 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.81759 (* 0.0272727 = 0.0495706 loss)
I0623 18:46:29.081352 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 1.75978 (* 0.0272727 = 0.0479939 loss)
I0623 18:46:29.081367 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 1.48915 (* 0.0272727 = 0.0406132 loss)
I0623 18:46:29.081380 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.65661 (* 0.0272727 = 0.0451804 loss)
I0623 18:46:29.081394 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 2.12187 (* 0.0272727 = 0.0578693 loss)
I0623 18:46:29.081408 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 2.07006 (* 0.0272727 = 0.0564561 loss)
I0623 18:46:29.081424 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.83674 (* 0.0272727 = 0.0500929 loss)
I0623 18:46:29.081439 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.40835 (* 0.0272727 = 0.0384096 loss)
I0623 18:46:29.081452 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.27651 (* 0.0272727 = 0.0348139 loss)
I0623 18:46:29.081511 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.65403 (* 0.0272727 = 0.0451099 loss)
I0623 18:46:29.081527 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 0.878779 (* 0.0272727 = 0.0239667 loss)
I0623 18:46:29.081542 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.598133 (* 0.0272727 = 0.0163127 loss)
I0623 18:46:29.081557 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.393832 (* 0.0272727 = 0.0107409 loss)
I0623 18:46:29.081571 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0595389 (* 0.0272727 = 0.00162379 loss)
I0623 18:46:29.081585 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.014832 (* 0.0272727 = 0.00040451 loss)
I0623 18:46:29.081600 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00259167 (* 0.0272727 = 7.06818e-05 loss)
I0623 18:46:29.081614 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00123616 (* 0.0272727 = 3.37135e-05 loss)
I0623 18:46:29.081629 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00066412 (* 0.0272727 = 1.81124e-05 loss)
I0623 18:46:29.081643 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000107422 (* 0.0272727 = 2.9297e-06 loss)
I0623 18:46:29.081656 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.569892
I0623 18:46:29.081670 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0623 18:46:29.081681 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 1
I0623 18:46:29.081693 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5
I0623 18:46:29.081707 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0623 18:46:29.081718 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0623 18:46:29.081730 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0623 18:46:29.081743 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5
I0623 18:46:29.081754 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.5
I0623 18:46:29.081766 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.625
I0623 18:46:29.081779 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.375
I0623 18:46:29.081790 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.625
I0623 18:46:29.081804 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.625
I0623 18:46:29.081815 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.625
I0623 18:46:29.081826 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.75
I0623 18:46:29.081838 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875
I0623 18:46:29.081851 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875
I0623 18:46:29.081862 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 18:46:29.081874 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 18:46:29.081887 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 18:46:29.081898 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 18:46:29.081910 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 18:46:29.081923 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 18:46:29.081934 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.767045
I0623 18:46:29.081946 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.88172
I0623 18:46:29.081961 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.24459 (* 0.3 = 0.373376 loss)
I0623 18:46:29.081975 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.700821 (* 0.3 = 0.210246 loss)
I0623 18:46:29.081990 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.378138 (* 0.0272727 = 0.0103129 loss)
I0623 18:46:29.082016 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.336842 (* 0.0272727 = 0.00918661 loss)
I0623 18:46:29.082033 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.87718 (* 0.0272727 = 0.0239231 loss)
I0623 18:46:29.082052 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.47582 (* 0.0272727 = 0.0402497 loss)
I0623 18:46:29.082067 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.278 (* 0.0272727 = 0.0348546 loss)
I0623 18:46:29.082082 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.97315 (* 0.0272727 = 0.0538133 loss)
I0623 18:46:29.082096 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.17821 (* 0.0272727 = 0.0321329 loss)
I0623 18:46:29.082110 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.76387 (* 0.0272727 = 0.0481054 loss)
I0623 18:46:29.082124 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.54568 (* 0.0272727 = 0.0421548 loss)
I0623 18:46:29.082139 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 2.17737 (* 0.0272727 = 0.0593828 loss)
I0623 18:46:29.082152 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.69711 (* 0.0272727 = 0.0462849 loss)
I0623 18:46:29.082166 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.60439 (* 0.0272727 = 0.0437562 loss)
I0623 18:46:29.082180 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.36812 (* 0.0272727 = 0.0373125 loss)
I0623 18:46:29.082195 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 0.523086 (* 0.0272727 = 0.014266 loss)
I0623 18:46:29.082211 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.351122 (* 0.0272727 = 0.00957607 loss)
I0623 18:46:29.082226 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.467681 (* 0.0272727 = 0.0127549 loss)
I0623 18:46:29.082242 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000963693 (* 0.0272727 = 2.62825e-05 loss)
I0623 18:46:29.082255 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 2.37983e-05 (* 0.0272727 = 6.49044e-07 loss)
I0623 18:46:29.082270 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 2.86105e-06 (* 0.0272727 = 7.80285e-08 loss)
I0623 18:46:29.082284 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 1.80305e-06 (* 0.0272727 = 4.91741e-08 loss)
I0623 18:46:29.082298 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 1.01328e-06 (* 0.0272727 = 2.7635e-08 loss)
I0623 18:46:29.082314 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 1.35601e-06 (* 0.0272727 = 3.69822e-08 loss)
I0623 18:46:29.082325 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.817204
I0623 18:46:29.082339 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 18:46:29.082350 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 18:46:29.082362 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 18:46:29.082375 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0623 18:46:29.082386 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0623 18:46:29.082399 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0623 18:46:29.082412 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0623 18:46:29.082423 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.625
I0623 18:46:29.082435 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.5
I0623 18:46:29.082448 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.5
I0623 18:46:29.082459 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.625
I0623 18:46:29.082471 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.625
I0623 18:46:29.082484 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.625
I0623 18:46:29.082495 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875
I0623 18:46:29.082507 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875
I0623 18:46:29.082530 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0623 18:46:29.082543 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 18:46:29.082556 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 18:46:29.082567 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 18:46:29.082579 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 18:46:29.082592 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 18:46:29.082602 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 18:46:29.082614 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.886364
I0623 18:46:29.082626 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.946237
I0623 18:46:29.082641 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.627185 (* 1 = 0.627185 loss)
I0623 18:46:29.082655 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.378526 (* 1 = 0.378526 loss)
I0623 18:46:29.082669 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.103517 (* 0.0909091 = 0.00941066 loss)
I0623 18:46:29.082684 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0578726 (* 0.0909091 = 0.00526114 loss)
I0623 18:46:29.082698 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.101121 (* 0.0909091 = 0.00919278 loss)
I0623 18:46:29.082713 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.189669 (* 0.0909091 = 0.0172426 loss)
I0623 18:46:29.082727 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.598522 (* 0.0909091 = 0.054411 loss)
I0623 18:46:29.082741 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.999934 (* 0.0909091 = 0.0909031 loss)
I0623 18:46:29.082756 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.400318 (* 0.0909091 = 0.0363926 loss)
I0623 18:46:29.082769 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.810528 (* 0.0909091 = 0.0736844 loss)
I0623 18:46:29.082783 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 1.17409 (* 0.0909091 = 0.106735 loss)
I0623 18:46:29.082798 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.994666 (* 0.0909091 = 0.0904242 loss)
I0623 18:46:29.082811 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 1.62533 (* 0.0909091 = 0.147758 loss)
I0623 18:46:29.082825 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.14226 (* 0.0909091 = 0.103842 loss)
I0623 18:46:29.082839 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 1.35097 (* 0.0909091 = 0.122816 loss)
I0623 18:46:29.082852 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.485667 (* 0.0909091 = 0.0441515 loss)
I0623 18:46:29.082867 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.202726 (* 0.0909091 = 0.0184297 loss)
I0623 18:46:29.082881 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.0893894 (* 0.0909091 = 0.00812631 loss)
I0623 18:46:29.082896 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0018163 (* 0.0909091 = 0.000165118 loss)
I0623 18:46:29.082911 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000217696 (* 0.0909091 = 1.97906e-05 loss)
I0623 18:46:29.082926 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 5.88131e-05 (* 0.0909091 = 5.34664e-06 loss)
I0623 18:46:29.082952 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 1.46034e-05 (* 0.0909091 = 1.32758e-06 loss)
I0623 18:46:29.082974 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 1.01925e-05 (* 0.0909091 = 9.26592e-07 loss)
I0623 18:46:29.082998 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 1.99676e-06 (* 0.0909091 = 1.81524e-07 loss)
I0623 18:46:29.083019 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.375
I0623 18:46:29.083039 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0623 18:46:29.083073 10365 solver.cpp:245] Train net output #149: total_confidence = 0.170768
I0623 18:46:29.083094 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.084089
I0623 18:46:29.083124 10365 sgd_solver.cpp:106] Iteration 21000, lr = 0.001
I0623 18:50:36.154938 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 40.9349 > 30) by scale factor 0.732871
I0623 18:52:01.931349 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 32.1235 > 30) by scale factor 0.933895
I0623 18:52:52.137483 10365 solver.cpp:229] Iteration 21500, loss = 4.37579
I0623 18:52:52.137574 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.468468
I0623 18:52:52.137593 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 1
I0623 18:52:52.137606 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.875
I0623 18:52:52.137619 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0623 18:52:52.137632 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0623 18:52:52.137645 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0623 18:52:52.137657 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.25
I0623 18:52:52.137670 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.375
I0623 18:52:52.137682 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.375
I0623 18:52:52.137694 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.375
I0623 18:52:52.137707 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.25
I0623 18:52:52.137719 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.125
I0623 18:52:52.137732 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.25
I0623 18:52:52.137744 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.625
I0623 18:52:52.137755 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.375
I0623 18:52:52.137768 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.625
I0623 18:52:52.137779 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.75
I0623 18:52:52.137791 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 18:52:52.137802 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 18:52:52.137814 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 18:52:52.137826 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 18:52:52.137838 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 18:52:52.137850 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 18:52:52.137861 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.642045
I0623 18:52:52.137873 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.801802
I0623 18:52:52.137889 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.6121 (* 0.3 = 0.483629 loss)
I0623 18:52:52.137903 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.10296 (* 0.3 = 0.330889 loss)
I0623 18:52:52.137918 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.335903 (* 0.0272727 = 0.00916099 loss)
I0623 18:52:52.137933 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 0.556325 (* 0.0272727 = 0.0151725 loss)
I0623 18:52:52.137946 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.44995 (* 0.0272727 = 0.039544 loss)
I0623 18:52:52.137959 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.66052 (* 0.0272727 = 0.0452868 loss)
I0623 18:52:52.137974 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 1.93922 (* 0.0272727 = 0.0528877 loss)
I0623 18:52:52.137987 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 2.08874 (* 0.0272727 = 0.0569657 loss)
I0623 18:52:52.138001 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.86586 (* 0.0272727 = 0.050887 loss)
I0623 18:52:52.138015 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.68916 (* 0.0272727 = 0.0460681 loss)
I0623 18:52:52.138028 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.70717 (* 0.0272727 = 0.0465593 loss)
I0623 18:52:52.138041 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 2.23993 (* 0.0272727 = 0.0610889 loss)
I0623 18:52:52.138056 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 2.74778 (* 0.0272727 = 0.0749394 loss)
I0623 18:52:52.138069 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 2.03384 (* 0.0272727 = 0.0554684 loss)
I0623 18:52:52.138106 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.13205 (* 0.0272727 = 0.0308742 loss)
I0623 18:52:52.138121 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.69858 (* 0.0272727 = 0.046325 loss)
I0623 18:52:52.138135 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 1.44593 (* 0.0272727 = 0.0394345 loss)
I0623 18:52:52.138149 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.865909 (* 0.0272727 = 0.0236157 loss)
I0623 18:52:52.138162 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0706981 (* 0.0272727 = 0.00192813 loss)
I0623 18:52:52.138176 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0125749 (* 0.0272727 = 0.000342952 loss)
I0623 18:52:52.138190 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00462721 (* 0.0272727 = 0.000126197 loss)
I0623 18:52:52.138206 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000585772 (* 0.0272727 = 1.59756e-05 loss)
I0623 18:52:52.138219 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 9.94201e-05 (* 0.0272727 = 2.71146e-06 loss)
I0623 18:52:52.138233 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 3.57732e-05 (* 0.0272727 = 9.75632e-07 loss)
I0623 18:52:52.138245 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.504505
I0623 18:52:52.138258 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0623 18:52:52.138270 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0623 18:52:52.138281 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5
I0623 18:52:52.138293 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625
I0623 18:52:52.138305 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0623 18:52:52.138316 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.25
I0623 18:52:52.138327 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5
I0623 18:52:52.138339 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.5
I0623 18:52:52.138350 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.5
I0623 18:52:52.138362 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.375
I0623 18:52:52.138373 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.125
I0623 18:52:52.138386 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.5
I0623 18:52:52.138396 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.625
I0623 18:52:52.138408 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.375
I0623 18:52:52.138419 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.625
I0623 18:52:52.138432 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.625
I0623 18:52:52.138442 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 18:52:52.138453 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 18:52:52.138465 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 18:52:52.138476 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 18:52:52.138489 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 18:52:52.138499 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 18:52:52.138510 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.676136
I0623 18:52:52.138522 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.828829
I0623 18:52:52.138535 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.53526 (* 0.3 = 0.460578 loss)
I0623 18:52:52.138550 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 1.02702 (* 0.3 = 0.308105 loss)
I0623 18:52:52.138563 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.919409 (* 0.0272727 = 0.0250748 loss)
I0623 18:52:52.138577 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.516843 (* 0.0272727 = 0.0140957 loss)
I0623 18:52:52.138602 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.995548 (* 0.0272727 = 0.0271513 loss)
I0623 18:52:52.138617 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.30772 (* 0.0272727 = 0.035665 loss)
I0623 18:52:52.138630 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.38678 (* 0.0272727 = 0.0378214 loss)
I0623 18:52:52.138644 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 2.23572 (* 0.0272727 = 0.0609742 loss)
I0623 18:52:52.138659 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.38863 (* 0.0272727 = 0.0378718 loss)
I0623 18:52:52.138671 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.81865 (* 0.0272727 = 0.0495997 loss)
I0623 18:52:52.138685 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.59603 (* 0.0272727 = 0.0435282 loss)
I0623 18:52:52.138700 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.80088 (* 0.0272727 = 0.049115 loss)
I0623 18:52:52.138712 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 2.94058 (* 0.0272727 = 0.0801976 loss)
I0623 18:52:52.138726 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.26093 (* 0.0272727 = 0.0343889 loss)
I0623 18:52:52.138739 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.04098 (* 0.0272727 = 0.0283905 loss)
I0623 18:52:52.138754 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.82803 (* 0.0272727 = 0.0498554 loss)
I0623 18:52:52.138768 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 1.46489 (* 0.0272727 = 0.0399516 loss)
I0623 18:52:52.138782 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.970589 (* 0.0272727 = 0.0264706 loss)
I0623 18:52:52.138795 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.116799 (* 0.0272727 = 0.00318544 loss)
I0623 18:52:52.138809 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0220512 (* 0.0272727 = 0.000601397 loss)
I0623 18:52:52.138823 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00764431 (* 0.0272727 = 0.000208481 loss)
I0623 18:52:52.138838 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00201862 (* 0.0272727 = 5.50532e-05 loss)
I0623 18:52:52.138851 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000600691 (* 0.0272727 = 1.63825e-05 loss)
I0623 18:52:52.138865 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000139477 (* 0.0272727 = 3.80392e-06 loss)
I0623 18:52:52.138877 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.666667
I0623 18:52:52.138890 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 18:52:52.138900 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0623 18:52:52.138912 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875
I0623 18:52:52.138924 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75
I0623 18:52:52.138936 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75
I0623 18:52:52.138947 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625
I0623 18:52:52.138959 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0623 18:52:52.138972 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.5
I0623 18:52:52.138983 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.5
I0623 18:52:52.138994 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.5
I0623 18:52:52.139006 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.375
I0623 18:52:52.139019 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.625
I0623 18:52:52.139029 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.75
I0623 18:52:52.139041 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.5
I0623 18:52:52.139053 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.625
I0623 18:52:52.139065 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.75
I0623 18:52:52.139086 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 18:52:52.139099 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 18:52:52.139111 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 18:52:52.139122 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 18:52:52.139138 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 18:52:52.139152 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 18:52:52.139163 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.784091
I0623 18:52:52.139174 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.954955
I0623 18:52:52.139189 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.910466 (* 1 = 0.910466 loss)
I0623 18:52:52.139202 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.604112 (* 1 = 0.604112 loss)
I0623 18:52:52.139217 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0494104 (* 0.0909091 = 0.00449185 loss)
I0623 18:52:52.139230 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.983915 (* 0.0909091 = 0.0894468 loss)
I0623 18:52:52.139245 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.75725 (* 0.0909091 = 0.0688409 loss)
I0623 18:52:52.139258 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.56604 (* 0.0909091 = 0.0514582 loss)
I0623 18:52:52.139272 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 1.00809 (* 0.0909091 = 0.0916445 loss)
I0623 18:52:52.139286 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 1.33245 (* 0.0909091 = 0.121132 loss)
I0623 18:52:52.139299 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.629925 (* 0.0909091 = 0.0572659 loss)
I0623 18:52:52.139313 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 1.42446 (* 0.0909091 = 0.129497 loss)
I0623 18:52:52.139327 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.896901 (* 0.0909091 = 0.0815364 loss)
I0623 18:52:52.139340 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 1.68088 (* 0.0909091 = 0.152808 loss)
I0623 18:52:52.139353 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 1.87448 (* 0.0909091 = 0.170407 loss)
I0623 18:52:52.139367 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.14501 (* 0.0909091 = 0.104092 loss)
I0623 18:52:52.139380 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 0.730746 (* 0.0909091 = 0.0664314 loss)
I0623 18:52:52.139394 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 1.08032 (* 0.0909091 = 0.0982112 loss)
I0623 18:52:52.139407 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.824737 (* 0.0909091 = 0.0749761 loss)
I0623 18:52:52.139421 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.386723 (* 0.0909091 = 0.0351566 loss)
I0623 18:52:52.139436 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.049316 (* 0.0909091 = 0.00448327 loss)
I0623 18:52:52.139449 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00235865 (* 0.0909091 = 0.000214423 loss)
I0623 18:52:52.139463 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000580105 (* 0.0909091 = 5.27368e-05 loss)
I0623 18:52:52.139477 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000102701 (* 0.0909091 = 9.33645e-06 loss)
I0623 18:52:52.139490 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 3.78511e-05 (* 0.0909091 = 3.44101e-06 loss)
I0623 18:52:52.139504 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 5.40915e-06 (* 0.0909091 = 4.91741e-07 loss)
I0623 18:52:52.139516 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0623 18:52:52.139528 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0
I0623 18:52:52.139539 10365 solver.cpp:245] Train net output #149: total_confidence = 0.0793492
I0623 18:52:52.139561 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.0418083
I0623 18:52:52.139575 10365 sgd_solver.cpp:106] Iteration 21500, lr = 0.001
I0623 18:53:44.604889 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 35.8602 > 30) by scale factor 0.836582
I0623 18:54:06.857218 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 40.1109 > 30) by scale factor 0.747926
I0623 18:56:19.697372 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 36.6634 > 30) by scale factor 0.818254
I0623 18:56:28.135658 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.417 > 30) by scale factor 0.986289
I0623 18:58:28.463407 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 44.199 > 30) by scale factor 0.678748
I0623 18:58:48.398300 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 40.5815 > 30) by scale factor 0.739254
I0623 18:59:15.645901 10365 solver.cpp:229] Iteration 22000, loss = 4.44112
I0623 18:59:15.646026 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.494505
I0623 18:59:15.646047 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0623 18:59:15.646060 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 1
I0623 18:59:15.646073 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0623 18:59:15.646085 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0623 18:59:15.646098 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0623 18:59:15.646111 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0623 18:59:15.646123 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5
I0623 18:59:15.646136 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.25
I0623 18:59:15.646147 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.375
I0623 18:59:15.646159 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.375
I0623 18:59:15.646172 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.625
I0623 18:59:15.646184 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.625
I0623 18:59:15.646195 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.5
I0623 18:59:15.646208 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875
I0623 18:59:15.646219 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.75
I0623 18:59:15.646230 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.75
I0623 18:59:15.646242 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875
I0623 18:59:15.646253 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 18:59:15.646268 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 18:59:15.646281 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 18:59:15.646292 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 18:59:15.646304 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 18:59:15.646316 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.721591
I0623 18:59:15.646327 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.813187
I0623 18:59:15.646343 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.45741 (* 0.3 = 0.437224 loss)
I0623 18:59:15.646358 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.829831 (* 0.3 = 0.248949 loss)
I0623 18:59:15.646373 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.353194 (* 0.0272727 = 0.00963256 loss)
I0623 18:59:15.646386 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 0.244439 (* 0.0272727 = 0.00666652 loss)
I0623 18:59:15.646401 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.80816 (* 0.0272727 = 0.0493135 loss)
I0623 18:59:15.646414 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.60866 (* 0.0272727 = 0.0438725 loss)
I0623 18:59:15.646428 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 1.56577 (* 0.0272727 = 0.0427029 loss)
I0623 18:59:15.646441 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 1.24621 (* 0.0272727 = 0.0339875 loss)
I0623 18:59:15.646456 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 2.04443 (* 0.0272727 = 0.0557571 loss)
I0623 18:59:15.646469 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.90102 (* 0.0272727 = 0.0518459 loss)
I0623 18:59:15.646482 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 2.14351 (* 0.0272727 = 0.0584594 loss)
I0623 18:59:15.646497 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.7185 (* 0.0272727 = 0.0468682 loss)
I0623 18:59:15.646510 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.50016 (* 0.0272727 = 0.0409135 loss)
I0623 18:59:15.646524 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.2844 (* 0.0272727 = 0.0350292 loss)
I0623 18:59:15.646555 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.46361 (* 0.0272727 = 0.0399168 loss)
I0623 18:59:15.646570 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 0.704772 (* 0.0272727 = 0.0192211 loss)
I0623 18:59:15.646584 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.674432 (* 0.0272727 = 0.0183936 loss)
I0623 18:59:15.646598 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.678684 (* 0.0272727 = 0.0185096 loss)
I0623 18:59:15.646612 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.578502 (* 0.0272727 = 0.0157773 loss)
I0623 18:59:15.646625 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.152778 (* 0.0272727 = 0.00416666 loss)
I0623 18:59:15.646639 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0469317 (* 0.0272727 = 0.00127996 loss)
I0623 18:59:15.646653 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.0264072 (* 0.0272727 = 0.000720196 loss)
I0623 18:59:15.646667 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00108324 (* 0.0272727 = 2.95428e-05 loss)
I0623 18:59:15.646682 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000334542 (* 0.0272727 = 9.12389e-06 loss)
I0623 18:59:15.646693 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.571429
I0623 18:59:15.646706 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0623 18:59:15.646718 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 1
I0623 18:59:15.646730 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.875
I0623 18:59:15.646741 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625
I0623 18:59:15.646754 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0623 18:59:15.646764 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875
I0623 18:59:15.646776 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5
I0623 18:59:15.646787 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.25
I0623 18:59:15.646800 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.5
I0623 18:59:15.646811 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.375
I0623 18:59:15.646821 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.375
I0623 18:59:15.646833 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.5
I0623 18:59:15.646844 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.75
I0623 18:59:15.646855 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875
I0623 18:59:15.646867 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.75
I0623 18:59:15.646878 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.75
I0623 18:59:15.646889 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875
I0623 18:59:15.646901 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 18:59:15.646913 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 18:59:15.646924 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 18:59:15.646935 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 18:59:15.646947 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 18:59:15.646958 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.767045
I0623 18:59:15.646970 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.857143
I0623 18:59:15.646983 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.16852 (* 0.3 = 0.350555 loss)
I0623 18:59:15.646997 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.640259 (* 0.3 = 0.192078 loss)
I0623 18:59:15.647011 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.249899 (* 0.0272727 = 0.00681542 loss)
I0623 18:59:15.647024 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.280358 (* 0.0272727 = 0.00764614 loss)
I0623 18:59:15.647053 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.270061 (* 0.0272727 = 0.00736531 loss)
I0623 18:59:15.647069 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.00829 (* 0.0272727 = 0.0274987 loss)
I0623 18:59:15.647083 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.26145 (* 0.0272727 = 0.0344033 loss)
I0623 18:59:15.647096 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 0.669832 (* 0.0272727 = 0.0182681 loss)
I0623 18:59:15.647110 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.69446 (* 0.0272727 = 0.0462127 loss)
I0623 18:59:15.647124 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 2.44115 (* 0.0272727 = 0.0665768 loss)
I0623 18:59:15.647137 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.95911 (* 0.0272727 = 0.0534302 loss)
I0623 18:59:15.647151 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.51756 (* 0.0272727 = 0.0413881 loss)
I0623 18:59:15.647166 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.37008 (* 0.0272727 = 0.0373657 loss)
I0623 18:59:15.647179 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.48284 (* 0.0272727 = 0.0404411 loss)
I0623 18:59:15.647192 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.03982 (* 0.0272727 = 0.0283587 loss)
I0623 18:59:15.647207 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 0.580037 (* 0.0272727 = 0.0158192 loss)
I0623 18:59:15.647219 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.663401 (* 0.0272727 = 0.0180928 loss)
I0623 18:59:15.647233 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.453559 (* 0.0272727 = 0.0123698 loss)
I0623 18:59:15.647248 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.357531 (* 0.0272727 = 0.00975086 loss)
I0623 18:59:15.647261 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.217957 (* 0.0272727 = 0.0059443 loss)
I0623 18:59:15.647275 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0617434 (* 0.0272727 = 0.00168391 loss)
I0623 18:59:15.647289 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.011146 (* 0.0272727 = 0.000303981 loss)
I0623 18:59:15.647302 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00081854 (* 0.0272727 = 2.23238e-05 loss)
I0623 18:59:15.647320 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 5.53176e-05 (* 0.0272727 = 1.50866e-06 loss)
I0623 18:59:15.647332 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.868132
I0623 18:59:15.647344 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 18:59:15.647356 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 18:59:15.647367 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 18:59:15.647378 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 18:59:15.647390 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0623 18:59:15.647402 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0623 18:59:15.647413 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0623 18:59:15.647424 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0623 18:59:15.647436 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.625
I0623 18:59:15.647447 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75
I0623 18:59:15.647459 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875
I0623 18:59:15.647470 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.625
I0623 18:59:15.647481 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.75
I0623 18:59:15.647493 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875
I0623 18:59:15.647505 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875
I0623 18:59:15.647516 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.75
I0623 18:59:15.647537 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.875
I0623 18:59:15.647550 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 18:59:15.647562 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 18:59:15.647573 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 18:59:15.647585 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 18:59:15.647608 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 18:59:15.647622 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.926136
I0623 18:59:15.647634 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.989011
I0623 18:59:15.647649 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.419914 (* 1 = 0.419914 loss)
I0623 18:59:15.647661 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.230087 (* 1 = 0.230087 loss)
I0623 18:59:15.647675 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0217514 (* 0.0909091 = 0.0019774 loss)
I0623 18:59:15.647691 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0338301 (* 0.0909091 = 0.00307546 loss)
I0623 18:59:15.647703 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0512309 (* 0.0909091 = 0.00465735 loss)
I0623 18:59:15.647717 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0580617 (* 0.0909091 = 0.00527833 loss)
I0623 18:59:15.647732 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.371956 (* 0.0909091 = 0.0338142 loss)
I0623 18:59:15.647745 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.164658 (* 0.0909091 = 0.0149689 loss)
I0623 18:59:15.647759 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.344298 (* 0.0909091 = 0.0312998 loss)
I0623 18:59:15.647773 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.364353 (* 0.0909091 = 0.033123 loss)
I0623 18:59:15.647786 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.663841 (* 0.0909091 = 0.0603492 loss)
I0623 18:59:15.647799 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.691802 (* 0.0909091 = 0.0628911 loss)
I0623 18:59:15.647814 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 0.466534 (* 0.0909091 = 0.0424122 loss)
I0623 18:59:15.647826 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 0.883513 (* 0.0909091 = 0.0803194 loss)
I0623 18:59:15.647840 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 0.798368 (* 0.0909091 = 0.0725789 loss)
I0623 18:59:15.647853 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.522093 (* 0.0909091 = 0.047463 loss)
I0623 18:59:15.647867 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.579114 (* 0.0909091 = 0.0526468 loss)
I0623 18:59:15.647881 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.347747 (* 0.0909091 = 0.0316133 loss)
I0623 18:59:15.647894 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.378029 (* 0.0909091 = 0.0343662 loss)
I0623 18:59:15.647908 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0830841 (* 0.0909091 = 0.0075531 loss)
I0623 18:59:15.647922 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0101494 (* 0.0909091 = 0.000922677 loss)
I0623 18:59:15.647935 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000801559 (* 0.0909091 = 7.2869e-05 loss)
I0623 18:59:15.647949 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000250531 (* 0.0909091 = 2.27755e-05 loss)
I0623 18:59:15.647964 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 2.03415e-05 (* 0.0909091 = 1.84922e-06 loss)
I0623 18:59:15.647975 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.5
I0623 18:59:15.647987 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375
I0623 18:59:15.648010 10365 solver.cpp:245] Train net output #149: total_confidence = 0.277416
I0623 18:59:15.648023 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.244458
I0623 18:59:15.648036 10365 sgd_solver.cpp:106] Iteration 22000, lr = 0.001
I0623 19:04:25.096328 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 35.7714 > 30) by scale factor 0.838658
I0623 19:04:25.864925 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.0928 > 30) by scale factor 0.996918
I0623 19:04:55.037201 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.5863 > 30) by scale factor 0.94978
I0623 19:05:39.176476 10365 solver.cpp:229] Iteration 22500, loss = 4.47208
I0623 19:05:39.176614 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.530612
I0623 19:05:39.176635 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0623 19:05:39.176648 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0623 19:05:39.176661 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0623 19:05:39.176673 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0623 19:05:39.176686 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0623 19:05:39.176698 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0623 19:05:39.176710 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5
I0623 19:05:39.176723 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0623 19:05:39.176735 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.5
I0623 19:05:39.176748 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.625
I0623 19:05:39.176759 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.25
I0623 19:05:39.176771 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.5
I0623 19:05:39.176784 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.375
I0623 19:05:39.176795 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.375
I0623 19:05:39.176806 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.375
I0623 19:05:39.176817 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875
I0623 19:05:39.176829 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0623 19:05:39.176841 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 19:05:39.176852 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 19:05:39.176864 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 19:05:39.176875 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 19:05:39.176887 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 19:05:39.176898 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.727273
I0623 19:05:39.176909 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.816327
I0623 19:05:39.176925 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.47393 (* 0.3 = 0.442179 loss)
I0623 19:05:39.176939 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.882052 (* 0.3 = 0.264616 loss)
I0623 19:05:39.176954 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.685437 (* 0.0272727 = 0.0186937 loss)
I0623 19:05:39.176969 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 1.18043 (* 0.0272727 = 0.0321936 loss)
I0623 19:05:39.176981 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.89567 (* 0.0272727 = 0.0517001 loss)
I0623 19:05:39.176995 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.52782 (* 0.0272727 = 0.0416678 loss)
I0623 19:05:39.177009 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 2.03625 (* 0.0272727 = 0.0555341 loss)
I0623 19:05:39.177023 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 1.216 (* 0.0272727 = 0.0331636 loss)
I0623 19:05:39.177037 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.84322 (* 0.0272727 = 0.0502696 loss)
I0623 19:05:39.177050 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 0.891403 (* 0.0272727 = 0.024311 loss)
I0623 19:05:39.177064 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.48251 (* 0.0272727 = 0.040432 loss)
I0623 19:05:39.177078 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.28092 (* 0.0272727 = 0.0349342 loss)
I0623 19:05:39.177091 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.9262 (* 0.0272727 = 0.0525326 loss)
I0623 19:05:39.177105 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.6377 (* 0.0272727 = 0.0446645 loss)
I0623 19:05:39.177136 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.71092 (* 0.0272727 = 0.0466614 loss)
I0623 19:05:39.177151 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 2.0118 (* 0.0272727 = 0.0548671 loss)
I0623 19:05:39.177165 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 1.30564 (* 0.0272727 = 0.0356084 loss)
I0623 19:05:39.177178 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.534951 (* 0.0272727 = 0.0145896 loss)
I0623 19:05:39.177192 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.177005 (* 0.0272727 = 0.0048274 loss)
I0623 19:05:39.177206 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0484574 (* 0.0272727 = 0.00132157 loss)
I0623 19:05:39.177220 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0174067 (* 0.0272727 = 0.000474728 loss)
I0623 19:05:39.177234 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00176914 (* 0.0272727 = 4.82492e-05 loss)
I0623 19:05:39.177248 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000338998 (* 0.0272727 = 9.24541e-06 loss)
I0623 19:05:39.177265 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 9.1927e-05 (* 0.0272727 = 2.5071e-06 loss)
I0623 19:05:39.177278 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.602041
I0623 19:05:39.177290 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0623 19:05:39.177302 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0623 19:05:39.177314 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.875
I0623 19:05:39.177325 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.75
I0623 19:05:39.177337 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.875
I0623 19:05:39.177348 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0623 19:05:39.177361 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0623 19:05:39.177371 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0623 19:05:39.177383 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.625
I0623 19:05:39.177394 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.5
I0623 19:05:39.177405 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.5
I0623 19:05:39.177417 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.375
I0623 19:05:39.177428 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.375
I0623 19:05:39.177440 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.625
I0623 19:05:39.177451 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875
I0623 19:05:39.177462 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0623 19:05:39.177474 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0623 19:05:39.177484 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 19:05:39.177496 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 19:05:39.177507 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 19:05:39.177518 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 19:05:39.177530 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 19:05:39.177541 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.767045
I0623 19:05:39.177552 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.857143
I0623 19:05:39.177566 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.22619 (* 0.3 = 0.367858 loss)
I0623 19:05:39.177579 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.708885 (* 0.3 = 0.212665 loss)
I0623 19:05:39.177593 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.463806 (* 0.0272727 = 0.0126493 loss)
I0623 19:05:39.177608 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.350479 (* 0.0272727 = 0.00955852 loss)
I0623 19:05:39.177635 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.378758 (* 0.0272727 = 0.0103298 loss)
I0623 19:05:39.177651 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 0.868203 (* 0.0272727 = 0.0236783 loss)
I0623 19:05:39.177665 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.15459 (* 0.0272727 = 0.0314889 loss)
I0623 19:05:39.177680 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 0.95984 (* 0.0272727 = 0.0261775 loss)
I0623 19:05:39.177692 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.50235 (* 0.0272727 = 0.0409733 loss)
I0623 19:05:39.177706 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 0.775321 (* 0.0272727 = 0.0211451 loss)
I0623 19:05:39.177721 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.04545 (* 0.0272727 = 0.0285122 loss)
I0623 19:05:39.177733 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.21613 (* 0.0272727 = 0.0331673 loss)
I0623 19:05:39.177747 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.34778 (* 0.0272727 = 0.0367577 loss)
I0623 19:05:39.177760 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.67619 (* 0.0272727 = 0.0457144 loss)
I0623 19:05:39.177773 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.63737 (* 0.0272727 = 0.0446554 loss)
I0623 19:05:39.177786 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.95833 (* 0.0272727 = 0.0534091 loss)
I0623 19:05:39.177800 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.784183 (* 0.0272727 = 0.0213868 loss)
I0623 19:05:39.177814 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.243443 (* 0.0272727 = 0.00663935 loss)
I0623 19:05:39.177829 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0352275 (* 0.0272727 = 0.00096075 loss)
I0623 19:05:39.177842 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00617683 (* 0.0272727 = 0.000168459 loss)
I0623 19:05:39.177856 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00114236 (* 0.0272727 = 3.11552e-05 loss)
I0623 19:05:39.177870 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00087112 (* 0.0272727 = 2.37578e-05 loss)
I0623 19:05:39.177884 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 7.84436e-05 (* 0.0272727 = 2.13937e-06 loss)
I0623 19:05:39.177898 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 1.63322e-05 (* 0.0272727 = 4.45424e-07 loss)
I0623 19:05:39.177911 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.867347
I0623 19:05:39.177922 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 19:05:39.177933 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 19:05:39.177945 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 19:05:39.177956 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 19:05:39.177968 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0623 19:05:39.177979 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0623 19:05:39.177990 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0623 19:05:39.178002 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0623 19:05:39.178014 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0623 19:05:39.178025 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75
I0623 19:05:39.178036 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.75
I0623 19:05:39.178047 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.625
I0623 19:05:39.178059 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.625
I0623 19:05:39.178071 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.625
I0623 19:05:39.178081 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.75
I0623 19:05:39.178093 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875
I0623 19:05:39.178114 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0623 19:05:39.178128 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 19:05:39.178139 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 19:05:39.178150 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 19:05:39.178161 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 19:05:39.178174 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 19:05:39.178184 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.920455
I0623 19:05:39.178196 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.969388
I0623 19:05:39.178210 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.45821 (* 1 = 0.45821 loss)
I0623 19:05:39.178223 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.268844 (* 1 = 0.268844 loss)
I0623 19:05:39.178237 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.114515 (* 0.0909091 = 0.0104104 loss)
I0623 19:05:39.178251 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0641355 (* 0.0909091 = 0.0058305 loss)
I0623 19:05:39.178266 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0541238 (* 0.0909091 = 0.00492035 loss)
I0623 19:05:39.178278 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.030764 (* 0.0909091 = 0.00279672 loss)
I0623 19:05:39.178292 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.0994836 (* 0.0909091 = 0.00904396 loss)
I0623 19:05:39.178306 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.261978 (* 0.0909091 = 0.0238162 loss)
I0623 19:05:39.178323 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.0679585 (* 0.0909091 = 0.00617805 loss)
I0623 19:05:39.178338 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.149213 (* 0.0909091 = 0.0135649 loss)
I0623 19:05:39.178351 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.186312 (* 0.0909091 = 0.0169374 loss)
I0623 19:05:39.178364 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.511739 (* 0.0909091 = 0.0465217 loss)
I0623 19:05:39.178378 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 0.867202 (* 0.0909091 = 0.0788365 loss)
I0623 19:05:39.178392 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.13752 (* 0.0909091 = 0.103411 loss)
I0623 19:05:39.178406 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 1.01403 (* 0.0909091 = 0.0921849 loss)
I0623 19:05:39.178419 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 2.15029 (* 0.0909091 = 0.19548 loss)
I0623 19:05:39.178432 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.627284 (* 0.0909091 = 0.0570258 loss)
I0623 19:05:39.178447 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.166836 (* 0.0909091 = 0.0151669 loss)
I0623 19:05:39.178460 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00513969 (* 0.0909091 = 0.000467245 loss)
I0623 19:05:39.178474 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000176837 (* 0.0909091 = 1.6076e-05 loss)
I0623 19:05:39.178488 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 3.82975e-05 (* 0.0909091 = 3.48159e-06 loss)
I0623 19:05:39.178503 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 2.89539e-05 (* 0.0909091 = 2.63218e-06 loss)
I0623 19:05:39.178516 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 2.09665e-05 (* 0.0909091 = 1.90604e-06 loss)
I0623 19:05:39.178529 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 4.87272e-06 (* 0.0909091 = 4.42975e-07 loss)
I0623 19:05:39.178541 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.25
I0623 19:05:39.178553 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0623 19:05:39.178565 10365 solver.cpp:245] Train net output #149: total_confidence = 0.198386
I0623 19:05:39.178586 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.179517
I0623 19:05:39.178599 10365 sgd_solver.cpp:106] Iteration 22500, lr = 0.001
I0623 19:07:24.577302 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 38.0769 > 30) by scale factor 0.787879
I0623 19:10:05.843128 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 34.6384 > 30) by scale factor 0.866091
I0623 19:11:57.020308 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 42.9467 > 30) by scale factor 0.698541
I0623 19:12:02.390028 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 35.5678 > 30) by scale factor 0.843459
I0623 19:12:02.796979 10365 solver.cpp:229] Iteration 23000, loss = 4.39844
I0623 19:12:02.797046 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.419355
I0623 19:12:02.797065 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 1
I0623 19:12:02.797080 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75
I0623 19:12:02.797093 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.125
I0623 19:12:02.797106 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0
I0623 19:12:02.797118 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0623 19:12:02.797134 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.25
I0623 19:12:02.797147 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5
I0623 19:12:02.797160 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625
I0623 19:12:02.797173 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.375
I0623 19:12:02.797185 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.625
I0623 19:12:02.797199 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.5
I0623 19:12:02.797211 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.375
I0623 19:12:02.797224 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.625
I0623 19:12:02.797235 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.625
I0623 19:12:02.797248 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.625
I0623 19:12:02.797260 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.75
I0623 19:12:02.797271 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875
I0623 19:12:02.797283 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 19:12:02.797297 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 19:12:02.797308 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 19:12:02.797320 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 19:12:02.797333 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 19:12:02.797344 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.670455
I0623 19:12:02.797358 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.763441
I0623 19:12:02.797374 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.67255 (* 0.3 = 0.501765 loss)
I0623 19:12:02.797387 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.950513 (* 0.3 = 0.285154 loss)
I0623 19:12:02.797404 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.13566 (* 0.0272727 = 0.00369981 loss)
I0623 19:12:02.797417 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 1.16426 (* 0.0272727 = 0.0317526 loss)
I0623 19:12:02.797431 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.56544 (* 0.0272727 = 0.0426937 loss)
I0623 19:12:02.797446 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 2.44679 (* 0.0272727 = 0.0667307 loss)
I0623 19:12:02.797461 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 1.67114 (* 0.0272727 = 0.0455764 loss)
I0623 19:12:02.797473 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 2.35478 (* 0.0272727 = 0.0642212 loss)
I0623 19:12:02.797487 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.78622 (* 0.0272727 = 0.0487152 loss)
I0623 19:12:02.797502 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.19396 (* 0.0272727 = 0.0325626 loss)
I0623 19:12:02.797515 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.44642 (* 0.0272727 = 0.0394477 loss)
I0623 19:12:02.797529 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.50822 (* 0.0272727 = 0.0411334 loss)
I0623 19:12:02.797544 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.24799 (* 0.0272727 = 0.0340362 loss)
I0623 19:12:02.797607 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.34975 (* 0.0272727 = 0.0368113 loss)
I0623 19:12:02.797623 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.23953 (* 0.0272727 = 0.0338053 loss)
I0623 19:12:02.797637 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 0.828895 (* 0.0272727 = 0.0226062 loss)
I0623 19:12:02.797652 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 2.10044 (* 0.0272727 = 0.0572846 loss)
I0623 19:12:02.797665 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.767193 (* 0.0272727 = 0.0209235 loss)
I0623 19:12:02.797679 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.779365 (* 0.0272727 = 0.0212554 loss)
I0623 19:12:02.797693 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00390422 (* 0.0272727 = 0.000106479 loss)
I0623 19:12:02.797708 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000789079 (* 0.0272727 = 2.15203e-05 loss)
I0623 19:12:02.797722 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 8.28066e-05 (* 0.0272727 = 2.25836e-06 loss)
I0623 19:12:02.797736 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 3.93351e-05 (* 0.0272727 = 1.07278e-06 loss)
I0623 19:12:02.797750 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 3.57629e-06 (* 0.0272727 = 9.75353e-08 loss)
I0623 19:12:02.797763 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.569892
I0623 19:12:02.797776 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0623 19:12:02.797788 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0623 19:12:02.797801 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 1
I0623 19:12:02.797812 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625
I0623 19:12:02.797824 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.75
I0623 19:12:02.797837 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0623 19:12:02.797848 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.375
I0623 19:12:02.797860 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0623 19:12:02.797871 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.5
I0623 19:12:02.797883 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.375
I0623 19:12:02.797895 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.625
I0623 19:12:02.797907 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.5
I0623 19:12:02.797919 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.625
I0623 19:12:02.797931 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.625
I0623 19:12:02.797942 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.75
I0623 19:12:02.797955 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875
I0623 19:12:02.797966 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.75
I0623 19:12:02.797978 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 19:12:02.797991 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 19:12:02.798002 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 19:12:02.798014 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 19:12:02.798027 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 19:12:02.798038 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.761364
I0623 19:12:02.798050 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.870968
I0623 19:12:02.798064 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.23414 (* 0.3 = 0.370243 loss)
I0623 19:12:02.798079 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.703861 (* 0.3 = 0.211158 loss)
I0623 19:12:02.801827 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.166004 (* 0.0272727 = 0.00452737 loss)
I0623 19:12:02.801851 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.511346 (* 0.0272727 = 0.0139458 loss)
I0623 19:12:02.801867 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.219341 (* 0.0272727 = 0.00598204 loss)
I0623 19:12:02.801882 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.75275 (* 0.0272727 = 0.0478021 loss)
I0623 19:12:02.801898 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 0.76263 (* 0.0272727 = 0.020799 loss)
I0623 19:12:02.801911 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 2.38262 (* 0.0272727 = 0.0649807 loss)
I0623 19:12:02.801925 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.38905 (* 0.0272727 = 0.0378831 loss)
I0623 19:12:02.801939 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.03152 (* 0.0272727 = 0.0281323 loss)
I0623 19:12:02.801954 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.73115 (* 0.0272727 = 0.0472132 loss)
I0623 19:12:02.801969 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.82418 (* 0.0272727 = 0.0497503 loss)
I0623 19:12:02.801982 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.30321 (* 0.0272727 = 0.0355422 loss)
I0623 19:12:02.801996 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.29307 (* 0.0272727 = 0.0352656 loss)
I0623 19:12:02.802011 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 0.962024 (* 0.0272727 = 0.026237 loss)
I0623 19:12:02.802026 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 0.853564 (* 0.0272727 = 0.023279 loss)
I0623 19:12:02.802039 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.977178 (* 0.0272727 = 0.0266503 loss)
I0623 19:12:02.802053 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.511563 (* 0.0272727 = 0.0139517 loss)
I0623 19:12:02.802067 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.570589 (* 0.0272727 = 0.0155615 loss)
I0623 19:12:02.802083 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0160505 (* 0.0272727 = 0.000437741 loss)
I0623 19:12:02.802098 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00149845 (* 0.0272727 = 4.08667e-05 loss)
I0623 19:12:02.802112 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00107177 (* 0.0272727 = 2.923e-05 loss)
I0623 19:12:02.802127 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00019308 (* 0.0272727 = 5.26582e-06 loss)
I0623 19:12:02.802142 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 1.15041e-05 (* 0.0272727 = 3.13749e-07 loss)
I0623 19:12:02.802155 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.83871
I0623 19:12:02.802167 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 19:12:02.802180 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 19:12:02.802191 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 19:12:02.802202 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 19:12:02.802214 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0623 19:12:02.802225 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0623 19:12:02.802237 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0623 19:12:02.802249 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0623 19:12:02.802263 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0623 19:12:02.802276 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75
I0623 19:12:02.802289 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.75
I0623 19:12:02.802299 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.625
I0623 19:12:02.802311 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.75
I0623 19:12:02.802337 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.75
I0623 19:12:02.802367 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.75
I0623 19:12:02.802381 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875
I0623 19:12:02.802392 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.875
I0623 19:12:02.802405 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 19:12:02.802417 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 19:12:02.802429 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 19:12:02.802441 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 19:12:02.802453 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 19:12:02.802464 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.903409
I0623 19:12:02.802476 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.978495
I0623 19:12:02.802490 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.597536 (* 1 = 0.597536 loss)
I0623 19:12:02.802505 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.338335 (* 1 = 0.338335 loss)
I0623 19:12:02.802520 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0285183 (* 0.0909091 = 0.00259258 loss)
I0623 19:12:02.802533 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0645436 (* 0.0909091 = 0.0058676 loss)
I0623 19:12:02.802548 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0340053 (* 0.0909091 = 0.00309139 loss)
I0623 19:12:02.802562 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0262009 (* 0.0909091 = 0.0023819 loss)
I0623 19:12:02.802577 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.062336 (* 0.0909091 = 0.00566691 loss)
I0623 19:12:02.802592 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 1.07759 (* 0.0909091 = 0.0979626 loss)
I0623 19:12:02.802605 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 1.01326 (* 0.0909091 = 0.0921149 loss)
I0623 19:12:02.802619 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.594182 (* 0.0909091 = 0.0540165 loss)
I0623 19:12:02.802634 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.740084 (* 0.0909091 = 0.0672803 loss)
I0623 19:12:02.802649 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.606144 (* 0.0909091 = 0.055104 loss)
I0623 19:12:02.802661 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 0.942097 (* 0.0909091 = 0.0856451 loss)
I0623 19:12:02.802676 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 1.29077 (* 0.0909091 = 0.117343 loss)
I0623 19:12:02.802690 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 0.503419 (* 0.0909091 = 0.0457654 loss)
I0623 19:12:02.802703 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 0.712482 (* 0.0909091 = 0.0647711 loss)
I0623 19:12:02.802717 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.948499 (* 0.0909091 = 0.0862272 loss)
I0623 19:12:02.802731 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.283417 (* 0.0909091 = 0.0257652 loss)
I0623 19:12:02.802744 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.393268 (* 0.0909091 = 0.0357516 loss)
I0623 19:12:02.802759 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00459031 (* 0.0909091 = 0.000417301 loss)
I0623 19:12:02.802773 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000744758 (* 0.0909091 = 6.77053e-05 loss)
I0623 19:12:02.802788 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000105301 (* 0.0909091 = 9.5728e-06 loss)
I0623 19:12:02.802806 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 4.16151e-05 (* 0.0909091 = 3.78319e-06 loss)
I0623 19:12:02.802821 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 2.87594e-06 (* 0.0909091 = 2.61449e-07 loss)
I0623 19:12:02.802845 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.5
I0623 19:12:02.802860 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5
I0623 19:12:02.802871 10365 solver.cpp:245] Train net output #149: total_confidence = 0.362685
I0623 19:12:02.802883 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.315538
I0623 19:12:02.802896 10365 sgd_solver.cpp:106] Iteration 23000, lr = 0.001
I0623 19:12:06.994076 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 33.0276 > 30) by scale factor 0.908331
I0623 19:13:12.910956 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 45.3563 > 30) by scale factor 0.661429
I0623 19:13:36.683379 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 32.89 > 30) by scale factor 0.912131
I0623 19:13:44.348840 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 34.2214 > 30) by scale factor 0.876645
I0623 19:14:02.735530 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 35.6101 > 30) by scale factor 0.842458
I0623 19:14:36.450295 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 36.3027 > 30) by scale factor 0.826384
I0623 19:18:26.055400 10365 solver.cpp:229] Iteration 23500, loss = 4.40985
I0623 19:18:26.055497 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.438095
I0623 19:18:26.055517 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0623 19:18:26.055531 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0623 19:18:26.055543 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.875
I0623 19:18:26.055557 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0623 19:18:26.055569 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0623 19:18:26.055582 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0623 19:18:26.055594 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5
I0623 19:18:26.055621 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.5
I0623 19:18:26.055634 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.625
I0623 19:18:26.055647 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.625
I0623 19:18:26.055660 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.375
I0623 19:18:26.055672 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.25
I0623 19:18:26.055685 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.625
I0623 19:18:26.055696 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.5
I0623 19:18:26.055708 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.75
I0623 19:18:26.055721 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.625
I0623 19:18:26.055732 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875
I0623 19:18:26.055743 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0623 19:18:26.055755 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 19:18:26.055768 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 19:18:26.055779 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 19:18:26.055791 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 19:18:26.055804 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.653409
I0623 19:18:26.055815 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.733333
I0623 19:18:26.055832 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.60697 (* 0.3 = 0.482092 loss)
I0623 19:18:26.055846 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.998127 (* 0.3 = 0.299438 loss)
I0623 19:18:26.055861 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 1.37518 (* 0.0272727 = 0.037505 loss)
I0623 19:18:26.055876 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 1.24358 (* 0.0272727 = 0.0339159 loss)
I0623 19:18:26.055889 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.05907 (* 0.0272727 = 0.0288838 loss)
I0623 19:18:26.055903 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.38325 (* 0.0272727 = 0.037725 loss)
I0623 19:18:26.055917 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 1.80911 (* 0.0272727 = 0.0493393 loss)
I0623 19:18:26.055932 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 1.96566 (* 0.0272727 = 0.053609 loss)
I0623 19:18:26.055945 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 2.00591 (* 0.0272727 = 0.0547065 loss)
I0623 19:18:26.055959 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.31421 (* 0.0272727 = 0.0358422 loss)
I0623 19:18:26.055974 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 2.00078 (* 0.0272727 = 0.0545666 loss)
I0623 19:18:26.055986 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 1.81488 (* 0.0272727 = 0.0494966 loss)
I0623 19:18:26.056000 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 2.2259 (* 0.0272727 = 0.0607063 loss)
I0623 19:18:26.056015 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 2.06259 (* 0.0272727 = 0.0562524 loss)
I0623 19:18:26.056047 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.10687 (* 0.0272727 = 0.0301875 loss)
I0623 19:18:26.056062 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 1.4998 (* 0.0272727 = 0.0409037 loss)
I0623 19:18:26.056076 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.693693 (* 0.0272727 = 0.0189189 loss)
I0623 19:18:26.056089 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.864703 (* 0.0272727 = 0.0235828 loss)
I0623 19:18:26.056103 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.301733 (* 0.0272727 = 0.00822907 loss)
I0623 19:18:26.056118 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.102518 (* 0.0272727 = 0.00279595 loss)
I0623 19:18:26.056131 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.014983 (* 0.0272727 = 0.000408628 loss)
I0623 19:18:26.056146 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00215807 (* 0.0272727 = 5.88563e-05 loss)
I0623 19:18:26.056160 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000174623 (* 0.0272727 = 4.76244e-06 loss)
I0623 19:18:26.056174 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 5.88536e-05 (* 0.0272727 = 1.6051e-06 loss)
I0623 19:18:26.056190 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.504762
I0623 19:18:26.056202 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0623 19:18:26.056215 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0623 19:18:26.056226 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625
I0623 19:18:26.056238 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0623 19:18:26.056249 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25
I0623 19:18:26.056262 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375
I0623 19:18:26.056273 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0623 19:18:26.056285 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0623 19:18:26.056296 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.5
I0623 19:18:26.056313 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.375
I0623 19:18:26.056324 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.25
I0623 19:18:26.056337 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.375
I0623 19:18:26.056349 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.625
I0623 19:18:26.056360 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.625
I0623 19:18:26.056371 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.75
I0623 19:18:26.056383 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875
I0623 19:18:26.056394 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875
I0623 19:18:26.056406 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0623 19:18:26.056418 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 19:18:26.056429 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 19:18:26.056442 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 19:18:26.056452 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 19:18:26.056464 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.698864
I0623 19:18:26.056475 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.847619
I0623 19:18:26.056490 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.33479 (* 0.3 = 0.400437 loss)
I0623 19:18:26.056504 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.826063 (* 0.3 = 0.247819 loss)
I0623 19:18:26.056517 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.827653 (* 0.0272727 = 0.0225724 loss)
I0623 19:18:26.056531 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.78218 (* 0.0272727 = 0.0213322 loss)
I0623 19:18:26.056556 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.751358 (* 0.0272727 = 0.0204916 loss)
I0623 19:18:26.056571 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.71874 (* 0.0272727 = 0.0468748 loss)
I0623 19:18:26.056586 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.64669 (* 0.0272727 = 0.0449098 loss)
I0623 19:18:26.056599 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.66989 (* 0.0272727 = 0.0455425 loss)
I0623 19:18:26.056612 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.4097 (* 0.0272727 = 0.0384465 loss)
I0623 19:18:26.056627 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 0.977195 (* 0.0272727 = 0.0266508 loss)
I0623 19:18:26.056640 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.91375 (* 0.0272727 = 0.0521933 loss)
I0623 19:18:26.056653 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 1.58857 (* 0.0272727 = 0.0433246 loss)
I0623 19:18:26.056668 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.82003 (* 0.0272727 = 0.0496371 loss)
I0623 19:18:26.056681 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.91412 (* 0.0272727 = 0.0522034 loss)
I0623 19:18:26.056694 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.26022 (* 0.0272727 = 0.0343696 loss)
I0623 19:18:26.056710 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 1.15334 (* 0.0272727 = 0.0314548 loss)
I0623 19:18:26.056722 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.795329 (* 0.0272727 = 0.0216908 loss)
I0623 19:18:26.056736 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.539874 (* 0.0272727 = 0.0147238 loss)
I0623 19:18:26.056751 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.314986 (* 0.0272727 = 0.00859053 loss)
I0623 19:18:26.056763 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0367135 (* 0.0272727 = 0.00100128 loss)
I0623 19:18:26.056777 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00411071 (* 0.0272727 = 0.00011211 loss)
I0623 19:18:26.056792 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000675559 (* 0.0272727 = 1.84243e-05 loss)
I0623 19:18:26.056805 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 2.73898e-05 (* 0.0272727 = 7.46994e-07 loss)
I0623 19:18:26.056819 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 1.27706e-05 (* 0.0272727 = 3.48289e-07 loss)
I0623 19:18:26.056831 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.771429
I0623 19:18:26.056843 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75
I0623 19:18:26.056855 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0623 19:18:26.056867 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 19:18:26.056879 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0623 19:18:26.056890 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0623 19:18:26.056902 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0623 19:18:26.056913 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0623 19:18:26.056926 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0623 19:18:26.056936 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.625
I0623 19:18:26.056948 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0623 19:18:26.056960 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.5
I0623 19:18:26.056972 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875
I0623 19:18:26.056983 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875
I0623 19:18:26.056995 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.5
I0623 19:18:26.057006 10365 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875
I0623 19:18:26.057018 10365 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875
I0623 19:18:26.057039 10365 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.875
I0623 19:18:26.057052 10365 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0623 19:18:26.057065 10365 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0623 19:18:26.057076 10365 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0623 19:18:26.057087 10365 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0623 19:18:26.057099 10365 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0623 19:18:26.057111 10365 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.863636
I0623 19:18:26.057122 10365 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.990476
I0623 19:18:26.057137 10365 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.642197 (* 1 = 0.642197 loss)
I0623 19:18:26.057149 10365 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.387462 (* 1 = 0.387462 loss)
I0623 19:18:26.057163 10365 solver.cpp:245] Train net output #125: loss3/loss01 = 0.746961 (* 0.0909091 = 0.0679056 loss)
I0623 19:18:26.057178 10365 solver.cpp:245] Train net output #126: loss3/loss02 = 0.427255 (* 0.0909091 = 0.0388413 loss)
I0623 19:18:26.057191 10365 solver.cpp:245] Train net output #127: loss3/loss03 = 0.254393 (* 0.0909091 = 0.0231267 loss)
I0623 19:18:26.057204 10365 solver.cpp:245] Train net output #128: loss3/loss04 = 0.155302 (* 0.0909091 = 0.0141183 loss)
I0623 19:18:26.057219 10365 solver.cpp:245] Train net output #129: loss3/loss05 = 0.295794 (* 0.0909091 = 0.0268904 loss)
I0623 19:18:26.057235 10365 solver.cpp:245] Train net output #130: loss3/loss06 = 0.523211 (* 0.0909091 = 0.0475646 loss)
I0623 19:18:26.057250 10365 solver.cpp:245] Train net output #131: loss3/loss07 = 0.73759 (* 0.0909091 = 0.0670536 loss)
I0623 19:18:26.057262 10365 solver.cpp:245] Train net output #132: loss3/loss08 = 0.730804 (* 0.0909091 = 0.0664368 loss)
I0623 19:18:26.057276 10365 solver.cpp:245] Train net output #133: loss3/loss09 = 0.993098 (* 0.0909091 = 0.0902816 loss)
I0623 19:18:26.057291 10365 solver.cpp:245] Train net output #134: loss3/loss10 = 0.495618 (* 0.0909091 = 0.0450562 loss)
I0623 19:18:26.057303 10365 solver.cpp:245] Train net output #135: loss3/loss11 = 0.959931 (* 0.0909091 = 0.0872664 loss)
I0623 19:18:26.057317 10365 solver.cpp:245] Train net output #136: loss3/loss12 = 0.500809 (* 0.0909091 = 0.0455281 loss)
I0623 19:18:26.057332 10365 solver.cpp:245] Train net output #137: loss3/loss13 = 0.615762 (* 0.0909091 = 0.0559784 loss)
I0623 19:18:26.057344 10365 solver.cpp:245] Train net output #138: loss3/loss14 = 1.22065 (* 0.0909091 = 0.110968 loss)
I0623 19:18:26.057361 10365 solver.cpp:245] Train net output #139: loss3/loss15 = 0.426821 (* 0.0909091 = 0.0388019 loss)
I0623 19:18:26.057375 10365 solver.cpp:245] Train net output #140: loss3/loss16 = 0.256596 (* 0.0909091 = 0.0233269 loss)
I0623 19:18:26.057389 10365 solver.cpp:245] Train net output #141: loss3/loss17 = 0.150697 (* 0.0909091 = 0.0136997 loss)
I0623 19:18:26.057404 10365 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0182152 (* 0.0909091 = 0.00165593 loss)
I0623 19:18:26.057417 10365 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000589617 (* 0.0909091 = 5.36015e-05 loss)
I0623 19:18:26.057431 10365 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000115198 (* 0.0909091 = 1.04726e-05 loss)
I0623 19:18:26.057446 10365 solver.cpp:245] Train net output #145: loss3/loss21 = 2.76428e-05 (* 0.0909091 = 2.51298e-06 loss)
I0623 19:18:26.057459 10365 solver.cpp:245] Train net output #146: loss3/loss22 = 3.15906e-06 (* 0.0909091 = 2.87187e-07 loss)
I0623 19:18:26.057472 10365 solver.cpp:245] Train net output #147: total_accuracy = 0.375
I0623 19:18:26.057484 10365 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0623 19:18:26.057512 10365 solver.cpp:245] Train net output #149: total_confidence = 0.157386
I0623 19:18:26.057524 10365 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.145633
I0623 19:18:26.057538 10365 sgd_solver.cpp:106] Iteration 23500, lr = 0.001
I0623 19:18:26.416527 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 51.0978 > 30) by scale factor 0.587109
I0623 19:18:48.653311 10365 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 34.4378 > 30) by scale factor 0.871136
I0623 19:24:49.240486 10365 solver.cpp:229] Iteration 24000, loss = 4.42424
I0623 19:24:49.240617 10365 solver.cpp:245] Train net output #0: loss1/accuracy = 0.434783
I0623 19:24:49.240638 10365 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0623 19:24:49.240651 10365 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0623 19:24:49.240664 10365 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625
I0623 19:24:49.240677 10365 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.625
I0623 19:24:49.240689 10365 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0623 19:24:49.240702 10365 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0623 19:24:49.240715 10365 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5
I0623 19:24:49.240727 10365 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.375
I0623 19:24:49.240739 10365 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.375
I0623 19:24:49.240753 10365 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.25
I0623 19:24:49.240766 10365 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.25
I0623 19:24:49.240777 10365 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.5
I0623 19:24:49.240788 10365 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.625
I0623 19:24:49.240800 10365 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.75
I0623 19:24:49.240813 10365 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875
I0623 19:24:49.240824 10365 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.75
I0623 19:24:49.240835 10365 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875
I0623 19:24:49.240847 10365 solver.cpp:245] Train net output #18: loss1/accuracy18 = 0.875
I0623 19:24:49.240859 10365 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0623 19:24:49.240871 10365 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0623 19:24:49.240882 10365 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0623 19:24:49.240895 10365 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0623 19:24:49.240906 10365 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.681818
I0623 19:24:49.240918 10365 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.76087
I0623 19:24:49.240934 10365 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.66097 (* 0.3 = 0.498292 loss)
I0623 19:24:49.240948 10365 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.964563 (* 0.3 = 0.289369 loss)
I0623 19:24:49.240963 10365 solver.cpp:245] Train net output #27: loss1/loss01 = 0.837711 (* 0.0272727 = 0.0228467 loss)
I0623 19:24:49.240978 10365 solver.cpp:245] Train net output #28: loss1/loss02 = 0.726464 (* 0.0272727 = 0.0198127 loss)
I0623 19:24:49.240991 10365 solver.cpp:245] Train net output #29: loss1/loss03 = 1.04157 (* 0.0272727 = 0.0284064 loss)
I0623 19:24:49.241005 10365 solver.cpp:245] Train net output #30: loss1/loss04 = 1.56231 (* 0.0272727 = 0.0426086 loss)
I0623 19:24:49.241019 10365 solver.cpp:245] Train net output #31: loss1/loss05 = 1.97246 (* 0.0272727 = 0.0537944 loss)
I0623 19:24:49.241034 10365 solver.cpp:245] Train net output #32: loss1/loss06 = 1.45372 (* 0.0272727 = 0.039647 loss)
I0623 19:24:49.241047 10365 solver.cpp:245] Train net output #33: loss1/loss07 = 1.79345 (* 0.0272727 = 0.0489124 loss)
I0623 19:24:49.241061 10365 solver.cpp:245] Train net output #34: loss1/loss08 = 1.93212 (* 0.0272727 = 0.0526942 loss)
I0623 19:24:49.241075 10365 solver.cpp:245] Train net output #35: loss1/loss09 = 1.88003 (* 0.0272727 = 0.0512735 loss)
I0623 19:24:49.241088 10365 solver.cpp:245] Train net output #36: loss1/loss10 = 2.8772 (* 0.0272727 = 0.078469 loss)
I0623 19:24:49.241102 10365 solver.cpp:245] Train net output #37: loss1/loss11 = 1.9336 (* 0.0272727 = 0.0527345 loss)
I0623 19:24:49.241116 10365 solver.cpp:245] Train net output #38: loss1/loss12 = 1.6189 (* 0.0272727 = 0.0441518 loss)
I0623 19:24:49.241147 10365 solver.cpp:245] Train net output #39: loss1/loss13 = 1.5861 (* 0.0272727 = 0.0432574 loss)
I0623 19:24:49.241163 10365 solver.cpp:245] Train net output #40: loss1/loss14 = 0.638677 (* 0.0272727 = 0.0174185 loss)
I0623 19:24:49.241176 10365 solver.cpp:245] Train net output #41: loss1/loss15 = 0.513882 (* 0.0272727 = 0.014015 loss)
I0623 19:24:49.241190 10365 solver.cpp:245] Train net output #42: loss1/loss16 = 0.716304 (* 0.0272727 = 0.0195356 loss)
I0623 19:24:49.241204 10365 solver.cpp:245] Train net output #43: loss1/loss17 = 0.346612 (* 0.0272727 = 0.00945306 loss)
I0623 19:24:49.241219 10365 solver.cpp:245] Train net output #44: loss1/loss18 = 0.312853 (* 0.0272727 = 0.00853237 loss)
I0623 19:24:49.241232 10365 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0522305 (* 0.0272727 = 0.00142447 loss)
I0623 19:24:49.241246 10365 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00682698 (* 0.0272727 = 0.00018619 loss)
I0623 19:24:49.241263 10365 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00339161 (* 0.0272727 = 9.24984e-05 loss)
I0623 19:24:49.241278 10365 solver.cpp:245] Train net output #48: loss1/loss22 = 6.46573e-05 (* 0.0272727 = 1.76338e-06 loss)
I0623 19:24:49.241291 10365 solver.cpp:245] Train net output #49: loss2/accuracy = 0.521739
I0623 19:24:49.241303 10365 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0623 19:24:49.241314 10365 solver.cpp:245] Train net output #51: loss2/accuracy02 = 1
I0623 19:24:49.241327 10365 solver.cpp:245] Train net output #52: loss2/accuracy03 = 1
I0623 19:24:49.241338 10365 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0623 19:24:49.241349 10365 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0623 19:24:49.241361 10365 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375
I0623 19:24:49.241372 10365 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5
I0623 19:24:49.241384 10365 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0623 19:24:49.241395 10365 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.375
I0623 19:24:49.241407 10365 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.25
I0623 19:24:49.241418 10365 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.375
I0623 19:24:49.241430 10365 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.75
I0623 19:24:49.241441 10365 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.75
I0623 19:24:49.241452 10365 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.75
I0623 19:24:49.241464 10365 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.75
I0623 19:24:49.241475 10365 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.75
I0623 19:24:49.241487 10365 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875
I0623 19:24:49.241498 10365 solver.cpp:245] Train net output #67: loss2/accuracy18 = 0.875
I0623 19:24:49.241510 10365 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0623 19:24:49.241521 10365 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0623 19:24:49.241533 10365 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0623 19:24:49.241545 10365 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0623 19:24:49.241556 10365 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.721591
I0623 19:24:49.241569 10365 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.73913
I0623 19:24:49.241582 10365 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.38263 (* 0.3 = 0.414788 loss)
I0623 19:24:49.241595 10365 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.834249 (* 0.3 = 0.250275 loss)
I0623 19:24:49.241610 10365 solver.cpp:245] Train net output #76: loss2/loss01 = 0.430849 (* 0.0272727 = 0.0117504 loss)
I0623 19:24:49.241623 10365 solver.cpp:245] Train net output #77: loss2/loss02 = 0.138123 (* 0.0272727 = 0.00376698 loss)
I0623 19:24:49.241654 10365 solver.cpp:245] Train net output #78: loss2/loss03 = 0.219288 (* 0.0272727 = 0.0059806 loss)
I0623 19:24:49.241670 10365 solver.cpp:245] Train net output #79: loss2/loss04 = 1.06938 (* 0.0272727 = 0.029165 loss)
I0623 19:24:49.241684 10365 solver.cpp:245] Train net output #80: loss2/loss05 = 1.32321 (* 0.0272727 = 0.0360876 loss)
I0623 19:24:49.241698 10365 solver.cpp:245] Train net output #81: loss2/loss06 = 1.79521 (* 0.0272727 = 0.0489603 loss)
I0623 19:24:49.241711 10365 solver.cpp:245] Train net output #82: loss2/loss07 = 1.79414 (* 0.0272727 = 0.0489311 loss)
I0623 19:24:49.241725 10365 solver.cpp:245] Train net output #83: loss2/loss08 = 1.39233 (* 0.0272727 = 0.0379726 loss)
I0623 19:24:49.241739 10365 solver.cpp:245] Train net output #84: loss2/loss09 = 1.85248 (* 0.0272727 = 0.0505222 loss)
I0623 19:24:49.241752 10365 solver.cpp:245] Train net output #85: loss2/loss10 = 2.55568 (* 0.0272727 = 0.0697005 loss)
I0623 19:24:49.241766 10365 solver.cpp:245] Train net output #86: loss2/loss11 = 1.84348 (* 0.0272727 = 0.0502769 loss)
I0623 19:24:49.241780 10365 solver.cpp:245] Train net output #87: loss2/loss12 = 1.22456 (* 0.0272727 = 0.0333971 loss)
I0623 19:24:49.241793 10365 solver.cpp:245] Train net output #88: loss2/loss13 = 1.12343 (* 0.0272727 = 0.030639 loss)
I0623 19:24:49.241807 10365 solver.cpp:245] Train net output #89: loss2/loss14 = 0.653864 (* 0.0272727 = 0.0178327 loss)
I0623 19:24:49.241821 10365 solver.cpp:245] Train net output #90: loss2/loss15 = 0.670272 (* 0.0272727 = 0.0182802 loss)
I0623 19:24:49.241834 10365 solver.cpp:245] Train net output #91: loss2/loss16 = 0.928457 (* 0.0272727 = 0.0253216 loss)
I0623 19:24:49.241848 10365 solver.cpp:245] Train net output #92: loss2/loss17 = 0.414092 (* 0.0272727 = 0.0112934 loss)
I0623 19:24:49.241863 10365 solver.cpp:245] Train net output #93: loss2/loss18 = 0.525441 (* 0.0272727 = 0.0143302 loss)
I0623 19:24:49.241876 10365 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0193555 (* 0.0272727 = 0.000527878 loss)
I0623 19:24:49.241890 10365 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00260787 (* 0.0272727 = 7.11237e-05 loss)
I0623 19:24:49.241904 10365 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000755905 (* 0.0272727 = 2.06156e-05 loss)
I0623 19:24:49.241917 10365 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000131481 (* 0.0272727 = 3.58584e-06 loss)
I0623 19:24:49.241930 10365 solver.cpp:245] Train net output #98: loss3/accuracy = 0.804348
I0623 19:24:49.241942 10365 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0623 19:24:49.241955 10365 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0623 19:24:49.241966 10365 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0623 19:24:49.241977 10365 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0623 19:24:49.241989 10365 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0623 19:24:49.242000 10365 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0623 19:24:49.242012 10365 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0623 19:24:49.242024 10365 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.625
I0623 19:24:49.242035 10365 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.5
I0623 19:24:49.242048 10365 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.625
I0623 19:24:49.242058 10365 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.625
I0623 19:24:49.242070 10365 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.625
I0623 19:24:49.242081 10365 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875
I0623 19:24:49.242094 10365 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0623 19:24:49.242
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment