Last active
May 4, 2016 08:27
-
-
Save stas-sl/eb05767fc29c4140e2c85701a7901b36 to your computer and use it in GitHub Desktop.
This file has been truncated, but you can view the full file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
I0430 14:38:39.975833 15443 solver.cpp:280] Solving mixed_lstm | |
I0430 14:38:39.975847 15443 solver.cpp:281] Learning Rate Policy: fixed | |
I0430 14:38:40.358908 15443 solver.cpp:229] Iteration 0, loss = 5.42065 | |
I0430 14:38:40.358966 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.510638 | |
I0430 14:38:40.358986 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0430 14:38:40.358999 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375 | |
I0430 14:38:40.359011 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0430 14:38:40.359024 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375 | |
I0430 14:38:40.359035 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375 | |
I0430 14:38:40.359047 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0430 14:38:40.359093 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625 | |
I0430 14:38:40.359107 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0430 14:38:40.359119 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0430 14:38:40.359132 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0430 14:38:40.359143 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0430 14:38:40.359154 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0430 14:38:40.359165 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0430 14:38:40.359176 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 14:38:40.359187 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 14:38:40.359203 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 14:38:40.359215 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 14:38:40.359226 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 14:38:40.359237 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 14:38:40.359248 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 14:38:40.359259 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 14:38:40.359271 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 14:38:40.359282 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.846591 | |
I0430 14:38:40.359293 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.787234 | |
I0430 14:38:40.359311 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.10707 (* 0.3 = 0.632121 loss) | |
I0430 14:38:40.359326 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.624383 (* 0.3 = 0.187315 loss) | |
I0430 14:38:40.359340 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 1.00493 (* 0.0272727 = 0.0274073 loss) | |
I0430 14:38:40.359354 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 2.30379 (* 0.0272727 = 0.0628306 loss) | |
I0430 14:38:40.359369 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 3.1408 (* 0.0272727 = 0.0856581 loss) | |
I0430 14:38:40.359382 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 2.52694 (* 0.0272727 = 0.0689166 loss) | |
I0430 14:38:40.359395 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 2.45131 (* 0.0272727 = 0.0668539 loss) | |
I0430 14:38:40.359410 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.7552 (* 0.0272727 = 0.047869 loss) | |
I0430 14:38:40.359422 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 0.810831 (* 0.0272727 = 0.0221136 loss) | |
I0430 14:38:40.359436 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.239466 (* 0.0272727 = 0.0065309 loss) | |
I0430 14:38:40.359450 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.00827495 (* 0.0272727 = 0.000225681 loss) | |
I0430 14:38:40.359482 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00490117 (* 0.0272727 = 0.000133668 loss) | |
I0430 14:38:40.359499 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.00317545 (* 0.0272727 = 8.66031e-05 loss) | |
I0430 14:38:40.359513 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.00246912 (* 0.0272727 = 6.73395e-05 loss) | |
I0430 14:38:40.359527 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.00315794 (* 0.0272727 = 8.61258e-05 loss) | |
I0430 14:38:40.359541 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00215697 (* 0.0272727 = 5.88265e-05 loss) | |
I0430 14:38:40.359555 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00157216 (* 0.0272727 = 4.2877e-05 loss) | |
I0430 14:38:40.359568 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.002219 (* 0.0272727 = 6.05181e-05 loss) | |
I0430 14:38:40.359582 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00198532 (* 0.0272727 = 5.4145e-05 loss) | |
I0430 14:38:40.359596 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00166345 (* 0.0272727 = 4.53667e-05 loss) | |
I0430 14:38:40.359623 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00161378 (* 0.0272727 = 4.40122e-05 loss) | |
I0430 14:38:40.359638 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000557906 (* 0.0272727 = 1.52156e-05 loss) | |
I0430 14:38:40.359652 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000467645 (* 0.0272727 = 1.2754e-05 loss) | |
I0430 14:38:40.359665 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000178285 (* 0.0272727 = 4.86233e-06 loss) | |
I0430 14:38:40.359678 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.531915 | |
I0430 14:38:40.359689 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0430 14:38:40.359701 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625 | |
I0430 14:38:40.359714 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25 | |
I0430 14:38:40.359724 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375 | |
I0430 14:38:40.359736 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375 | |
I0430 14:38:40.359747 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5 | |
I0430 14:38:40.359760 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0430 14:38:40.359771 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0430 14:38:40.359782 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0430 14:38:40.359793 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0430 14:38:40.359804 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0430 14:38:40.359815 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0430 14:38:40.359827 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0430 14:38:40.359838 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 14:38:40.359849 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 14:38:40.359860 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 14:38:40.359871 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 14:38:40.359882 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 14:38:40.359894 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 14:38:40.359905 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 14:38:40.359916 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 14:38:40.359927 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 14:38:40.359938 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.863636 | |
I0430 14:38:40.359951 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.808511 | |
I0430 14:38:40.359963 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.95857 (* 0.3 = 0.587572 loss) | |
I0430 14:38:40.359977 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.568896 (* 0.3 = 0.170669 loss) | |
I0430 14:38:40.359992 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.763864 (* 0.0272727 = 0.0208326 loss) | |
I0430 14:38:40.360004 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 1.58349 (* 0.0272727 = 0.043186 loss) | |
I0430 14:38:40.360018 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 2.56793 (* 0.0272727 = 0.0700345 loss) | |
I0430 14:38:40.360034 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.62179 (* 0.0272727 = 0.0442306 loss) | |
I0430 14:38:40.360049 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 2.5723 (* 0.0272727 = 0.0701536 loss) | |
I0430 14:38:40.360062 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 2.43584 (* 0.0272727 = 0.0664319 loss) | |
I0430 14:38:40.360075 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 0.55724 (* 0.0272727 = 0.0151974 loss) | |
I0430 14:38:40.360100 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.459152 (* 0.0272727 = 0.0125223 loss) | |
I0430 14:38:40.360115 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0134022 (* 0.0272727 = 0.000365514 loss) | |
I0430 14:38:40.360128 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00744476 (* 0.0272727 = 0.000203039 loss) | |
I0430 14:38:40.360141 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.00733836 (* 0.0272727 = 0.000200137 loss) | |
I0430 14:38:40.360155 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00443522 (* 0.0272727 = 0.000120961 loss) | |
I0430 14:38:40.360169 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.00378394 (* 0.0272727 = 0.000103199 loss) | |
I0430 14:38:40.360183 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00348188 (* 0.0272727 = 9.49602e-05 loss) | |
I0430 14:38:40.360196 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00335253 (* 0.0272727 = 9.14327e-05 loss) | |
I0430 14:38:40.360210 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00349473 (* 0.0272727 = 9.53108e-05 loss) | |
I0430 14:38:40.360224 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0017921 (* 0.0272727 = 4.88756e-05 loss) | |
I0430 14:38:40.360237 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00162231 (* 0.0272727 = 4.42449e-05 loss) | |
I0430 14:38:40.360255 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00161274 (* 0.0272727 = 4.39838e-05 loss) | |
I0430 14:38:40.360270 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.0018384 (* 0.0272727 = 5.01383e-05 loss) | |
I0430 14:38:40.360282 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00134879 (* 0.0272727 = 3.67853e-05 loss) | |
I0430 14:38:40.360296 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00150581 (* 0.0272727 = 4.10675e-05 loss) | |
I0430 14:38:40.360308 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.787234 | |
I0430 14:38:40.360319 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0430 14:38:40.360332 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75 | |
I0430 14:38:40.360342 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75 | |
I0430 14:38:40.360354 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75 | |
I0430 14:38:40.360365 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0430 14:38:40.360376 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0430 14:38:40.360388 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0430 14:38:40.360399 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1 | |
I0430 14:38:40.360410 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0430 14:38:40.360422 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0430 14:38:40.360433 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0430 14:38:40.360445 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0430 14:38:40.360456 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0430 14:38:40.360467 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 14:38:40.360484 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 14:38:40.360492 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 14:38:40.360504 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 14:38:40.360515 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 14:38:40.360527 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 14:38:40.360538 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 14:38:40.360548 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 14:38:40.360559 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 14:38:40.360570 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.9375 | |
I0430 14:38:40.360592 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.808511 | |
I0430 14:38:40.360607 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.73575 (* 1 = 1.73575 loss) | |
I0430 14:38:40.360620 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.492345 (* 1 = 0.492345 loss) | |
I0430 14:38:40.360635 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.737604 (* 0.0909091 = 0.0670549 loss) | |
I0430 14:38:40.360647 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 1.64843 (* 0.0909091 = 0.149857 loss) | |
I0430 14:38:40.360661 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 1.67359 (* 0.0909091 = 0.152144 loss) | |
I0430 14:38:40.360674 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 1.56455 (* 0.0909091 = 0.142232 loss) | |
I0430 14:38:40.360687 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 2.30365 (* 0.0909091 = 0.209423 loss) | |
I0430 14:38:40.360700 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 1.43782 (* 0.0909091 = 0.130711 loss) | |
I0430 14:38:40.360713 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.229591 (* 0.0909091 = 0.0208719 loss) | |
I0430 14:38:40.360728 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0338439 (* 0.0909091 = 0.00307672 loss) | |
I0430 14:38:40.360740 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.012127 (* 0.0909091 = 0.00110246 loss) | |
I0430 14:38:40.360754 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00925085 (* 0.0909091 = 0.000840986 loss) | |
I0430 14:38:40.360767 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00959856 (* 0.0909091 = 0.000872596 loss) | |
I0430 14:38:40.360781 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00672952 (* 0.0909091 = 0.000611775 loss) | |
I0430 14:38:40.360795 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00507921 (* 0.0909091 = 0.000461747 loss) | |
I0430 14:38:40.360808 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00433375 (* 0.0909091 = 0.000393977 loss) | |
I0430 14:38:40.360821 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00411059 (* 0.0909091 = 0.00037369 loss) | |
I0430 14:38:40.360836 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00333872 (* 0.0909091 = 0.00030352 loss) | |
I0430 14:38:40.360848 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0026606 (* 0.0909091 = 0.000241872 loss) | |
I0430 14:38:40.360862 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00242034 (* 0.0909091 = 0.000220031 loss) | |
I0430 14:38:40.360875 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0026502 (* 0.0909091 = 0.000240927 loss) | |
I0430 14:38:40.360888 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00221298 (* 0.0909091 = 0.00020118 loss) | |
I0430 14:38:40.360901 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00218935 (* 0.0909091 = 0.000199032 loss) | |
I0430 14:38:40.360914 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 0.00221471 (* 0.0909091 = 0.000201337 loss) | |
I0430 14:38:40.360926 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.625 | |
I0430 14:38:40.360937 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625 | |
I0430 14:38:40.360949 15443 solver.cpp:245] Train net output #149: total_confidence = 0.618523 | |
I0430 14:38:40.360960 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.629324 | |
I0430 14:38:40.360980 15443 sgd_solver.cpp:106] Iteration 0, lr = 0.001 | |
I0430 14:40:40.554004 15443 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.4951 > 30) by scale factor 0.983765 | |
I0430 14:40:57.197389 15443 solver.cpp:229] Iteration 500, loss = 3.74038 | |
I0430 14:40:57.197470 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.413043 | |
I0430 14:40:57.197489 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0430 14:40:57.197500 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75 | |
I0430 14:40:57.197513 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0430 14:40:57.197525 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25 | |
I0430 14:40:57.197536 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0430 14:40:57.197548 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0430 14:40:57.197561 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875 | |
I0430 14:40:57.197574 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0430 14:40:57.197587 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0430 14:40:57.197599 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0430 14:40:57.197610 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0430 14:40:57.197623 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0430 14:40:57.197634 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0430 14:40:57.197645 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 14:40:57.197657 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 14:40:57.197669 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 14:40:57.197680 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 14:40:57.197691 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 14:40:57.197703 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 14:40:57.197715 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 14:40:57.197726 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 14:40:57.197738 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 14:40:57.197749 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.835227 | |
I0430 14:40:57.197762 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.717391 | |
I0430 14:40:57.197777 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.65073 (* 0.3 = 0.495218 loss) | |
I0430 14:40:57.197791 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.464944 (* 0.3 = 0.139483 loss) | |
I0430 14:40:57.197806 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.762655 (* 0.0272727 = 0.0207997 loss) | |
I0430 14:40:57.197821 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 0.982337 (* 0.0272727 = 0.026791 loss) | |
I0430 14:40:57.197834 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.89024 (* 0.0272727 = 0.0515519 loss) | |
I0430 14:40:57.197849 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 2.18594 (* 0.0272727 = 0.0596166 loss) | |
I0430 14:40:57.197861 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.60494 (* 0.0272727 = 0.043771 loss) | |
I0430 14:40:57.197875 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 0.906324 (* 0.0272727 = 0.0247179 loss) | |
I0430 14:40:57.197890 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 0.380641 (* 0.0272727 = 0.0103811 loss) | |
I0430 14:40:57.197902 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.66793 (* 0.0272727 = 0.0182163 loss) | |
I0430 14:40:57.197917 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.00446605 (* 0.0272727 = 0.000121801 loss) | |
I0430 14:40:57.197932 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 5.46341e-05 (* 0.0272727 = 1.49002e-06 loss) | |
I0430 14:40:57.197945 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 5.34957e-06 (* 0.0272727 = 1.45897e-07 loss) | |
I0430 14:40:57.197959 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 8.64269e-07 (* 0.0272727 = 2.3571e-08 loss) | |
I0430 14:40:57.198015 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 2.38419e-07 (* 0.0272727 = 6.50233e-09 loss) | |
I0430 14:40:57.198030 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 2.98023e-07 (* 0.0272727 = 8.12791e-09 loss) | |
I0430 14:40:57.198045 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 7.45058e-08 (* 0.0272727 = 2.03198e-09 loss) | |
I0430 14:40:57.198058 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 5.96047e-08 (* 0.0272727 = 1.62558e-09 loss) | |
I0430 14:40:57.198072 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0 (* 0.0272727 = 0 loss) | |
I0430 14:40:57.198086 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0 (* 0.0272727 = 0 loss) | |
I0430 14:40:57.198099 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0 (* 0.0272727 = 0 loss) | |
I0430 14:40:57.198113 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0 (* 0.0272727 = 0 loss) | |
I0430 14:40:57.198127 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 7.45058e-08 (* 0.0272727 = 2.03198e-09 loss) | |
I0430 14:40:57.198142 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 2.98023e-08 (* 0.0272727 = 8.12791e-10 loss) | |
I0430 14:40:57.198153 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.608696 | |
I0430 14:40:57.198165 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.5 | |
I0430 14:40:57.198176 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0430 14:40:57.198189 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0430 14:40:57.198200 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5 | |
I0430 14:40:57.198211 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0430 14:40:57.198222 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0430 14:40:57.198235 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75 | |
I0430 14:40:57.198246 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1 | |
I0430 14:40:57.198257 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0430 14:40:57.198269 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0430 14:40:57.198281 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0430 14:40:57.198292 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0430 14:40:57.198300 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0430 14:40:57.198307 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 14:40:57.198320 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 14:40:57.198331 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 14:40:57.198343 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 14:40:57.198354 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 14:40:57.198366 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 14:40:57.198377 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 14:40:57.198388 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 14:40:57.198400 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 14:40:57.198411 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.892045 | |
I0430 14:40:57.198422 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.804348 | |
I0430 14:40:57.198436 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.44366 (* 0.3 = 0.433099 loss) | |
I0430 14:40:57.198454 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.395966 (* 0.3 = 0.11879 loss) | |
I0430 14:40:57.198468 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.859796 (* 0.0272727 = 0.023449 loss) | |
I0430 14:40:57.198482 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 0.603161 (* 0.0272727 = 0.0164498 loss) | |
I0430 14:40:57.198508 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.59974 (* 0.0272727 = 0.0436293 loss) | |
I0430 14:40:57.198523 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.94885 (* 0.0272727 = 0.0531503 loss) | |
I0430 14:40:57.198536 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.65548 (* 0.0272727 = 0.0451495 loss) | |
I0430 14:40:57.198550 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 0.754833 (* 0.0272727 = 0.0205864 loss) | |
I0430 14:40:57.198565 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 0.420079 (* 0.0272727 = 0.0114567 loss) | |
I0430 14:40:57.198578 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.105491 (* 0.0272727 = 0.00287703 loss) | |
I0430 14:40:57.198592 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0102671 (* 0.0272727 = 0.000280012 loss) | |
I0430 14:40:57.198606 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.0014454 (* 0.0272727 = 3.942e-05 loss) | |
I0430 14:40:57.198622 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.000142971 (* 0.0272727 = 3.8992e-06 loss) | |
I0430 14:40:57.198637 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 4.3137e-05 (* 0.0272727 = 1.17646e-06 loss) | |
I0430 14:40:57.198652 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 8.41936e-06 (* 0.0272727 = 2.29619e-07 loss) | |
I0430 14:40:57.198665 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 1.44542e-06 (* 0.0272727 = 3.94204e-08 loss) | |
I0430 14:40:57.198678 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 6.85454e-07 (* 0.0272727 = 1.86942e-08 loss) | |
I0430 14:40:57.198693 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 3.42727e-07 (* 0.0272727 = 9.3471e-09 loss) | |
I0430 14:40:57.198705 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 2.68221e-07 (* 0.0272727 = 7.31512e-09 loss) | |
I0430 14:40:57.198719 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 2.23518e-07 (* 0.0272727 = 6.09593e-09 loss) | |
I0430 14:40:57.198732 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 7.45058e-08 (* 0.0272727 = 2.03198e-09 loss) | |
I0430 14:40:57.198746 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 4.47035e-08 (* 0.0272727 = 1.21919e-09 loss) | |
I0430 14:40:57.198760 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 8.9407e-08 (* 0.0272727 = 2.43837e-09 loss) | |
I0430 14:40:57.198773 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 3.57628e-07 (* 0.0272727 = 9.7535e-09 loss) | |
I0430 14:40:57.198786 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.76087 | |
I0430 14:40:57.198797 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0430 14:40:57.198809 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0430 14:40:57.198820 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75 | |
I0430 14:40:57.198832 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75 | |
I0430 14:40:57.198844 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625 | |
I0430 14:40:57.198855 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0430 14:40:57.198868 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0430 14:40:57.198879 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0430 14:40:57.198889 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0430 14:40:57.198901 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0430 14:40:57.198912 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0430 14:40:57.198923 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0430 14:40:57.198935 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0430 14:40:57.198946 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 14:40:57.198957 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 14:40:57.198981 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 14:40:57.198993 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 14:40:57.199004 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 14:40:57.199015 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 14:40:57.199026 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 14:40:57.199038 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 14:40:57.199049 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 14:40:57.199060 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.926136 | |
I0430 14:40:57.199072 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.978261 | |
I0430 14:40:57.199085 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.657399 (* 1 = 0.657399 loss) | |
I0430 14:40:57.199100 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.212654 (* 1 = 0.212654 loss) | |
I0430 14:40:57.199113 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.343859 (* 0.0909091 = 0.0312599 loss) | |
I0430 14:40:57.199127 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.32394 (* 0.0909091 = 0.0294491 loss) | |
I0430 14:40:57.199141 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.797681 (* 0.0909091 = 0.0725165 loss) | |
I0430 14:40:57.199154 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.93652 (* 0.0909091 = 0.0851382 loss) | |
I0430 14:40:57.199167 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.994242 (* 0.0909091 = 0.0903857 loss) | |
I0430 14:40:57.199182 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.264282 (* 0.0909091 = 0.0240257 loss) | |
I0430 14:40:57.199194 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.18269 (* 0.0909091 = 0.0166082 loss) | |
I0430 14:40:57.199208 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.330743 (* 0.0909091 = 0.0300675 loss) | |
I0430 14:40:57.199223 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0181934 (* 0.0909091 = 0.00165394 loss) | |
I0430 14:40:57.199236 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00162493 (* 0.0909091 = 0.000147721 loss) | |
I0430 14:40:57.199249 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00034514 (* 0.0909091 = 3.13764e-05 loss) | |
I0430 14:40:57.199264 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.000151523 (* 0.0909091 = 1.37748e-05 loss) | |
I0430 14:40:57.199276 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 7.16815e-05 (* 0.0909091 = 6.5165e-06 loss) | |
I0430 14:40:57.199290 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 3.85217e-05 (* 0.0909091 = 3.50198e-06 loss) | |
I0430 14:40:57.199304 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 1.79564e-05 (* 0.0909091 = 1.6324e-06 loss) | |
I0430 14:40:57.199318 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 1.49612e-05 (* 0.0909091 = 1.36011e-06 loss) | |
I0430 14:40:57.199331 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 1.27856e-05 (* 0.0909091 = 1.16232e-06 loss) | |
I0430 14:40:57.199345 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 1.17574e-05 (* 0.0909091 = 1.06885e-06 loss) | |
I0430 14:40:57.199359 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 1.09528e-05 (* 0.0909091 = 9.95705e-07 loss) | |
I0430 14:40:57.199373 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 9.40296e-06 (* 0.0909091 = 8.54814e-07 loss) | |
I0430 14:40:57.199386 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 9.6265e-06 (* 0.0909091 = 8.75136e-07 loss) | |
I0430 14:40:57.199400 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 1.02673e-05 (* 0.0909091 = 9.33391e-07 loss) | |
I0430 14:40:57.199412 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.375 | |
I0430 14:40:57.199424 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5 | |
I0430 14:40:57.199445 15443 solver.cpp:245] Train net output #149: total_confidence = 0.509899 | |
I0430 14:40:57.199457 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.46545 | |
I0430 14:40:57.199491 15443 sgd_solver.cpp:106] Iteration 500, lr = 0.001 | |
I0430 14:43:59.918297 15443 solver.cpp:229] Iteration 1000, loss = 3.74582 | |
I0430 14:43:59.918467 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.433333 | |
I0430 14:43:59.918488 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875 | |
I0430 14:43:59.918501 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75 | |
I0430 14:43:59.918514 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5 | |
I0430 14:43:59.918526 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.125 | |
I0430 14:43:59.918539 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375 | |
I0430 14:43:59.918550 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.875 | |
I0430 14:43:59.918563 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0430 14:43:59.918576 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75 | |
I0430 14:43:59.918587 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75 | |
I0430 14:43:59.918599 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0430 14:43:59.918612 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0430 14:43:59.918623 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0430 14:43:59.918637 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0430 14:43:59.918648 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0430 14:43:59.918660 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875 | |
I0430 14:43:59.918673 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875 | |
I0430 14:43:59.918684 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875 | |
I0430 14:43:59.918696 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 0.875 | |
I0430 14:43:59.918709 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 0.875 | |
I0430 14:43:59.918720 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 14:43:59.918732 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 14:43:59.918745 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 14:43:59.918756 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.801136 | |
I0430 14:43:59.918767 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.683333 | |
I0430 14:43:59.918784 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.98125 (* 0.3 = 0.594375 loss) | |
I0430 14:43:59.918798 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.714367 (* 0.3 = 0.21431 loss) | |
I0430 14:43:59.918813 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.69514 (* 0.0272727 = 0.0189584 loss) | |
I0430 14:43:59.918828 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 0.9512 (* 0.0272727 = 0.0259418 loss) | |
I0430 14:43:59.918843 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.69012 (* 0.0272727 = 0.0460941 loss) | |
I0430 14:43:59.918856 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.94293 (* 0.0272727 = 0.0529891 loss) | |
I0430 14:43:59.918870 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.68244 (* 0.0272727 = 0.0458848 loss) | |
I0430 14:43:59.918884 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 0.897235 (* 0.0272727 = 0.02447 loss) | |
I0430 14:43:59.918898 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 0.83346 (* 0.0272727 = 0.0227307 loss) | |
I0430 14:43:59.918912 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.934342 (* 0.0272727 = 0.025482 loss) | |
I0430 14:43:59.918926 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.728367 (* 0.0272727 = 0.0198645 loss) | |
I0430 14:43:59.918941 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.713642 (* 0.0272727 = 0.019463 loss) | |
I0430 14:43:59.918954 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.770174 (* 0.0272727 = 0.0210047 loss) | |
I0430 14:43:59.918968 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.535582 (* 0.0272727 = 0.0146068 loss) | |
I0430 14:43:59.919003 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.683052 (* 0.0272727 = 0.0186287 loss) | |
I0430 14:43:59.919019 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.349775 (* 0.0272727 = 0.00953932 loss) | |
I0430 14:43:59.919034 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.938375 (* 0.0272727 = 0.025592 loss) | |
I0430 14:43:59.919047 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 1.07026 (* 0.0272727 = 0.0291889 loss) | |
I0430 14:43:59.919061 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.844328 (* 0.0272727 = 0.0230271 loss) | |
I0430 14:43:59.919075 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.967769 (* 0.0272727 = 0.0263937 loss) | |
I0430 14:43:59.919090 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 1.19944 (* 0.0272727 = 0.032712 loss) | |
I0430 14:43:59.919105 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00124584 (* 0.0272727 = 3.39773e-05 loss) | |
I0430 14:43:59.919119 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000259831 (* 0.0272727 = 7.0863e-06 loss) | |
I0430 14:43:59.919133 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 8.26979e-05 (* 0.0272727 = 2.2554e-06 loss) | |
I0430 14:43:59.919145 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.55 | |
I0430 14:43:59.919158 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1 | |
I0430 14:43:59.919170 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875 | |
I0430 14:43:59.919183 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0430 14:43:59.919194 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375 | |
I0430 14:43:59.919206 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.75 | |
I0430 14:43:59.919219 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875 | |
I0430 14:43:59.919230 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0430 14:43:59.919242 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75 | |
I0430 14:43:59.919255 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.75 | |
I0430 14:43:59.919265 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0430 14:43:59.919277 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.75 | |
I0430 14:43:59.919289 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0430 14:43:59.919301 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0430 14:43:59.919317 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0430 14:43:59.919328 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875 | |
I0430 14:43:59.919340 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875 | |
I0430 14:43:59.919353 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875 | |
I0430 14:43:59.919364 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 0.875 | |
I0430 14:43:59.919376 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 0.875 | |
I0430 14:43:59.919389 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 14:43:59.919399 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 14:43:59.919411 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 14:43:59.919423 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.829545 | |
I0430 14:43:59.919435 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.733333 | |
I0430 14:43:59.919450 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.54887 (* 0.3 = 0.46466 loss) | |
I0430 14:43:59.919463 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.595427 (* 0.3 = 0.178628 loss) | |
I0430 14:43:59.919504 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.182952 (* 0.0272727 = 0.0049896 loss) | |
I0430 14:43:59.919528 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 0.437317 (* 0.0272727 = 0.0119268 loss) | |
I0430 14:43:59.919559 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.26698 (* 0.0272727 = 0.034554 loss) | |
I0430 14:43:59.919574 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.52997 (* 0.0272727 = 0.0417265 loss) | |
I0430 14:43:59.919589 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.51375 (* 0.0272727 = 0.0412841 loss) | |
I0430 14:43:59.919602 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 0.764788 (* 0.0272727 = 0.0208578 loss) | |
I0430 14:43:59.919616 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 1.15344 (* 0.0272727 = 0.0314576 loss) | |
I0430 14:43:59.919631 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.858036 (* 0.0272727 = 0.023401 loss) | |
I0430 14:43:59.919644 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.596727 (* 0.0272727 = 0.0162744 loss) | |
I0430 14:43:59.919658 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.543198 (* 0.0272727 = 0.0148145 loss) | |
I0430 14:43:59.919672 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.879508 (* 0.0272727 = 0.0239866 loss) | |
I0430 14:43:59.919687 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.400871 (* 0.0272727 = 0.0109329 loss) | |
I0430 14:43:59.919699 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.682633 (* 0.0272727 = 0.0186173 loss) | |
I0430 14:43:59.919713 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.292028 (* 0.0272727 = 0.0079644 loss) | |
I0430 14:43:59.919728 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.953727 (* 0.0272727 = 0.0260107 loss) | |
I0430 14:43:59.919741 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.955961 (* 0.0272727 = 0.0260717 loss) | |
I0430 14:43:59.919755 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.496474 (* 0.0272727 = 0.0135402 loss) | |
I0430 14:43:59.919770 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.69153 (* 0.0272727 = 0.0188599 loss) | |
I0430 14:43:59.919780 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.836263 (* 0.0272727 = 0.0228072 loss) | |
I0430 14:43:59.919790 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.0015237 (* 0.0272727 = 4.15553e-05 loss) | |
I0430 14:43:59.919806 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000677198 (* 0.0272727 = 1.8469e-05 loss) | |
I0430 14:43:59.919819 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000236242 (* 0.0272727 = 6.44297e-06 loss) | |
I0430 14:43:59.919831 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.75 | |
I0430 14:43:59.919844 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0430 14:43:59.919857 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0430 14:43:59.919867 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75 | |
I0430 14:43:59.919879 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75 | |
I0430 14:43:59.919891 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0430 14:43:59.919903 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0430 14:43:59.919914 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0430 14:43:59.919926 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75 | |
I0430 14:43:59.919937 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0430 14:43:59.919950 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0430 14:43:59.919961 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.75 | |
I0430 14:43:59.919973 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0430 14:43:59.919986 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0430 14:43:59.919996 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0430 14:43:59.920008 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875 | |
I0430 14:43:59.920029 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875 | |
I0430 14:43:59.920043 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.875 | |
I0430 14:43:59.920055 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 0.875 | |
I0430 14:43:59.920066 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 0.875 | |
I0430 14:43:59.920078 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 14:43:59.920090 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 14:43:59.920102 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 14:43:59.920114 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.903409 | |
I0430 14:43:59.920125 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.8 | |
I0430 14:43:59.920140 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.14095 (* 1 = 1.14095 loss) | |
I0430 14:43:59.920153 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.419929 (* 1 = 0.419929 loss) | |
I0430 14:43:59.920167 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0213574 (* 0.0909091 = 0.00194159 loss) | |
I0430 14:43:59.920182 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.150616 (* 0.0909091 = 0.0136924 loss) | |
I0430 14:43:59.920197 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.477731 (* 0.0909091 = 0.0434301 loss) | |
I0430 14:43:59.920210 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.867794 (* 0.0909091 = 0.0788903 loss) | |
I0430 14:43:59.920223 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.933524 (* 0.0909091 = 0.0848659 loss) | |
I0430 14:43:59.920238 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.721225 (* 0.0909091 = 0.0655659 loss) | |
I0430 14:43:59.920251 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.751467 (* 0.0909091 = 0.0683151 loss) | |
I0430 14:43:59.920265 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.955364 (* 0.0909091 = 0.0868513 loss) | |
I0430 14:43:59.920279 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.471465 (* 0.0909091 = 0.0428605 loss) | |
I0430 14:43:59.920294 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.480765 (* 0.0909091 = 0.0437059 loss) | |
I0430 14:43:59.920307 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.643468 (* 0.0909091 = 0.0584971 loss) | |
I0430 14:43:59.920321 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.472557 (* 0.0909091 = 0.0429597 loss) | |
I0430 14:43:59.920334 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.646488 (* 0.0909091 = 0.0587716 loss) | |
I0430 14:43:59.920348 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.405554 (* 0.0909091 = 0.0368685 loss) | |
I0430 14:43:59.920362 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.853098 (* 0.0909091 = 0.0775544 loss) | |
I0430 14:43:59.920380 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.963596 (* 0.0909091 = 0.0875997 loss) | |
I0430 14:43:59.920394 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.512762 (* 0.0909091 = 0.0466148 loss) | |
I0430 14:43:59.920408 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.513563 (* 0.0909091 = 0.0466876 loss) | |
I0430 14:43:59.920421 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.657041 (* 0.0909091 = 0.059731 loss) | |
I0430 14:43:59.920436 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00489651 (* 0.0909091 = 0.000445138 loss) | |
I0430 14:43:59.920450 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00242869 (* 0.0909091 = 0.00022079 loss) | |
I0430 14:43:59.920464 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000669789 (* 0.0909091 = 6.08899e-05 loss) | |
I0430 14:43:59.920476 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.625 | |
I0430 14:43:59.920488 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625 | |
I0430 14:43:59.920511 15443 solver.cpp:245] Train net output #149: total_confidence = 0.57543 | |
I0430 14:43:59.920527 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.511015 | |
I0430 14:43:59.920541 15443 sgd_solver.cpp:106] Iteration 1000, lr = 0.001 | |
I0430 14:46:57.596113 15443 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.1349 > 30) by scale factor 0.995523 | |
I0430 14:47:42.087499 15443 solver.cpp:229] Iteration 1500, loss = 3.82782 | |
I0430 14:47:42.087647 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.38 | |
I0430 14:47:42.087677 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0430 14:47:42.087698 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375 | |
I0430 14:47:42.087721 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.125 | |
I0430 14:47:42.087743 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.625 | |
I0430 14:47:42.087764 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0430 14:47:42.087785 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.25 | |
I0430 14:47:42.087807 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0430 14:47:42.087829 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75 | |
I0430 14:47:42.087851 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0430 14:47:42.087872 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0430 14:47:42.087898 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0430 14:47:42.087920 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0430 14:47:42.087941 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0430 14:47:42.087963 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 14:47:42.087985 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 14:47:42.088006 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 14:47:42.088027 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 14:47:42.088048 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 14:47:42.088069 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 14:47:42.088090 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 14:47:42.088111 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 14:47:42.088132 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 14:47:42.088152 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.806818 | |
I0430 14:47:42.088174 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.76 | |
I0430 14:47:42.088202 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.61537 (* 0.3 = 0.484612 loss) | |
I0430 14:47:42.088230 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.52988 (* 0.3 = 0.158964 loss) | |
I0430 14:47:42.088258 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.537762 (* 0.0272727 = 0.0146662 loss) | |
I0430 14:47:42.088284 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.61428 (* 0.0272727 = 0.0440257 loss) | |
I0430 14:47:42.088310 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 2.11312 (* 0.0272727 = 0.0576304 loss) | |
I0430 14:47:42.088340 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.44709 (* 0.0272727 = 0.039466 loss) | |
I0430 14:47:42.088366 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.9681 (* 0.0272727 = 0.0536755 loss) | |
I0430 14:47:42.088393 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.95529 (* 0.0272727 = 0.0533262 loss) | |
I0430 14:47:42.088419 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.37024 (* 0.0272727 = 0.0373702 loss) | |
I0430 14:47:42.088445 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 1.02563 (* 0.0272727 = 0.0279718 loss) | |
I0430 14:47:42.088474 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.000552961 (* 0.0272727 = 1.50808e-05 loss) | |
I0430 14:47:42.088500 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 2.87842e-05 (* 0.0272727 = 7.85022e-07 loss) | |
I0430 14:47:42.088529 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 4.69394e-06 (* 0.0272727 = 1.28016e-07 loss) | |
I0430 14:47:42.088562 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 2.3842e-06 (* 0.0272727 = 6.50237e-08 loss) | |
I0430 14:47:42.088589 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 1.2964e-06 (* 0.0272727 = 3.53565e-08 loss) | |
I0430 14:47:42.088642 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 1.63913e-07 (* 0.0272727 = 4.47035e-09 loss) | |
I0430 14:47:42.088676 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 1.49012e-07 (* 0.0272727 = 4.06395e-09 loss) | |
I0430 14:47:42.088703 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 7.45058e-08 (* 0.0272727 = 2.03198e-09 loss) | |
I0430 14:47:42.088732 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0 (* 0.0272727 = 0 loss) | |
I0430 14:47:42.088757 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0 (* 0.0272727 = 0 loss) | |
I0430 14:47:42.088783 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0 (* 0.0272727 = 0 loss) | |
I0430 14:47:42.088809 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0 (* 0.0272727 = 0 loss) | |
I0430 14:47:42.088835 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0 (* 0.0272727 = 0 loss) | |
I0430 14:47:42.088861 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 0 (* 0.0272727 = 0 loss) | |
I0430 14:47:42.088884 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.6 | |
I0430 14:47:42.088907 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0430 14:47:42.088928 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0430 14:47:42.088949 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 1 | |
I0430 14:47:42.088973 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25 | |
I0430 14:47:42.088990 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25 | |
I0430 14:47:42.089010 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5 | |
I0430 14:47:42.089031 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 1 | |
I0430 14:47:42.089053 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75 | |
I0430 14:47:42.089076 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0430 14:47:42.089097 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0430 14:47:42.089118 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0430 14:47:42.089140 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0430 14:47:42.089161 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0430 14:47:42.089184 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 14:47:42.089205 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 14:47:42.089226 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 14:47:42.089247 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 14:47:42.089268 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 14:47:42.089290 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 14:47:42.089311 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 14:47:42.089332 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 14:47:42.089354 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 14:47:42.089380 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.875 | |
I0430 14:47:42.089402 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.86 | |
I0430 14:47:42.089428 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.10515 (* 0.3 = 0.331545 loss) | |
I0430 14:47:42.089454 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.353809 (* 0.3 = 0.106143 loss) | |
I0430 14:47:42.089481 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.362471 (* 0.0272727 = 0.00988557 loss) | |
I0430 14:47:42.089509 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 0.869034 (* 0.0272727 = 0.0237009 loss) | |
I0430 14:47:42.089534 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 0.628231 (* 0.0272727 = 0.0171336 loss) | |
I0430 14:47:42.089578 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.56237 (* 0.0272727 = 0.0426102 loss) | |
I0430 14:47:42.089604 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.86574 (* 0.0272727 = 0.0508838 loss) | |
I0430 14:47:42.089632 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 2.58905 (* 0.0272727 = 0.0706105 loss) | |
I0430 14:47:42.089658 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 0.29719 (* 0.0272727 = 0.00810518 loss) | |
I0430 14:47:42.089685 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.742911 (* 0.0272727 = 0.0202612 loss) | |
I0430 14:47:42.089715 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00102433 (* 0.0272727 = 2.79363e-05 loss) | |
I0430 14:47:42.089742 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 3.32904e-05 (* 0.0272727 = 9.0792e-07 loss) | |
I0430 14:47:42.089771 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 1.82693e-05 (* 0.0272727 = 4.98253e-07 loss) | |
I0430 14:47:42.089795 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 5.06642e-06 (* 0.0272727 = 1.38175e-07 loss) | |
I0430 14:47:42.089823 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 3.29317e-06 (* 0.0272727 = 8.98136e-08 loss) | |
I0430 14:47:42.089849 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 1.17719e-06 (* 0.0272727 = 3.21053e-08 loss) | |
I0430 14:47:42.089875 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 6.2585e-07 (* 0.0272727 = 1.70686e-08 loss) | |
I0430 14:47:42.089902 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 3.12925e-07 (* 0.0272727 = 8.53431e-09 loss) | |
I0430 14:47:42.089929 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 2.08616e-07 (* 0.0272727 = 5.68954e-09 loss) | |
I0430 14:47:42.089956 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 1.93715e-07 (* 0.0272727 = 5.28314e-09 loss) | |
I0430 14:47:42.089982 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 4.02332e-07 (* 0.0272727 = 1.09727e-08 loss) | |
I0430 14:47:42.090008 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 1.34111e-07 (* 0.0272727 = 3.65756e-09 loss) | |
I0430 14:47:42.090034 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 4.47035e-07 (* 0.0272727 = 1.21919e-08 loss) | |
I0430 14:47:42.090061 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 2.38419e-07 (* 0.0272727 = 6.50233e-09 loss) | |
I0430 14:47:42.090085 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.82 | |
I0430 14:47:42.090106 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0430 14:47:42.090129 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0430 14:47:42.090152 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0430 14:47:42.090173 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1 | |
I0430 14:47:42.090194 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0430 14:47:42.090217 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.375 | |
I0430 14:47:42.090240 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0430 14:47:42.090260 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0430 14:47:42.090281 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0430 14:47:42.090303 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0430 14:47:42.090327 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0430 14:47:42.090347 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0430 14:47:42.090368 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0430 14:47:42.090389 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 14:47:42.090411 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 14:47:42.090436 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 14:47:42.090458 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 14:47:42.090495 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 14:47:42.090518 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 14:47:42.090541 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 14:47:42.090565 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 14:47:42.090595 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 14:47:42.090620 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.943182 | |
I0430 14:47:42.090642 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.94 | |
I0430 14:47:42.090669 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.700481 (* 1 = 0.700481 loss) | |
I0430 14:47:42.090695 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.224368 (* 1 = 0.224368 loss) | |
I0430 14:47:42.090723 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.176037 (* 0.0909091 = 0.0160034 loss) | |
I0430 14:47:42.090749 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.37014 (* 0.0909091 = 0.0336491 loss) | |
I0430 14:47:42.090780 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.465561 (* 0.0909091 = 0.0423238 loss) | |
I0430 14:47:42.090806 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.2533 (* 0.0909091 = 0.0230273 loss) | |
I0430 14:47:42.090833 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.81445 (* 0.0909091 = 0.0740409 loss) | |
I0430 14:47:42.090859 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 1.91053 (* 0.0909091 = 0.173684 loss) | |
I0430 14:47:42.090886 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.616467 (* 0.0909091 = 0.0560425 loss) | |
I0430 14:47:42.090912 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.465447 (* 0.0909091 = 0.0423134 loss) | |
I0430 14:47:42.090939 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00287801 (* 0.0909091 = 0.000261638 loss) | |
I0430 14:47:42.090965 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00121225 (* 0.0909091 = 0.000110204 loss) | |
I0430 14:47:42.090992 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.000126947 (* 0.0909091 = 1.15406e-05 loss) | |
I0430 14:47:42.091018 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 7.53737e-05 (* 0.0909091 = 6.85215e-06 loss) | |
I0430 14:47:42.091045 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 3.44319e-05 (* 0.0909091 = 3.13018e-06 loss) | |
I0430 14:47:42.091073 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 1.06992e-05 (* 0.0909091 = 9.72658e-07 loss) | |
I0430 14:47:42.091099 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 3.24846e-06 (* 0.0909091 = 2.95315e-07 loss) | |
I0430 14:47:42.091125 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 1.17719e-06 (* 0.0909091 = 1.07018e-07 loss) | |
I0430 14:47:42.091152 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 5.96047e-07 (* 0.0909091 = 5.41861e-08 loss) | |
I0430 14:47:42.091179 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 2.23517e-07 (* 0.0909091 = 2.03198e-08 loss) | |
I0430 14:47:42.091207 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 2.08616e-07 (* 0.0909091 = 1.89651e-08 loss) | |
I0430 14:47:42.091233 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 1.04308e-07 (* 0.0909091 = 9.48256e-09 loss) | |
I0430 14:47:42.091262 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 5.96047e-08 (* 0.0909091 = 5.4186e-09 loss) | |
I0430 14:47:42.091289 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 7.45058e-08 (* 0.0909091 = 6.77326e-09 loss) | |
I0430 14:47:42.091312 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.375 | |
I0430 14:47:42.091336 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375 | |
I0430 14:47:42.091357 15443 solver.cpp:245] Train net output #149: total_confidence = 0.443008 | |
I0430 14:47:42.091398 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.454806 | |
I0430 14:47:42.091423 15443 sgd_solver.cpp:106] Iteration 1500, lr = 0.001 | |
I0430 14:51:24.019585 15443 solver.cpp:229] Iteration 2000, loss = 3.80796 | |
I0430 14:51:24.019738 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.38983 | |
I0430 14:51:24.019758 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0430 14:51:24.019773 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375 | |
I0430 14:51:24.019784 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25 | |
I0430 14:51:24.019796 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25 | |
I0430 14:51:24.019809 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0430 14:51:24.019820 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375 | |
I0430 14:51:24.019832 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625 | |
I0430 14:51:24.019845 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625 | |
I0430 14:51:24.019856 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.625 | |
I0430 14:51:24.019870 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.75 | |
I0430 14:51:24.019881 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.75 | |
I0430 14:51:24.019893 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.75 | |
I0430 14:51:24.019906 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0430 14:51:24.019917 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0430 14:51:24.019929 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875 | |
I0430 14:51:24.019942 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 14:51:24.019953 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 14:51:24.019965 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 14:51:24.019978 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 14:51:24.019989 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 14:51:24.020000 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 14:51:24.020012 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 14:51:24.020023 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.738636 | |
I0430 14:51:24.020035 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.677966 | |
I0430 14:51:24.020053 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.31835 (* 0.3 = 0.695504 loss) | |
I0430 14:51:24.020068 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.06577 (* 0.3 = 0.319732 loss) | |
I0430 14:51:24.020083 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 1.39923 (* 0.0272727 = 0.0381608 loss) | |
I0430 14:51:24.020097 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 2.24088 (* 0.0272727 = 0.0611149 loss) | |
I0430 14:51:24.020112 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 2.38241 (* 0.0272727 = 0.0649749 loss) | |
I0430 14:51:24.020125 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 2.4432 (* 0.0272727 = 0.0666328 loss) | |
I0430 14:51:24.020139 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 2.13121 (* 0.0272727 = 0.0581239 loss) | |
I0430 14:51:24.020153 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 2.30447 (* 0.0272727 = 0.0628493 loss) | |
I0430 14:51:24.020166 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.81074 (* 0.0272727 = 0.0493839 loss) | |
I0430 14:51:24.020181 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 1.60644 (* 0.0272727 = 0.0438121 loss) | |
I0430 14:51:24.020195 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 1.50413 (* 0.0272727 = 0.0410218 loss) | |
I0430 14:51:24.020210 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.940349 (* 0.0272727 = 0.0256459 loss) | |
I0430 14:51:24.020223 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.871113 (* 0.0272727 = 0.0237576 loss) | |
I0430 14:51:24.020237 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.686378 (* 0.0272727 = 0.0187194 loss) | |
I0430 14:51:24.020272 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.453272 (* 0.0272727 = 0.012362 loss) | |
I0430 14:51:24.020287 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.421313 (* 0.0272727 = 0.0114903 loss) | |
I0430 14:51:24.020303 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.440181 (* 0.0272727 = 0.0120049 loss) | |
I0430 14:51:24.020319 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0855355 (* 0.0272727 = 0.00233279 loss) | |
I0430 14:51:24.020334 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.06461 (* 0.0272727 = 0.00176209 loss) | |
I0430 14:51:24.020349 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0295555 (* 0.0272727 = 0.000806059 loss) | |
I0430 14:51:24.020364 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0190973 (* 0.0272727 = 0.000520836 loss) | |
I0430 14:51:24.020377 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.0070848 (* 0.0272727 = 0.000193222 loss) | |
I0430 14:51:24.020391 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00428325 (* 0.0272727 = 0.000116816 loss) | |
I0430 14:51:24.020406 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000756034 (* 0.0272727 = 2.06191e-05 loss) | |
I0430 14:51:24.020419 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.372881 | |
I0430 14:51:24.020431 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0430 14:51:24.020443 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5 | |
I0430 14:51:24.020455 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5 | |
I0430 14:51:24.020467 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25 | |
I0430 14:51:24.020479 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25 | |
I0430 14:51:24.020491 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375 | |
I0430 14:51:24.020503 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0430 14:51:24.020515 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625 | |
I0430 14:51:24.020527 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.625 | |
I0430 14:51:24.020539 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.625 | |
I0430 14:51:24.020551 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.625 | |
I0430 14:51:24.020563 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.625 | |
I0430 14:51:24.020576 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.75 | |
I0430 14:51:24.020586 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0430 14:51:24.020598 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875 | |
I0430 14:51:24.020611 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 14:51:24.020622 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 14:51:24.020633 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 14:51:24.020645 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 14:51:24.020658 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 14:51:24.020668 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 14:51:24.020680 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 14:51:24.020691 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.721591 | |
I0430 14:51:24.020704 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.661017 | |
I0430 14:51:24.020717 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.30694 (* 0.3 = 0.692082 loss) | |
I0430 14:51:24.020731 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 1.1045 (* 0.3 = 0.331351 loss) | |
I0430 14:51:24.020748 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 1.19603 (* 0.0272727 = 0.0326189 loss) | |
I0430 14:51:24.020763 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 1.94014 (* 0.0272727 = 0.0529129 loss) | |
I0430 14:51:24.020789 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 2.01374 (* 0.0272727 = 0.0549202 loss) | |
I0430 14:51:24.020804 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 2.04093 (* 0.0272727 = 0.0556618 loss) | |
I0430 14:51:24.020818 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.76129 (* 0.0272727 = 0.0480351 loss) | |
I0430 14:51:24.020833 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 2.46146 (* 0.0272727 = 0.0671307 loss) | |
I0430 14:51:24.020846 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 2.20989 (* 0.0272727 = 0.0602698 loss) | |
I0430 14:51:24.020861 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 1.93153 (* 0.0272727 = 0.0526781 loss) | |
I0430 14:51:24.020874 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 1.63585 (* 0.0272727 = 0.0446141 loss) | |
I0430 14:51:24.020889 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 1.13185 (* 0.0272727 = 0.0308688 loss) | |
I0430 14:51:24.020902 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 1.09303 (* 0.0272727 = 0.02981 loss) | |
I0430 14:51:24.020916 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 1.11776 (* 0.0272727 = 0.0304844 loss) | |
I0430 14:51:24.020930 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.530128 (* 0.0272727 = 0.014458 loss) | |
I0430 14:51:24.020944 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.525566 (* 0.0272727 = 0.0143336 loss) | |
I0430 14:51:24.020957 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.615637 (* 0.0272727 = 0.0167901 loss) | |
I0430 14:51:24.020972 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.169342 (* 0.0272727 = 0.00461841 loss) | |
I0430 14:51:24.020987 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0830546 (* 0.0272727 = 0.00226513 loss) | |
I0430 14:51:24.021000 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0473573 (* 0.0272727 = 0.00129156 loss) | |
I0430 14:51:24.021015 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0208224 (* 0.0272727 = 0.000567884 loss) | |
I0430 14:51:24.021029 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.0114714 (* 0.0272727 = 0.000312856 loss) | |
I0430 14:51:24.021044 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 0.0050078 (* 0.0272727 = 0.000136576 loss) | |
I0430 14:51:24.021057 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000793294 (* 0.0272727 = 2.16353e-05 loss) | |
I0430 14:51:24.021070 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.474576 | |
I0430 14:51:24.021082 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75 | |
I0430 14:51:24.021095 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.5 | |
I0430 14:51:24.021106 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.5 | |
I0430 14:51:24.021118 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.375 | |
I0430 14:51:24.021131 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.5 | |
I0430 14:51:24.021142 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.25 | |
I0430 14:51:24.021154 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625 | |
I0430 14:51:24.021165 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75 | |
I0430 14:51:24.021178 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75 | |
I0430 14:51:24.021189 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.625 | |
I0430 14:51:24.021201 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.75 | |
I0430 14:51:24.021214 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.625 | |
I0430 14:51:24.021225 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.75 | |
I0430 14:51:24.021237 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0430 14:51:24.021250 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875 | |
I0430 14:51:24.021261 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 14:51:24.021282 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 14:51:24.021296 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 14:51:24.021307 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 14:51:24.021319 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 14:51:24.021332 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 14:51:24.021343 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 14:51:24.021354 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.755682 | |
I0430 14:51:24.021369 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.694915 | |
I0430 14:51:24.021384 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.97018 (* 1 = 1.97018 loss) | |
I0430 14:51:24.021399 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.984303 (* 1 = 0.984303 loss) | |
I0430 14:51:24.021414 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 1.47782 (* 0.0909091 = 0.134347 loss) | |
I0430 14:51:24.021428 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 2.04044 (* 0.0909091 = 0.185494 loss) | |
I0430 14:51:24.021446 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 2.05063 (* 0.0909091 = 0.18642 loss) | |
I0430 14:51:24.021461 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 2.63349 (* 0.0909091 = 0.239408 loss) | |
I0430 14:51:24.021474 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 1.45332 (* 0.0909091 = 0.13212 loss) | |
I0430 14:51:24.021487 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 2.17104 (* 0.0909091 = 0.197367 loss) | |
I0430 14:51:24.021502 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 1.77708 (* 0.0909091 = 0.161553 loss) | |
I0430 14:51:24.021514 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 1.39187 (* 0.0909091 = 0.126533 loss) | |
I0430 14:51:24.021528 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 1.26678 (* 0.0909091 = 0.115162 loss) | |
I0430 14:51:24.021543 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 1.02547 (* 0.0909091 = 0.0932249 loss) | |
I0430 14:51:24.021556 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.898159 (* 0.0909091 = 0.0816508 loss) | |
I0430 14:51:24.021569 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.918571 (* 0.0909091 = 0.0835064 loss) | |
I0430 14:51:24.021584 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.543539 (* 0.0909091 = 0.0494126 loss) | |
I0430 14:51:24.021597 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.391678 (* 0.0909091 = 0.0356071 loss) | |
I0430 14:51:24.021611 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.445784 (* 0.0909091 = 0.0405258 loss) | |
I0430 14:51:24.021626 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.0554589 (* 0.0909091 = 0.00504172 loss) | |
I0430 14:51:24.021641 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0317315 (* 0.0909091 = 0.00288468 loss) | |
I0430 14:51:24.021654 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0136085 (* 0.0909091 = 0.00123713 loss) | |
I0430 14:51:24.021667 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00809653 (* 0.0909091 = 0.000736048 loss) | |
I0430 14:51:24.021682 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00247566 (* 0.0909091 = 0.00022506 loss) | |
I0430 14:51:24.021695 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00107396 (* 0.0909091 = 9.76327e-05 loss) | |
I0430 14:51:24.021709 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000289014 (* 0.0909091 = 2.6274e-05 loss) | |
I0430 14:51:24.021721 15443 solver.cpp:245] Train net output #147: total_accuracy = 0 | |
I0430 14:51:24.021733 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0 | |
I0430 14:51:24.021744 15443 solver.cpp:245] Train net output #149: total_confidence = 0.151085 | |
I0430 14:51:24.021766 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.140834 | |
I0430 14:51:24.021781 15443 sgd_solver.cpp:106] Iteration 2000, lr = 0.001 | |
I0430 14:54:51.970434 15443 solver.cpp:229] Iteration 2500, loss = 3.79071 | |
I0430 14:54:51.970630 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.5 | |
I0430 14:54:51.970651 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0430 14:54:51.970664 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75 | |
I0430 14:54:51.970677 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5 | |
I0430 14:54:51.970690 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375 | |
I0430 14:54:51.970701 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375 | |
I0430 14:54:51.970713 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.25 | |
I0430 14:54:51.970726 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625 | |
I0430 14:54:51.970738 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75 | |
I0430 14:54:51.970751 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0430 14:54:51.970762 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0430 14:54:51.970775 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0430 14:54:51.970788 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0430 14:54:51.970799 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0430 14:54:51.970811 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 14:54:51.970824 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 14:54:51.970835 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 14:54:51.970847 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 14:54:51.970860 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 14:54:51.970870 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 14:54:51.970882 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 14:54:51.970895 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 14:54:51.970906 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 14:54:51.970917 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.829545 | |
I0430 14:54:51.970929 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.8 | |
I0430 14:54:51.970947 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.54769 (* 0.3 = 0.464307 loss) | |
I0430 14:54:51.970962 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.524513 (* 0.3 = 0.157354 loss) | |
I0430 14:54:51.970976 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 1.00328 (* 0.0272727 = 0.0273621 loss) | |
I0430 14:54:51.970990 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 0.731228 (* 0.0272727 = 0.0199426 loss) | |
I0430 14:54:51.971004 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.65431 (* 0.0272727 = 0.0451174 loss) | |
I0430 14:54:51.971019 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.85579 (* 0.0272727 = 0.0506125 loss) | |
I0430 14:54:51.971032 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.58919 (* 0.0272727 = 0.0433416 loss) | |
I0430 14:54:51.971046 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.98964 (* 0.0272727 = 0.0542628 loss) | |
I0430 14:54:51.971060 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.18659 (* 0.0272727 = 0.0323615 loss) | |
I0430 14:54:51.971074 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.40152 (* 0.0272727 = 0.0109505 loss) | |
I0430 14:54:51.971089 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.478536 (* 0.0272727 = 0.013051 loss) | |
I0430 14:54:51.971103 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.447814 (* 0.0272727 = 0.0122131 loss) | |
I0430 14:54:51.971118 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.188664 (* 0.0272727 = 0.00514538 loss) | |
I0430 14:54:51.971132 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0737085 (* 0.0272727 = 0.00201023 loss) | |
I0430 14:54:51.971148 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0307284 (* 0.0272727 = 0.000838049 loss) | |
I0430 14:54:51.971182 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0156197 (* 0.0272727 = 0.00042599 loss) | |
I0430 14:54:51.971199 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00464377 (* 0.0272727 = 0.000126648 loss) | |
I0430 14:54:51.971213 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0025064 (* 0.0272727 = 6.83563e-05 loss) | |
I0430 14:54:51.971227 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00105088 (* 0.0272727 = 2.86605e-05 loss) | |
I0430 14:54:51.971242 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000353179 (* 0.0272727 = 9.63216e-06 loss) | |
I0430 14:54:51.971256 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 8.16925e-05 (* 0.0272727 = 2.22798e-06 loss) | |
I0430 14:54:51.971271 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 1.8598e-05 (* 0.0272727 = 5.07219e-07 loss) | |
I0430 14:54:51.971285 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 1.02971e-05 (* 0.0272727 = 2.80831e-07 loss) | |
I0430 14:54:51.971300 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 2.04148e-06 (* 0.0272727 = 5.56766e-08 loss) | |
I0430 14:54:51.971315 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.58 | |
I0430 14:54:51.971328 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.625 | |
I0430 14:54:51.971341 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0430 14:54:51.971354 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0430 14:54:51.971365 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625 | |
I0430 14:54:51.971377 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625 | |
I0430 14:54:51.971390 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5 | |
I0430 14:54:51.971401 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75 | |
I0430 14:54:51.971415 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0430 14:54:51.971426 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0430 14:54:51.971438 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0430 14:54:51.971451 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0430 14:54:51.971462 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0430 14:54:51.971489 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0430 14:54:51.971506 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 14:54:51.971529 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 14:54:51.971547 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 14:54:51.971565 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 14:54:51.971581 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 14:54:51.971598 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 14:54:51.971616 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 14:54:51.971632 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 14:54:51.971654 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 14:54:51.971671 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.863636 | |
I0430 14:54:51.971688 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.84 | |
I0430 14:54:51.971710 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.39346 (* 0.3 = 0.418039 loss) | |
I0430 14:54:51.971730 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.440903 (* 0.3 = 0.132271 loss) | |
I0430 14:54:51.971752 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 1.36042 (* 0.0272727 = 0.0371024 loss) | |
I0430 14:54:51.971772 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 1.13182 (* 0.0272727 = 0.0308677 loss) | |
I0430 14:54:51.971809 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.3375 (* 0.0272727 = 0.0364772 loss) | |
I0430 14:54:51.971832 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.17483 (* 0.0272727 = 0.0320408 loss) | |
I0430 14:54:51.971853 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.42362 (* 0.0272727 = 0.038826 loss) | |
I0430 14:54:51.971874 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.66059 (* 0.0272727 = 0.0452889 loss) | |
I0430 14:54:51.971894 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 1.36594 (* 0.0272727 = 0.0372528 loss) | |
I0430 14:54:51.971915 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.583247 (* 0.0272727 = 0.0159067 loss) | |
I0430 14:54:51.971936 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.458576 (* 0.0272727 = 0.0125066 loss) | |
I0430 14:54:51.971957 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.319412 (* 0.0272727 = 0.00871123 loss) | |
I0430 14:54:51.971978 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.213043 (* 0.0272727 = 0.00581027 loss) | |
I0430 14:54:51.971999 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.0599386 (* 0.0272727 = 0.00163469 loss) | |
I0430 14:54:51.972020 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0189075 (* 0.0272727 = 0.000515659 loss) | |
I0430 14:54:51.972041 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00970044 (* 0.0272727 = 0.000264557 loss) | |
I0430 14:54:51.972062 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00259598 (* 0.0272727 = 7.07994e-05 loss) | |
I0430 14:54:51.972082 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00115263 (* 0.0272727 = 3.14353e-05 loss) | |
I0430 14:54:51.972103 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000406351 (* 0.0272727 = 1.10823e-05 loss) | |
I0430 14:54:51.972124 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000202641 (* 0.0272727 = 5.52657e-06 loss) | |
I0430 14:54:51.972146 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 6.88698e-05 (* 0.0272727 = 1.87827e-06 loss) | |
I0430 14:54:51.972167 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 6.32118e-05 (* 0.0272727 = 1.72396e-06 loss) | |
I0430 14:54:51.972187 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 2.14148e-05 (* 0.0272727 = 5.8404e-07 loss) | |
I0430 14:54:51.972208 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 1.16234e-05 (* 0.0272727 = 3.17003e-07 loss) | |
I0430 14:54:51.972226 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.76 | |
I0430 14:54:51.972244 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0430 14:54:51.972261 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0430 14:54:51.972278 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0430 14:54:51.972295 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0430 14:54:51.972313 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0430 14:54:51.972332 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625 | |
I0430 14:54:51.972348 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625 | |
I0430 14:54:51.972369 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0430 14:54:51.972386 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0430 14:54:51.972404 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0430 14:54:51.972421 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0430 14:54:51.972440 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0430 14:54:51.972455 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0430 14:54:51.972473 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 14:54:51.972491 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 14:54:51.972507 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 14:54:51.972537 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 14:54:51.972556 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 14:54:51.972574 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 14:54:51.972591 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 14:54:51.972609 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 14:54:51.972625 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 14:54:51.972642 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.926136 | |
I0430 14:54:51.972659 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.9 | |
I0430 14:54:51.972681 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.947144 (* 1 = 0.947144 loss) | |
I0430 14:54:51.972705 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.294982 (* 1 = 0.294982 loss) | |
I0430 14:54:51.972726 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.497765 (* 0.0909091 = 0.0452514 loss) | |
I0430 14:54:51.972748 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.347757 (* 0.0909091 = 0.0316143 loss) | |
I0430 14:54:51.972767 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.420979 (* 0.0909091 = 0.0382708 loss) | |
I0430 14:54:51.972789 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.484522 (* 0.0909091 = 0.0440474 loss) | |
I0430 14:54:51.972810 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.990055 (* 0.0909091 = 0.090005 loss) | |
I0430 14:54:51.972831 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 1.44818 (* 0.0909091 = 0.131653 loss) | |
I0430 14:54:51.972851 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 1.33673 (* 0.0909091 = 0.121521 loss) | |
I0430 14:54:51.972872 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.326919 (* 0.0909091 = 0.0297199 loss) | |
I0430 14:54:51.972892 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.51395 (* 0.0909091 = 0.0467227 loss) | |
I0430 14:54:51.972913 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.237239 (* 0.0909091 = 0.0215671 loss) | |
I0430 14:54:51.972934 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.214431 (* 0.0909091 = 0.0194938 loss) | |
I0430 14:54:51.972954 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.047027 (* 0.0909091 = 0.00427518 loss) | |
I0430 14:54:51.972975 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0121049 (* 0.0909091 = 0.00110044 loss) | |
I0430 14:54:51.972996 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00339967 (* 0.0909091 = 0.000309061 loss) | |
I0430 14:54:51.973017 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00225333 (* 0.0909091 = 0.000204849 loss) | |
I0430 14:54:51.973038 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00096567 (* 0.0909091 = 8.77882e-05 loss) | |
I0430 14:54:51.973059 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000894842 (* 0.0909091 = 8.13493e-05 loss) | |
I0430 14:54:51.973080 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000339253 (* 0.0909091 = 3.08411e-05 loss) | |
I0430 14:54:51.973100 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000270032 (* 0.0909091 = 2.45484e-05 loss) | |
I0430 14:54:51.973122 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000178957 (* 0.0909091 = 1.62688e-05 loss) | |
I0430 14:54:51.973143 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000148936 (* 0.0909091 = 1.35397e-05 loss) | |
I0430 14:54:51.973163 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 5.8292e-05 (* 0.0909091 = 5.29927e-06 loss) | |
I0430 14:54:51.973181 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.625 | |
I0430 14:54:51.973198 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625 | |
I0430 14:54:51.973227 15443 solver.cpp:245] Train net output #149: total_confidence = 0.524356 | |
I0430 14:54:51.973247 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.533491 | |
I0430 14:54:51.973264 15443 sgd_solver.cpp:106] Iteration 2500, lr = 0.001 | |
I0430 14:58:43.324324 15443 solver.cpp:229] Iteration 3000, loss = 3.72137 | |
I0430 14:58:43.324492 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.613636 | |
I0430 14:58:43.324517 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0430 14:58:43.324537 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625 | |
I0430 14:58:43.324554 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0430 14:58:43.324571 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0430 14:58:43.324589 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375 | |
I0430 14:58:43.324606 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0430 14:58:43.324625 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 1 | |
I0430 14:58:43.324643 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1 | |
I0430 14:58:43.324661 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0430 14:58:43.324677 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0430 14:58:43.324694 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0430 14:58:43.324712 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0430 14:58:43.324728 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0430 14:58:43.324746 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 14:58:43.324764 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 14:58:43.324781 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 14:58:43.324797 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 14:58:43.324815 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 14:58:43.324831 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 14:58:43.324848 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 14:58:43.324865 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 14:58:43.324882 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 14:58:43.324899 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.897727 | |
I0430 14:58:43.324916 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.886364 | |
I0430 14:58:43.324939 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.27213 (* 0.3 = 0.381639 loss) | |
I0430 14:58:43.324961 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.341349 (* 0.3 = 0.102405 loss) | |
I0430 14:58:43.324982 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.653817 (* 0.0272727 = 0.0178314 loss) | |
I0430 14:58:43.325003 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.5603 (* 0.0272727 = 0.0425536 loss) | |
I0430 14:58:43.325024 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 2.09948 (* 0.0272727 = 0.0572586 loss) | |
I0430 14:58:43.325045 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.51026 (* 0.0272727 = 0.041189 loss) | |
I0430 14:58:43.325067 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.20155 (* 0.0272727 = 0.0327695 loss) | |
I0430 14:58:43.325088 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 0.631201 (* 0.0272727 = 0.0172146 loss) | |
I0430 14:58:43.325109 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 0.0127108 (* 0.0272727 = 0.000346659 loss) | |
I0430 14:58:43.325130 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.00010623 (* 0.0272727 = 2.89719e-06 loss) | |
I0430 14:58:43.325151 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 1.98186e-06 (* 0.0272727 = 5.40508e-08 loss) | |
I0430 14:58:43.325173 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 2.98023e-08 (* 0.0272727 = 8.12791e-10 loss) | |
I0430 14:58:43.325194 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0 (* 0.0272727 = 0 loss) | |
I0430 14:58:43.325214 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0 (* 0.0272727 = 0 loss) | |
I0430 14:58:43.325234 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0 (* 0.0272727 = 0 loss) | |
I0430 14:58:43.325276 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0 (* 0.0272727 = 0 loss) | |
I0430 14:58:43.325299 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0 (* 0.0272727 = 0 loss) | |
I0430 14:58:43.325322 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0 (* 0.0272727 = 0 loss) | |
I0430 14:58:43.325345 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0 (* 0.0272727 = 0 loss) | |
I0430 14:58:43.325364 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0 (* 0.0272727 = 0 loss) | |
I0430 14:58:43.325384 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0 (* 0.0272727 = 0 loss) | |
I0430 14:58:43.325405 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0 (* 0.0272727 = 0 loss) | |
I0430 14:58:43.325425 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0 (* 0.0272727 = 0 loss) | |
I0430 14:58:43.325445 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 0 (* 0.0272727 = 0 loss) | |
I0430 14:58:43.325464 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.75 | |
I0430 14:58:43.325481 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0430 14:58:43.325501 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875 | |
I0430 14:58:43.325520 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75 | |
I0430 14:58:43.325537 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625 | |
I0430 14:58:43.325554 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625 | |
I0430 14:58:43.325572 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875 | |
I0430 14:58:43.325589 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0430 14:58:43.325606 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1 | |
I0430 14:58:43.325623 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0430 14:58:43.325640 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0430 14:58:43.325656 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0430 14:58:43.325675 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0430 14:58:43.325692 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0430 14:58:43.325709 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 14:58:43.325726 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 14:58:43.325743 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 14:58:43.325760 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 14:58:43.325778 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 14:58:43.325794 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 14:58:43.325812 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 14:58:43.325829 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 14:58:43.325845 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 14:58:43.325862 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.926136 | |
I0430 14:58:43.325880 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.931818 | |
I0430 14:58:43.325899 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.889777 (* 0.3 = 0.266933 loss) | |
I0430 14:58:43.325922 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.262034 (* 0.3 = 0.0786102 loss) | |
I0430 14:58:43.325942 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.398598 (* 0.0272727 = 0.0108708 loss) | |
I0430 14:58:43.325963 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 0.769047 (* 0.0272727 = 0.020974 loss) | |
I0430 14:58:43.325984 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 0.865593 (* 0.0272727 = 0.0236071 loss) | |
I0430 14:58:43.326004 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.49113 (* 0.0272727 = 0.0406672 loss) | |
I0430 14:58:43.326040 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.02461 (* 0.0272727 = 0.0279439 loss) | |
I0430 14:58:43.326061 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 0.391724 (* 0.0272727 = 0.0106834 loss) | |
I0430 14:58:43.326081 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 0.395431 (* 0.0272727 = 0.0107845 loss) | |
I0430 14:58:43.326102 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 6.25468e-05 (* 0.0272727 = 1.70582e-06 loss) | |
I0430 14:58:43.326124 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 1.12359e-05 (* 0.0272727 = 3.06434e-07 loss) | |
I0430 14:58:43.326144 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 2.17558e-06 (* 0.0272727 = 5.93341e-08 loss) | |
I0430 14:58:43.326166 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 3.66573e-06 (* 0.0272727 = 9.99744e-08 loss) | |
I0430 14:58:43.326186 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 7.4506e-07 (* 0.0272727 = 2.03198e-08 loss) | |
I0430 14:58:43.326207 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 3.42727e-07 (* 0.0272727 = 9.3471e-09 loss) | |
I0430 14:58:43.326230 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 1.93715e-07 (* 0.0272727 = 5.28314e-09 loss) | |
I0430 14:58:43.326251 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 2.98023e-08 (* 0.0272727 = 8.12791e-10 loss) | |
I0430 14:58:43.326270 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 2.98023e-08 (* 0.0272727 = 8.12791e-10 loss) | |
I0430 14:58:43.326292 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 1.49012e-08 (* 0.0272727 = 4.06395e-10 loss) | |
I0430 14:58:43.326313 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0 (* 0.0272727 = 0 loss) | |
I0430 14:58:43.326333 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 1.49012e-08 (* 0.0272727 = 4.06395e-10 loss) | |
I0430 14:58:43.326354 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0 (* 0.0272727 = 0 loss) | |
I0430 14:58:43.326377 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 2.98023e-08 (* 0.0272727 = 8.12791e-10 loss) | |
I0430 14:58:43.326398 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 4.47035e-08 (* 0.0272727 = 1.21919e-09 loss) | |
I0430 14:58:43.326416 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.931818 | |
I0430 14:58:43.326433 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0430 14:58:43.326452 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0430 14:58:43.326468 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0430 14:58:43.326485 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0430 14:58:43.326501 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1 | |
I0430 14:58:43.326519 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0430 14:58:43.326536 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1 | |
I0430 14:58:43.326556 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1 | |
I0430 14:58:43.326573 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0430 14:58:43.326591 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0430 14:58:43.326607 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0430 14:58:43.326624 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0430 14:58:43.326642 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0430 14:58:43.326658 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 14:58:43.326675 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 14:58:43.326692 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 14:58:43.326709 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 14:58:43.326726 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 14:58:43.326756 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 14:58:43.326776 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 14:58:43.326792 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 14:58:43.326808 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 14:58:43.326825 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.982955 | |
I0430 14:58:43.326843 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.954545 | |
I0430 14:58:43.326865 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.260795 (* 1 = 0.260795 loss) | |
I0430 14:58:43.326886 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0668199 (* 1 = 0.0668199 loss) | |
I0430 14:58:43.326908 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.513692 (* 0.0909091 = 0.0466993 loss) | |
I0430 14:58:43.326930 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.542733 (* 0.0909091 = 0.0493393 loss) | |
I0430 14:58:43.326949 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.508685 (* 0.0909091 = 0.0462441 loss) | |
I0430 14:58:43.326970 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.348896 (* 0.0909091 = 0.0317178 loss) | |
I0430 14:58:43.326992 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.1109 (* 0.0909091 = 0.0100818 loss) | |
I0430 14:58:43.327013 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.305214 (* 0.0909091 = 0.0277468 loss) | |
I0430 14:58:43.327033 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.00516251 (* 0.0909091 = 0.000469319 loss) | |
I0430 14:58:43.327054 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 5.80323e-05 (* 0.0909091 = 5.27567e-06 loss) | |
I0430 14:58:43.327075 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.000576776 (* 0.0909091 = 5.24342e-05 loss) | |
I0430 14:58:43.327090 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.000158923 (* 0.0909091 = 1.44475e-05 loss) | |
I0430 14:58:43.327111 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00037407 (* 0.0909091 = 3.40063e-05 loss) | |
I0430 14:58:43.327132 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.000158242 (* 0.0909091 = 1.43856e-05 loss) | |
I0430 14:58:43.327153 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 8.95712e-05 (* 0.0909091 = 8.14283e-06 loss) | |
I0430 14:58:43.327173 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 6.32114e-05 (* 0.0909091 = 5.74649e-06 loss) | |
I0430 14:58:43.327194 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 3.53132e-05 (* 0.0909091 = 3.21029e-06 loss) | |
I0430 14:58:43.327215 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 2.0148e-05 (* 0.0909091 = 1.83163e-06 loss) | |
I0430 14:58:43.327236 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 1.50213e-05 (* 0.0909091 = 1.36557e-06 loss) | |
I0430 14:58:43.327257 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 9.43279e-06 (* 0.0909091 = 8.57526e-07 loss) | |
I0430 14:58:43.327277 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 1.09826e-05 (* 0.0909091 = 9.98421e-07 loss) | |
I0430 14:58:43.327298 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 9.19435e-06 (* 0.0909091 = 8.3585e-07 loss) | |
I0430 14:58:43.327322 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 1.10273e-05 (* 0.0909091 = 1.00249e-06 loss) | |
I0430 14:58:43.327343 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 9.32847e-06 (* 0.0909091 = 8.48043e-07 loss) | |
I0430 14:58:43.327360 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.875 | |
I0430 14:58:43.327378 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625 | |
I0430 14:58:43.327394 15443 solver.cpp:245] Train net output #149: total_confidence = 0.671863 | |
I0430 14:58:43.327410 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.635889 | |
I0430 14:58:43.327458 15443 sgd_solver.cpp:106] Iteration 3000, lr = 0.001 | |
I0430 15:02:25.347329 15443 solver.cpp:229] Iteration 3500, loss = 3.71889 | |
I0430 15:02:25.347497 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.376812 | |
I0430 15:02:25.347528 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625 | |
I0430 15:02:25.347550 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75 | |
I0430 15:02:25.347573 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5 | |
I0430 15:02:25.347595 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25 | |
I0430 15:02:25.347618 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625 | |
I0430 15:02:25.347642 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.25 | |
I0430 15:02:25.347667 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0430 15:02:25.347689 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0430 15:02:25.347712 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.625 | |
I0430 15:02:25.347733 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0430 15:02:25.347755 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.75 | |
I0430 15:02:25.347780 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.75 | |
I0430 15:02:25.347803 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.75 | |
I0430 15:02:25.347826 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.75 | |
I0430 15:02:25.347847 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.75 | |
I0430 15:02:25.347870 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875 | |
I0430 15:02:25.347892 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 15:02:25.347915 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 15:02:25.347934 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 15:02:25.347954 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 15:02:25.347973 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 15:02:25.347993 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 15:02:25.348016 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.744318 | |
I0430 15:02:25.348039 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.637681 | |
I0430 15:02:25.348068 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.852 (* 0.3 = 0.5556 loss) | |
I0430 15:02:25.348096 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.755421 (* 0.3 = 0.226626 loss) | |
I0430 15:02:25.348125 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 1.11807 (* 0.0272727 = 0.0304927 loss) | |
I0430 15:02:25.348152 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.02494 (* 0.0272727 = 0.0279529 loss) | |
I0430 15:02:25.348181 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.84427 (* 0.0272727 = 0.0502982 loss) | |
I0430 15:02:25.348206 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 2.18736 (* 0.0272727 = 0.0596552 loss) | |
I0430 15:02:25.348233 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.49526 (* 0.0272727 = 0.0407798 loss) | |
I0430 15:02:25.348260 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.9609 (* 0.0272727 = 0.053479 loss) | |
I0430 15:02:25.348287 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.56247 (* 0.0272727 = 0.0426127 loss) | |
I0430 15:02:25.348318 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.681836 (* 0.0272727 = 0.0185955 loss) | |
I0430 15:02:25.348346 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 1.13177 (* 0.0272727 = 0.0308664 loss) | |
I0430 15:02:25.348373 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.666861 (* 0.0272727 = 0.0181871 loss) | |
I0430 15:02:25.348400 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.685607 (* 0.0272727 = 0.0186984 loss) | |
I0430 15:02:25.348428 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.599974 (* 0.0272727 = 0.0163629 loss) | |
I0430 15:02:25.348481 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.785895 (* 0.0272727 = 0.0214335 loss) | |
I0430 15:02:25.348517 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.682069 (* 0.0272727 = 0.0186019 loss) | |
I0430 15:02:25.348547 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.776705 (* 0.0272727 = 0.0211829 loss) | |
I0430 15:02:25.348578 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.478525 (* 0.0272727 = 0.0130507 loss) | |
I0430 15:02:25.348606 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00346394 (* 0.0272727 = 9.4471e-05 loss) | |
I0430 15:02:25.348635 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000408403 (* 0.0272727 = 1.11383e-05 loss) | |
I0430 15:02:25.348662 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000140851 (* 0.0272727 = 3.8414e-06 loss) | |
I0430 15:02:25.348691 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 9.7633e-05 (* 0.0272727 = 2.66272e-06 loss) | |
I0430 15:02:25.348718 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 6.05057e-05 (* 0.0272727 = 1.65016e-06 loss) | |
I0430 15:02:25.348745 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000173384 (* 0.0272727 = 4.72867e-06 loss) | |
I0430 15:02:25.348769 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.449275 | |
I0430 15:02:25.348793 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75 | |
I0430 15:02:25.348815 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0430 15:02:25.348837 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0430 15:02:25.348860 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375 | |
I0430 15:02:25.348882 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0430 15:02:25.348904 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5 | |
I0430 15:02:25.348927 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0430 15:02:25.348948 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0430 15:02:25.348969 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.625 | |
I0430 15:02:25.348990 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.75 | |
I0430 15:02:25.349014 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0430 15:02:25.349035 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0430 15:02:25.349057 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.75 | |
I0430 15:02:25.349079 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.75 | |
I0430 15:02:25.349102 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.75 | |
I0430 15:02:25.349125 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875 | |
I0430 15:02:25.349148 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 15:02:25.349169 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 15:02:25.349192 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 15:02:25.349213 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 15:02:25.349236 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 15:02:25.349257 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 15:02:25.349279 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.778409 | |
I0430 15:02:25.349301 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.637681 | |
I0430 15:02:25.349328 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.64756 (* 0.3 = 0.494268 loss) | |
I0430 15:02:25.349355 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.682374 (* 0.3 = 0.204712 loss) | |
I0430 15:02:25.349386 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.840816 (* 0.0272727 = 0.0229313 loss) | |
I0430 15:02:25.349413 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 0.970395 (* 0.0272727 = 0.0264653 loss) | |
I0430 15:02:25.349458 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.45752 (* 0.0272727 = 0.0397504 loss) | |
I0430 15:02:25.349486 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 2.04109 (* 0.0272727 = 0.0556661 loss) | |
I0430 15:02:25.349514 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.57262 (* 0.0272727 = 0.0428896 loss) | |
I0430 15:02:25.349540 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.56315 (* 0.0272727 = 0.0426313 loss) | |
I0430 15:02:25.349572 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 1.27817 (* 0.0272727 = 0.0348591 loss) | |
I0430 15:02:25.349601 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.745328 (* 0.0272727 = 0.0203271 loss) | |
I0430 15:02:25.349628 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 1.10704 (* 0.0272727 = 0.030192 loss) | |
I0430 15:02:25.349654 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.644296 (* 0.0272727 = 0.0175717 loss) | |
I0430 15:02:25.349680 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.549932 (* 0.0272727 = 0.0149981 loss) | |
I0430 15:02:25.349706 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.540288 (* 0.0272727 = 0.0147351 loss) | |
I0430 15:02:25.349733 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.790893 (* 0.0272727 = 0.0215698 loss) | |
I0430 15:02:25.349761 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.606733 (* 0.0272727 = 0.0165473 loss) | |
I0430 15:02:25.349787 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.662113 (* 0.0272727 = 0.0180576 loss) | |
I0430 15:02:25.349814 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.44936 (* 0.0272727 = 0.0122553 loss) | |
I0430 15:02:25.349840 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0058079 (* 0.0272727 = 0.000158397 loss) | |
I0430 15:02:25.349869 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00130684 (* 0.0272727 = 3.5641e-05 loss) | |
I0430 15:02:25.349896 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000864942 (* 0.0272727 = 2.35893e-05 loss) | |
I0430 15:02:25.349923 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000538914 (* 0.0272727 = 1.46977e-05 loss) | |
I0430 15:02:25.349951 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000315118 (* 0.0272727 = 8.59413e-06 loss) | |
I0430 15:02:25.349978 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000134844 (* 0.0272727 = 3.67756e-06 loss) | |
I0430 15:02:25.350002 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.652174 | |
I0430 15:02:25.350024 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75 | |
I0430 15:02:25.350046 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0430 15:02:25.350069 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625 | |
I0430 15:02:25.350090 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625 | |
I0430 15:02:25.350112 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0430 15:02:25.350134 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625 | |
I0430 15:02:25.350157 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0430 15:02:25.350179 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0430 15:02:25.350201 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.625 | |
I0430 15:02:25.350224 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0430 15:02:25.350245 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.75 | |
I0430 15:02:25.350267 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0430 15:02:25.350288 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.75 | |
I0430 15:02:25.350311 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0430 15:02:25.350332 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875 | |
I0430 15:02:25.350369 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875 | |
I0430 15:02:25.350394 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 15:02:25.350419 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 15:02:25.350442 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 15:02:25.350464 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 15:02:25.350486 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 15:02:25.350507 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 15:02:25.350530 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.863636 | |
I0430 15:02:25.350553 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.826087 | |
I0430 15:02:25.350579 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.14674 (* 1 = 1.14674 loss) | |
I0430 15:02:25.350610 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.457497 (* 1 = 0.457497 loss) | |
I0430 15:02:25.350637 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.575737 (* 0.0909091 = 0.0523398 loss) | |
I0430 15:02:25.350666 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.431857 (* 0.0909091 = 0.0392597 loss) | |
I0430 15:02:25.350692 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 1.09752 (* 0.0909091 = 0.0997749 loss) | |
I0430 15:02:25.350718 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.808933 (* 0.0909091 = 0.0735393 loss) | |
I0430 15:02:25.350745 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.815009 (* 0.0909091 = 0.0740917 loss) | |
I0430 15:02:25.350772 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.951676 (* 0.0909091 = 0.086516 loss) | |
I0430 15:02:25.350797 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.751276 (* 0.0909091 = 0.0682978 loss) | |
I0430 15:02:25.350826 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.563477 (* 0.0909091 = 0.0512252 loss) | |
I0430 15:02:25.350848 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.833316 (* 0.0909091 = 0.075756 loss) | |
I0430 15:02:25.350878 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.494706 (* 0.0909091 = 0.0449732 loss) | |
I0430 15:02:25.350905 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.589131 (* 0.0909091 = 0.0535574 loss) | |
I0430 15:02:25.350932 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.448812 (* 0.0909091 = 0.0408011 loss) | |
I0430 15:02:25.350958 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.698781 (* 0.0909091 = 0.0635255 loss) | |
I0430 15:02:25.350986 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.555918 (* 0.0909091 = 0.050538 loss) | |
I0430 15:02:25.351013 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.424612 (* 0.0909091 = 0.0386011 loss) | |
I0430 15:02:25.351039 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.297571 (* 0.0909091 = 0.0270519 loss) | |
I0430 15:02:25.351066 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.010334 (* 0.0909091 = 0.000939456 loss) | |
I0430 15:02:25.351094 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00269012 (* 0.0909091 = 0.000244557 loss) | |
I0430 15:02:25.351119 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00104828 (* 0.0909091 = 9.52979e-05 loss) | |
I0430 15:02:25.351147 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00059955 (* 0.0909091 = 5.45046e-05 loss) | |
I0430 15:02:25.351174 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000320901 (* 0.0909091 = 2.91728e-05 loss) | |
I0430 15:02:25.351200 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000135068 (* 0.0909091 = 1.22789e-05 loss) | |
I0430 15:02:25.351223 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.625 | |
I0430 15:02:25.351246 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5 | |
I0430 15:02:25.351285 15443 solver.cpp:245] Train net output #149: total_confidence = 0.384449 | |
I0430 15:02:25.351310 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.366263 | |
I0430 15:02:25.351333 15443 sgd_solver.cpp:106] Iteration 3500, lr = 0.001 | |
I0430 15:06:08.316037 15443 solver.cpp:229] Iteration 4000, loss = 3.75943 | |
I0430 15:06:08.316212 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.454545 | |
I0430 15:06:08.316233 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.375 | |
I0430 15:06:08.316247 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625 | |
I0430 15:06:08.316259 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0430 15:06:08.316272 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.625 | |
I0430 15:06:08.316284 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625 | |
I0430 15:06:08.316296 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75 | |
I0430 15:06:08.316309 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875 | |
I0430 15:06:08.316324 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0430 15:06:08.316337 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0430 15:06:08.316349 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0430 15:06:08.316361 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0430 15:06:08.316375 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0430 15:06:08.316386 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0430 15:06:08.316398 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 15:06:08.316411 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 15:06:08.316421 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 15:06:08.316434 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 15:06:08.316445 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 15:06:08.316457 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 15:06:08.316469 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 15:06:08.316481 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 15:06:08.316493 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 15:06:08.316504 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.829545 | |
I0430 15:06:08.316516 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.636364 | |
I0430 15:06:08.316534 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.77103 (* 0.3 = 0.53131 loss) | |
I0430 15:06:08.316548 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.551585 (* 0.3 = 0.165475 loss) | |
I0430 15:06:08.316563 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 2.16399 (* 0.0272727 = 0.0590179 loss) | |
I0430 15:06:08.316577 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.29524 (* 0.0272727 = 0.0353248 loss) | |
I0430 15:06:08.316591 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.76303 (* 0.0272727 = 0.0480825 loss) | |
I0430 15:06:08.316606 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.65407 (* 0.0272727 = 0.045111 loss) | |
I0430 15:06:08.316619 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.33361 (* 0.0272727 = 0.0363713 loss) | |
I0430 15:06:08.316633 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 0.928709 (* 0.0272727 = 0.0253284 loss) | |
I0430 15:06:08.316648 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 0.46673 (* 0.0272727 = 0.012729 loss) | |
I0430 15:06:08.316663 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.445262 (* 0.0272727 = 0.0121435 loss) | |
I0430 15:06:08.316676 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.41811 (* 0.0272727 = 0.011403 loss) | |
I0430 15:06:08.316691 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.194769 (* 0.0272727 = 0.00531188 loss) | |
I0430 15:06:08.316705 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.348498 (* 0.0272727 = 0.00950449 loss) | |
I0430 15:06:08.316720 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.216083 (* 0.0272727 = 0.00589317 loss) | |
I0430 15:06:08.316754 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0455564 (* 0.0272727 = 0.00124245 loss) | |
I0430 15:06:08.316771 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0187885 (* 0.0272727 = 0.000512415 loss) | |
I0430 15:06:08.316786 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00603991 (* 0.0272727 = 0.000164725 loss) | |
I0430 15:06:08.316799 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00383578 (* 0.0272727 = 0.000104612 loss) | |
I0430 15:06:08.316813 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00433441 (* 0.0272727 = 0.000118211 loss) | |
I0430 15:06:08.316828 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00192988 (* 0.0272727 = 5.26331e-05 loss) | |
I0430 15:06:08.316843 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00259408 (* 0.0272727 = 7.07475e-05 loss) | |
I0430 15:06:08.316856 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00353322 (* 0.0272727 = 9.63605e-05 loss) | |
I0430 15:06:08.316870 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00298262 (* 0.0272727 = 8.13442e-05 loss) | |
I0430 15:06:08.316884 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 0.00285261 (* 0.0272727 = 7.77984e-05 loss) | |
I0430 15:06:08.316897 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.545455 | |
I0430 15:06:08.316910 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.5 | |
I0430 15:06:08.316921 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5 | |
I0430 15:06:08.316933 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5 | |
I0430 15:06:08.316946 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375 | |
I0430 15:06:08.316957 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0430 15:06:08.316969 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5 | |
I0430 15:06:08.316982 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0430 15:06:08.316993 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0430 15:06:08.317005 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0430 15:06:08.317018 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0430 15:06:08.317029 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0430 15:06:08.317041 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0430 15:06:08.317052 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0430 15:06:08.317065 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 15:06:08.317076 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 15:06:08.317088 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 15:06:08.317100 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 15:06:08.317111 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 15:06:08.317123 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 15:06:08.317134 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 15:06:08.317147 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 15:06:08.317158 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 15:06:08.317169 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.846591 | |
I0430 15:06:08.317181 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.659091 | |
I0430 15:06:08.317195 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.85534 (* 0.3 = 0.556602 loss) | |
I0430 15:06:08.317209 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.611916 (* 0.3 = 0.183575 loss) | |
I0430 15:06:08.317227 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 2.20205 (* 0.0272727 = 0.060056 loss) | |
I0430 15:06:08.317242 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 2.03057 (* 0.0272727 = 0.0553793 loss) | |
I0430 15:06:08.317267 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.39604 (* 0.0272727 = 0.0380739 loss) | |
I0430 15:06:08.317283 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.77024 (* 0.0272727 = 0.0482793 loss) | |
I0430 15:06:08.317297 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.69954 (* 0.0272727 = 0.0463512 loss) | |
I0430 15:06:08.317312 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.02248 (* 0.0272727 = 0.0278859 loss) | |
I0430 15:06:08.317325 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 0.4567 (* 0.0272727 = 0.0124555 loss) | |
I0430 15:06:08.317340 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.443842 (* 0.0272727 = 0.0121048 loss) | |
I0430 15:06:08.317353 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.440674 (* 0.0272727 = 0.0120184 loss) | |
I0430 15:06:08.317371 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.285554 (* 0.0272727 = 0.00778785 loss) | |
I0430 15:06:08.317386 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.417276 (* 0.0272727 = 0.0113802 loss) | |
I0430 15:06:08.317400 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.304952 (* 0.0272727 = 0.00831689 loss) | |
I0430 15:06:08.317414 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.154255 (* 0.0272727 = 0.00420695 loss) | |
I0430 15:06:08.317430 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0837535 (* 0.0272727 = 0.00228419 loss) | |
I0430 15:06:08.317443 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0630259 (* 0.0272727 = 0.00171889 loss) | |
I0430 15:06:08.317457 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0256225 (* 0.0272727 = 0.000698796 loss) | |
I0430 15:06:08.317471 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00116121 (* 0.0272727 = 3.16692e-05 loss) | |
I0430 15:06:08.317487 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000551873 (* 0.0272727 = 1.50511e-05 loss) | |
I0430 15:06:08.317500 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000801091 (* 0.0272727 = 2.18479e-05 loss) | |
I0430 15:06:08.317515 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000168934 (* 0.0272727 = 4.6073e-06 loss) | |
I0430 15:06:08.317530 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 7.42797e-05 (* 0.0272727 = 2.02581e-06 loss) | |
I0430 15:06:08.317544 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000102275 (* 0.0272727 = 2.78933e-06 loss) | |
I0430 15:06:08.317558 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.613636 | |
I0430 15:06:08.317569 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.625 | |
I0430 15:06:08.317581 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75 | |
I0430 15:06:08.317594 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625 | |
I0430 15:06:08.317605 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625 | |
I0430 15:06:08.317615 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0430 15:06:08.317631 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0430 15:06:08.317654 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0430 15:06:08.317670 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0430 15:06:08.317682 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0430 15:06:08.317694 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0430 15:06:08.317705 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0430 15:06:08.317718 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0430 15:06:08.317729 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0430 15:06:08.317740 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 15:06:08.317752 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 15:06:08.317775 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 15:06:08.317788 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 15:06:08.317800 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 15:06:08.317812 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 15:06:08.317823 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 15:06:08.317836 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 15:06:08.317847 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 15:06:08.317859 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.880682 | |
I0430 15:06:08.317872 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.772727 | |
I0430 15:06:08.317885 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.28668 (* 1 = 1.28668 loss) | |
I0430 15:06:08.317900 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.396387 (* 1 = 0.396387 loss) | |
I0430 15:06:08.317914 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 1.64588 (* 0.0909091 = 0.149625 loss) | |
I0430 15:06:08.317929 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 1.10157 (* 0.0909091 = 0.100143 loss) | |
I0430 15:06:08.317944 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.869806 (* 0.0909091 = 0.0790733 loss) | |
I0430 15:06:08.317957 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 1.18534 (* 0.0909091 = 0.107758 loss) | |
I0430 15:06:08.317971 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.62308 (* 0.0909091 = 0.0566437 loss) | |
I0430 15:06:08.317986 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.425463 (* 0.0909091 = 0.0386785 loss) | |
I0430 15:06:08.317999 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.422877 (* 0.0909091 = 0.0384434 loss) | |
I0430 15:06:08.318013 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.754902 (* 0.0909091 = 0.0686275 loss) | |
I0430 15:06:08.318027 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.648434 (* 0.0909091 = 0.0589485 loss) | |
I0430 15:06:08.318042 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.0222216 (* 0.0909091 = 0.00202015 loss) | |
I0430 15:06:08.318056 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.455725 (* 0.0909091 = 0.0414296 loss) | |
I0430 15:06:08.318070 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.314313 (* 0.0909091 = 0.0285739 loss) | |
I0430 15:06:08.318084 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.151635 (* 0.0909091 = 0.013785 loss) | |
I0430 15:06:08.318099 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.0510102 (* 0.0909091 = 0.00463729 loss) | |
I0430 15:06:08.318114 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00658 (* 0.0909091 = 0.000598182 loss) | |
I0430 15:06:08.318127 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00115343 (* 0.0909091 = 0.000104858 loss) | |
I0430 15:06:08.318141 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000292029 (* 0.0909091 = 2.65481e-05 loss) | |
I0430 15:06:08.318156 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00016908 (* 0.0909091 = 1.53709e-05 loss) | |
I0430 15:06:08.318171 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000165885 (* 0.0909091 = 1.50805e-05 loss) | |
I0430 15:06:08.318184 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000133457 (* 0.0909091 = 1.21325e-05 loss) | |
I0430 15:06:08.318199 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000117173 (* 0.0909091 = 1.06521e-05 loss) | |
I0430 15:06:08.318213 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000109676 (* 0.0909091 = 9.97051e-06 loss) | |
I0430 15:06:08.318225 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.5 | |
I0430 15:06:08.318238 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5 | |
I0430 15:06:08.318259 15443 solver.cpp:245] Train net output #149: total_confidence = 0.354681 | |
I0430 15:06:08.318276 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.355892 | |
I0430 15:06:08.318289 15443 sgd_solver.cpp:106] Iteration 4000, lr = 0.001 | |
I0430 15:06:51.094277 15443 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 60.0448 > 30) by scale factor 0.499627 | |
I0430 15:07:07.779942 15443 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.3449 > 30) by scale factor 0.988633 | |
I0430 15:07:16.628831 15443 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 42.7739 > 30) by scale factor 0.701363 | |
I0430 15:10:00.382439 15443 solver.cpp:229] Iteration 4500, loss = 3.66691 | |
I0430 15:10:00.382557 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.384615 | |
I0430 15:10:00.382582 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0430 15:10:00.382601 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0430 15:10:00.382619 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25 | |
I0430 15:10:00.382637 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25 | |
I0430 15:10:00.382654 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0430 15:10:00.382673 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375 | |
I0430 15:10:00.382689 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625 | |
I0430 15:10:00.382707 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625 | |
I0430 15:10:00.382725 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75 | |
I0430 15:10:00.382742 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0430 15:10:00.382761 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0430 15:10:00.382778 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0430 15:10:00.382796 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0430 15:10:00.382813 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0430 15:10:00.382830 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875 | |
I0430 15:10:00.382848 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875 | |
I0430 15:10:00.382866 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875 | |
I0430 15:10:00.382884 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 0.875 | |
I0430 15:10:00.382900 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 0.875 | |
I0430 15:10:00.382918 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 15:10:00.382936 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 15:10:00.382957 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 15:10:00.382975 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.772727 | |
I0430 15:10:00.382992 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.630769 | |
I0430 15:10:00.383015 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.67463 (* 0.3 = 0.802389 loss) | |
I0430 15:10:00.383038 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.99399 (* 0.3 = 0.298197 loss) | |
I0430 15:10:00.383059 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.873451 (* 0.0272727 = 0.0238214 loss) | |
I0430 15:10:00.383080 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.42695 (* 0.0272727 = 0.0389169 loss) | |
I0430 15:10:00.383101 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 2.26428 (* 0.0272727 = 0.061753 loss) | |
I0430 15:10:00.383122 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 2.1718 (* 0.0272727 = 0.059231 loss) | |
I0430 15:10:00.383143 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.72493 (* 0.0272727 = 0.0470434 loss) | |
I0430 15:10:00.383164 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.99978 (* 0.0272727 = 0.0545396 loss) | |
I0430 15:10:00.383184 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.37927 (* 0.0272727 = 0.0376165 loss) | |
I0430 15:10:00.383205 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 1.0705 (* 0.0272727 = 0.0291955 loss) | |
I0430 15:10:00.383225 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.769408 (* 0.0272727 = 0.0209838 loss) | |
I0430 15:10:00.383247 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.843898 (* 0.0272727 = 0.0230154 loss) | |
I0430 15:10:00.383268 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 1.09375 (* 0.0272727 = 0.0298296 loss) | |
I0430 15:10:00.383290 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 1.06866 (* 0.0272727 = 0.0291451 loss) | |
I0430 15:10:00.383332 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 1.11052 (* 0.0272727 = 0.0302868 loss) | |
I0430 15:10:00.383355 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 1.19763 (* 0.0272727 = 0.0326627 loss) | |
I0430 15:10:00.383379 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 1.29074 (* 0.0272727 = 0.0352019 loss) | |
I0430 15:10:00.383401 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 1.69128 (* 0.0272727 = 0.0461257 loss) | |
I0430 15:10:00.383422 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 1.47788 (* 0.0272727 = 0.0403057 loss) | |
I0430 15:10:00.383443 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 1.70572 (* 0.0272727 = 0.0465196 loss) | |
I0430 15:10:00.383481 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 1.9109 (* 0.0272727 = 0.0521154 loss) | |
I0430 15:10:00.383512 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 2.414e-06 (* 0.0272727 = 6.58364e-08 loss) | |
I0430 15:10:00.383538 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 1.2517e-06 (* 0.0272727 = 3.41373e-08 loss) | |
I0430 15:10:00.383555 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 4.32141e-06 (* 0.0272727 = 1.17857e-07 loss) | |
I0430 15:10:00.383569 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.338462 | |
I0430 15:10:00.383580 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75 | |
I0430 15:10:00.383594 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5 | |
I0430 15:10:00.383605 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375 | |
I0430 15:10:00.383617 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25 | |
I0430 15:10:00.383630 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0430 15:10:00.383641 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.25 | |
I0430 15:10:00.383653 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0430 15:10:00.383666 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625 | |
I0430 15:10:00.383677 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.75 | |
I0430 15:10:00.383688 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0430 15:10:00.383700 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0430 15:10:00.383713 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0430 15:10:00.383725 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0430 15:10:00.383738 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0430 15:10:00.383749 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875 | |
I0430 15:10:00.383761 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875 | |
I0430 15:10:00.383774 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875 | |
I0430 15:10:00.383785 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 0.875 | |
I0430 15:10:00.383796 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 0.875 | |
I0430 15:10:00.383808 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 15:10:00.383821 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 15:10:00.383832 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 15:10:00.383843 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.755682 | |
I0430 15:10:00.383855 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.630769 | |
I0430 15:10:00.383869 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.89958 (* 0.3 = 0.869875 loss) | |
I0430 15:10:00.383883 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 1.08846 (* 0.3 = 0.326537 loss) | |
I0430 15:10:00.383898 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 1.2288 (* 0.0272727 = 0.0335129 loss) | |
I0430 15:10:00.383911 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 1.27936 (* 0.0272727 = 0.0348917 loss) | |
I0430 15:10:00.383939 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.74642 (* 0.0272727 = 0.0476297 loss) | |
I0430 15:10:00.383955 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.88057 (* 0.0272727 = 0.0512883 loss) | |
I0430 15:10:00.383970 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.65956 (* 0.0272727 = 0.0452608 loss) | |
I0430 15:10:00.383983 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 2.34084 (* 0.0272727 = 0.0638412 loss) | |
I0430 15:10:00.384002 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 1.54211 (* 0.0272727 = 0.0420575 loss) | |
I0430 15:10:00.384017 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 1.4084 (* 0.0272727 = 0.038411 loss) | |
I0430 15:10:00.384032 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 1.00134 (* 0.0272727 = 0.0273093 loss) | |
I0430 15:10:00.384045 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 1.12142 (* 0.0272727 = 0.0305842 loss) | |
I0430 15:10:00.384059 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 1.25428 (* 0.0272727 = 0.0342076 loss) | |
I0430 15:10:00.384073 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 1.29634 (* 0.0272727 = 0.0353547 loss) | |
I0430 15:10:00.384086 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 1.4527 (* 0.0272727 = 0.0396191 loss) | |
I0430 15:10:00.384100 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 1.36502 (* 0.0272727 = 0.0372277 loss) | |
I0430 15:10:00.384114 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 1.49662 (* 0.0272727 = 0.0408169 loss) | |
I0430 15:10:00.384129 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 1.64393 (* 0.0272727 = 0.0448345 loss) | |
I0430 15:10:00.384142 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 1.66763 (* 0.0272727 = 0.0454807 loss) | |
I0430 15:10:00.384156 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 1.55539 (* 0.0272727 = 0.0424198 loss) | |
I0430 15:10:00.384171 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 1.60297 (* 0.0272727 = 0.0437173 loss) | |
I0430 15:10:00.384186 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 6.78309e-05 (* 0.0272727 = 1.84993e-06 loss) | |
I0430 15:10:00.384199 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 2.51775e-05 (* 0.0272727 = 6.86658e-07 loss) | |
I0430 15:10:00.384213 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 6.51193e-06 (* 0.0272727 = 1.77598e-07 loss) | |
I0430 15:10:00.384225 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.569231 | |
I0430 15:10:00.384238 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75 | |
I0430 15:10:00.384250 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0430 15:10:00.384263 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75 | |
I0430 15:10:00.384274 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75 | |
I0430 15:10:00.384285 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625 | |
I0430 15:10:00.384297 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.5 | |
I0430 15:10:00.384310 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0430 15:10:00.384321 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75 | |
I0430 15:10:00.384333 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75 | |
I0430 15:10:00.384344 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0430 15:10:00.384356 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0430 15:10:00.384368 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0430 15:10:00.384379 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0430 15:10:00.384392 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0430 15:10:00.384403 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875 | |
I0430 15:10:00.384415 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875 | |
I0430 15:10:00.384440 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.875 | |
I0430 15:10:00.384454 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 0.875 | |
I0430 15:10:00.384466 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 0.875 | |
I0430 15:10:00.384479 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 15:10:00.384490 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 15:10:00.384501 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 15:10:00.384513 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.840909 | |
I0430 15:10:00.384526 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.676923 | |
I0430 15:10:00.384539 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 2.30624 (* 1 = 2.30624 loss) | |
I0430 15:10:00.384553 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.85803 (* 1 = 0.85803 loss) | |
I0430 15:10:00.384568 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 1.4323 (* 0.0909091 = 0.130209 loss) | |
I0430 15:10:00.384582 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.40981 (* 0.0909091 = 0.0372554 loss) | |
I0430 15:10:00.384596 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 1.25708 (* 0.0909091 = 0.11428 loss) | |
I0430 15:10:00.384610 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.974649 (* 0.0909091 = 0.0886045 loss) | |
I0430 15:10:00.384625 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 1.02146 (* 0.0909091 = 0.0928603 loss) | |
I0430 15:10:00.384639 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 1.51684 (* 0.0909091 = 0.137894 loss) | |
I0430 15:10:00.384654 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 1.13301 (* 0.0909091 = 0.103001 loss) | |
I0430 15:10:00.384667 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.764724 (* 0.0909091 = 0.0695203 loss) | |
I0430 15:10:00.384681 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.803612 (* 0.0909091 = 0.0730556 loss) | |
I0430 15:10:00.384696 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.915253 (* 0.0909091 = 0.0832048 loss) | |
I0430 15:10:00.384709 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 1.05466 (* 0.0909091 = 0.095878 loss) | |
I0430 15:10:00.384724 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 1.03426 (* 0.0909091 = 0.0940239 loss) | |
I0430 15:10:00.384737 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 1.03803 (* 0.0909091 = 0.0943661 loss) | |
I0430 15:10:00.384752 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 1.06988 (* 0.0909091 = 0.0972616 loss) | |
I0430 15:10:00.384765 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 1.0772 (* 0.0909091 = 0.0979272 loss) | |
I0430 15:10:00.384779 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 1.21918 (* 0.0909091 = 0.110835 loss) | |
I0430 15:10:00.384793 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 1.10676 (* 0.0909091 = 0.100614 loss) | |
I0430 15:10:00.384807 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 1.11314 (* 0.0909091 = 0.101194 loss) | |
I0430 15:10:00.384821 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 1.21386 (* 0.0909091 = 0.110351 loss) | |
I0430 15:10:00.384835 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000145819 (* 0.0909091 = 1.32563e-05 loss) | |
I0430 15:10:00.384850 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 8.7777e-05 (* 0.0909091 = 7.97973e-06 loss) | |
I0430 15:10:00.384865 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 8.25152e-05 (* 0.0909091 = 7.50138e-06 loss) | |
I0430 15:10:00.384877 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.5 | |
I0430 15:10:00.384888 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5 | |
I0430 15:10:00.384901 15443 solver.cpp:245] Train net output #149: total_confidence = 0.403349 | |
I0430 15:10:00.384922 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.334249 | |
I0430 15:10:00.384937 15443 sgd_solver.cpp:106] Iteration 4500, lr = 0.001 | |
I0430 15:11:44.144258 15443 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.0193 > 30) by scale factor 0.967141 | |
I0430 15:13:51.687072 15443 solver.cpp:338] Iteration 5000, Testing net (#0) | |
I0430 15:15:50.579594 15443 solver.cpp:393] Test loss: 2.34018 | |
I0430 15:15:50.579730 15443 solver.cpp:406] Test net output #0: loss1/accuracy = 0.634974 | |
I0430 15:15:50.579753 15443 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.835 | |
I0430 15:15:50.579766 15443 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.71 | |
I0430 15:15:50.579778 15443 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.564 | |
I0430 15:15:50.579790 15443 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.573 | |
I0430 15:15:50.579802 15443 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.565 | |
I0430 15:15:50.579814 15443 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.661 | |
I0430 15:15:50.579825 15443 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.821 | |
I0430 15:15:50.579838 15443 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.903 | |
I0430 15:15:50.579849 15443 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.983 | |
I0430 15:15:50.579861 15443 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.994 | |
I0430 15:15:50.579872 15443 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.997 | |
I0430 15:15:50.579885 15443 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.999 | |
I0430 15:15:50.579896 15443 solver.cpp:406] Test net output #13: loss1/accuracy13 = 1 | |
I0430 15:15:50.579907 15443 solver.cpp:406] Test net output #14: loss1/accuracy14 = 1 | |
I0430 15:15:50.579919 15443 solver.cpp:406] Test net output #15: loss1/accuracy15 = 1 | |
I0430 15:15:50.579931 15443 solver.cpp:406] Test net output #16: loss1/accuracy16 = 1 | |
I0430 15:15:50.579942 15443 solver.cpp:406] Test net output #17: loss1/accuracy17 = 1 | |
I0430 15:15:50.579953 15443 solver.cpp:406] Test net output #18: loss1/accuracy18 = 1 | |
I0430 15:15:50.579964 15443 solver.cpp:406] Test net output #19: loss1/accuracy19 = 1 | |
I0430 15:15:50.579975 15443 solver.cpp:406] Test net output #20: loss1/accuracy20 = 1 | |
I0430 15:15:50.579988 15443 solver.cpp:406] Test net output #21: loss1/accuracy21 = 1 | |
I0430 15:15:50.579998 15443 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1 | |
I0430 15:15:50.580009 15443 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.891229 | |
I0430 15:15:50.580021 15443 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.861714 | |
I0430 15:15:50.580036 15443 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.17151 (* 0.3 = 0.351453 loss) | |
I0430 15:15:50.580051 15443 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.354416 (* 0.3 = 0.106325 loss) | |
I0430 15:15:50.580065 15443 solver.cpp:406] Test net output #27: loss1/loss01 = 0.602147 (* 0.0272727 = 0.0164222 loss) | |
I0430 15:15:50.580080 15443 solver.cpp:406] Test net output #28: loss1/loss02 = 0.990368 (* 0.0272727 = 0.02701 loss) | |
I0430 15:15:50.580093 15443 solver.cpp:406] Test net output #29: loss1/loss03 = 1.4028 (* 0.0272727 = 0.0382581 loss) | |
I0430 15:15:50.580106 15443 solver.cpp:406] Test net output #30: loss1/loss04 = 1.36905 (* 0.0272727 = 0.0373378 loss) | |
I0430 15:15:50.580121 15443 solver.cpp:406] Test net output #31: loss1/loss05 = 1.32869 (* 0.0272727 = 0.036237 loss) | |
I0430 15:15:50.580133 15443 solver.cpp:406] Test net output #32: loss1/loss06 = 1.02097 (* 0.0272727 = 0.0278448 loss) | |
I0430 15:15:50.580147 15443 solver.cpp:406] Test net output #33: loss1/loss07 = 0.57177 (* 0.0272727 = 0.0155937 loss) | |
I0430 15:15:50.580162 15443 solver.cpp:406] Test net output #34: loss1/loss08 = 0.293697 (* 0.0272727 = 0.00800993 loss) | |
I0430 15:15:50.580174 15443 solver.cpp:406] Test net output #35: loss1/loss09 = 0.0769722 (* 0.0272727 = 0.00209924 loss) | |
I0430 15:15:50.580188 15443 solver.cpp:406] Test net output #36: loss1/loss10 = 0.0343951 (* 0.0272727 = 0.000938048 loss) | |
I0430 15:15:50.580202 15443 solver.cpp:406] Test net output #37: loss1/loss11 = 0.013719 (* 0.0272727 = 0.000374156 loss) | |
I0430 15:15:50.580216 15443 solver.cpp:406] Test net output #38: loss1/loss12 = 0.00912074 (* 0.0272727 = 0.000248747 loss) | |
I0430 15:15:50.580230 15443 solver.cpp:406] Test net output #39: loss1/loss13 = 0.00593367 (* 0.0272727 = 0.000161827 loss) | |
I0430 15:15:50.580266 15443 solver.cpp:406] Test net output #40: loss1/loss14 = 0.00389587 (* 0.0272727 = 0.000106251 loss) | |
I0430 15:15:50.580282 15443 solver.cpp:406] Test net output #41: loss1/loss15 = 0.0024643 (* 0.0272727 = 6.72082e-05 loss) | |
I0430 15:15:50.580296 15443 solver.cpp:406] Test net output #42: loss1/loss16 = 0.00162897 (* 0.0272727 = 4.44263e-05 loss) | |
I0430 15:15:50.580310 15443 solver.cpp:406] Test net output #43: loss1/loss17 = 0.000946585 (* 0.0272727 = 2.5816e-05 loss) | |
I0430 15:15:50.580328 15443 solver.cpp:406] Test net output #44: loss1/loss18 = 0.000581907 (* 0.0272727 = 1.58702e-05 loss) | |
I0430 15:15:50.580343 15443 solver.cpp:406] Test net output #45: loss1/loss19 = 0.000422126 (* 0.0272727 = 1.15125e-05 loss) | |
I0430 15:15:50.580356 15443 solver.cpp:406] Test net output #46: loss1/loss20 = 0.000352227 (* 0.0272727 = 9.6062e-06 loss) | |
I0430 15:15:50.580370 15443 solver.cpp:406] Test net output #47: loss1/loss21 = 0.000302346 (* 0.0272727 = 8.2458e-06 loss) | |
I0430 15:15:50.580384 15443 solver.cpp:406] Test net output #48: loss1/loss22 = 0.000255629 (* 0.0272727 = 6.97169e-06 loss) | |
I0430 15:15:50.580396 15443 solver.cpp:406] Test net output #49: loss2/accuracy = 0.738614 | |
I0430 15:15:50.580409 15443 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.881 | |
I0430 15:15:50.580420 15443 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.829 | |
I0430 15:15:50.580430 15443 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.716 | |
I0430 15:15:50.580442 15443 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.659 | |
I0430 15:15:50.580453 15443 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.638 | |
I0430 15:15:50.580466 15443 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.701 | |
I0430 15:15:50.580476 15443 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.851 | |
I0430 15:15:50.580487 15443 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.916 | |
I0430 15:15:50.580499 15443 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.985 | |
I0430 15:15:50.580507 15443 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.993 | |
I0430 15:15:50.580514 15443 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.997 | |
I0430 15:15:50.580521 15443 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.999 | |
I0430 15:15:50.580533 15443 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.999 | |
I0430 15:15:50.580544 15443 solver.cpp:406] Test net output #63: loss2/accuracy14 = 1 | |
I0430 15:15:50.580555 15443 solver.cpp:406] Test net output #64: loss2/accuracy15 = 1 | |
I0430 15:15:50.580566 15443 solver.cpp:406] Test net output #65: loss2/accuracy16 = 1 | |
I0430 15:15:50.580577 15443 solver.cpp:406] Test net output #66: loss2/accuracy17 = 1 | |
I0430 15:15:50.580588 15443 solver.cpp:406] Test net output #67: loss2/accuracy18 = 1 | |
I0430 15:15:50.580600 15443 solver.cpp:406] Test net output #68: loss2/accuracy19 = 1 | |
I0430 15:15:50.580610 15443 solver.cpp:406] Test net output #69: loss2/accuracy20 = 1 | |
I0430 15:15:50.580621 15443 solver.cpp:406] Test net output #70: loss2/accuracy21 = 1 | |
I0430 15:15:50.580632 15443 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1 | |
I0430 15:15:50.580642 15443 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.920865 | |
I0430 15:15:50.580653 15443 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.903193 | |
I0430 15:15:50.580667 15443 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 0.876732 (* 0.3 = 0.263019 loss) | |
I0430 15:15:50.580682 15443 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.270357 (* 0.3 = 0.081107 loss) | |
I0430 15:15:50.580694 15443 solver.cpp:406] Test net output #76: loss2/loss01 = 0.518813 (* 0.0272727 = 0.0141494 loss) | |
I0430 15:15:50.580708 15443 solver.cpp:406] Test net output #77: loss2/loss02 = 0.665379 (* 0.0272727 = 0.0181467 loss) | |
I0430 15:15:50.580734 15443 solver.cpp:406] Test net output #78: loss2/loss03 = 1.0036 (* 0.0272727 = 0.0273709 loss) | |
I0430 15:15:50.580752 15443 solver.cpp:406] Test net output #79: loss2/loss04 = 1.1121 (* 0.0272727 = 0.0303301 loss) | |
I0430 15:15:50.580766 15443 solver.cpp:406] Test net output #80: loss2/loss05 = 1.12569 (* 0.0272727 = 0.0307006 loss) | |
I0430 15:15:50.580780 15443 solver.cpp:406] Test net output #81: loss2/loss06 = 0.890944 (* 0.0272727 = 0.0242985 loss) | |
I0430 15:15:50.580793 15443 solver.cpp:406] Test net output #82: loss2/loss07 = 0.50361 (* 0.0272727 = 0.0137348 loss) | |
I0430 15:15:50.580807 15443 solver.cpp:406] Test net output #83: loss2/loss08 = 0.278603 (* 0.0272727 = 0.00759826 loss) | |
I0430 15:15:50.580821 15443 solver.cpp:406] Test net output #84: loss2/loss09 = 0.0712345 (* 0.0272727 = 0.00194276 loss) | |
I0430 15:15:50.580835 15443 solver.cpp:406] Test net output #85: loss2/loss10 = 0.0315484 (* 0.0272727 = 0.000860411 loss) | |
I0430 15:15:50.580848 15443 solver.cpp:406] Test net output #86: loss2/loss11 = 0.0134482 (* 0.0272727 = 0.00036677 loss) | |
I0430 15:15:50.580862 15443 solver.cpp:406] Test net output #87: loss2/loss12 = 0.00840819 (* 0.0272727 = 0.000229314 loss) | |
I0430 15:15:50.580875 15443 solver.cpp:406] Test net output #88: loss2/loss13 = 0.00527099 (* 0.0272727 = 0.000143754 loss) | |
I0430 15:15:50.580889 15443 solver.cpp:406] Test net output #89: loss2/loss14 = 0.00335061 (* 0.0272727 = 9.13803e-05 loss) | |
I0430 15:15:50.580904 15443 solver.cpp:406] Test net output #90: loss2/loss15 = 0.00196152 (* 0.0272727 = 5.3496e-05 loss) | |
I0430 15:15:50.580916 15443 solver.cpp:406] Test net output #91: loss2/loss16 = 0.00110177 (* 0.0272727 = 3.00483e-05 loss) | |
I0430 15:15:50.580930 15443 solver.cpp:406] Test net output #92: loss2/loss17 = 0.000513995 (* 0.0272727 = 1.40181e-05 loss) | |
I0430 15:15:50.580945 15443 solver.cpp:406] Test net output #93: loss2/loss18 = 0.00025623 (* 0.0272727 = 6.98808e-06 loss) | |
I0430 15:15:50.580957 15443 solver.cpp:406] Test net output #94: loss2/loss19 = 0.000171956 (* 0.0272727 = 4.6897e-06 loss) | |
I0430 15:15:50.580971 15443 solver.cpp:406] Test net output #95: loss2/loss20 = 0.000112507 (* 0.0272727 = 3.06838e-06 loss) | |
I0430 15:15:50.580984 15443 solver.cpp:406] Test net output #96: loss2/loss21 = 0.000104234 (* 0.0272727 = 2.84275e-06 loss) | |
I0430 15:15:50.580997 15443 solver.cpp:406] Test net output #97: loss2/loss22 = 7.63594e-05 (* 0.0272727 = 2.08253e-06 loss) | |
I0430 15:15:50.581009 15443 solver.cpp:406] Test net output #98: loss3/accuracy = 0.850921 | |
I0430 15:15:50.581022 15443 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.898 | |
I0430 15:15:50.581032 15443 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.878 | |
I0430 15:15:50.581044 15443 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.83 | |
I0430 15:15:50.581055 15443 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.838 | |
I0430 15:15:50.581066 15443 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.83 | |
I0430 15:15:50.581079 15443 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.857 | |
I0430 15:15:50.581089 15443 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.884 | |
I0430 15:15:50.581101 15443 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.941 | |
I0430 15:15:50.581112 15443 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.983 | |
I0430 15:15:50.581123 15443 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.993 | |
I0430 15:15:50.581135 15443 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.997 | |
I0430 15:15:50.581146 15443 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.999 | |
I0430 15:15:50.581157 15443 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.999 | |
I0430 15:15:50.581168 15443 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.999 | |
I0430 15:15:50.581179 15443 solver.cpp:406] Test net output #113: loss3/accuracy15 = 1 | |
I0430 15:15:50.581190 15443 solver.cpp:406] Test net output #114: loss3/accuracy16 = 1 | |
I0430 15:15:50.581212 15443 solver.cpp:406] Test net output #115: loss3/accuracy17 = 1 | |
I0430 15:15:50.581225 15443 solver.cpp:406] Test net output #116: loss3/accuracy18 = 1 | |
I0430 15:15:50.581238 15443 solver.cpp:406] Test net output #117: loss3/accuracy19 = 1 | |
I0430 15:15:50.581248 15443 solver.cpp:406] Test net output #118: loss3/accuracy20 = 1 | |
I0430 15:15:50.581259 15443 solver.cpp:406] Test net output #119: loss3/accuracy21 = 1 | |
I0430 15:15:50.581271 15443 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1 | |
I0430 15:15:50.581282 15443 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.952682 | |
I0430 15:15:50.581295 15443 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.924405 | |
I0430 15:15:50.581307 15443 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.589351 (* 1 = 0.589351 loss) | |
I0430 15:15:50.581321 15443 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.188677 (* 1 = 0.188677 loss) | |
I0430 15:15:50.581336 15443 solver.cpp:406] Test net output #125: loss3/loss01 = 0.421495 (* 0.0909091 = 0.0383178 loss) | |
I0430 15:15:50.581349 15443 solver.cpp:406] Test net output #126: loss3/loss02 = 0.517064 (* 0.0909091 = 0.0470058 loss) | |
I0430 15:15:50.581362 15443 solver.cpp:406] Test net output #127: loss3/loss03 = 0.665191 (* 0.0909091 = 0.0604719 loss) | |
I0430 15:15:50.581379 15443 solver.cpp:406] Test net output #128: loss3/loss04 = 0.622514 (* 0.0909091 = 0.0565922 loss) | |
I0430 15:15:50.581393 15443 solver.cpp:406] Test net output #129: loss3/loss05 = 0.665423 (* 0.0909091 = 0.060493 loss) | |
I0430 15:15:50.581406 15443 solver.cpp:406] Test net output #130: loss3/loss06 = 0.548369 (* 0.0909091 = 0.0498517 loss) | |
I0430 15:15:50.581419 15443 solver.cpp:406] Test net output #131: loss3/loss07 = 0.382015 (* 0.0909091 = 0.0347287 loss) | |
I0430 15:15:50.581432 15443 solver.cpp:406] Test net output #132: loss3/loss08 = 0.201716 (* 0.0909091 = 0.0183378 loss) | |
I0430 15:15:50.581446 15443 solver.cpp:406] Test net output #133: loss3/loss09 = 0.066762 (* 0.0909091 = 0.00606928 loss) | |
I0430 15:15:50.581459 15443 solver.cpp:406] Test net output #134: loss3/loss10 = 0.035929 (* 0.0909091 = 0.00326627 loss) | |
I0430 15:15:50.581472 15443 solver.cpp:406] Test net output #135: loss3/loss11 = 0.0163915 (* 0.0909091 = 0.00149014 loss) | |
I0430 15:15:50.581486 15443 solver.cpp:406] Test net output #136: loss3/loss12 = 0.0120617 (* 0.0909091 = 0.00109652 loss) | |
I0430 15:15:50.581501 15443 solver.cpp:406] Test net output #137: loss3/loss13 = 0.00785141 (* 0.0909091 = 0.000713765 loss) | |
I0430 15:15:50.581513 15443 solver.cpp:406] Test net output #138: loss3/loss14 = 0.00472316 (* 0.0909091 = 0.000429379 loss) | |
I0430 15:15:50.581527 15443 solver.cpp:406] Test net output #139: loss3/loss15 = 0.00263749 (* 0.0909091 = 0.000239771 loss) | |
I0430 15:15:50.581540 15443 solver.cpp:406] Test net output #140: loss3/loss16 = 0.00149442 (* 0.0909091 = 0.000135857 loss) | |
I0430 15:15:50.581554 15443 solver.cpp:406] Test net output #141: loss3/loss17 = 0.000606078 (* 0.0909091 = 5.5098e-05 loss) | |
I0430 15:15:50.581568 15443 solver.cpp:406] Test net output #142: loss3/loss18 = 0.000248813 (* 0.0909091 = 2.26194e-05 loss) | |
I0430 15:15:50.581581 15443 solver.cpp:406] Test net output #143: loss3/loss19 = 0.000131917 (* 0.0909091 = 1.19924e-05 loss) | |
I0430 15:15:50.581594 15443 solver.cpp:406] Test net output #144: loss3/loss20 = 5.70821e-05 (* 0.0909091 = 5.18928e-06 loss) | |
I0430 15:15:50.581609 15443 solver.cpp:406] Test net output #145: loss3/loss21 = 3.54222e-05 (* 0.0909091 = 3.2202e-06 loss) | |
I0430 15:15:50.581622 15443 solver.cpp:406] Test net output #146: loss3/loss22 = 2.4917e-05 (* 0.0909091 = 2.26518e-06 loss) | |
I0430 15:15:50.581634 15443 solver.cpp:406] Test net output #147: total_accuracy = 0.611 | |
I0430 15:15:50.581645 15443 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.581 | |
I0430 15:15:50.581656 15443 solver.cpp:406] Test net output #149: total_confidence = 0.543636 | |
I0430 15:15:50.581677 15443 solver.cpp:406] Test net output #150: total_confidence_not_rec = 0.52445 | |
I0430 15:15:50.581691 15443 solver.cpp:338] Iteration 5000, Testing net (#1) | |
I0430 15:17:58.263010 15443 solver.cpp:393] Test loss: 3.19561 | |
I0430 15:17:58.263161 15443 solver.cpp:406] Test net output #0: loss1/accuracy = 0.597225 | |
I0430 15:17:58.263190 15443 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.78 | |
I0430 15:17:58.263212 15443 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.676 | |
I0430 15:17:58.263234 15443 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.545 | |
I0430 15:17:58.263257 15443 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.539 | |
I0430 15:17:58.263278 15443 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.559 | |
I0430 15:17:58.263298 15443 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.636 | |
I0430 15:17:58.263324 15443 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.751 | |
I0430 15:17:58.263346 15443 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.851 | |
I0430 15:17:58.263368 15443 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.907 | |
I0430 15:17:58.263388 15443 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.916 | |
I0430 15:17:58.263409 15443 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.936 | |
I0430 15:17:58.263430 15443 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.938 | |
I0430 15:17:58.263453 15443 solver.cpp:406] Test net output #13: loss1/accuracy13 = 0.953 | |
I0430 15:17:58.263496 15443 solver.cpp:406] Test net output #14: loss1/accuracy14 = 0.96 | |
I0430 15:17:58.263523 15443 solver.cpp:406] Test net output #15: loss1/accuracy15 = 0.97 | |
I0430 15:17:58.263545 15443 solver.cpp:406] Test net output #16: loss1/accuracy16 = 0.978 | |
I0430 15:17:58.263566 15443 solver.cpp:406] Test net output #17: loss1/accuracy17 = 0.99 | |
I0430 15:17:58.263588 15443 solver.cpp:406] Test net output #18: loss1/accuracy18 = 0.995 | |
I0430 15:17:58.263609 15443 solver.cpp:406] Test net output #19: loss1/accuracy19 = 0.998 | |
I0430 15:17:58.263631 15443 solver.cpp:406] Test net output #20: loss1/accuracy20 = 0.998 | |
I0430 15:17:58.263650 15443 solver.cpp:406] Test net output #21: loss1/accuracy21 = 0.999 | |
I0430 15:17:58.263672 15443 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1 | |
I0430 15:17:58.263694 15443 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.859275 | |
I0430 15:17:58.263715 15443 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.820089 | |
I0430 15:17:58.263742 15443 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.32696 (* 0.3 = 0.398089 loss) | |
I0430 15:17:58.263770 15443 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.47165 (* 0.3 = 0.141495 loss) | |
I0430 15:17:58.263795 15443 solver.cpp:406] Test net output #27: loss1/loss01 = 0.815035 (* 0.0272727 = 0.0222282 loss) | |
I0430 15:17:58.263821 15443 solver.cpp:406] Test net output #28: loss1/loss02 = 1.14072 (* 0.0272727 = 0.0311104 loss) | |
I0430 15:17:58.263847 15443 solver.cpp:406] Test net output #29: loss1/loss03 = 1.47704 (* 0.0272727 = 0.0402828 loss) | |
I0430 15:17:58.263873 15443 solver.cpp:406] Test net output #30: loss1/loss04 = 1.49561 (* 0.0272727 = 0.0407893 loss) | |
I0430 15:17:58.263900 15443 solver.cpp:406] Test net output #31: loss1/loss05 = 1.40005 (* 0.0272727 = 0.0381833 loss) | |
I0430 15:17:58.263923 15443 solver.cpp:406] Test net output #32: loss1/loss06 = 1.11048 (* 0.0272727 = 0.0302857 loss) | |
I0430 15:17:58.263949 15443 solver.cpp:406] Test net output #33: loss1/loss07 = 0.78378 (* 0.0272727 = 0.0213758 loss) | |
I0430 15:17:58.263974 15443 solver.cpp:406] Test net output #34: loss1/loss08 = 0.495332 (* 0.0272727 = 0.0135091 loss) | |
I0430 15:17:58.264000 15443 solver.cpp:406] Test net output #35: loss1/loss09 = 0.338002 (* 0.0272727 = 0.00921823 loss) | |
I0430 15:17:58.264027 15443 solver.cpp:406] Test net output #36: loss1/loss10 = 0.286217 (* 0.0272727 = 0.00780593 loss) | |
I0430 15:17:58.264051 15443 solver.cpp:406] Test net output #37: loss1/loss11 = 0.219056 (* 0.0272727 = 0.00597425 loss) | |
I0430 15:17:58.264077 15443 solver.cpp:406] Test net output #38: loss1/loss12 = 0.209717 (* 0.0272727 = 0.00571956 loss) | |
I0430 15:17:58.264130 15443 solver.cpp:406] Test net output #39: loss1/loss13 = 0.17017 (* 0.0272727 = 0.00464101 loss) | |
I0430 15:17:58.264158 15443 solver.cpp:406] Test net output #40: loss1/loss14 = 0.146518 (* 0.0272727 = 0.00399593 loss) | |
I0430 15:17:58.264190 15443 solver.cpp:406] Test net output #41: loss1/loss15 = 0.135272 (* 0.0272727 = 0.00368923 loss) | |
I0430 15:17:58.264217 15443 solver.cpp:406] Test net output #42: loss1/loss16 = 0.0882377 (* 0.0272727 = 0.00240648 loss) | |
I0430 15:17:58.264245 15443 solver.cpp:406] Test net output #43: loss1/loss17 = 0.0458246 (* 0.0272727 = 0.00124976 loss) | |
I0430 15:17:58.264273 15443 solver.cpp:406] Test net output #44: loss1/loss18 = 0.0257246 (* 0.0272727 = 0.000701579 loss) | |
I0430 15:17:58.264300 15443 solver.cpp:406] Test net output #45: loss1/loss19 = 0.0137175 (* 0.0272727 = 0.000374113 loss) | |
I0430 15:17:58.264328 15443 solver.cpp:406] Test net output #46: loss1/loss20 = 0.0125937 (* 0.0272727 = 0.000343465 loss) | |
I0430 15:17:58.264353 15443 solver.cpp:406] Test net output #47: loss1/loss21 = 0.00974283 (* 0.0272727 = 0.000265714 loss) | |
I0430 15:17:58.264384 15443 solver.cpp:406] Test net output #48: loss1/loss22 = 2.19144e-05 (* 0.0272727 = 5.97665e-07 loss) | |
I0430 15:17:58.264407 15443 solver.cpp:406] Test net output #49: loss2/accuracy = 0.686872 | |
I0430 15:17:58.264430 15443 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.839 | |
I0430 15:17:58.264451 15443 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.784 | |
I0430 15:17:58.264472 15443 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.686 | |
I0430 15:17:58.264493 15443 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.606 | |
I0430 15:17:58.264514 15443 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.621 | |
I0430 15:17:58.264536 15443 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.686 | |
I0430 15:17:58.264557 15443 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.784 | |
I0430 15:17:58.264577 15443 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.853 | |
I0430 15:17:58.264600 15443 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.903 | |
I0430 15:17:58.264619 15443 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.924 | |
I0430 15:17:58.264641 15443 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.939 | |
I0430 15:17:58.264662 15443 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.94 | |
I0430 15:17:58.264683 15443 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.954 | |
I0430 15:17:58.264703 15443 solver.cpp:406] Test net output #63: loss2/accuracy14 = 0.963 | |
I0430 15:17:58.264724 15443 solver.cpp:406] Test net output #64: loss2/accuracy15 = 0.971 | |
I0430 15:17:58.264745 15443 solver.cpp:406] Test net output #65: loss2/accuracy16 = 0.978 | |
I0430 15:17:58.264765 15443 solver.cpp:406] Test net output #66: loss2/accuracy17 = 0.99 | |
I0430 15:17:58.264786 15443 solver.cpp:406] Test net output #67: loss2/accuracy18 = 0.995 | |
I0430 15:17:58.264808 15443 solver.cpp:406] Test net output #68: loss2/accuracy19 = 0.998 | |
I0430 15:17:58.264828 15443 solver.cpp:406] Test net output #69: loss2/accuracy20 = 0.998 | |
I0430 15:17:58.264849 15443 solver.cpp:406] Test net output #70: loss2/accuracy21 = 0.999 | |
I0430 15:17:58.264871 15443 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1 | |
I0430 15:17:58.264891 15443 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.886183 | |
I0430 15:17:58.264912 15443 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.86289 | |
I0430 15:17:58.264937 15443 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 1.06699 (* 0.3 = 0.320098 loss) | |
I0430 15:17:58.264963 15443 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.389985 (* 0.3 = 0.116996 loss) | |
I0430 15:17:58.264988 15443 solver.cpp:406] Test net output #76: loss2/loss01 = 0.6697 (* 0.0272727 = 0.0182646 loss) | |
I0430 15:17:58.265014 15443 solver.cpp:406] Test net output #77: loss2/loss02 = 0.808616 (* 0.0272727 = 0.0220532 loss) | |
I0430 15:17:58.265058 15443 solver.cpp:406] Test net output #78: loss2/loss03 = 1.11425 (* 0.0272727 = 0.0303886 loss) | |
I0430 15:17:58.265084 15443 solver.cpp:406] Test net output #79: loss2/loss04 = 1.26093 (* 0.0272727 = 0.0343891 loss) | |
I0430 15:17:58.265110 15443 solver.cpp:406] Test net output #80: loss2/loss05 = 1.21432 (* 0.0272727 = 0.0331178 loss) | |
I0430 15:17:58.265135 15443 solver.cpp:406] Test net output #81: loss2/loss06 = 0.9755 (* 0.0272727 = 0.0266045 loss) | |
I0430 15:17:58.265159 15443 solver.cpp:406] Test net output #82: loss2/loss07 = 0.699259 (* 0.0272727 = 0.0190707 loss) | |
I0430 15:17:58.265185 15443 solver.cpp:406] Test net output #83: loss2/loss08 = 0.487706 (* 0.0272727 = 0.0133011 loss) | |
I0430 15:17:58.265210 15443 solver.cpp:406] Test net output #84: loss2/loss09 = 0.337392 (* 0.0272727 = 0.0092016 loss) | |
I0430 15:17:58.265240 15443 solver.cpp:406] Test net output #85: loss2/loss10 = 0.283476 (* 0.0272727 = 0.00773117 loss) | |
I0430 15:17:58.265266 15443 solver.cpp:406] Test net output #86: loss2/loss11 = 0.221385 (* 0.0272727 = 0.00603778 loss) | |
I0430 15:17:58.265291 15443 solver.cpp:406] Test net output #87: loss2/loss12 = 0.20389 (* 0.0272727 = 0.00556063 loss) | |
I0430 15:17:58.265316 15443 solver.cpp:406] Test net output #88: loss2/loss13 = 0.167701 (* 0.0272727 = 0.00457367 loss) | |
I0430 15:17:58.265341 15443 solver.cpp:406] Test net output #89: loss2/loss14 = 0.141342 (* 0.0272727 = 0.00385477 loss) | |
I0430 15:17:58.265365 15443 solver.cpp:406] Test net output #90: loss2/loss15 = 0.133283 (* 0.0272727 = 0.00363498 loss) | |
I0430 15:17:58.265390 15443 solver.cpp:406] Test net output #91: loss2/loss16 = 0.0918027 (* 0.0272727 = 0.00250371 loss) | |
I0430 15:17:58.265419 15443 solver.cpp:406] Test net output #92: loss2/loss17 = 0.0484734 (* 0.0272727 = 0.001322 loss) | |
I0430 15:17:58.265446 15443 solver.cpp:406] Test net output #93: loss2/loss18 = 0.0256059 (* 0.0272727 = 0.000698343 loss) | |
I0430 15:17:58.265471 15443 solver.cpp:406] Test net output #94: loss2/loss19 = 0.0139094 (* 0.0272727 = 0.000379348 loss) | |
I0430 15:17:58.265496 15443 solver.cpp:406] Test net output #95: loss2/loss20 = 0.0133303 (* 0.0272727 = 0.000363554 loss) | |
I0430 15:17:58.265522 15443 solver.cpp:406] Test net output #96: loss2/loss21 = 0.00807448 (* 0.0272727 = 0.000220213 loss) | |
I0430 15:17:58.265547 15443 solver.cpp:406] Test net output #97: loss2/loss22 = 7.5747e-05 (* 0.0272727 = 2.06583e-06 loss) | |
I0430 15:17:58.265568 15443 solver.cpp:406] Test net output #98: loss3/accuracy = 0.786415 | |
I0430 15:17:58.265589 15443 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.855 | |
I0430 15:17:58.265610 15443 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.832 | |
I0430 15:17:58.265630 15443 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.798 | |
I0430 15:17:58.265650 15443 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.791 | |
I0430 15:17:58.265671 15443 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.776 | |
I0430 15:17:58.265692 15443 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.815 | |
I0430 15:17:58.265713 15443 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.83 | |
I0430 15:17:58.265733 15443 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.878 | |
I0430 15:17:58.265754 15443 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.911 | |
I0430 15:17:58.265775 15443 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.922 | |
I0430 15:17:58.265794 15443 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.941 | |
I0430 15:17:58.265815 15443 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.94 | |
I0430 15:17:58.265836 15443 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.956 | |
I0430 15:17:58.265857 15443 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.966 | |
I0430 15:17:58.265877 15443 solver.cpp:406] Test net output #113: loss3/accuracy15 = 0.973 | |
I0430 15:17:58.265897 15443 solver.cpp:406] Test net output #114: loss3/accuracy16 = 0.98 | |
I0430 15:17:58.265934 15443 solver.cpp:406] Test net output #115: loss3/accuracy17 = 0.99 | |
I0430 15:17:58.265957 15443 solver.cpp:406] Test net output #116: loss3/accuracy18 = 0.995 | |
I0430 15:17:58.265979 15443 solver.cpp:406] Test net output #117: loss3/accuracy19 = 0.998 | |
I0430 15:17:58.266000 15443 solver.cpp:406] Test net output #118: loss3/accuracy20 = 0.998 | |
I0430 15:17:58.266021 15443 solver.cpp:406] Test net output #119: loss3/accuracy21 = 0.999 | |
I0430 15:17:58.266041 15443 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1 | |
I0430 15:17:58.266060 15443 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.916819 | |
I0430 15:17:58.266082 15443 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.891566 | |
I0430 15:17:58.266106 15443 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.78641 (* 1 = 0.78641 loss) | |
I0430 15:17:58.266131 15443 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.302019 (* 1 = 0.302019 loss) | |
I0430 15:17:58.266157 15443 solver.cpp:406] Test net output #125: loss3/loss01 = 0.579186 (* 0.0909091 = 0.0526533 loss) | |
I0430 15:17:58.266182 15443 solver.cpp:406] Test net output #126: loss3/loss02 = 0.635074 (* 0.0909091 = 0.057734 loss) | |
I0430 15:17:58.266207 15443 solver.cpp:406] Test net output #127: loss3/loss03 = 0.728691 (* 0.0909091 = 0.0662446 loss) | |
I0430 15:17:58.266233 15443 solver.cpp:406] Test net output #128: loss3/loss04 = 0.745337 (* 0.0909091 = 0.0677579 loss) | |
I0430 15:17:58.266258 15443 solver.cpp:406] Test net output #129: loss3/loss05 = 0.798457 (* 0.0909091 = 0.072587 loss) | |
I0430 15:17:58.266288 15443 solver.cpp:406] Test net output #130: loss3/loss06 = 0.658203 (* 0.0909091 = 0.0598366 loss) | |
I0430 15:17:58.266314 15443 solver.cpp:406] Test net output #131: loss3/loss07 = 0.570369 (* 0.0909091 = 0.0518518 loss) | |
I0430 15:17:58.266340 15443 solver.cpp:406] Test net output #132: loss3/loss08 = 0.401231 (* 0.0909091 = 0.0364755 loss) | |
I0430 15:17:58.266365 15443 solver.cpp:406] Test net output #133: loss3/loss09 = 0.295147 (* 0.0909091 = 0.0268316 loss) | |
I0430 15:17:58.266391 15443 solver.cpp:406] Test net output #134: loss3/loss10 = 0.263034 (* 0.0909091 = 0.0239122 loss) | |
I0430 15:17:58.266415 15443 solver.cpp:406] Test net output #135: loss3/loss11 = 0.205344 (* 0.0909091 = 0.0186676 loss) | |
I0430 15:17:58.266440 15443 solver.cpp:406] Test net output #136: loss3/loss12 = 0.18916 (* 0.0909091 = 0.0171963 loss) | |
I0430 15:17:58.266466 15443 solver.cpp:406] Test net output #137: loss3/loss13 = 0.154744 (* 0.0909091 = 0.0140676 loss) | |
I0430 15:17:58.266497 15443 solver.cpp:406] Test net output #138: loss3/loss14 = 0.127376 (* 0.0909091 = 0.0115796 loss) | |
I0430 15:17:58.266521 15443 solver.cpp:406] Test net output #139: loss3/loss15 = 0.119539 (* 0.0909091 = 0.0108671 loss) | |
I0430 15:17:58.266547 15443 solver.cpp:406] Test net output #140: loss3/loss16 = 0.0725606 (* 0.0909091 = 0.00659642 loss) | |
I0430 15:17:58.266574 15443 solver.cpp:406] Test net output #141: loss3/loss17 = 0.0411278 (* 0.0909091 = 0.00373889 loss) | |
I0430 15:17:58.266598 15443 solver.cpp:406] Test net output #142: loss3/loss18 = 0.020414 (* 0.0909091 = 0.00185582 loss) | |
I0430 15:17:58.266625 15443 solver.cpp:406] Test net output #143: loss3/loss19 = 0.0113839 (* 0.0909091 = 0.0010349 loss) | |
I0430 15:17:58.266652 15443 solver.cpp:406] Test net output #144: loss3/loss20 = 0.0108735 (* 0.0909091 = 0.000988501 loss) | |
I0430 15:17:58.266677 15443 solver.cpp:406] Test net output #145: loss3/loss21 = 0.00661369 (* 0.0909091 = 0.000601245 loss) | |
I0430 15:17:58.266700 15443 solver.cpp:406] Test net output #146: loss3/loss22 = 7.02608e-05 (* 0.0909091 = 6.38735e-06 loss) | |
I0430 15:17:58.266717 15443 solver.cpp:406] Test net output #147: total_accuracy = 0.511 | |
I0430 15:17:58.266736 15443 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.506 | |
I0430 15:17:58.266754 15443 solver.cpp:406] Test net output #149: total_confidence = 0.468388 | |
I0430 15:17:58.266793 15443 solver.cpp:406] Test net output #150: total_confidence_not_rec = 0.465508 | |
I0430 15:17:58.645957 15443 solver.cpp:229] Iteration 5000, loss = 3.61654 | |
I0430 15:17:58.646045 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.533333 | |
I0430 15:17:58.646075 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875 | |
I0430 15:17:58.646096 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625 | |
I0430 15:17:58.646119 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0430 15:17:58.646142 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.75 | |
I0430 15:17:58.646165 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0430 15:17:58.646188 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0430 15:17:58.646210 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625 | |
I0430 15:17:58.646232 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75 | |
I0430 15:17:58.646256 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0430 15:17:58.646277 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0430 15:17:58.646297 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0430 15:17:58.646322 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0430 15:17:58.646345 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0430 15:17:58.646368 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 15:17:58.646391 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 15:17:58.646412 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 15:17:58.646435 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 15:17:58.646458 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 15:17:58.646481 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 15:17:58.646502 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 15:17:58.646524 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 15:17:58.646546 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 15:17:58.646572 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.846591 | |
I0430 15:17:58.646595 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.822222 | |
I0430 15:17:58.646625 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.46042 (* 0.3 = 0.438127 loss) | |
I0430 15:17:58.646653 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.440553 (* 0.3 = 0.132166 loss) | |
I0430 15:17:58.646682 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.52312 (* 0.0272727 = 0.0142669 loss) | |
I0430 15:17:58.646713 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.55761 (* 0.0272727 = 0.0424802 loss) | |
I0430 15:17:58.646742 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.33071 (* 0.0272727 = 0.036292 loss) | |
I0430 15:17:58.646770 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.46787 (* 0.0272727 = 0.0400328 loss) | |
I0430 15:17:58.646798 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.76317 (* 0.0272727 = 0.0480864 loss) | |
I0430 15:17:58.646826 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.37607 (* 0.0272727 = 0.0375292 loss) | |
I0430 15:17:58.646852 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 0.903277 (* 0.0272727 = 0.0246348 loss) | |
I0430 15:17:58.646880 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.682677 (* 0.0272727 = 0.0186185 loss) | |
I0430 15:17:58.646908 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.052211 (* 0.0272727 = 0.00142394 loss) | |
I0430 15:17:58.646936 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00301113 (* 0.0272727 = 8.21218e-05 loss) | |
I0430 15:17:58.646963 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.000112475 (* 0.0272727 = 3.06749e-06 loss) | |
I0430 15:17:58.647035 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 1.68095e-05 (* 0.0272727 = 4.58442e-07 loss) | |
I0430 15:17:58.647068 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 7.15257e-07 (* 0.0272727 = 1.9507e-08 loss) | |
I0430 15:17:58.647097 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 2.83122e-07 (* 0.0272727 = 7.72152e-09 loss) | |
I0430 15:17:58.647125 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 5.96047e-08 (* 0.0272727 = 1.62558e-09 loss) | |
I0430 15:17:58.647152 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 8.9407e-08 (* 0.0272727 = 2.43837e-09 loss) | |
I0430 15:17:58.647181 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 4.47035e-08 (* 0.0272727 = 1.21919e-09 loss) | |
I0430 15:17:58.647208 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 2.98023e-08 (* 0.0272727 = 8.12791e-10 loss) | |
I0430 15:17:58.647238 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0 (* 0.0272727 = 0 loss) | |
I0430 15:17:58.647264 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0 (* 0.0272727 = 0 loss) | |
I0430 15:17:58.647291 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0 (* 0.0272727 = 0 loss) | |
I0430 15:17:58.647321 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 0 (* 0.0272727 = 0 loss) | |
I0430 15:17:58.647346 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.688889 | |
I0430 15:17:58.647369 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0430 15:17:58.647394 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0430 15:17:58.647418 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75 | |
I0430 15:17:58.647440 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375 | |
I0430 15:17:58.647462 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625 | |
I0430 15:17:58.647511 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75 | |
I0430 15:17:58.647536 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75 | |
I0430 15:17:58.647558 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0430 15:17:58.647581 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0430 15:17:58.647604 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0430 15:17:58.647630 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0430 15:17:58.647652 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0430 15:17:58.647675 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0430 15:17:58.647696 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 15:17:58.647719 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 15:17:58.647742 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 15:17:58.647768 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 15:17:58.647791 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 15:17:58.647814 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 15:17:58.647835 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 15:17:58.647858 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 15:17:58.647879 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 15:17:58.647902 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.903409 | |
I0430 15:17:58.647925 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.888889 | |
I0430 15:17:58.647951 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.991917 (* 0.3 = 0.297575 loss) | |
I0430 15:17:58.647979 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.307193 (* 0.3 = 0.092158 loss) | |
I0430 15:17:58.648006 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.70339 (* 0.0272727 = 0.0191834 loss) | |
I0430 15:17:58.648053 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 0.993224 (* 0.0272727 = 0.0270879 loss) | |
I0430 15:17:58.648082 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.01602 (* 0.0272727 = 0.0277097 loss) | |
I0430 15:17:58.648108 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.28351 (* 0.0272727 = 0.0350049 loss) | |
I0430 15:17:58.648136 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.25284 (* 0.0272727 = 0.0341684 loss) | |
I0430 15:17:58.648164 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.03143 (* 0.0272727 = 0.02813 loss) | |
I0430 15:17:58.648190 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 0.728831 (* 0.0272727 = 0.0198772 loss) | |
I0430 15:17:58.648216 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.376097 (* 0.0272727 = 0.0102572 loss) | |
I0430 15:17:58.648244 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0196846 (* 0.0272727 = 0.000536854 loss) | |
I0430 15:17:58.648270 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.0012526 (* 0.0272727 = 3.41618e-05 loss) | |
I0430 15:17:58.648298 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 3.15706e-05 (* 0.0272727 = 8.61016e-07 loss) | |
I0430 15:17:58.648325 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 5.4986e-06 (* 0.0272727 = 1.49962e-07 loss) | |
I0430 15:17:58.648351 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 1.80305e-06 (* 0.0272727 = 4.91741e-08 loss) | |
I0430 15:17:58.648380 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 5.96047e-07 (* 0.0272727 = 1.62558e-08 loss) | |
I0430 15:17:58.648406 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 4.47035e-07 (* 0.0272727 = 1.21919e-08 loss) | |
I0430 15:17:58.648433 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 1.63913e-07 (* 0.0272727 = 4.47035e-09 loss) | |
I0430 15:17:58.648460 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 4.32134e-07 (* 0.0272727 = 1.17855e-08 loss) | |
I0430 15:17:58.648488 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 9.68579e-07 (* 0.0272727 = 2.64158e-08 loss) | |
I0430 15:17:58.648514 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 3.27826e-07 (* 0.0272727 = 8.94071e-09 loss) | |
I0430 15:17:58.648541 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 3.57628e-07 (* 0.0272727 = 9.7535e-09 loss) | |
I0430 15:17:58.648568 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 1.04308e-07 (* 0.0272727 = 2.84477e-09 loss) | |
I0430 15:17:58.648596 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 4.47035e-08 (* 0.0272727 = 1.21919e-09 loss) | |
I0430 15:17:58.648619 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.8 | |
I0430 15:17:58.648641 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0430 15:17:58.648668 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0430 15:17:58.648691 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0430 15:17:58.648713 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0430 15:17:58.648731 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0430 15:17:58.648751 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0430 15:17:58.648773 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0430 15:17:58.648795 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0430 15:17:58.648823 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0430 15:17:58.648845 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0430 15:17:58.648866 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0430 15:17:58.648890 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0430 15:17:58.648911 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0430 15:17:58.648949 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 15:17:58.648973 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 15:17:58.648995 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 15:17:58.649016 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 15:17:58.649039 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 15:17:58.649060 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 15:17:58.649083 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 15:17:58.649103 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 15:17:58.649126 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 15:17:58.649142 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.943182 | |
I0430 15:17:58.649158 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.977778 | |
I0430 15:17:58.649176 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.519827 (* 1 = 0.519827 loss) | |
I0430 15:17:58.649195 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.143736 (* 1 = 0.143736 loss) | |
I0430 15:17:58.649214 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.15155 (* 0.0909091 = 0.0137773 loss) | |
I0430 15:17:58.649232 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.229353 (* 0.0909091 = 0.0208503 loss) | |
I0430 15:17:58.649250 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.47409 (* 0.0909091 = 0.0430991 loss) | |
I0430 15:17:58.649268 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.258984 (* 0.0909091 = 0.023544 loss) | |
I0430 15:17:58.649286 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.71688 (* 0.0909091 = 0.065171 loss) | |
I0430 15:17:58.649305 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.653141 (* 0.0909091 = 0.0593764 loss) | |
I0430 15:17:58.649322 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.469426 (* 0.0909091 = 0.0426751 loss) | |
I0430 15:17:58.649341 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.245262 (* 0.0909091 = 0.0222965 loss) | |
I0430 15:17:58.649359 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00177346 (* 0.0909091 = 0.000161224 loss) | |
I0430 15:17:58.649379 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.000462752 (* 0.0909091 = 4.20683e-05 loss) | |
I0430 15:17:58.649397 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 6.93306e-05 (* 0.0909091 = 6.30278e-06 loss) | |
I0430 15:17:58.649415 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 1.0431e-05 (* 0.0909091 = 9.48272e-07 loss) | |
I0430 15:17:58.649433 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 4.6343e-06 (* 0.0909091 = 4.213e-07 loss) | |
I0430 15:17:58.649452 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 1.93716e-06 (* 0.0909091 = 1.76105e-07 loss) | |
I0430 15:17:58.649471 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 6.70553e-07 (* 0.0909091 = 6.09594e-08 loss) | |
I0430 15:17:58.649488 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 4.02332e-07 (* 0.0909091 = 3.65756e-08 loss) | |
I0430 15:17:58.649507 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 1.07289e-06 (* 0.0909091 = 9.75352e-08 loss) | |
I0430 15:17:58.649524 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 6.55653e-07 (* 0.0909091 = 5.96048e-08 loss) | |
I0430 15:17:58.649543 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 8.34467e-07 (* 0.0909091 = 7.58607e-08 loss) | |
I0430 15:17:58.649560 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 5.0664e-07 (* 0.0909091 = 4.60582e-08 loss) | |
I0430 15:17:58.649579 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 4.61937e-07 (* 0.0909091 = 4.19943e-08 loss) | |
I0430 15:17:58.649596 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 3.27826e-07 (* 0.0909091 = 2.98024e-08 loss) | |
I0430 15:17:58.649633 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.5 | |
I0430 15:17:58.649649 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5 | |
I0430 15:17:58.649663 15443 solver.cpp:245] Train net output #149: total_confidence = 0.445437 | |
I0430 15:17:58.649677 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.469603 | |
I0430 15:17:58.649693 15443 sgd_solver.cpp:106] Iteration 5000, lr = 0.001 | |
I0430 15:21:50.676206 15443 solver.cpp:229] Iteration 5500, loss = 3.8965 | |
I0430 15:21:50.676398 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.392857 | |
I0430 15:21:50.676424 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625 | |
I0430 15:21:50.676443 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.875 | |
I0430 15:21:50.676461 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0430 15:21:50.676481 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375 | |
I0430 15:21:50.676498 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375 | |
I0430 15:21:50.676515 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0430 15:21:50.676532 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0430 15:21:50.676550 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625 | |
I0430 15:21:50.676568 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75 | |
I0430 15:21:50.676585 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.75 | |
I0430 15:21:50.676602 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0430 15:21:50.676620 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0430 15:21:50.676636 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0430 15:21:50.676654 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 15:21:50.676671 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 15:21:50.676688 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 15:21:50.676704 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 15:21:50.676722 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 15:21:50.676738 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 15:21:50.676755 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 15:21:50.676771 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 15:21:50.676789 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 15:21:50.676805 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.801136 | |
I0430 15:21:50.676822 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.625 | |
I0430 15:21:50.676844 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.12254 (* 0.3 = 0.636762 loss) | |
I0430 15:21:50.676865 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.705543 (* 0.3 = 0.211663 loss) | |
I0430 15:21:50.676887 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.882404 (* 0.0272727 = 0.0240656 loss) | |
I0430 15:21:50.676908 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.26807 (* 0.0272727 = 0.0345839 loss) | |
I0430 15:21:50.676929 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 2.36766 (* 0.0272727 = 0.0645726 loss) | |
I0430 15:21:50.676949 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.80844 (* 0.0272727 = 0.0493211 loss) | |
I0430 15:21:50.676970 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.81301 (* 0.0272727 = 0.0494458 loss) | |
I0430 15:21:50.676990 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.62548 (* 0.0272727 = 0.0443313 loss) | |
I0430 15:21:50.677011 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.08721 (* 0.0272727 = 0.0296511 loss) | |
I0430 15:21:50.677031 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 1.07363 (* 0.0272727 = 0.0292808 loss) | |
I0430 15:21:50.677052 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.865581 (* 0.0272727 = 0.0236068 loss) | |
I0430 15:21:50.677073 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 1.28064 (* 0.0272727 = 0.0349266 loss) | |
I0430 15:21:50.677093 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.782639 (* 0.0272727 = 0.0213447 loss) | |
I0430 15:21:50.677114 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 1.03587 (* 0.0272727 = 0.0282509 loss) | |
I0430 15:21:50.677158 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0049016 (* 0.0272727 = 0.00013368 loss) | |
I0430 15:21:50.677181 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00249157 (* 0.0272727 = 6.79518e-05 loss) | |
I0430 15:21:50.677203 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00156408 (* 0.0272727 = 4.26568e-05 loss) | |
I0430 15:21:50.677223 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00058479 (* 0.0272727 = 1.59488e-05 loss) | |
I0430 15:21:50.677244 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000378942 (* 0.0272727 = 1.03348e-05 loss) | |
I0430 15:21:50.677266 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000262934 (* 0.0272727 = 7.17092e-06 loss) | |
I0430 15:21:50.677286 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000366324 (* 0.0272727 = 9.99064e-06 loss) | |
I0430 15:21:50.677309 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000158678 (* 0.0272727 = 4.32757e-06 loss) | |
I0430 15:21:50.677332 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00017332 (* 0.0272727 = 4.72691e-06 loss) | |
I0430 15:21:50.677353 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 7.40699e-05 (* 0.0272727 = 2.02009e-06 loss) | |
I0430 15:21:50.677372 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.464286 | |
I0430 15:21:50.677391 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75 | |
I0430 15:21:50.677412 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0430 15:21:50.677429 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5 | |
I0430 15:21:50.677446 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625 | |
I0430 15:21:50.677464 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0430 15:21:50.677481 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375 | |
I0430 15:21:50.677498 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0430 15:21:50.677515 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625 | |
I0430 15:21:50.677532 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.75 | |
I0430 15:21:50.677549 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.75 | |
I0430 15:21:50.677567 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0430 15:21:50.677584 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0430 15:21:50.677602 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0430 15:21:50.677618 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 15:21:50.677634 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 15:21:50.677651 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 15:21:50.677667 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 15:21:50.677685 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 15:21:50.677701 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 15:21:50.677718 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 15:21:50.677734 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 15:21:50.677752 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 15:21:50.677767 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.829545 | |
I0430 15:21:50.677784 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.607143 | |
I0430 15:21:50.677805 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.92812 (* 0.3 = 0.578435 loss) | |
I0430 15:21:50.677825 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.634206 (* 0.3 = 0.190262 loss) | |
I0430 15:21:50.677846 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.883423 (* 0.0272727 = 0.0240933 loss) | |
I0430 15:21:50.677867 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 1.65557 (* 0.0272727 = 0.0451519 loss) | |
I0430 15:21:50.677901 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.54501 (* 0.0272727 = 0.0421367 loss) | |
I0430 15:21:50.677922 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.39617 (* 0.0272727 = 0.0380774 loss) | |
I0430 15:21:50.677943 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.43031 (* 0.0272727 = 0.0390085 loss) | |
I0430 15:21:50.677963 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.67657 (* 0.0272727 = 0.0457247 loss) | |
I0430 15:21:50.677984 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 1.26468 (* 0.0272727 = 0.0344912 loss) | |
I0430 15:21:50.678005 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 1.12576 (* 0.0272727 = 0.0307025 loss) | |
I0430 15:21:50.678025 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 1.23017 (* 0.0272727 = 0.0335501 loss) | |
I0430 15:21:50.678045 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 1.36733 (* 0.0272727 = 0.0372907 loss) | |
I0430 15:21:50.678066 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.569337 (* 0.0272727 = 0.0155274 loss) | |
I0430 15:21:50.678086 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.642433 (* 0.0272727 = 0.0175209 loss) | |
I0430 15:21:50.678107 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.017311 (* 0.0272727 = 0.000472118 loss) | |
I0430 15:21:50.678128 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0151476 (* 0.0272727 = 0.000413117 loss) | |
I0430 15:21:50.678148 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0061051 (* 0.0272727 = 0.000166503 loss) | |
I0430 15:21:50.678169 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00162277 (* 0.0272727 = 4.42575e-05 loss) | |
I0430 15:21:50.678189 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00119232 (* 0.0272727 = 3.25179e-05 loss) | |
I0430 15:21:50.678211 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000767136 (* 0.0272727 = 2.09219e-05 loss) | |
I0430 15:21:50.678232 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000690979 (* 0.0272727 = 1.88449e-05 loss) | |
I0430 15:21:50.678254 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000347042 (* 0.0272727 = 9.46477e-06 loss) | |
I0430 15:21:50.678274 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000310932 (* 0.0272727 = 8.47997e-06 loss) | |
I0430 15:21:50.678295 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 6.42183e-05 (* 0.0272727 = 1.75141e-06 loss) | |
I0430 15:21:50.678313 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.553571 | |
I0430 15:21:50.678330 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0430 15:21:50.678347 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0430 15:21:50.678366 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625 | |
I0430 15:21:50.678385 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625 | |
I0430 15:21:50.678401 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0430 15:21:50.678418 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0430 15:21:50.678436 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0430 15:21:50.678460 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.625 | |
I0430 15:21:50.678478 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75 | |
I0430 15:21:50.678495 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75 | |
I0430 15:21:50.678513 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0430 15:21:50.678529 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0430 15:21:50.678546 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0430 15:21:50.678563 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 15:21:50.678580 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 15:21:50.678609 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 15:21:50.678627 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 15:21:50.678644 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 15:21:50.678661 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 15:21:50.678678 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 15:21:50.678694 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 15:21:50.678711 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 15:21:50.678728 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.857955 | |
I0430 15:21:50.678745 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.732143 | |
I0430 15:21:50.678766 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.54642 (* 1 = 1.54642 loss) | |
I0430 15:21:50.678786 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.509446 (* 1 = 0.509446 loss) | |
I0430 15:21:50.678805 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.519739 (* 0.0909091 = 0.047249 loss) | |
I0430 15:21:50.678827 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.874105 (* 0.0909091 = 0.0794641 loss) | |
I0430 15:21:50.678846 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 1.2792 (* 0.0909091 = 0.116291 loss) | |
I0430 15:21:50.678866 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.9381 (* 0.0909091 = 0.0852818 loss) | |
I0430 15:21:50.678886 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.818807 (* 0.0909091 = 0.074437 loss) | |
I0430 15:21:50.678907 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 1.22095 (* 0.0909091 = 0.110995 loss) | |
I0430 15:21:50.678927 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 1.04271 (* 0.0909091 = 0.0947916 loss) | |
I0430 15:21:50.678947 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.860832 (* 0.0909091 = 0.0782575 loss) | |
I0430 15:21:50.678967 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.892527 (* 0.0909091 = 0.0811388 loss) | |
I0430 15:21:50.678987 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 1.04287 (* 0.0909091 = 0.0948066 loss) | |
I0430 15:21:50.679008 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.551924 (* 0.0909091 = 0.0501749 loss) | |
I0430 15:21:50.679028 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.773882 (* 0.0909091 = 0.0703529 loss) | |
I0430 15:21:50.679049 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0157409 (* 0.0909091 = 0.00143099 loss) | |
I0430 15:21:50.679069 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00986931 (* 0.0909091 = 0.00089721 loss) | |
I0430 15:21:50.679090 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00635223 (* 0.0909091 = 0.000577475 loss) | |
I0430 15:21:50.679111 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00249742 (* 0.0909091 = 0.000227038 loss) | |
I0430 15:21:50.679131 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00181788 (* 0.0909091 = 0.000165262 loss) | |
I0430 15:21:50.679152 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00155968 (* 0.0909091 = 0.000141789 loss) | |
I0430 15:21:50.679172 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00148321 (* 0.0909091 = 0.000134837 loss) | |
I0430 15:21:50.679193 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000921558 (* 0.0909091 = 8.3778e-05 loss) | |
I0430 15:21:50.679213 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000712329 (* 0.0909091 = 6.47572e-05 loss) | |
I0430 15:21:50.679234 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000475449 (* 0.0909091 = 4.32227e-05 loss) | |
I0430 15:21:50.679251 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.25 | |
I0430 15:21:50.679268 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25 | |
I0430 15:21:50.679297 15443 solver.cpp:245] Train net output #149: total_confidence = 0.299184 | |
I0430 15:21:50.679316 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.300691 | |
I0430 15:21:50.679334 15443 sgd_solver.cpp:106] Iteration 5500, lr = 0.001 | |
I0430 15:25:42.672854 15443 solver.cpp:229] Iteration 6000, loss = 3.62512 | |
I0430 15:25:42.673044 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.403226 | |
I0430 15:25:42.673066 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625 | |
I0430 15:25:42.673079 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75 | |
I0430 15:25:42.673092 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5 | |
I0430 15:25:42.673105 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0430 15:25:42.673117 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375 | |
I0430 15:25:42.673130 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0430 15:25:42.673141 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875 | |
I0430 15:25:42.673153 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625 | |
I0430 15:25:42.673166 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75 | |
I0430 15:25:42.673178 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.75 | |
I0430 15:25:42.673190 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.75 | |
I0430 15:25:42.673202 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.75 | |
I0430 15:25:42.673214 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0430 15:25:42.673228 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0430 15:25:42.673239 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875 | |
I0430 15:25:42.673251 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875 | |
I0430 15:25:42.673264 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 15:25:42.673276 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 15:25:42.673288 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 15:25:42.673300 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 15:25:42.673315 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 15:25:42.673327 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 15:25:42.673339 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.778409 | |
I0430 15:25:42.673352 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.629032 | |
I0430 15:25:42.673368 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.94299 (* 0.3 = 0.582897 loss) | |
I0430 15:25:42.673383 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.736344 (* 0.3 = 0.220903 loss) | |
I0430 15:25:42.673398 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 1.15654 (* 0.0272727 = 0.0315421 loss) | |
I0430 15:25:42.673413 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.08972 (* 0.0272727 = 0.0297196 loss) | |
I0430 15:25:42.673426 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.87301 (* 0.0272727 = 0.051082 loss) | |
I0430 15:25:42.673441 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.75138 (* 0.0272727 = 0.047765 loss) | |
I0430 15:25:42.673455 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.61777 (* 0.0272727 = 0.044121 loss) | |
I0430 15:25:42.673470 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.1134 (* 0.0272727 = 0.0303654 loss) | |
I0430 15:25:42.673483 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.00276 (* 0.0272727 = 0.0273479 loss) | |
I0430 15:25:42.673497 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 1.17434 (* 0.0272727 = 0.0320275 loss) | |
I0430 15:25:42.673511 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.724626 (* 0.0272727 = 0.0197625 loss) | |
I0430 15:25:42.673526 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.74594 (* 0.0272727 = 0.0203438 loss) | |
I0430 15:25:42.673540 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.719552 (* 0.0272727 = 0.0196241 loss) | |
I0430 15:25:42.673554 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.861342 (* 0.0272727 = 0.0234912 loss) | |
I0430 15:25:42.673588 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.706894 (* 0.0272727 = 0.0192789 loss) | |
I0430 15:25:42.673604 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.683725 (* 0.0272727 = 0.018647 loss) | |
I0430 15:25:42.673619 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.435632 (* 0.0272727 = 0.0118809 loss) | |
I0430 15:25:42.673632 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.620407 (* 0.0272727 = 0.0169202 loss) | |
I0430 15:25:42.673647 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0582398 (* 0.0272727 = 0.00158836 loss) | |
I0430 15:25:42.673662 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.03706 (* 0.0272727 = 0.00101073 loss) | |
I0430 15:25:42.673676 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0151149 (* 0.0272727 = 0.000412225 loss) | |
I0430 15:25:42.673691 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00929637 (* 0.0272727 = 0.000253537 loss) | |
I0430 15:25:42.673705 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00238975 (* 0.0272727 = 6.51749e-05 loss) | |
I0430 15:25:42.673719 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000698622 (* 0.0272727 = 1.90533e-05 loss) | |
I0430 15:25:42.673732 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.451613 | |
I0430 15:25:42.673745 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.375 | |
I0430 15:25:42.673758 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875 | |
I0430 15:25:42.673769 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5 | |
I0430 15:25:42.673781 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5 | |
I0430 15:25:42.673792 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625 | |
I0430 15:25:42.673804 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0430 15:25:42.673817 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75 | |
I0430 15:25:42.673830 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75 | |
I0430 15:25:42.673840 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.75 | |
I0430 15:25:42.673853 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.75 | |
I0430 15:25:42.673864 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.75 | |
I0430 15:25:42.673877 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.75 | |
I0430 15:25:42.673888 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0430 15:25:42.673900 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0430 15:25:42.673913 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875 | |
I0430 15:25:42.673924 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875 | |
I0430 15:25:42.673936 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 15:25:42.673948 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 15:25:42.673959 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 15:25:42.673971 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 15:25:42.673984 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 15:25:42.673995 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 15:25:42.674006 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.801136 | |
I0430 15:25:42.674018 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.596774 | |
I0430 15:25:42.674032 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.09867 (* 0.3 = 0.6296 loss) | |
I0430 15:25:42.674047 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.780108 (* 0.3 = 0.234032 loss) | |
I0430 15:25:42.674065 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 1.84133 (* 0.0272727 = 0.050218 loss) | |
I0430 15:25:42.674079 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 0.656641 (* 0.0272727 = 0.0179084 loss) | |
I0430 15:25:42.674105 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 2.0561 (* 0.0272727 = 0.0560756 loss) | |
I0430 15:25:42.674120 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.91977 (* 0.0272727 = 0.0523574 loss) | |
I0430 15:25:42.674135 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.65249 (* 0.0272727 = 0.045068 loss) | |
I0430 15:25:42.674149 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.3125 (* 0.0272727 = 0.0357954 loss) | |
I0430 15:25:42.674163 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 0.80662 (* 0.0272727 = 0.0219987 loss) | |
I0430 15:25:42.674177 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 1.32948 (* 0.0272727 = 0.0362586 loss) | |
I0430 15:25:42.674191 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.764899 (* 0.0272727 = 0.0208609 loss) | |
I0430 15:25:42.674206 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.744466 (* 0.0272727 = 0.0203036 loss) | |
I0430 15:25:42.674219 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 1.00679 (* 0.0272727 = 0.027458 loss) | |
I0430 15:25:42.674233 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 1.20694 (* 0.0272727 = 0.0329167 loss) | |
I0430 15:25:42.674247 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.523471 (* 0.0272727 = 0.0142765 loss) | |
I0430 15:25:42.674262 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.618047 (* 0.0272727 = 0.0168558 loss) | |
I0430 15:25:42.674275 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.378619 (* 0.0272727 = 0.010326 loss) | |
I0430 15:25:42.674289 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.627388 (* 0.0272727 = 0.0171106 loss) | |
I0430 15:25:42.674304 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0730025 (* 0.0272727 = 0.00199098 loss) | |
I0430 15:25:42.674319 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0624879 (* 0.0272727 = 0.00170422 loss) | |
I0430 15:25:42.674332 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0299584 (* 0.0272727 = 0.000817047 loss) | |
I0430 15:25:42.674347 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.0208182 (* 0.0272727 = 0.000567768 loss) | |
I0430 15:25:42.674361 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00637056 (* 0.0272727 = 0.000173743 loss) | |
I0430 15:25:42.674379 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00274524 (* 0.0272727 = 7.48702e-05 loss) | |
I0430 15:25:42.674392 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.645161 | |
I0430 15:25:42.674406 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75 | |
I0430 15:25:42.674417 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0430 15:25:42.674428 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0430 15:25:42.674440 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625 | |
I0430 15:25:42.674453 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0430 15:25:42.674464 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0430 15:25:42.674476 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0430 15:25:42.674489 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75 | |
I0430 15:25:42.674500 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0430 15:25:42.674512 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75 | |
I0430 15:25:42.674525 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.75 | |
I0430 15:25:42.674537 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.75 | |
I0430 15:25:42.674549 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0430 15:25:42.674561 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0430 15:25:42.674572 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875 | |
I0430 15:25:42.674585 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875 | |
I0430 15:25:42.674609 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 15:25:42.674623 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 15:25:42.674635 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 15:25:42.674648 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 15:25:42.674659 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 15:25:42.674671 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 15:25:42.674684 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.869318 | |
I0430 15:25:42.674695 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.741935 | |
I0430 15:25:42.674710 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.35272 (* 1 = 1.35272 loss) | |
I0430 15:25:42.674723 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.521172 (* 1 = 0.521172 loss) | |
I0430 15:25:42.674738 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.661184 (* 0.0909091 = 0.0601077 loss) | |
I0430 15:25:42.674752 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.26158 (* 0.0909091 = 0.02378 loss) | |
I0430 15:25:42.674765 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.508626 (* 0.0909091 = 0.0462388 loss) | |
I0430 15:25:42.674780 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 1.23738 (* 0.0909091 = 0.112489 loss) | |
I0430 15:25:42.674794 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.604425 (* 0.0909091 = 0.0549477 loss) | |
I0430 15:25:42.674809 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.888143 (* 0.0909091 = 0.0807403 loss) | |
I0430 15:25:42.674823 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.639291 (* 0.0909091 = 0.0581174 loss) | |
I0430 15:25:42.674837 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 1.02459 (* 0.0909091 = 0.0931444 loss) | |
I0430 15:25:42.674851 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.643218 (* 0.0909091 = 0.0584744 loss) | |
I0430 15:25:42.674865 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.846713 (* 0.0909091 = 0.0769739 loss) | |
I0430 15:25:42.674878 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.820949 (* 0.0909091 = 0.0746317 loss) | |
I0430 15:25:42.674893 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 1.06265 (* 0.0909091 = 0.0966046 loss) | |
I0430 15:25:42.674907 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.615152 (* 0.0909091 = 0.0559229 loss) | |
I0430 15:25:42.674921 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.584799 (* 0.0909091 = 0.0531635 loss) | |
I0430 15:25:42.674935 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.32211 (* 0.0909091 = 0.0292828 loss) | |
I0430 15:25:42.674949 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.603521 (* 0.0909091 = 0.0548655 loss) | |
I0430 15:25:42.674964 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0584645 (* 0.0909091 = 0.00531496 loss) | |
I0430 15:25:42.674978 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0261604 (* 0.0909091 = 0.00237822 loss) | |
I0430 15:25:42.674993 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0232147 (* 0.0909091 = 0.00211043 loss) | |
I0430 15:25:42.675006 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00949831 (* 0.0909091 = 0.000863483 loss) | |
I0430 15:25:42.675021 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.0028454 (* 0.0909091 = 0.000258673 loss) | |
I0430 15:25:42.675035 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000491162 (* 0.0909091 = 4.46511e-05 loss) | |
I0430 15:25:42.675047 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.625 | |
I0430 15:25:42.675060 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5 | |
I0430 15:25:42.675071 15443 solver.cpp:245] Train net output #149: total_confidence = 0.328249 | |
I0430 15:25:42.675094 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.387693 | |
I0430 15:25:42.675113 15443 sgd_solver.cpp:106] Iteration 6000, lr = 0.001 | |
I0430 15:26:51.258909 15443 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.0078 > 30) by scale factor 0.999739 | |
I0430 15:29:34.922966 15443 solver.cpp:229] Iteration 6500, loss = 3.74846 | |
I0430 15:29:34.923123 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.490196 | |
I0430 15:29:34.923146 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0430 15:29:34.923158 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75 | |
I0430 15:29:34.923171 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25 | |
I0430 15:29:34.923183 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25 | |
I0430 15:29:34.923197 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.125 | |
I0430 15:29:34.923208 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375 | |
I0430 15:29:34.923220 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875 | |
I0430 15:29:34.923233 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0430 15:29:34.923245 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0430 15:29:34.923257 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0430 15:29:34.923269 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0430 15:29:34.923282 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0430 15:29:34.923295 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0430 15:29:34.923305 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 15:29:34.923321 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 15:29:34.923332 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 15:29:34.923344 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 15:29:34.923357 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 15:29:34.923367 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 15:29:34.923379 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 15:29:34.923391 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 15:29:34.923403 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 15:29:34.923414 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.846591 | |
I0430 15:29:34.923426 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.72549 | |
I0430 15:29:34.923442 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.56919 (* 0.3 = 0.470758 loss) | |
I0430 15:29:34.923457 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.523183 (* 0.3 = 0.156955 loss) | |
I0430 15:29:34.923499 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.676934 (* 0.0272727 = 0.0184618 loss) | |
I0430 15:29:34.923527 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 0.777888 (* 0.0272727 = 0.0212151 loss) | |
I0430 15:29:34.923548 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 2.20266 (* 0.0272727 = 0.0600726 loss) | |
I0430 15:29:34.923569 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.83754 (* 0.0272727 = 0.0501147 loss) | |
I0430 15:29:34.923590 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 2.36463 (* 0.0272727 = 0.0644899 loss) | |
I0430 15:29:34.923611 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.79068 (* 0.0272727 = 0.0488366 loss) | |
I0430 15:29:34.923632 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 0.959543 (* 0.0272727 = 0.0261693 loss) | |
I0430 15:29:34.923653 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.469189 (* 0.0272727 = 0.0127961 loss) | |
I0430 15:29:34.923674 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.414685 (* 0.0272727 = 0.0113096 loss) | |
I0430 15:29:34.923696 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.585736 (* 0.0272727 = 0.0159746 loss) | |
I0430 15:29:34.923717 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.0665621 (* 0.0272727 = 0.00181533 loss) | |
I0430 15:29:34.923738 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0549243 (* 0.0272727 = 0.00149794 loss) | |
I0430 15:29:34.923784 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0303178 (* 0.0272727 = 0.00082685 loss) | |
I0430 15:29:34.923807 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0251946 (* 0.0272727 = 0.000687124 loss) | |
I0430 15:29:34.923830 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0211779 (* 0.0272727 = 0.00057758 loss) | |
I0430 15:29:34.923851 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0199211 (* 0.0272727 = 0.000543301 loss) | |
I0430 15:29:34.923871 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0107862 (* 0.0272727 = 0.000294169 loss) | |
I0430 15:29:34.923892 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0065672 (* 0.0272727 = 0.000179105 loss) | |
I0430 15:29:34.923913 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00391337 (* 0.0272727 = 0.000106728 loss) | |
I0430 15:29:34.923934 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00138896 (* 0.0272727 = 3.78806e-05 loss) | |
I0430 15:29:34.923955 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000807151 (* 0.0272727 = 2.20132e-05 loss) | |
I0430 15:29:34.923976 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 7.96646e-05 (* 0.0272727 = 2.17267e-06 loss) | |
I0430 15:29:34.923995 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.529412 | |
I0430 15:29:34.924013 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.625 | |
I0430 15:29:34.924031 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875 | |
I0430 15:29:34.924048 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375 | |
I0430 15:29:34.924067 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625 | |
I0430 15:29:34.924083 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25 | |
I0430 15:29:34.924100 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5 | |
I0430 15:29:34.924118 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75 | |
I0430 15:29:34.924139 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0430 15:29:34.924156 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0430 15:29:34.924175 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0430 15:29:34.924191 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0430 15:29:34.924208 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0430 15:29:34.924224 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0430 15:29:34.924242 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 15:29:34.924258 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 15:29:34.924275 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 15:29:34.924293 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 15:29:34.924309 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 15:29:34.924326 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 15:29:34.924343 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 15:29:34.924360 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 15:29:34.924381 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 15:29:34.924397 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.857955 | |
I0430 15:29:34.924414 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.803922 | |
I0430 15:29:34.924435 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.36397 (* 0.3 = 0.40919 loss) | |
I0430 15:29:34.924456 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.471151 (* 0.3 = 0.141345 loss) | |
I0430 15:29:34.924481 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 1.14919 (* 0.0272727 = 0.0313416 loss) | |
I0430 15:29:34.924504 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 0.742328 (* 0.0272727 = 0.0202453 loss) | |
I0430 15:29:34.924540 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.75878 (* 0.0272727 = 0.0479667 loss) | |
I0430 15:29:34.924561 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.52534 (* 0.0272727 = 0.0416003 loss) | |
I0430 15:29:34.924582 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.89129 (* 0.0272727 = 0.0515807 loss) | |
I0430 15:29:34.924602 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.57007 (* 0.0272727 = 0.0428202 loss) | |
I0430 15:29:34.924623 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 0.788981 (* 0.0272727 = 0.0215177 loss) | |
I0430 15:29:34.924644 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.593296 (* 0.0272727 = 0.0161808 loss) | |
I0430 15:29:34.924666 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.304109 (* 0.0272727 = 0.00829387 loss) | |
I0430 15:29:34.924687 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.322644 (* 0.0272727 = 0.00879939 loss) | |
I0430 15:29:34.924708 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.145705 (* 0.0272727 = 0.00397377 loss) | |
I0430 15:29:34.924729 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.0762931 (* 0.0272727 = 0.00208072 loss) | |
I0430 15:29:34.924749 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0351061 (* 0.0272727 = 0.00095744 loss) | |
I0430 15:29:34.924770 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0267696 (* 0.0272727 = 0.000730081 loss) | |
I0430 15:29:34.924792 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0277931 (* 0.0272727 = 0.000757993 loss) | |
I0430 15:29:34.924813 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0102544 (* 0.0272727 = 0.000279667 loss) | |
I0430 15:29:34.924834 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00940305 (* 0.0272727 = 0.000256447 loss) | |
I0430 15:29:34.924854 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0104798 (* 0.0272727 = 0.000285813 loss) | |
I0430 15:29:34.924875 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0092532 (* 0.0272727 = 0.00025236 loss) | |
I0430 15:29:34.924896 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00397039 (* 0.0272727 = 0.000108283 loss) | |
I0430 15:29:34.924916 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00206097 (* 0.0272727 = 5.62083e-05 loss) | |
I0430 15:29:34.924937 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000649887 (* 0.0272727 = 1.77242e-05 loss) | |
I0430 15:29:34.924954 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.745098 | |
I0430 15:29:34.924971 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0430 15:29:34.924989 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0430 15:29:34.925006 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75 | |
I0430 15:29:34.925022 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0430 15:29:34.925040 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0430 15:29:34.925056 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625 | |
I0430 15:29:34.925073 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0430 15:29:34.925091 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0430 15:29:34.925108 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0430 15:29:34.925125 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0430 15:29:34.925143 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0430 15:29:34.925158 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0430 15:29:34.925175 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0430 15:29:34.925196 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 15:29:34.925214 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 15:29:34.925230 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 15:29:34.925261 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 15:29:34.925279 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 15:29:34.925297 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 15:29:34.925313 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 15:29:34.925330 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 15:29:34.925348 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 15:29:34.925364 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.926136 | |
I0430 15:29:34.925384 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.862745 | |
I0430 15:29:34.925405 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.901268 (* 1 = 0.901268 loss) | |
I0430 15:29:34.925428 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.346155 (* 1 = 0.346155 loss) | |
I0430 15:29:34.925449 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.346385 (* 0.0909091 = 0.0314895 loss) | |
I0430 15:29:34.925470 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.152448 (* 0.0909091 = 0.013859 loss) | |
I0430 15:29:34.925492 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.933151 (* 0.0909091 = 0.0848319 loss) | |
I0430 15:29:34.925513 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.488397 (* 0.0909091 = 0.0443997 loss) | |
I0430 15:29:34.925534 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.546394 (* 0.0909091 = 0.0496722 loss) | |
I0430 15:29:34.925556 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.882862 (* 0.0909091 = 0.0802602 loss) | |
I0430 15:29:34.925576 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.534811 (* 0.0909091 = 0.0486192 loss) | |
I0430 15:29:34.925597 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.68303 (* 0.0909091 = 0.0620936 loss) | |
I0430 15:29:34.925618 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.323063 (* 0.0909091 = 0.0293693 loss) | |
I0430 15:29:34.925639 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.286695 (* 0.0909091 = 0.0260631 loss) | |
I0430 15:29:34.925659 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.0856163 (* 0.0909091 = 0.0077833 loss) | |
I0430 15:29:34.925680 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.0421185 (* 0.0909091 = 0.00382896 loss) | |
I0430 15:29:34.925701 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0337533 (* 0.0909091 = 0.00306848 loss) | |
I0430 15:29:34.925722 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.0127291 (* 0.0909091 = 0.00115719 loss) | |
I0430 15:29:34.925743 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00850255 (* 0.0909091 = 0.000772959 loss) | |
I0430 15:29:34.925763 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.0039001 (* 0.0909091 = 0.000354554 loss) | |
I0430 15:29:34.925784 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00317191 (* 0.0909091 = 0.000288355 loss) | |
I0430 15:29:34.925806 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000821322 (* 0.0909091 = 7.46657e-05 loss) | |
I0430 15:29:34.925827 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000398796 (* 0.0909091 = 3.62541e-05 loss) | |
I0430 15:29:34.925848 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000148771 (* 0.0909091 = 1.35247e-05 loss) | |
I0430 15:29:34.925868 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 2.93512e-05 (* 0.0909091 = 2.66829e-06 loss) | |
I0430 15:29:34.925889 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 1.37247e-05 (* 0.0909091 = 1.2477e-06 loss) | |
I0430 15:29:34.925905 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.625 | |
I0430 15:29:34.925922 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625 | |
I0430 15:29:34.925952 15443 solver.cpp:245] Train net output #149: total_confidence = 0.598673 | |
I0430 15:29:34.925971 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.53506 | |
I0430 15:29:34.925989 15443 sgd_solver.cpp:106] Iteration 6500, lr = 0.001 | |
I0430 15:33:26.970994 15443 solver.cpp:229] Iteration 7000, loss = 3.84187 | |
I0430 15:33:26.971181 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.472727 | |
I0430 15:33:26.971204 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0430 15:33:26.971216 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0430 15:33:26.971228 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625 | |
I0430 15:33:26.971240 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375 | |
I0430 15:33:26.971253 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375 | |
I0430 15:33:26.971266 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75 | |
I0430 15:33:26.971277 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0430 15:33:26.971289 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0430 15:33:26.971302 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0430 15:33:26.971317 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0430 15:33:26.971328 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0430 15:33:26.971340 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0430 15:33:26.971354 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0430 15:33:26.971365 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0430 15:33:26.971376 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875 | |
I0430 15:33:26.971388 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875 | |
I0430 15:33:26.971400 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875 | |
I0430 15:33:26.971412 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 0.875 | |
I0430 15:33:26.971424 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 15:33:26.971436 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 15:33:26.971448 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 15:33:26.971459 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 15:33:26.971503 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.829545 | |
I0430 15:33:26.971521 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.581818 | |
I0430 15:33:26.971539 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.2102 (* 0.3 = 0.66306 loss) | |
I0430 15:33:26.971554 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.705618 (* 0.3 = 0.211685 loss) | |
I0430 15:33:26.971568 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.660766 (* 0.0272727 = 0.0180209 loss) | |
I0430 15:33:26.971582 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.72826 (* 0.0272727 = 0.0471343 loss) | |
I0430 15:33:26.971596 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.71299 (* 0.0272727 = 0.0467179 loss) | |
I0430 15:33:26.971609 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 2.29627 (* 0.0272727 = 0.0626256 loss) | |
I0430 15:33:26.971623 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.64561 (* 0.0272727 = 0.0448802 loss) | |
I0430 15:33:26.971637 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 0.872332 (* 0.0272727 = 0.0237909 loss) | |
I0430 15:33:26.971652 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.00321 (* 0.0272727 = 0.0273602 loss) | |
I0430 15:33:26.971665 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.3831 (* 0.0272727 = 0.0104482 loss) | |
I0430 15:33:26.971679 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.302024 (* 0.0272727 = 0.00823702 loss) | |
I0430 15:33:26.971693 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.307301 (* 0.0272727 = 0.00838093 loss) | |
I0430 15:33:26.971707 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.554928 (* 0.0272727 = 0.0151344 loss) | |
I0430 15:33:26.971721 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.355069 (* 0.0272727 = 0.00968371 loss) | |
I0430 15:33:26.971757 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.499182 (* 0.0272727 = 0.0136141 loss) | |
I0430 15:33:26.971772 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 1.23368 (* 0.0272727 = 0.0336459 loss) | |
I0430 15:33:26.971786 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.658295 (* 0.0272727 = 0.0179535 loss) | |
I0430 15:33:26.971801 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.687728 (* 0.0272727 = 0.0187562 loss) | |
I0430 15:33:26.971814 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.942513 (* 0.0272727 = 0.0257049 loss) | |
I0430 15:33:26.971827 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.956821 (* 0.0272727 = 0.0260951 loss) | |
I0430 15:33:26.971842 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00125978 (* 0.0272727 = 3.43577e-05 loss) | |
I0430 15:33:26.971855 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000108744 (* 0.0272727 = 2.96574e-06 loss) | |
I0430 15:33:26.971869 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 9.76064e-06 (* 0.0272727 = 2.66199e-07 loss) | |
I0430 15:33:26.971884 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 1.2219e-06 (* 0.0272727 = 3.33246e-08 loss) | |
I0430 15:33:26.971895 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.472727 | |
I0430 15:33:26.971907 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.625 | |
I0430 15:33:26.971918 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625 | |
I0430 15:33:26.971930 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0430 15:33:26.971942 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5 | |
I0430 15:33:26.971953 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375 | |
I0430 15:33:26.971966 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875 | |
I0430 15:33:26.971976 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75 | |
I0430 15:33:26.971988 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0430 15:33:26.972000 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0430 15:33:26.972012 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0430 15:33:26.972023 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0430 15:33:26.972035 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0430 15:33:26.972046 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0430 15:33:26.972059 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0430 15:33:26.972069 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875 | |
I0430 15:33:26.972081 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875 | |
I0430 15:33:26.972093 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875 | |
I0430 15:33:26.972105 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 0.875 | |
I0430 15:33:26.972116 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 15:33:26.972127 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 15:33:26.972138 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 15:33:26.972149 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 15:33:26.972162 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.835227 | |
I0430 15:33:26.972172 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.654545 | |
I0430 15:33:26.972190 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.85893 (* 0.3 = 0.557678 loss) | |
I0430 15:33:26.972204 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.589304 (* 0.3 = 0.176791 loss) | |
I0430 15:33:26.972218 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 1.18345 (* 0.0272727 = 0.0322758 loss) | |
I0430 15:33:26.972232 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 1.30429 (* 0.0272727 = 0.0355714 loss) | |
I0430 15:33:26.972257 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.17283 (* 0.0272727 = 0.0319863 loss) | |
I0430 15:33:26.972272 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.43363 (* 0.0272727 = 0.0390989 loss) | |
I0430 15:33:26.972286 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 2.21597 (* 0.0272727 = 0.0604356 loss) | |
I0430 15:33:26.972301 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 0.692274 (* 0.0272727 = 0.0188802 loss) | |
I0430 15:33:26.972314 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 0.87706 (* 0.0272727 = 0.0239198 loss) | |
I0430 15:33:26.972328 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.426842 (* 0.0272727 = 0.0116412 loss) | |
I0430 15:33:26.972342 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.363397 (* 0.0272727 = 0.00991082 loss) | |
I0430 15:33:26.972355 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.341295 (* 0.0272727 = 0.00930805 loss) | |
I0430 15:33:26.972371 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.481222 (* 0.0272727 = 0.0131242 loss) | |
I0430 15:33:26.972386 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.342877 (* 0.0272727 = 0.00935119 loss) | |
I0430 15:33:26.972399 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.359633 (* 0.0272727 = 0.00980819 loss) | |
I0430 15:33:26.972414 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.854906 (* 0.0272727 = 0.0233156 loss) | |
I0430 15:33:26.972427 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.527654 (* 0.0272727 = 0.0143906 loss) | |
I0430 15:33:26.972441 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.470386 (* 0.0272727 = 0.0128287 loss) | |
I0430 15:33:26.972455 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.605872 (* 0.0272727 = 0.0165238 loss) | |
I0430 15:33:26.972468 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.697269 (* 0.0272727 = 0.0190164 loss) | |
I0430 15:33:26.972481 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0227185 (* 0.0272727 = 0.000619595 loss) | |
I0430 15:33:26.972496 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00698737 (* 0.0272727 = 0.000190565 loss) | |
I0430 15:33:26.972509 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00227735 (* 0.0272727 = 6.21095e-05 loss) | |
I0430 15:33:26.972523 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000206507 (* 0.0272727 = 5.63201e-06 loss) | |
I0430 15:33:26.972535 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.654545 | |
I0430 15:33:26.972548 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0430 15:33:26.972559 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0430 15:33:26.972570 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0430 15:33:26.972582 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0430 15:33:26.972594 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0430 15:33:26.972605 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0430 15:33:26.972617 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0430 15:33:26.972625 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0430 15:33:26.972633 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0430 15:33:26.972640 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0430 15:33:26.972648 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0430 15:33:26.972656 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0430 15:33:26.972662 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0430 15:33:26.972671 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0430 15:33:26.972677 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875 | |
I0430 15:33:26.972694 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875 | |
I0430 15:33:26.972703 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.875 | |
I0430 15:33:26.972712 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 0.875 | |
I0430 15:33:26.972719 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 15:33:26.972726 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 15:33:26.972734 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 15:33:26.972741 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 15:33:26.972748 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.892045 | |
I0430 15:33:26.972756 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.727273 | |
I0430 15:33:26.972765 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.25476 (* 1 = 1.25476 loss) | |
I0430 15:33:26.972775 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.395661 (* 1 = 0.395661 loss) | |
I0430 15:33:26.972785 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.397168 (* 0.0909091 = 0.0361061 loss) | |
I0430 15:33:26.972795 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.470637 (* 0.0909091 = 0.0427852 loss) | |
I0430 15:33:26.972805 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.446758 (* 0.0909091 = 0.0406144 loss) | |
I0430 15:33:26.972813 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.51848 (* 0.0909091 = 0.0471346 loss) | |
I0430 15:33:26.972822 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.492653 (* 0.0909091 = 0.0447866 loss) | |
I0430 15:33:26.972832 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.36784 (* 0.0909091 = 0.03344 loss) | |
I0430 15:33:26.972841 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.523048 (* 0.0909091 = 0.0475498 loss) | |
I0430 15:33:26.972851 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.396176 (* 0.0909091 = 0.036016 loss) | |
I0430 15:33:26.972861 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.328881 (* 0.0909091 = 0.0298983 loss) | |
I0430 15:33:26.972869 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.22621 (* 0.0909091 = 0.0205646 loss) | |
I0430 15:33:26.972878 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.427011 (* 0.0909091 = 0.0388191 loss) | |
I0430 15:33:26.972888 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.402559 (* 0.0909091 = 0.0365963 loss) | |
I0430 15:33:26.972898 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.435212 (* 0.0909091 = 0.0395647 loss) | |
I0430 15:33:26.972906 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.674508 (* 0.0909091 = 0.0613189 loss) | |
I0430 15:33:26.972915 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.478984 (* 0.0909091 = 0.043544 loss) | |
I0430 15:33:26.972924 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.424847 (* 0.0909091 = 0.0386224 loss) | |
I0430 15:33:26.972934 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.49398 (* 0.0909091 = 0.0449073 loss) | |
I0430 15:33:26.972942 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.620602 (* 0.0909091 = 0.0564183 loss) | |
I0430 15:33:26.972952 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0105061 (* 0.0909091 = 0.000955096 loss) | |
I0430 15:33:26.972961 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00846562 (* 0.0909091 = 0.000769602 loss) | |
I0430 15:33:26.972971 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00501071 (* 0.0909091 = 0.000455519 loss) | |
I0430 15:33:26.972980 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 0.00189095 (* 0.0909091 = 0.000171904 loss) | |
I0430 15:33:26.972988 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.5 | |
I0430 15:33:26.972995 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5 | |
I0430 15:33:26.973011 15443 solver.cpp:245] Train net output #149: total_confidence = 0.394406 | |
I0430 15:33:26.973021 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.399079 | |
I0430 15:33:26.973029 15443 sgd_solver.cpp:106] Iteration 7000, lr = 0.001 | |
I0430 15:37:19.126194 15443 solver.cpp:229] Iteration 7500, loss = 3.69947 | |
I0430 15:37:19.126375 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.468085 | |
I0430 15:37:19.126405 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625 | |
I0430 15:37:19.126427 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0430 15:37:19.126448 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.125 | |
I0430 15:37:19.126471 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.625 | |
I0430 15:37:19.126493 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0430 15:37:19.126513 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75 | |
I0430 15:37:19.126535 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 1 | |
I0430 15:37:19.126557 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0430 15:37:19.126579 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0430 15:37:19.126598 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0430 15:37:19.126619 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0430 15:37:19.126642 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0430 15:37:19.126662 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0430 15:37:19.126682 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 15:37:19.126701 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 15:37:19.126723 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 15:37:19.126746 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 15:37:19.126770 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 15:37:19.126792 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 15:37:19.126814 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 15:37:19.126835 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 15:37:19.126857 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 15:37:19.126878 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.846591 | |
I0430 15:37:19.126899 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.680851 | |
I0430 15:37:19.126927 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.80242 (* 0.3 = 0.540725 loss) | |
I0430 15:37:19.126955 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.543306 (* 0.3 = 0.162992 loss) | |
I0430 15:37:19.126981 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 1.56079 (* 0.0272727 = 0.0425669 loss) | |
I0430 15:37:19.127007 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.34471 (* 0.0272727 = 0.036674 loss) | |
I0430 15:37:19.127032 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 2.45887 (* 0.0272727 = 0.06706 loss) | |
I0430 15:37:19.127058 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.52972 (* 0.0272727 = 0.0417195 loss) | |
I0430 15:37:19.127084 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 2.13832 (* 0.0272727 = 0.0583178 loss) | |
I0430 15:37:19.127110 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 0.739095 (* 0.0272727 = 0.0201571 loss) | |
I0430 15:37:19.127136 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 0.352528 (* 0.0272727 = 0.00961441 loss) | |
I0430 15:37:19.127162 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.349067 (* 0.0272727 = 0.00952001 loss) | |
I0430 15:37:19.127189 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.419344 (* 0.0272727 = 0.0114367 loss) | |
I0430 15:37:19.127216 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.338536 (* 0.0272727 = 0.00923281 loss) | |
I0430 15:37:19.127243 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.354884 (* 0.0272727 = 0.00967866 loss) | |
I0430 15:37:19.127269 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0959193 (* 0.0272727 = 0.00261598 loss) | |
I0430 15:37:19.127324 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.046974 (* 0.0272727 = 0.00128111 loss) | |
I0430 15:37:19.127353 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0182681 (* 0.0272727 = 0.000498221 loss) | |
I0430 15:37:19.127384 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0132163 (* 0.0272727 = 0.000360444 loss) | |
I0430 15:37:19.127413 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0104332 (* 0.0272727 = 0.000284542 loss) | |
I0430 15:37:19.127440 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0104845 (* 0.0272727 = 0.000285941 loss) | |
I0430 15:37:19.127482 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00570621 (* 0.0272727 = 0.000155624 loss) | |
I0430 15:37:19.127516 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00138862 (* 0.0272727 = 3.78714e-05 loss) | |
I0430 15:37:19.127542 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000432918 (* 0.0272727 = 1.18069e-05 loss) | |
I0430 15:37:19.127569 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00010943 (* 0.0272727 = 2.98444e-06 loss) | |
I0430 15:37:19.127595 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 3.28986e-05 (* 0.0272727 = 8.97234e-07 loss) | |
I0430 15:37:19.127619 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.553191 | |
I0430 15:37:19.127640 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75 | |
I0430 15:37:19.127662 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5 | |
I0430 15:37:19.127684 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5 | |
I0430 15:37:19.127706 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25 | |
I0430 15:37:19.127727 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0430 15:37:19.127749 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75 | |
I0430 15:37:19.127773 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 1 | |
I0430 15:37:19.127797 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0430 15:37:19.127821 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0430 15:37:19.127846 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0430 15:37:19.127864 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0430 15:37:19.127888 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0430 15:37:19.127912 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0430 15:37:19.127933 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 15:37:19.127954 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 15:37:19.127976 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 15:37:19.127998 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 15:37:19.128020 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 15:37:19.128041 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 15:37:19.128062 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 15:37:19.128083 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 15:37:19.128105 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 15:37:19.128125 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.869318 | |
I0430 15:37:19.128147 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.744681 | |
I0430 15:37:19.128175 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.59504 (* 0.3 = 0.478511 loss) | |
I0430 15:37:19.128201 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.482022 (* 0.3 = 0.144607 loss) | |
I0430 15:37:19.128228 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.757681 (* 0.0272727 = 0.020664 loss) | |
I0430 15:37:19.128255 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 1.8225 (* 0.0272727 = 0.0497047 loss) | |
I0430 15:37:19.128303 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.59803 (* 0.0272727 = 0.0435828 loss) | |
I0430 15:37:19.128330 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.97685 (* 0.0272727 = 0.0539141 loss) | |
I0430 15:37:19.128356 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.58933 (* 0.0272727 = 0.0433453 loss) | |
I0430 15:37:19.128387 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 0.79924 (* 0.0272727 = 0.0217974 loss) | |
I0430 15:37:19.128414 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 0.246224 (* 0.0272727 = 0.00671521 loss) | |
I0430 15:37:19.128445 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.349868 (* 0.0272727 = 0.00954186 loss) | |
I0430 15:37:19.128473 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.38231 (* 0.0272727 = 0.0104266 loss) | |
I0430 15:37:19.128500 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.318177 (* 0.0272727 = 0.00867754 loss) | |
I0430 15:37:19.128527 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.258723 (* 0.0272727 = 0.00705608 loss) | |
I0430 15:37:19.128554 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.0321571 (* 0.0272727 = 0.000877013 loss) | |
I0430 15:37:19.128581 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0149639 (* 0.0272727 = 0.000408105 loss) | |
I0430 15:37:19.128607 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00545832 (* 0.0272727 = 0.000148863 loss) | |
I0430 15:37:19.128635 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00153033 (* 0.0272727 = 4.17362e-05 loss) | |
I0430 15:37:19.128660 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00031367 (* 0.0272727 = 8.55465e-06 loss) | |
I0430 15:37:19.128685 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000336196 (* 0.0272727 = 9.16898e-06 loss) | |
I0430 15:37:19.128712 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 8.419e-05 (* 0.0272727 = 2.29609e-06 loss) | |
I0430 15:37:19.128738 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 3.39122e-05 (* 0.0272727 = 9.24877e-07 loss) | |
I0430 15:37:19.128765 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 1.84639e-05 (* 0.0272727 = 5.03561e-07 loss) | |
I0430 15:37:19.128792 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 9.62652e-06 (* 0.0272727 = 2.62541e-07 loss) | |
I0430 15:37:19.128818 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 1.54973e-06 (* 0.0272727 = 4.22654e-08 loss) | |
I0430 15:37:19.128840 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.765957 | |
I0430 15:37:19.128864 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0430 15:37:19.128885 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75 | |
I0430 15:37:19.128906 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0430 15:37:19.128927 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75 | |
I0430 15:37:19.128948 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625 | |
I0430 15:37:19.128970 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0430 15:37:19.128991 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1 | |
I0430 15:37:19.129014 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0430 15:37:19.129034 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0430 15:37:19.129055 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0430 15:37:19.129077 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0430 15:37:19.129098 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0430 15:37:19.129118 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0430 15:37:19.129140 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 15:37:19.129163 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 15:37:19.129199 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 15:37:19.129222 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 15:37:19.129245 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 15:37:19.129266 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 15:37:19.129288 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 15:37:19.129309 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 15:37:19.129331 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 15:37:19.129354 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.9375 | |
I0430 15:37:19.129375 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.87234 | |
I0430 15:37:19.129402 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.05785 (* 1 = 1.05785 loss) | |
I0430 15:37:19.129432 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.292372 (* 1 = 0.292372 loss) | |
I0430 15:37:19.129459 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.781257 (* 0.0909091 = 0.0710234 loss) | |
I0430 15:37:19.129490 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.892551 (* 0.0909091 = 0.081141 loss) | |
I0430 15:37:19.129516 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.930241 (* 0.0909091 = 0.0845674 loss) | |
I0430 15:37:19.129544 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 1.0986 (* 0.0909091 = 0.0998727 loss) | |
I0430 15:37:19.129570 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 1.85549 (* 0.0909091 = 0.168681 loss) | |
I0430 15:37:19.129596 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.40726 (* 0.0909091 = 0.0370237 loss) | |
I0430 15:37:19.129622 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.246039 (* 0.0909091 = 0.0223672 loss) | |
I0430 15:37:19.129649 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.380653 (* 0.0909091 = 0.0346048 loss) | |
I0430 15:37:19.129674 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.24928 (* 0.0909091 = 0.0226618 loss) | |
I0430 15:37:19.129700 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.306622 (* 0.0909091 = 0.0278748 loss) | |
I0430 15:37:19.129727 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.225664 (* 0.0909091 = 0.0205149 loss) | |
I0430 15:37:19.129753 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.0471113 (* 0.0909091 = 0.00428285 loss) | |
I0430 15:37:19.129779 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0163376 (* 0.0909091 = 0.00148524 loss) | |
I0430 15:37:19.129806 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00605706 (* 0.0909091 = 0.000550642 loss) | |
I0430 15:37:19.129832 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00135712 (* 0.0909091 = 0.000123374 loss) | |
I0430 15:37:19.129858 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000635667 (* 0.0909091 = 5.77879e-05 loss) | |
I0430 15:37:19.129884 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000250513 (* 0.0909091 = 2.27739e-05 loss) | |
I0430 15:37:19.129911 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000122189 (* 0.0909091 = 1.11081e-05 loss) | |
I0430 15:37:19.129937 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 6.54405e-05 (* 0.0909091 = 5.94913e-06 loss) | |
I0430 15:37:19.129963 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 2.47905e-05 (* 0.0909091 = 2.25368e-06 loss) | |
I0430 15:37:19.129989 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 1.19066e-05 (* 0.0909091 = 1.08242e-06 loss) | |
I0430 15:37:19.130017 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 3.08457e-06 (* 0.0909091 = 2.80416e-07 loss) | |
I0430 15:37:19.130039 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.625 | |
I0430 15:37:19.130060 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5 | |
I0430 15:37:19.130097 15443 solver.cpp:245] Train net output #149: total_confidence = 0.394798 | |
I0430 15:37:19.130120 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.433764 | |
I0430 15:37:19.130142 15443 sgd_solver.cpp:106] Iteration 7500, lr = 0.001 | |
I0430 15:41:11.452646 15443 solver.cpp:229] Iteration 8000, loss = 3.80904 | |
I0430 15:41:11.452824 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.375 | |
I0430 15:41:11.452853 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0430 15:41:11.452875 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0430 15:41:11.452898 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25 | |
I0430 15:41:11.452919 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0430 15:41:11.452941 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25 | |
I0430 15:41:11.452963 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.875 | |
I0430 15:41:11.452987 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0430 15:41:11.453009 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75 | |
I0430 15:41:11.453032 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0430 15:41:11.453053 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0430 15:41:11.453074 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0430 15:41:11.453100 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0430 15:41:11.453124 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0430 15:41:11.453146 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0430 15:41:11.453168 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 15:41:11.453191 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875 | |
I0430 15:41:11.453212 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875 | |
I0430 15:41:11.453234 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 15:41:11.453255 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 15:41:11.453277 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 15:41:11.453299 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 15:41:11.453325 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 15:41:11.453346 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.789773 | |
I0430 15:41:11.453368 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.642857 | |
I0430 15:41:11.453397 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.84698 (* 0.3 = 0.554094 loss) | |
I0430 15:41:11.453424 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.637751 (* 0.3 = 0.191325 loss) | |
I0430 15:41:11.453452 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 1.12889 (* 0.0272727 = 0.0307879 loss) | |
I0430 15:41:11.453480 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.94135 (* 0.0272727 = 0.0529458 loss) | |
I0430 15:41:11.453505 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.97365 (* 0.0272727 = 0.0538269 loss) | |
I0430 15:41:11.453532 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.55402 (* 0.0272727 = 0.0423825 loss) | |
I0430 15:41:11.453562 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.66288 (* 0.0272727 = 0.0453512 loss) | |
I0430 15:41:11.453588 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 0.731117 (* 0.0272727 = 0.0199395 loss) | |
I0430 15:41:11.453615 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 0.959056 (* 0.0272727 = 0.0261561 loss) | |
I0430 15:41:11.453642 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.52265 (* 0.0272727 = 0.0142541 loss) | |
I0430 15:41:11.453668 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.410241 (* 0.0272727 = 0.0111884 loss) | |
I0430 15:41:11.453694 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.678462 (* 0.0272727 = 0.0185035 loss) | |
I0430 15:41:11.453722 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.294092 (* 0.0272727 = 0.00802068 loss) | |
I0430 15:41:11.453748 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.898249 (* 0.0272727 = 0.0244977 loss) | |
I0430 15:41:11.453800 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.289501 (* 0.0272727 = 0.00789549 loss) | |
I0430 15:41:11.453837 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.288129 (* 0.0272727 = 0.00785807 loss) | |
I0430 15:41:11.453867 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.246692 (* 0.0272727 = 0.00672797 loss) | |
I0430 15:41:11.453896 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.410244 (* 0.0272727 = 0.0111885 loss) | |
I0430 15:41:11.453923 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.99918 (* 0.0272727 = 0.0272504 loss) | |
I0430 15:41:11.453951 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 2.57805e-05 (* 0.0272727 = 7.03106e-07 loss) | |
I0430 15:41:11.453979 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 1.50655e-05 (* 0.0272727 = 4.10878e-07 loss) | |
I0430 15:41:11.454005 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 5.45391e-06 (* 0.0272727 = 1.48743e-07 loss) | |
I0430 15:41:11.454031 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 5.21546e-06 (* 0.0272727 = 1.4224e-07 loss) | |
I0430 15:41:11.454058 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 3.15907e-06 (* 0.0272727 = 8.61563e-08 loss) | |
I0430 15:41:11.454082 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.571429 | |
I0430 15:41:11.454105 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1 | |
I0430 15:41:11.454126 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0430 15:41:11.454149 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25 | |
I0430 15:41:11.454171 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625 | |
I0430 15:41:11.454192 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625 | |
I0430 15:41:11.454216 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5 | |
I0430 15:41:11.454236 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75 | |
I0430 15:41:11.454258 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0430 15:41:11.454280 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0430 15:41:11.454301 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0430 15:41:11.454324 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0430 15:41:11.454345 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0430 15:41:11.454370 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0430 15:41:11.454392 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0430 15:41:11.454414 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875 | |
I0430 15:41:11.454437 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875 | |
I0430 15:41:11.454458 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875 | |
I0430 15:41:11.454480 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 15:41:11.454502 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 15:41:11.454524 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 15:41:11.454545 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 15:41:11.454566 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 15:41:11.454586 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.857955 | |
I0430 15:41:11.454608 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.803571 | |
I0430 15:41:11.454634 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.52046 (* 0.3 = 0.456139 loss) | |
I0430 15:41:11.454663 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.522634 (* 0.3 = 0.15679 loss) | |
I0430 15:41:11.454687 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.504988 (* 0.0272727 = 0.0137724 loss) | |
I0430 15:41:11.454715 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 1.88757 (* 0.0272727 = 0.0514792 loss) | |
I0430 15:41:11.454758 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.8784 (* 0.0272727 = 0.0512291 loss) | |
I0430 15:41:11.454787 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.0474 (* 0.0272727 = 0.0285655 loss) | |
I0430 15:41:11.454813 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 0.942352 (* 0.0272727 = 0.0257005 loss) | |
I0430 15:41:11.454838 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 0.902608 (* 0.0272727 = 0.0246166 loss) | |
I0430 15:41:11.454864 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 0.930758 (* 0.0272727 = 0.0253843 loss) | |
I0430 15:41:11.454895 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.49607 (* 0.0272727 = 0.0135292 loss) | |
I0430 15:41:11.454921 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.499583 (* 0.0272727 = 0.013625 loss) | |
I0430 15:41:11.454948 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.559251 (* 0.0272727 = 0.0152523 loss) | |
I0430 15:41:11.454974 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.3747 (* 0.0272727 = 0.0102191 loss) | |
I0430 15:41:11.455000 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.618164 (* 0.0272727 = 0.016859 loss) | |
I0430 15:41:11.455027 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.311917 (* 0.0272727 = 0.00850683 loss) | |
I0430 15:41:11.455054 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.269417 (* 0.0272727 = 0.00734774 loss) | |
I0430 15:41:11.455078 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.302547 (* 0.0272727 = 0.00825129 loss) | |
I0430 15:41:11.455106 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.313789 (* 0.0272727 = 0.00855788 loss) | |
I0430 15:41:11.455132 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.936702 (* 0.0272727 = 0.0255464 loss) | |
I0430 15:41:11.455157 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000383321 (* 0.0272727 = 1.04542e-05 loss) | |
I0430 15:41:11.455184 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000266784 (* 0.0272727 = 7.27592e-06 loss) | |
I0430 15:41:11.455210 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000199263 (* 0.0272727 = 5.43445e-06 loss) | |
I0430 15:41:11.455235 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000111753 (* 0.0272727 = 3.0478e-06 loss) | |
I0430 15:41:11.455262 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 9.45882e-05 (* 0.0272727 = 2.57968e-06 loss) | |
I0430 15:41:11.455286 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.625 | |
I0430 15:41:11.455308 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0430 15:41:11.455329 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0430 15:41:11.455351 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75 | |
I0430 15:41:11.455373 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75 | |
I0430 15:41:11.455394 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0430 15:41:11.455432 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0430 15:41:11.455461 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0430 15:41:11.455482 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0430 15:41:11.455503 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0430 15:41:11.455525 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0430 15:41:11.455548 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0430 15:41:11.455569 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0430 15:41:11.455590 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0430 15:41:11.455611 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 15:41:11.455632 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875 | |
I0430 15:41:11.455672 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875 | |
I0430 15:41:11.455695 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.875 | |
I0430 15:41:11.455718 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 15:41:11.455739 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 15:41:11.455760 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 15:41:11.455782 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 15:41:11.455803 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 15:41:11.455824 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.863636 | |
I0430 15:41:11.455847 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.875 | |
I0430 15:41:11.455873 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.19227 (* 1 = 1.19227 loss) | |
I0430 15:41:11.455899 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.417578 (* 1 = 0.417578 loss) | |
I0430 15:41:11.455920 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.587257 (* 0.0909091 = 0.053387 loss) | |
I0430 15:41:11.455952 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.927452 (* 0.0909091 = 0.0843138 loss) | |
I0430 15:41:11.455978 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.799316 (* 0.0909091 = 0.0726651 loss) | |
I0430 15:41:11.456001 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.946446 (* 0.0909091 = 0.0860405 loss) | |
I0430 15:41:11.456023 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.850072 (* 0.0909091 = 0.0772793 loss) | |
I0430 15:41:11.456049 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.552501 (* 0.0909091 = 0.0502273 loss) | |
I0430 15:41:11.456078 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.624643 (* 0.0909091 = 0.0567857 loss) | |
I0430 15:41:11.456105 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.354189 (* 0.0909091 = 0.032199 loss) | |
I0430 15:41:11.456133 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.436018 (* 0.0909091 = 0.039638 loss) | |
I0430 15:41:11.456163 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.473537 (* 0.0909091 = 0.0430488 loss) | |
I0430 15:41:11.456190 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.257925 (* 0.0909091 = 0.0234477 loss) | |
I0430 15:41:11.456218 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.604635 (* 0.0909091 = 0.0549668 loss) | |
I0430 15:41:11.456243 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.331012 (* 0.0909091 = 0.030092 loss) | |
I0430 15:41:11.456270 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.221688 (* 0.0909091 = 0.0201535 loss) | |
I0430 15:41:11.456296 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.298424 (* 0.0909091 = 0.0271294 loss) | |
I0430 15:41:11.456322 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.272092 (* 0.0909091 = 0.0247356 loss) | |
I0430 15:41:11.456348 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.740988 (* 0.0909091 = 0.0673626 loss) | |
I0430 15:41:11.456375 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000788028 (* 0.0909091 = 7.16389e-05 loss) | |
I0430 15:41:11.456401 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000297282 (* 0.0909091 = 2.70256e-05 loss) | |
I0430 15:41:11.456429 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.0001546 (* 0.0909091 = 1.40545e-05 loss) | |
I0430 15:41:11.456455 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000110072 (* 0.0909091 = 1.00065e-05 loss) | |
I0430 15:41:11.456485 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 5.5476e-05 (* 0.0909091 = 5.04327e-06 loss) | |
I0430 15:41:11.456509 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.25 | |
I0430 15:41:11.456532 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25 | |
I0430 15:41:11.456569 15443 solver.cpp:245] Train net output #149: total_confidence = 0.280264 | |
I0430 15:41:11.456593 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.266302 | |
I0430 15:41:11.456615 15443 sgd_solver.cpp:106] Iteration 8000, lr = 0.001 | |
I0430 15:44:31.563652 15443 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 47.1435 > 30) by scale factor 0.636355 | |
I0430 15:45:03.551497 15443 solver.cpp:229] Iteration 8500, loss = 3.61845 | |
I0430 15:45:03.551654 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.477612 | |
I0430 15:45:03.551684 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 1 | |
I0430 15:45:03.551707 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625 | |
I0430 15:45:03.551729 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5 | |
I0430 15:45:03.551751 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0430 15:45:03.551774 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0430 15:45:03.551796 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375 | |
I0430 15:45:03.551820 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5 | |
I0430 15:45:03.551841 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625 | |
I0430 15:45:03.551864 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75 | |
I0430 15:45:03.551885 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.75 | |
I0430 15:45:03.551905 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0430 15:45:03.551928 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.75 | |
I0430 15:45:03.551954 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0430 15:45:03.551976 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0430 15:45:03.552000 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875 | |
I0430 15:45:03.552021 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875 | |
I0430 15:45:03.552044 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 15:45:03.552067 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 15:45:03.552089 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 15:45:03.552110 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 15:45:03.552132 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 15:45:03.552155 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 15:45:03.552175 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.784091 | |
I0430 15:45:03.552197 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.671642 | |
I0430 15:45:03.552225 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.7994 (* 0.3 = 0.539819 loss) | |
I0430 15:45:03.552253 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.725077 (* 0.3 = 0.217523 loss) | |
I0430 15:45:03.552281 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.256788 (* 0.0272727 = 0.0070033 loss) | |
I0430 15:45:03.552309 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.14416 (* 0.0272727 = 0.0312044 loss) | |
I0430 15:45:03.552340 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.53482 (* 0.0272727 = 0.0418588 loss) | |
I0430 15:45:03.552366 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 2.04582 (* 0.0272727 = 0.0557951 loss) | |
I0430 15:45:03.552393 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.72475 (* 0.0272727 = 0.0470386 loss) | |
I0430 15:45:03.552420 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.45626 (* 0.0272727 = 0.0397163 loss) | |
I0430 15:45:03.552446 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.56499 (* 0.0272727 = 0.0426816 loss) | |
I0430 15:45:03.552474 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.828292 (* 0.0272727 = 0.0225898 loss) | |
I0430 15:45:03.552500 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.697989 (* 0.0272727 = 0.0190361 loss) | |
I0430 15:45:03.552527 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 1.03946 (* 0.0272727 = 0.028349 loss) | |
I0430 15:45:03.552553 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 1.27494 (* 0.0272727 = 0.034771 loss) | |
I0430 15:45:03.552580 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.565777 (* 0.0272727 = 0.0154303 loss) | |
I0430 15:45:03.552634 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.565632 (* 0.0272727 = 0.0154263 loss) | |
I0430 15:45:03.552667 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.438221 (* 0.0272727 = 0.0119515 loss) | |
I0430 15:45:03.552695 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.58735 (* 0.0272727 = 0.0160186 loss) | |
I0430 15:45:03.552726 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.909613 (* 0.0272727 = 0.0248076 loss) | |
I0430 15:45:03.552755 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00296266 (* 0.0272727 = 8.07998e-05 loss) | |
I0430 15:45:03.552783 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000436526 (* 0.0272727 = 1.19053e-05 loss) | |
I0430 15:45:03.552810 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000126316 (* 0.0272727 = 3.44499e-06 loss) | |
I0430 15:45:03.552839 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 2.05353e-05 (* 0.0272727 = 5.60055e-07 loss) | |
I0430 15:45:03.552866 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 3.3379e-06 (* 0.0272727 = 9.10336e-08 loss) | |
I0430 15:45:03.552893 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 1.93715e-07 (* 0.0272727 = 5.28314e-09 loss) | |
I0430 15:45:03.552917 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.597015 | |
I0430 15:45:03.552939 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1 | |
I0430 15:45:03.552963 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625 | |
I0430 15:45:03.552985 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75 | |
I0430 15:45:03.553007 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5 | |
I0430 15:45:03.553030 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0430 15:45:03.553051 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375 | |
I0430 15:45:03.553072 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75 | |
I0430 15:45:03.553094 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625 | |
I0430 15:45:03.553117 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.75 | |
I0430 15:45:03.553138 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.75 | |
I0430 15:45:03.553160 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.75 | |
I0430 15:45:03.553182 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.75 | |
I0430 15:45:03.553203 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0430 15:45:03.553225 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0430 15:45:03.553247 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875 | |
I0430 15:45:03.553269 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875 | |
I0430 15:45:03.553292 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 15:45:03.553313 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 15:45:03.553334 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 15:45:03.553356 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 15:45:03.553382 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 15:45:03.553406 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 15:45:03.553427 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.806818 | |
I0430 15:45:03.553449 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.80597 | |
I0430 15:45:03.553475 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.43154 (* 0.3 = 0.429461 loss) | |
I0430 15:45:03.553503 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.619757 (* 0.3 = 0.185927 loss) | |
I0430 15:45:03.553529 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.178198 (* 0.0272727 = 0.00485993 loss) | |
I0430 15:45:03.553556 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 0.761014 (* 0.0272727 = 0.0207549 loss) | |
I0430 15:45:03.553602 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.29341 (* 0.0272727 = 0.0352748 loss) | |
I0430 15:45:03.553632 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.54433 (* 0.0272727 = 0.0421181 loss) | |
I0430 15:45:03.553658 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.56808 (* 0.0272727 = 0.0427658 loss) | |
I0430 15:45:03.553684 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.36123 (* 0.0272727 = 0.0371244 loss) | |
I0430 15:45:03.553714 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 1.21291 (* 0.0272727 = 0.0330795 loss) | |
I0430 15:45:03.553741 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 1.17224 (* 0.0272727 = 0.0319702 loss) | |
I0430 15:45:03.553768 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.75885 (* 0.0272727 = 0.0206959 loss) | |
I0430 15:45:03.553797 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.929169 (* 0.0272727 = 0.025341 loss) | |
I0430 15:45:03.553823 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 1.52061 (* 0.0272727 = 0.0414713 loss) | |
I0430 15:45:03.553849 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.632286 (* 0.0272727 = 0.0172442 loss) | |
I0430 15:45:03.553875 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.56265 (* 0.0272727 = 0.015345 loss) | |
I0430 15:45:03.553902 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.373805 (* 0.0272727 = 0.0101947 loss) | |
I0430 15:45:03.553927 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.370943 (* 0.0272727 = 0.0101166 loss) | |
I0430 15:45:03.553953 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.684375 (* 0.0272727 = 0.0186648 loss) | |
I0430 15:45:03.553980 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0128434 (* 0.0272727 = 0.000350275 loss) | |
I0430 15:45:03.554005 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00240105 (* 0.0272727 = 6.54831e-05 loss) | |
I0430 15:45:03.554033 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000780446 (* 0.0272727 = 2.12849e-05 loss) | |
I0430 15:45:03.554059 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000526528 (* 0.0272727 = 1.43599e-05 loss) | |
I0430 15:45:03.554085 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 8.73907e-05 (* 0.0272727 = 2.38338e-06 loss) | |
I0430 15:45:03.554112 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 4.12441e-05 (* 0.0272727 = 1.12484e-06 loss) | |
I0430 15:45:03.554136 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.791045 | |
I0430 15:45:03.554157 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0430 15:45:03.554178 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0430 15:45:03.554200 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1 | |
I0430 15:45:03.554221 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1 | |
I0430 15:45:03.554242 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0430 15:45:03.554265 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.5 | |
I0430 15:45:03.554288 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.5 | |
I0430 15:45:03.554309 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75 | |
I0430 15:45:03.554332 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0430 15:45:03.554353 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0430 15:45:03.554376 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0430 15:45:03.554396 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0430 15:45:03.554421 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0430 15:45:03.554445 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0430 15:45:03.554466 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875 | |
I0430 15:45:03.554488 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875 | |
I0430 15:45:03.554528 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 15:45:03.554551 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 15:45:03.554572 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 15:45:03.554595 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 15:45:03.554616 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 15:45:03.554637 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 15:45:03.554659 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.909091 | |
I0430 15:45:03.554682 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.895522 | |
I0430 15:45:03.554708 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.820049 (* 1 = 0.820049 loss) | |
I0430 15:45:03.554734 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.331452 (* 1 = 0.331452 loss) | |
I0430 15:45:03.554766 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0936699 (* 0.0909091 = 0.00851545 loss) | |
I0430 15:45:03.554795 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.123255 (* 0.0909091 = 0.011205 loss) | |
I0430 15:45:03.554823 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0582415 (* 0.0909091 = 0.00529469 loss) | |
I0430 15:45:03.554852 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.326473 (* 0.0909091 = 0.0296793 loss) | |
I0430 15:45:03.554877 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.693784 (* 0.0909091 = 0.0630713 loss) | |
I0430 15:45:03.554905 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.832349 (* 0.0909091 = 0.0756681 loss) | |
I0430 15:45:03.554926 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 1.38577 (* 0.0909091 = 0.125979 loss) | |
I0430 15:45:03.554957 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.581465 (* 0.0909091 = 0.0528605 loss) | |
I0430 15:45:03.554985 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.467197 (* 0.0909091 = 0.0424725 loss) | |
I0430 15:45:03.555011 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.580539 (* 0.0909091 = 0.0527763 loss) | |
I0430 15:45:03.555037 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 1.18801 (* 0.0909091 = 0.108001 loss) | |
I0430 15:45:03.555063 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.399047 (* 0.0909091 = 0.036277 loss) | |
I0430 15:45:03.555090 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.553824 (* 0.0909091 = 0.0503476 loss) | |
I0430 15:45:03.555116 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.407362 (* 0.0909091 = 0.0370329 loss) | |
I0430 15:45:03.555143 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.589827 (* 0.0909091 = 0.0536207 loss) | |
I0430 15:45:03.555169 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.773249 (* 0.0909091 = 0.0702953 loss) | |
I0430 15:45:03.555197 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00302336 (* 0.0909091 = 0.00027485 loss) | |
I0430 15:45:03.555222 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00115684 (* 0.0909091 = 0.000105167 loss) | |
I0430 15:45:03.555249 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000349994 (* 0.0909091 = 3.18176e-05 loss) | |
I0430 15:45:03.555274 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000172053 (* 0.0909091 = 1.56411e-05 loss) | |
I0430 15:45:03.555300 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 1.3367e-05 (* 0.0909091 = 1.21518e-06 loss) | |
I0430 15:45:03.555328 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 1.28151e-06 (* 0.0909091 = 1.16501e-07 loss) | |
I0430 15:45:03.555351 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.5 | |
I0430 15:45:03.555372 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375 | |
I0430 15:45:03.555411 15443 solver.cpp:245] Train net output #149: total_confidence = 0.377183 | |
I0430 15:45:03.555434 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.258792 | |
I0430 15:45:03.555457 15443 sgd_solver.cpp:106] Iteration 8500, lr = 0.001 | |
I0430 15:48:14.149716 15443 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 39.7418 > 30) by scale factor 0.754872 | |
I0430 15:48:55.433557 15443 solver.cpp:229] Iteration 9000, loss = 3.73224 | |
I0430 15:48:55.433723 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.326087 | |
I0430 15:48:55.433749 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0430 15:48:55.433769 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0430 15:48:55.433787 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625 | |
I0430 15:48:55.433805 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25 | |
I0430 15:48:55.433823 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375 | |
I0430 15:48:55.433840 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5 | |
I0430 15:48:55.433858 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625 | |
I0430 15:48:55.433876 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75 | |
I0430 15:48:55.433895 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0430 15:48:55.433913 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0430 15:48:55.433930 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0430 15:48:55.433948 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0430 15:48:55.433964 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0430 15:48:55.433980 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 15:48:55.433997 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 15:48:55.434015 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 15:48:55.434031 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 15:48:55.434048 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 15:48:55.434065 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 15:48:55.434082 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 15:48:55.434099 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 15:48:55.434115 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 15:48:55.434134 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.801136 | |
I0430 15:48:55.434150 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.673913 | |
I0430 15:48:55.434173 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.10269 (* 0.3 = 0.630808 loss) | |
I0430 15:48:55.434195 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.640493 (* 0.3 = 0.192148 loss) | |
I0430 15:48:55.434216 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.875445 (* 0.0272727 = 0.0238758 loss) | |
I0430 15:48:55.434237 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.02075 (* 0.0272727 = 0.0278385 loss) | |
I0430 15:48:55.434257 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.40297 (* 0.0272727 = 0.0382627 loss) | |
I0430 15:48:55.434278 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.88012 (* 0.0272727 = 0.0512761 loss) | |
I0430 15:48:55.434298 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 2.60568 (* 0.0272727 = 0.071064 loss) | |
I0430 15:48:55.434319 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.8301 (* 0.0272727 = 0.0499119 loss) | |
I0430 15:48:55.434339 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.58715 (* 0.0272727 = 0.043286 loss) | |
I0430 15:48:55.434360 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 1.12622 (* 0.0272727 = 0.0307152 loss) | |
I0430 15:48:55.434386 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0538998 (* 0.0272727 = 0.00146999 loss) | |
I0430 15:48:55.434407 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00956184 (* 0.0272727 = 0.000260777 loss) | |
I0430 15:48:55.434428 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.000594333 (* 0.0272727 = 1.62091e-05 loss) | |
I0430 15:48:55.434449 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.000479311 (* 0.0272727 = 1.30721e-05 loss) | |
I0430 15:48:55.434494 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000323377 (* 0.0272727 = 8.81937e-06 loss) | |
I0430 15:48:55.434516 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000487212 (* 0.0272727 = 1.32876e-05 loss) | |
I0430 15:48:55.434537 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000284778 (* 0.0272727 = 7.76668e-06 loss) | |
I0430 15:48:55.434558 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000174726 (* 0.0272727 = 4.76526e-06 loss) | |
I0430 15:48:55.434579 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000259072 (* 0.0272727 = 7.06559e-06 loss) | |
I0430 15:48:55.434602 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000120385 (* 0.0272727 = 3.28322e-06 loss) | |
I0430 15:48:55.434623 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000339626 (* 0.0272727 = 9.26254e-06 loss) | |
I0430 15:48:55.434643 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00055578 (* 0.0272727 = 1.51576e-05 loss) | |
I0430 15:48:55.434664 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000298857 (* 0.0272727 = 8.15065e-06 loss) | |
I0430 15:48:55.434684 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000413378 (* 0.0272727 = 1.12739e-05 loss) | |
I0430 15:48:55.434702 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.543478 | |
I0430 15:48:55.434723 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.5 | |
I0430 15:48:55.434741 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0430 15:48:55.434758 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.875 | |
I0430 15:48:55.434777 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375 | |
I0430 15:48:55.434792 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0430 15:48:55.434810 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5 | |
I0430 15:48:55.434828 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0430 15:48:55.434844 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625 | |
I0430 15:48:55.434861 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0430 15:48:55.434878 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0430 15:48:55.434895 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0430 15:48:55.434911 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0430 15:48:55.434928 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0430 15:48:55.434947 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 15:48:55.434963 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 15:48:55.434980 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 15:48:55.434996 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 15:48:55.435014 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 15:48:55.435030 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 15:48:55.435050 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 15:48:55.435067 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 15:48:55.435084 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 15:48:55.435101 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.852273 | |
I0430 15:48:55.435118 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.73913 | |
I0430 15:48:55.435138 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.82695 (* 0.3 = 0.548086 loss) | |
I0430 15:48:55.435159 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.556585 (* 0.3 = 0.166976 loss) | |
I0430 15:48:55.435180 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 1.16072 (* 0.0272727 = 0.031656 loss) | |
I0430 15:48:55.435201 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 0.729526 (* 0.0272727 = 0.0198962 loss) | |
I0430 15:48:55.435236 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 0.741443 (* 0.0272727 = 0.0202212 loss) | |
I0430 15:48:55.435259 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.39247 (* 0.0272727 = 0.0379764 loss) | |
I0430 15:48:55.435281 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 2.31162 (* 0.0272727 = 0.0630441 loss) | |
I0430 15:48:55.435300 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.76253 (* 0.0272727 = 0.048069 loss) | |
I0430 15:48:55.435322 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 1.90476 (* 0.0272727 = 0.051948 loss) | |
I0430 15:48:55.435343 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 2.1354 (* 0.0272727 = 0.0582381 loss) | |
I0430 15:48:55.435364 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0451795 (* 0.0272727 = 0.00123217 loss) | |
I0430 15:48:55.435384 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00666842 (* 0.0272727 = 0.000181866 loss) | |
I0430 15:48:55.435405 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.000713454 (* 0.0272727 = 1.94578e-05 loss) | |
I0430 15:48:55.435441 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.000307393 (* 0.0272727 = 8.38343e-06 loss) | |
I0430 15:48:55.435464 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000120164 (* 0.0272727 = 3.27719e-06 loss) | |
I0430 15:48:55.435489 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000116567 (* 0.0272727 = 3.1791e-06 loss) | |
I0430 15:48:55.435511 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 6.28682e-05 (* 0.0272727 = 1.71459e-06 loss) | |
I0430 15:48:55.435533 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 3.75321e-05 (* 0.0272727 = 1.0236e-06 loss) | |
I0430 15:48:55.435552 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 2.93208e-05 (* 0.0272727 = 7.9966e-07 loss) | |
I0430 15:48:55.435573 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 2.09973e-05 (* 0.0272727 = 5.72655e-07 loss) | |
I0430 15:48:55.435593 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 4.27583e-05 (* 0.0272727 = 1.16614e-06 loss) | |
I0430 15:48:55.435614 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 4.90863e-05 (* 0.0272727 = 1.33872e-06 loss) | |
I0430 15:48:55.435636 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 6.53415e-05 (* 0.0272727 = 1.78204e-06 loss) | |
I0430 15:48:55.435655 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 6.98529e-05 (* 0.0272727 = 1.90508e-06 loss) | |
I0430 15:48:55.435672 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.695652 | |
I0430 15:48:55.435690 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75 | |
I0430 15:48:55.435708 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0430 15:48:55.435725 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75 | |
I0430 15:48:55.435744 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625 | |
I0430 15:48:55.435760 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0430 15:48:55.435781 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0430 15:48:55.435798 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0430 15:48:55.435816 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75 | |
I0430 15:48:55.435832 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0430 15:48:55.435849 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0430 15:48:55.435866 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0430 15:48:55.435883 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0430 15:48:55.435900 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0430 15:48:55.435917 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 15:48:55.435935 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 15:48:55.435966 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 15:48:55.435983 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 15:48:55.436002 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 15:48:55.436019 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 15:48:55.436036 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 15:48:55.436053 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 15:48:55.436069 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 15:48:55.436086 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.909091 | |
I0430 15:48:55.436103 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.804348 | |
I0430 15:48:55.436123 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.38556 (* 1 = 1.38556 loss) | |
I0430 15:48:55.436144 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.395093 (* 1 = 0.395093 loss) | |
I0430 15:48:55.436166 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.716795 (* 0.0909091 = 0.0651632 loss) | |
I0430 15:48:55.436185 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.371878 (* 0.0909091 = 0.0338071 loss) | |
I0430 15:48:55.436206 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.441878 (* 0.0909091 = 0.0401708 loss) | |
I0430 15:48:55.436226 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 1.03488 (* 0.0909091 = 0.09408 loss) | |
I0430 15:48:55.436247 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 1.33274 (* 0.0909091 = 0.121158 loss) | |
I0430 15:48:55.436267 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 1.27512 (* 0.0909091 = 0.11592 loss) | |
I0430 15:48:55.436288 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 1.29718 (* 0.0909091 = 0.117925 loss) | |
I0430 15:48:55.436308 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 1.26009 (* 0.0909091 = 0.114554 loss) | |
I0430 15:48:55.436328 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0556376 (* 0.0909091 = 0.00505796 loss) | |
I0430 15:48:55.436349 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00753638 (* 0.0909091 = 0.000685126 loss) | |
I0430 15:48:55.436370 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00160068 (* 0.0909091 = 0.000145517 loss) | |
I0430 15:48:55.436391 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.000744615 (* 0.0909091 = 6.76923e-05 loss) | |
I0430 15:48:55.436413 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.000585481 (* 0.0909091 = 5.32256e-05 loss) | |
I0430 15:48:55.436434 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000397892 (* 0.0909091 = 3.6172e-05 loss) | |
I0430 15:48:55.436453 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00034144 (* 0.0909091 = 3.104e-05 loss) | |
I0430 15:48:55.436475 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000281412 (* 0.0909091 = 2.55829e-05 loss) | |
I0430 15:48:55.436499 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000228778 (* 0.0909091 = 2.0798e-05 loss) | |
I0430 15:48:55.436520 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000155759 (* 0.0909091 = 1.41599e-05 loss) | |
I0430 15:48:55.436542 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000163668 (* 0.0909091 = 1.4879e-05 loss) | |
I0430 15:48:55.436563 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000144495 (* 0.0909091 = 1.31359e-05 loss) | |
I0430 15:48:55.436583 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000142884 (* 0.0909091 = 1.29895e-05 loss) | |
I0430 15:48:55.436604 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000150412 (* 0.0909091 = 1.36738e-05 loss) | |
I0430 15:48:55.436622 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.5 | |
I0430 15:48:55.436640 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5 | |
I0430 15:48:55.436669 15443 solver.cpp:245] Train net output #149: total_confidence = 0.439997 | |
I0430 15:48:55.436687 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.392485 | |
I0430 15:48:55.436705 15443 sgd_solver.cpp:106] Iteration 9000, lr = 0.001 | |
I0430 15:52:47.502504 15443 solver.cpp:229] Iteration 9500, loss = 3.61823 | |
I0430 15:52:47.502728 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.385965 | |
I0430 15:52:47.502760 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875 | |
I0430 15:52:47.502784 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625 | |
I0430 15:52:47.502806 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5 | |
I0430 15:52:47.502828 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25 | |
I0430 15:52:47.502851 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625 | |
I0430 15:52:47.502871 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5 | |
I0430 15:52:47.502893 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625 | |
I0430 15:52:47.502917 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625 | |
I0430 15:52:47.502939 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0430 15:52:47.502960 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0430 15:52:47.502981 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0430 15:52:47.503005 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0430 15:52:47.503029 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0430 15:52:47.503052 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0430 15:52:47.503075 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 15:52:47.503098 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 15:52:47.503120 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 15:52:47.503142 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 15:52:47.503165 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 15:52:47.503187 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 15:52:47.503209 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 15:52:47.503232 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 15:52:47.503253 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.778409 | |
I0430 15:52:47.503276 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.719298 | |
I0430 15:52:47.503305 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.81121 (* 0.3 = 0.543362 loss) | |
I0430 15:52:47.503337 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.684191 (* 0.3 = 0.205257 loss) | |
I0430 15:52:47.503366 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.697308 (* 0.0272727 = 0.0190175 loss) | |
I0430 15:52:47.503393 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 0.975087 (* 0.0272727 = 0.0265933 loss) | |
I0430 15:52:47.503422 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.6939 (* 0.0272727 = 0.0461973 loss) | |
I0430 15:52:47.503448 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 2.07202 (* 0.0272727 = 0.0565096 loss) | |
I0430 15:52:47.503497 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 2.12953 (* 0.0272727 = 0.058078 loss) | |
I0430 15:52:47.503530 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.45594 (* 0.0272727 = 0.0397075 loss) | |
I0430 15:52:47.503557 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.42141 (* 0.0272727 = 0.0387658 loss) | |
I0430 15:52:47.503584 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.667327 (* 0.0272727 = 0.0181998 loss) | |
I0430 15:52:47.503613 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.357058 (* 0.0272727 = 0.00973795 loss) | |
I0430 15:52:47.503639 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.295226 (* 0.0272727 = 0.00805163 loss) | |
I0430 15:52:47.503669 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.466832 (* 0.0272727 = 0.0127318 loss) | |
I0430 15:52:47.503695 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.396453 (* 0.0272727 = 0.0108124 loss) | |
I0430 15:52:47.503756 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.435791 (* 0.0272727 = 0.0118852 loss) | |
I0430 15:52:47.503787 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.472925 (* 0.0272727 = 0.012898 loss) | |
I0430 15:52:47.503816 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0500709 (* 0.0272727 = 0.00136557 loss) | |
I0430 15:52:47.503845 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0335442 (* 0.0272727 = 0.000914841 loss) | |
I0430 15:52:47.503873 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0142842 (* 0.0272727 = 0.000389568 loss) | |
I0430 15:52:47.503901 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0118638 (* 0.0272727 = 0.000323559 loss) | |
I0430 15:52:47.503927 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00391372 (* 0.0272727 = 0.000106738 loss) | |
I0430 15:52:47.503954 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00111459 (* 0.0272727 = 3.03978e-05 loss) | |
I0430 15:52:47.503983 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000191843 (* 0.0272727 = 5.23207e-06 loss) | |
I0430 15:52:47.504010 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 5.68534e-05 (* 0.0272727 = 1.55055e-06 loss) | |
I0430 15:52:47.504034 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.508772 | |
I0430 15:52:47.504056 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1 | |
I0430 15:52:47.504079 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0430 15:52:47.504102 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0430 15:52:47.504125 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25 | |
I0430 15:52:47.504148 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375 | |
I0430 15:52:47.504170 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.25 | |
I0430 15:52:47.504191 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0430 15:52:47.504215 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75 | |
I0430 15:52:47.504237 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0430 15:52:47.504258 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0430 15:52:47.504281 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0430 15:52:47.504303 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0430 15:52:47.504325 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0430 15:52:47.504348 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0430 15:52:47.504374 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 15:52:47.504398 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 15:52:47.504420 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 15:52:47.504441 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 15:52:47.504463 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 15:52:47.504487 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 15:52:47.504508 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 15:52:47.504530 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 15:52:47.504552 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.829545 | |
I0430 15:52:47.504575 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.754386 | |
I0430 15:52:47.504602 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.5398 (* 0.3 = 0.461939 loss) | |
I0430 15:52:47.504629 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.573602 (* 0.3 = 0.172081 loss) | |
I0430 15:52:47.504657 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.0966796 (* 0.0272727 = 0.00263672 loss) | |
I0430 15:52:47.504684 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 0.520129 (* 0.0272727 = 0.0141853 loss) | |
I0430 15:52:47.504729 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.70296 (* 0.0272727 = 0.0464444 loss) | |
I0430 15:52:47.504757 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.72373 (* 0.0272727 = 0.0470108 loss) | |
I0430 15:52:47.504786 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.84036 (* 0.0272727 = 0.0501916 loss) | |
I0430 15:52:47.504813 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.6235 (* 0.0272727 = 0.0442773 loss) | |
I0430 15:52:47.504842 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 1.22805 (* 0.0272727 = 0.0334923 loss) | |
I0430 15:52:47.504866 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.589139 (* 0.0272727 = 0.0160674 loss) | |
I0430 15:52:47.504892 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.33517 (* 0.0272727 = 0.00914099 loss) | |
I0430 15:52:47.504920 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.452505 (* 0.0272727 = 0.012341 loss) | |
I0430 15:52:47.504945 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.372389 (* 0.0272727 = 0.0101561 loss) | |
I0430 15:52:47.504971 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.252351 (* 0.0272727 = 0.0068823 loss) | |
I0430 15:52:47.504997 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.473056 (* 0.0272727 = 0.0129015 loss) | |
I0430 15:52:47.505023 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.555944 (* 0.0272727 = 0.0151621 loss) | |
I0430 15:52:47.505049 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0426138 (* 0.0272727 = 0.00116219 loss) | |
I0430 15:52:47.505076 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0126939 (* 0.0272727 = 0.000346197 loss) | |
I0430 15:52:47.505103 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00651897 (* 0.0272727 = 0.00017779 loss) | |
I0430 15:52:47.505128 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00358479 (* 0.0272727 = 9.77669e-05 loss) | |
I0430 15:52:47.505156 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00273373 (* 0.0272727 = 7.45562e-05 loss) | |
I0430 15:52:47.505182 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000277847 (* 0.0272727 = 7.57764e-06 loss) | |
I0430 15:52:47.505210 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 0.0003929 (* 0.0272727 = 1.07155e-05 loss) | |
I0430 15:52:47.505236 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 6.60433e-05 (* 0.0272727 = 1.80118e-06 loss) | |
I0430 15:52:47.505260 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.701754 | |
I0430 15:52:47.505282 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0430 15:52:47.505303 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0430 15:52:47.505326 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625 | |
I0430 15:52:47.505348 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75 | |
I0430 15:52:47.505369 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0430 15:52:47.505391 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625 | |
I0430 15:52:47.505412 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625 | |
I0430 15:52:47.505437 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0430 15:52:47.505460 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0430 15:52:47.505482 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0430 15:52:47.505504 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0430 15:52:47.505524 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0430 15:52:47.505547 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0430 15:52:47.505569 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0430 15:52:47.505590 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 15:52:47.505626 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 15:52:47.505651 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 15:52:47.505673 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 15:52:47.505694 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 15:52:47.505717 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 15:52:47.505738 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 15:52:47.505759 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 15:52:47.505781 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.892045 | |
I0430 15:52:47.505805 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.807018 | |
I0430 15:52:47.505831 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.072 (* 1 = 1.072 loss) | |
I0430 15:52:47.505867 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.389339 (* 1 = 0.389339 loss) | |
I0430 15:52:47.505890 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.135449 (* 0.0909091 = 0.0123136 loss) | |
I0430 15:52:47.505918 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.481876 (* 0.0909091 = 0.0438069 loss) | |
I0430 15:52:47.505946 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.684021 (* 0.0909091 = 0.0621838 loss) | |
I0430 15:52:47.505972 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 1.11915 (* 0.0909091 = 0.101741 loss) | |
I0430 15:52:47.505998 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.956218 (* 0.0909091 = 0.0869289 loss) | |
I0430 15:52:47.506026 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 1.06501 (* 0.0909091 = 0.0968193 loss) | |
I0430 15:52:47.506052 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 1.1261 (* 0.0909091 = 0.102373 loss) | |
I0430 15:52:47.506078 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.42787 (* 0.0909091 = 0.0388973 loss) | |
I0430 15:52:47.506104 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.200601 (* 0.0909091 = 0.0182365 loss) | |
I0430 15:52:47.506130 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.267356 (* 0.0909091 = 0.0243051 loss) | |
I0430 15:52:47.506156 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.329818 (* 0.0909091 = 0.0299834 loss) | |
I0430 15:52:47.506182 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.342012 (* 0.0909091 = 0.031092 loss) | |
I0430 15:52:47.506208 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.345895 (* 0.0909091 = 0.031445 loss) | |
I0430 15:52:47.506234 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.495059 (* 0.0909091 = 0.0450053 loss) | |
I0430 15:52:47.506263 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.020554 (* 0.0909091 = 0.00186855 loss) | |
I0430 15:52:47.506289 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00914053 (* 0.0909091 = 0.000830957 loss) | |
I0430 15:52:47.506315 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00510858 (* 0.0909091 = 0.000464417 loss) | |
I0430 15:52:47.506343 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00326427 (* 0.0909091 = 0.000296751 loss) | |
I0430 15:52:47.506369 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00148339 (* 0.0909091 = 0.000134854 loss) | |
I0430 15:52:47.506394 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00116105 (* 0.0909091 = 0.00010555 loss) | |
I0430 15:52:47.506422 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000670017 (* 0.0909091 = 6.09106e-05 loss) | |
I0430 15:52:47.506448 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000194049 (* 0.0909091 = 1.76408e-05 loss) | |
I0430 15:52:47.506474 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.375 | |
I0430 15:52:47.506497 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375 | |
I0430 15:52:47.506536 15443 solver.cpp:245] Train net output #149: total_confidence = 0.331881 | |
I0430 15:52:47.506561 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.173679 | |
I0430 15:52:47.506583 15443 sgd_solver.cpp:106] Iteration 9500, lr = 0.001 | |
I0430 15:53:23.155012 15443 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.8729 > 30) by scale factor 0.971726 | |
I0430 15:54:02.134588 15443 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 46.9264 > 30) by scale factor 0.639299 | |
I0430 15:55:15.377645 15443 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm14_bn_iter_10000.caffemodel | |
I0430 15:55:19.064538 15443 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm14_bn_iter_10000.solverstate | |
I0430 15:55:20.222025 15443 solver.cpp:338] Iteration 10000, Testing net (#0) | |
I0430 15:56:01.525923 15443 solver.cpp:393] Test loss: 2.3258 | |
I0430 15:56:01.526036 15443 solver.cpp:406] Test net output #0: loss1/accuracy = 0.635637 | |
I0430 15:56:01.526053 15443 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.846 | |
I0430 15:56:01.526067 15443 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.711 | |
I0430 15:56:01.526078 15443 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.571 | |
I0430 15:56:01.526089 15443 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.587 | |
I0430 15:56:01.526103 15443 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.553 | |
I0430 15:56:01.526114 15443 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.665 | |
I0430 15:56:01.526125 15443 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.825 | |
I0430 15:56:01.526137 15443 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.901 | |
I0430 15:56:01.526149 15443 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.983 | |
I0430 15:56:01.526160 15443 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.994 | |
I0430 15:56:01.526172 15443 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.997 | |
I0430 15:56:01.526183 15443 solver.cpp:406] Test net output #12: loss1/accuracy12 = 1 | |
I0430 15:56:01.526196 15443 solver.cpp:406] Test net output #13: loss1/accuracy13 = 1 | |
I0430 15:56:01.526206 15443 solver.cpp:406] Test net output #14: loss1/accuracy14 = 1 | |
I0430 15:56:01.526217 15443 solver.cpp:406] Test net output #15: loss1/accuracy15 = 1 | |
I0430 15:56:01.526229 15443 solver.cpp:406] Test net output #16: loss1/accuracy16 = 1 | |
I0430 15:56:01.526240 15443 solver.cpp:406] Test net output #17: loss1/accuracy17 = 1 | |
I0430 15:56:01.526252 15443 solver.cpp:406] Test net output #18: loss1/accuracy18 = 1 | |
I0430 15:56:01.526262 15443 solver.cpp:406] Test net output #19: loss1/accuracy19 = 1 | |
I0430 15:56:01.526273 15443 solver.cpp:406] Test net output #20: loss1/accuracy20 = 1 | |
I0430 15:56:01.526284 15443 solver.cpp:406] Test net output #21: loss1/accuracy21 = 1 | |
I0430 15:56:01.526296 15443 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1 | |
I0430 15:56:01.526307 15443 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.892548 | |
I0430 15:56:01.526321 15443 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.859342 | |
I0430 15:56:01.526337 15443 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.16902 (* 0.3 = 0.350706 loss) | |
I0430 15:56:01.526352 15443 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.353016 (* 0.3 = 0.105905 loss) | |
I0430 15:56:01.526366 15443 solver.cpp:406] Test net output #27: loss1/loss01 = 0.581037 (* 0.0272727 = 0.0158465 loss) | |
I0430 15:56:01.526381 15443 solver.cpp:406] Test net output #28: loss1/loss02 = 0.990851 (* 0.0272727 = 0.0270232 loss) | |
I0430 15:56:01.526393 15443 solver.cpp:406] Test net output #29: loss1/loss03 = 1.41271 (* 0.0272727 = 0.0385286 loss) | |
I0430 15:56:01.526407 15443 solver.cpp:406] Test net output #30: loss1/loss04 = 1.36621 (* 0.0272727 = 0.0372604 loss) | |
I0430 15:56:01.526420 15443 solver.cpp:406] Test net output #31: loss1/loss05 = 1.35847 (* 0.0272727 = 0.0370492 loss) | |
I0430 15:56:01.526433 15443 solver.cpp:406] Test net output #32: loss1/loss06 = 1.02094 (* 0.0272727 = 0.0278438 loss) | |
I0430 15:56:01.526448 15443 solver.cpp:406] Test net output #33: loss1/loss07 = 0.570978 (* 0.0272727 = 0.0155721 loss) | |
I0430 15:56:01.526461 15443 solver.cpp:406] Test net output #34: loss1/loss08 = 0.294662 (* 0.0272727 = 0.00803623 loss) | |
I0430 15:56:01.526474 15443 solver.cpp:406] Test net output #35: loss1/loss09 = 0.0775073 (* 0.0272727 = 0.00211384 loss) | |
I0430 15:56:01.526489 15443 solver.cpp:406] Test net output #36: loss1/loss10 = 0.0331173 (* 0.0272727 = 0.0009032 loss) | |
I0430 15:56:01.526504 15443 solver.cpp:406] Test net output #37: loss1/loss11 = 0.0124608 (* 0.0272727 = 0.000339841 loss) | |
I0430 15:56:01.526517 15443 solver.cpp:406] Test net output #38: loss1/loss12 = 0.0073339 (* 0.0272727 = 0.000200016 loss) | |
I0430 15:56:01.526530 15443 solver.cpp:406] Test net output #39: loss1/loss13 = 0.00468161 (* 0.0272727 = 0.00012768 loss) | |
I0430 15:56:01.526564 15443 solver.cpp:406] Test net output #40: loss1/loss14 = 0.00293609 (* 0.0272727 = 8.00751e-05 loss) | |
I0430 15:56:01.526581 15443 solver.cpp:406] Test net output #41: loss1/loss15 = 0.00181675 (* 0.0272727 = 4.95478e-05 loss) | |
I0430 15:56:01.526593 15443 solver.cpp:406] Test net output #42: loss1/loss16 = 0.00111064 (* 0.0272727 = 3.02902e-05 loss) | |
I0430 15:56:01.526607 15443 solver.cpp:406] Test net output #43: loss1/loss17 = 0.000749478 (* 0.0272727 = 2.04403e-05 loss) | |
I0430 15:56:01.526621 15443 solver.cpp:406] Test net output #44: loss1/loss18 = 0.000468343 (* 0.0272727 = 1.2773e-05 loss) | |
I0430 15:56:01.526635 15443 solver.cpp:406] Test net output #45: loss1/loss19 = 0.00037623 (* 0.0272727 = 1.02608e-05 loss) | |
I0430 15:56:01.526648 15443 solver.cpp:406] Test net output #46: loss1/loss20 = 0.000265677 (* 0.0272727 = 7.24575e-06 loss) | |
I0430 15:56:01.526662 15443 solver.cpp:406] Test net output #47: loss1/loss21 = 0.000230687 (* 0.0272727 = 6.29148e-06 loss) | |
I0430 15:56:01.526675 15443 solver.cpp:406] Test net output #48: loss1/loss22 = 0.000195535 (* 0.0272727 = 5.33277e-06 loss) | |
I0430 15:56:01.526687 15443 solver.cpp:406] Test net output #49: loss2/accuracy = 0.735227 | |
I0430 15:56:01.526700 15443 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.883 | |
I0430 15:56:01.526710 15443 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.827 | |
I0430 15:56:01.526722 15443 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.706 | |
I0430 15:56:01.526733 15443 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.666 | |
I0430 15:56:01.526746 15443 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.628 | |
I0430 15:56:01.526757 15443 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.7 | |
I0430 15:56:01.526768 15443 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.852 | |
I0430 15:56:01.526779 15443 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.91 | |
I0430 15:56:01.526790 15443 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.984 | |
I0430 15:56:01.526803 15443 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.993 | |
I0430 15:56:01.526813 15443 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.998 | |
I0430 15:56:01.526825 15443 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.999 | |
I0430 15:56:01.526836 15443 solver.cpp:406] Test net output #62: loss2/accuracy13 = 1 | |
I0430 15:56:01.526847 15443 solver.cpp:406] Test net output #63: loss2/accuracy14 = 1 | |
I0430 15:56:01.526859 15443 solver.cpp:406] Test net output #64: loss2/accuracy15 = 1 | |
I0430 15:56:01.526870 15443 solver.cpp:406] Test net output #65: loss2/accuracy16 = 1 | |
I0430 15:56:01.526880 15443 solver.cpp:406] Test net output #66: loss2/accuracy17 = 1 | |
I0430 15:56:01.526891 15443 solver.cpp:406] Test net output #67: loss2/accuracy18 = 1 | |
I0430 15:56:01.526902 15443 solver.cpp:406] Test net output #68: loss2/accuracy19 = 1 | |
I0430 15:56:01.526913 15443 solver.cpp:406] Test net output #69: loss2/accuracy20 = 1 | |
I0430 15:56:01.526924 15443 solver.cpp:406] Test net output #70: loss2/accuracy21 = 1 | |
I0430 15:56:01.526935 15443 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1 | |
I0430 15:56:01.526947 15443 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.921229 | |
I0430 15:56:01.526957 15443 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.902621 | |
I0430 15:56:01.526971 15443 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 0.88091 (* 0.3 = 0.264273 loss) | |
I0430 15:56:01.526984 15443 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.269077 (* 0.3 = 0.080723 loss) | |
I0430 15:56:01.526998 15443 solver.cpp:406] Test net output #76: loss2/loss01 = 0.49709 (* 0.0272727 = 0.013557 loss) | |
I0430 15:56:01.527011 15443 solver.cpp:406] Test net output #77: loss2/loss02 = 0.665332 (* 0.0272727 = 0.0181454 loss) | |
I0430 15:56:01.527035 15443 solver.cpp:406] Test net output #78: loss2/loss03 = 0.998094 (* 0.0272727 = 0.0272207 loss) | |
I0430 15:56:01.527053 15443 solver.cpp:406] Test net output #79: loss2/loss04 = 1.1088 (* 0.0272727 = 0.03024 loss) | |
I0430 15:56:01.527068 15443 solver.cpp:406] Test net output #80: loss2/loss05 = 1.13663 (* 0.0272727 = 0.030999 loss) | |
I0430 15:56:01.527081 15443 solver.cpp:406] Test net output #81: loss2/loss06 = 0.897602 (* 0.0272727 = 0.02448 loss) | |
I0430 15:56:01.527096 15443 solver.cpp:406] Test net output #82: loss2/loss07 = 0.491872 (* 0.0272727 = 0.0134147 loss) | |
I0430 15:56:01.527109 15443 solver.cpp:406] Test net output #83: loss2/loss08 = 0.273217 (* 0.0272727 = 0.00745137 loss) | |
I0430 15:56:01.527118 15443 solver.cpp:406] Test net output #84: loss2/loss09 = 0.0718603 (* 0.0272727 = 0.00195983 loss) | |
I0430 15:56:01.527128 15443 solver.cpp:406] Test net output #85: loss2/loss10 = 0.0318129 (* 0.0272727 = 0.000867624 loss) | |
I0430 15:56:01.527143 15443 solver.cpp:406] Test net output #86: loss2/loss11 = 0.0138888 (* 0.0272727 = 0.000378785 loss) | |
I0430 15:56:01.527156 15443 solver.cpp:406] Test net output #87: loss2/loss12 = 0.00789502 (* 0.0272727 = 0.000215319 loss) | |
I0430 15:56:01.527170 15443 solver.cpp:406] Test net output #88: loss2/loss13 = 0.00476476 (* 0.0272727 = 0.000129948 loss) | |
I0430 15:56:01.527184 15443 solver.cpp:406] Test net output #89: loss2/loss14 = 0.00281319 (* 0.0272727 = 7.67233e-05 loss) | |
I0430 15:56:01.527197 15443 solver.cpp:406] Test net output #90: loss2/loss15 = 0.00151759 (* 0.0272727 = 4.13888e-05 loss) | |
I0430 15:56:01.527211 15443 solver.cpp:406] Test net output #91: loss2/loss16 = 0.000736217 (* 0.0272727 = 2.00786e-05 loss) | |
I0430 15:56:01.527225 15443 solver.cpp:406] Test net output #92: loss2/loss17 = 0.000361529 (* 0.0272727 = 9.85988e-06 loss) | |
I0430 15:56:01.527237 15443 solver.cpp:406] Test net output #93: loss2/loss18 = 0.000202994 (* 0.0272727 = 5.53619e-06 loss) | |
I0430 15:56:01.527251 15443 solver.cpp:406] Test net output #94: loss2/loss19 = 0.000154567 (* 0.0272727 = 4.21545e-06 loss) | |
I0430 15:56:01.527264 15443 solver.cpp:406] Test net output #95: loss2/loss20 = 0.000128208 (* 0.0272727 = 3.49658e-06 loss) | |
I0430 15:56:01.527278 15443 solver.cpp:406] Test net output #96: loss2/loss21 = 0.00012109 (* 0.0272727 = 3.30244e-06 loss) | |
I0430 15:56:01.527292 15443 solver.cpp:406] Test net output #97: loss2/loss22 = 9.39096e-05 (* 0.0272727 = 2.56117e-06 loss) | |
I0430 15:56:01.527303 15443 solver.cpp:406] Test net output #98: loss3/accuracy = 0.849301 | |
I0430 15:56:01.527314 15443 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.9 | |
I0430 15:56:01.527326 15443 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.871 | |
I0430 15:56:01.527338 15443 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.829 | |
I0430 15:56:01.527348 15443 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.836 | |
I0430 15:56:01.527359 15443 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.831 | |
I0430 15:56:01.527372 15443 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.846 | |
I0430 15:56:01.527384 15443 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.889 | |
I0430 15:56:01.527395 15443 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.941 | |
I0430 15:56:01.527406 15443 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.98 | |
I0430 15:56:01.527417 15443 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.993 | |
I0430 15:56:01.527428 15443 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.998 | |
I0430 15:56:01.527441 15443 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.998 | |
I0430 15:56:01.527451 15443 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.999 | |
I0430 15:56:01.527462 15443 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.999 | |
I0430 15:56:01.527488 15443 solver.cpp:406] Test net output #113: loss3/accuracy15 = 1 | |
I0430 15:56:01.527500 15443 solver.cpp:406] Test net output #114: loss3/accuracy16 = 1 | |
I0430 15:56:01.527523 15443 solver.cpp:406] Test net output #115: loss3/accuracy17 = 1 | |
I0430 15:56:01.527535 15443 solver.cpp:406] Test net output #116: loss3/accuracy18 = 1 | |
I0430 15:56:01.527547 15443 solver.cpp:406] Test net output #117: loss3/accuracy19 = 1 | |
I0430 15:56:01.527559 15443 solver.cpp:406] Test net output #118: loss3/accuracy20 = 1 | |
I0430 15:56:01.527570 15443 solver.cpp:406] Test net output #119: loss3/accuracy21 = 1 | |
I0430 15:56:01.527580 15443 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1 | |
I0430 15:56:01.527591 15443 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.952364 | |
I0430 15:56:01.527602 15443 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.926036 | |
I0430 15:56:01.527616 15443 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.583413 (* 1 = 0.583413 loss) | |
I0430 15:56:01.527629 15443 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.185884 (* 1 = 0.185884 loss) | |
I0430 15:56:01.527643 15443 solver.cpp:406] Test net output #125: loss3/loss01 = 0.413378 (* 0.0909091 = 0.0375798 loss) | |
I0430 15:56:01.527657 15443 solver.cpp:406] Test net output #126: loss3/loss02 = 0.516931 (* 0.0909091 = 0.0469937 loss) | |
I0430 15:56:01.527670 15443 solver.cpp:406] Test net output #127: loss3/loss03 = 0.674732 (* 0.0909091 = 0.0613393 loss) | |
I0430 15:56:01.527683 15443 solver.cpp:406] Test net output #128: loss3/loss04 = 0.615631 (* 0.0909091 = 0.0559665 loss) | |
I0430 15:56:01.527696 15443 solver.cpp:406] Test net output #129: loss3/loss05 = 0.650981 (* 0.0909091 = 0.0591801 loss) | |
I0430 15:56:01.527710 15443 solver.cpp:406] Test net output #130: loss3/loss06 = 0.549636 (* 0.0909091 = 0.0499669 loss) | |
I0430 15:56:01.527724 15443 solver.cpp:406] Test net output #131: loss3/loss07 = 0.361557 (* 0.0909091 = 0.0328688 loss) | |
I0430 15:56:01.527736 15443 solver.cpp:406] Test net output #132: loss3/loss08 = 0.193721 (* 0.0909091 = 0.017611 loss) | |
I0430 15:56:01.527750 15443 solver.cpp:406] Test net output #133: loss3/loss09 = 0.0691073 (* 0.0909091 = 0.00628248 loss) | |
I0430 15:56:01.527763 15443 solver.cpp:406] Test net output #134: loss3/loss10 = 0.0377099 (* 0.0909091 = 0.00342817 loss) | |
I0430 15:56:01.527776 15443 solver.cpp:406] Test net output #135: loss3/loss11 = 0.0155443 (* 0.0909091 = 0.00141311 loss) | |
I0430 15:56:01.527791 15443 solver.cpp:406] Test net output #136: loss3/loss12 = 0.00965614 (* 0.0909091 = 0.000877831 loss) | |
I0430 15:56:01.527803 15443 solver.cpp:406] Test net output #137: loss3/loss13 = 0.00573053 (* 0.0909091 = 0.000520958 loss) | |
I0430 15:56:01.527817 15443 solver.cpp:406] Test net output #138: loss3/loss14 = 0.00327347 (* 0.0909091 = 0.000297588 loss) | |
I0430 15:56:01.527830 15443 solver.cpp:406] Test net output #139: loss3/loss15 = 0.00164805 (* 0.0909091 = 0.000149823 loss) | |
I0430 15:56:01.527844 15443 solver.cpp:406] Test net output #140: loss3/loss16 = 0.000699825 (* 0.0909091 = 6.36204e-05 loss) | |
I0430 15:56:01.527858 15443 solver.cpp:406] Test net output #141: loss3/loss17 = 0.000308756 (* 0.0909091 = 2.80687e-05 loss) | |
I0430 15:56:01.527871 15443 solver.cpp:406] Test net output #142: loss3/loss18 = 0.000143476 (* 0.0909091 = 1.30433e-05 loss) | |
I0430 15:56:01.527884 15443 solver.cpp:406] Test net output #143: loss3/loss19 = 8.62983e-05 (* 0.0909091 = 7.8453e-06 loss) | |
I0430 15:56:01.527899 15443 solver.cpp:406] Test net output #144: loss3/loss20 = 4.62907e-05 (* 0.0909091 = 4.20824e-06 loss) | |
I0430 15:56:01.527911 15443 solver.cpp:406] Test net output #145: loss3/loss21 = 3.17133e-05 (* 0.0909091 = 2.88303e-06 loss) | |
I0430 15:56:01.527925 15443 solver.cpp:406] Test net output #146: loss3/loss22 = 2.62154e-05 (* 0.0909091 = 2.38322e-06 loss) | |
I0430 15:56:01.527936 15443 solver.cpp:406] Test net output #147: total_accuracy = 0.591 | |
I0430 15:56:01.527948 15443 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.569 | |
I0430 15:56:01.527959 15443 solver.cpp:406] Test net output #149: total_confidence = 0.541168 | |
I0430 15:56:01.527981 15443 solver.cpp:406] Test net output #150: total_confidence_not_rec = 0.517791 | |
I0430 15:56:01.527994 15443 solver.cpp:338] Iteration 10000, Testing net (#1) | |
I0430 15:56:42.658488 15443 solver.cpp:393] Test loss: 3.19793 | |
I0430 15:56:42.658643 15443 solver.cpp:406] Test net output #0: loss1/accuracy = 0.590673 | |
I0430 15:56:42.658663 15443 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.79 | |
I0430 15:56:42.658675 15443 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.66 | |
I0430 15:56:42.658687 15443 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.549 | |
I0430 15:56:42.658699 15443 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.544 | |
I0430 15:56:42.658710 15443 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.55 | |
I0430 15:56:42.658722 15443 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.642 | |
I0430 15:56:42.658735 15443 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.756 | |
I0430 15:56:42.658746 15443 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.852 | |
I0430 15:56:42.658757 15443 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.906 | |
I0430 15:56:42.658769 15443 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.926 | |
I0430 15:56:42.658782 15443 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.937 | |
I0430 15:56:42.658792 15443 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.94 | |
I0430 15:56:42.658804 15443 solver.cpp:406] Test net output #13: loss1/accuracy13 = 0.952 | |
I0430 15:56:42.658815 15443 solver.cpp:406] Test net output #14: loss1/accuracy14 = 0.959 | |
I0430 15:56:42.658828 15443 solver.cpp:406] Test net output #15: loss1/accuracy15 = 0.968 | |
I0430 15:56:42.658839 15443 solver.cpp:406] Test net output #16: loss1/accuracy16 = 0.978 | |
I0430 15:56:42.658851 15443 solver.cpp:406] Test net output #17: loss1/accuracy17 = 0.99 | |
I0430 15:56:42.658862 15443 solver.cpp:406] Test net output #18: loss1/accuracy18 = 0.995 | |
I0430 15:56:42.658874 15443 solver.cpp:406] Test net output #19: loss1/accuracy19 = 0.998 | |
I0430 15:56:42.658885 15443 solver.cpp:406] Test net output #20: loss1/accuracy20 = 0.998 | |
I0430 15:56:42.658897 15443 solver.cpp:406] Test net output #21: loss1/accuracy21 = 0.999 | |
I0430 15:56:42.658908 15443 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1 | |
I0430 15:56:42.658921 15443 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.857684 | |
I0430 15:56:42.658931 15443 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.819499 | |
I0430 15:56:42.658947 15443 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.3373 (* 0.3 = 0.401189 loss) | |
I0430 15:56:42.658962 15443 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.473293 (* 0.3 = 0.141988 loss) | |
I0430 15:56:42.658977 15443 solver.cpp:406] Test net output #27: loss1/loss01 = 0.800795 (* 0.0272727 = 0.0218399 loss) | |
I0430 15:56:42.658998 15443 solver.cpp:406] Test net output #28: loss1/loss02 = 1.15737 (* 0.0272727 = 0.0315646 loss) | |
I0430 15:56:42.659013 15443 solver.cpp:406] Test net output #29: loss1/loss03 = 1.49655 (* 0.0272727 = 0.0408151 loss) | |
I0430 15:56:42.659025 15443 solver.cpp:406] Test net output #30: loss1/loss04 = 1.50181 (* 0.0272727 = 0.0409585 loss) | |
I0430 15:56:42.659039 15443 solver.cpp:406] Test net output #31: loss1/loss05 = 1.42621 (* 0.0272727 = 0.0388967 loss) | |
I0430 15:56:42.659052 15443 solver.cpp:406] Test net output #32: loss1/loss06 = 1.10619 (* 0.0272727 = 0.0301687 loss) | |
I0430 15:56:42.659065 15443 solver.cpp:406] Test net output #33: loss1/loss07 = 0.787513 (* 0.0272727 = 0.0214776 loss) | |
I0430 15:56:42.659102 15443 solver.cpp:406] Test net output #34: loss1/loss08 = 0.493254 (* 0.0272727 = 0.0134524 loss) | |
I0430 15:56:42.659121 15443 solver.cpp:406] Test net output #35: loss1/loss09 = 0.333799 (* 0.0272727 = 0.00910362 loss) | |
I0430 15:56:42.659135 15443 solver.cpp:406] Test net output #36: loss1/loss10 = 0.27221 (* 0.0272727 = 0.00742392 loss) | |
I0430 15:56:42.659148 15443 solver.cpp:406] Test net output #37: loss1/loss11 = 0.214502 (* 0.0272727 = 0.00585005 loss) | |
I0430 15:56:42.659162 15443 solver.cpp:406] Test net output #38: loss1/loss12 = 0.206033 (* 0.0272727 = 0.00561908 loss) | |
I0430 15:56:42.659195 15443 solver.cpp:406] Test net output #39: loss1/loss13 = 0.173475 (* 0.0272727 = 0.00473114 loss) | |
I0430 15:56:42.659210 15443 solver.cpp:406] Test net output #40: loss1/loss14 = 0.149217 (* 0.0272727 = 0.00406954 loss) | |
I0430 15:56:42.659224 15443 solver.cpp:406] Test net output #41: loss1/loss15 = 0.138693 (* 0.0272727 = 0.00378254 loss) | |
I0430 15:56:42.659238 15443 solver.cpp:406] Test net output #42: loss1/loss16 = 0.0878215 (* 0.0272727 = 0.00239513 loss) | |
I0430 15:56:42.659252 15443 solver.cpp:406] Test net output #43: loss1/loss17 = 0.043656 (* 0.0272727 = 0.00119062 loss) | |
I0430 15:56:42.659266 15443 solver.cpp:406] Test net output #44: loss1/loss18 = 0.0244657 (* 0.0272727 = 0.000667246 loss) | |
I0430 15:56:42.659279 15443 solver.cpp:406] Test net output #45: loss1/loss19 = 0.0125699 (* 0.0272727 = 0.000342816 loss) | |
I0430 15:56:42.659293 15443 solver.cpp:406] Test net output #46: loss1/loss20 = 0.0116891 (* 0.0272727 = 0.000318792 loss) | |
I0430 15:56:42.659307 15443 solver.cpp:406] Test net output #47: loss1/loss21 = 0.0103033 (* 0.0272727 = 0.000280998 loss) | |
I0430 15:56:42.659324 15443 solver.cpp:406] Test net output #48: loss1/loss22 = 4.58739e-05 (* 0.0272727 = 1.25111e-06 loss) | |
I0430 15:56:42.659337 15443 solver.cpp:406] Test net output #49: loss2/accuracy = 0.681626 | |
I0430 15:56:42.659348 15443 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.834 | |
I0430 15:56:42.659360 15443 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.777 | |
I0430 15:56:42.659371 15443 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.687 | |
I0430 15:56:42.659382 15443 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.613 | |
I0430 15:56:42.659394 15443 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.61 | |
I0430 15:56:42.659405 15443 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.69 | |
I0430 15:56:42.659416 15443 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.789 | |
I0430 15:56:42.659427 15443 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.853 | |
I0430 15:56:42.659438 15443 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.905 | |
I0430 15:56:42.659449 15443 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.928 | |
I0430 15:56:42.659461 15443 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.943 | |
I0430 15:56:42.659487 15443 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.942 | |
I0430 15:56:42.659499 15443 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.952 | |
I0430 15:56:42.659512 15443 solver.cpp:406] Test net output #63: loss2/accuracy14 = 0.96 | |
I0430 15:56:42.659524 15443 solver.cpp:406] Test net output #64: loss2/accuracy15 = 0.969 | |
I0430 15:56:42.659536 15443 solver.cpp:406] Test net output #65: loss2/accuracy16 = 0.978 | |
I0430 15:56:42.659548 15443 solver.cpp:406] Test net output #66: loss2/accuracy17 = 0.99 | |
I0430 15:56:42.659559 15443 solver.cpp:406] Test net output #67: loss2/accuracy18 = 0.995 | |
I0430 15:56:42.659570 15443 solver.cpp:406] Test net output #68: loss2/accuracy19 = 0.998 | |
I0430 15:56:42.659582 15443 solver.cpp:406] Test net output #69: loss2/accuracy20 = 0.998 | |
I0430 15:56:42.659595 15443 solver.cpp:406] Test net output #70: loss2/accuracy21 = 0.999 | |
I0430 15:56:42.659605 15443 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1 | |
I0430 15:56:42.659616 15443 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.885047 | |
I0430 15:56:42.659628 15443 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.863022 | |
I0430 15:56:42.659642 15443 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 1.07455 (* 0.3 = 0.322365 loss) | |
I0430 15:56:42.659659 15443 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.388281 (* 0.3 = 0.116484 loss) | |
I0430 15:56:42.659673 15443 solver.cpp:406] Test net output #76: loss2/loss01 = 0.665621 (* 0.0272727 = 0.0181533 loss) | |
I0430 15:56:42.659687 15443 solver.cpp:406] Test net output #77: loss2/loss02 = 0.823481 (* 0.0272727 = 0.0224586 loss) | |
I0430 15:56:42.659713 15443 solver.cpp:406] Test net output #78: loss2/loss03 = 1.1032 (* 0.0272727 = 0.0300872 loss) | |
I0430 15:56:42.659729 15443 solver.cpp:406] Test net output #79: loss2/loss04 = 1.25785 (* 0.0272727 = 0.0343049 loss) | |
I0430 15:56:42.659741 15443 solver.cpp:406] Test net output #80: loss2/loss05 = 1.22271 (* 0.0272727 = 0.0333466 loss) | |
I0430 15:56:42.659755 15443 solver.cpp:406] Test net output #81: loss2/loss06 = 0.978768 (* 0.0272727 = 0.0266937 loss) | |
I0430 15:56:42.659768 15443 solver.cpp:406] Test net output #82: loss2/loss07 = 0.692086 (* 0.0272727 = 0.0188751 loss) | |
I0430 15:56:42.659781 15443 solver.cpp:406] Test net output #83: loss2/loss08 = 0.484762 (* 0.0272727 = 0.0132208 loss) | |
I0430 15:56:42.659795 15443 solver.cpp:406] Test net output #84: loss2/loss09 = 0.335361 (* 0.0272727 = 0.00914622 loss) | |
I0430 15:56:42.659808 15443 solver.cpp:406] Test net output #85: loss2/loss10 = 0.274654 (* 0.0272727 = 0.00749058 loss) | |
I0430 15:56:42.659822 15443 solver.cpp:406] Test net output #86: loss2/loss11 = 0.216255 (* 0.0272727 = 0.00589787 loss) | |
I0430 15:56:42.659835 15443 solver.cpp:406] Test net output #87: loss2/loss12 = 0.202943 (* 0.0272727 = 0.0055348 loss) | |
I0430 15:56:42.659849 15443 solver.cpp:406] Test net output #88: loss2/loss13 = 0.173019 (* 0.0272727 = 0.00471869 loss) | |
I0430 15:56:42.659862 15443 solver.cpp:406] Test net output #89: loss2/loss14 = 0.147351 (* 0.0272727 = 0.00401867 loss) | |
I0430 15:56:42.659876 15443 solver.cpp:406] Test net output #90: loss2/loss15 = 0.139119 (* 0.0272727 = 0.00379415 loss) | |
I0430 15:56:42.659889 15443 solver.cpp:406] Test net output #91: loss2/loss16 = 0.0933198 (* 0.0272727 = 0.00254509 loss) | |
I0430 15:56:42.659903 15443 solver.cpp:406] Test net output #92: loss2/loss17 = 0.0478231 (* 0.0272727 = 0.00130427 loss) | |
I0430 15:56:42.659915 15443 solver.cpp:406] Test net output #93: loss2/loss18 = 0.0249602 (* 0.0272727 = 0.000680732 loss) | |
I0430 15:56:42.659929 15443 solver.cpp:406] Test net output #94: loss2/loss19 = 0.0137786 (* 0.0272727 = 0.000375781 loss) | |
I0430 15:56:42.659945 15443 solver.cpp:406] Test net output #95: loss2/loss20 = 0.0131676 (* 0.0272727 = 0.000359116 loss) | |
I0430 15:56:42.659968 15443 solver.cpp:406] Test net output #96: loss2/loss21 = 0.00848008 (* 0.0272727 = 0.000231275 loss) | |
I0430 15:56:42.659994 15443 solver.cpp:406] Test net output #97: loss2/loss22 = 5.12809e-05 (* 0.0272727 = 1.39857e-06 loss) | |
I0430 15:56:42.660009 15443 solver.cpp:406] Test net output #98: loss3/accuracy = 0.78574 | |
I0430 15:56:42.660020 15443 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.859 | |
I0430 15:56:42.660032 15443 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.833 | |
I0430 15:56:42.660043 15443 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.792 | |
I0430 15:56:42.660054 15443 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.793 | |
I0430 15:56:42.660065 15443 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.772 | |
I0430 15:56:42.660076 15443 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.808 | |
I0430 15:56:42.660087 15443 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.827 | |
I0430 15:56:42.660099 15443 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.878 | |
I0430 15:56:42.660110 15443 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.915 | |
I0430 15:56:42.660121 15443 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.926 | |
I0430 15:56:42.660133 15443 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.941 | |
I0430 15:56:42.660145 15443 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.941 | |
I0430 15:56:42.660156 15443 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.955 | |
I0430 15:56:42.660166 15443 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.964 | |
I0430 15:56:42.660177 15443 solver.cpp:406] Test net output #113: loss3/accuracy15 = 0.973 | |
I0430 15:56:42.660188 15443 solver.cpp:406] Test net output #114: loss3/accuracy16 = 0.979 | |
I0430 15:56:42.660212 15443 solver.cpp:406] Test net output #115: loss3/accuracy17 = 0.99 | |
I0430 15:56:42.660225 15443 solver.cpp:406] Test net output #116: loss3/accuracy18 = 0.995 | |
I0430 15:56:42.660236 15443 solver.cpp:406] Test net output #117: loss3/accuracy19 = 0.998 | |
I0430 15:56:42.660248 15443 solver.cpp:406] Test net output #118: loss3/accuracy20 = 0.998 | |
I0430 15:56:42.660259 15443 solver.cpp:406] Test net output #119: loss3/accuracy21 = 0.999 | |
I0430 15:56:42.660271 15443 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1 | |
I0430 15:56:42.660282 15443 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.917182 | |
I0430 15:56:42.660293 15443 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.891566 | |
I0430 15:56:42.660307 15443 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.783224 (* 1 = 0.783224 loss) | |
I0430 15:56:42.660321 15443 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.300268 (* 1 = 0.300268 loss) | |
I0430 15:56:42.660334 15443 solver.cpp:406] Test net output #125: loss3/loss01 = 0.584378 (* 0.0909091 = 0.0531253 loss) | |
I0430 15:56:42.660348 15443 solver.cpp:406] Test net output #126: loss3/loss02 = 0.645182 (* 0.0909091 = 0.0586529 loss) | |
I0430 15:56:42.660362 15443 solver.cpp:406] Test net output #127: loss3/loss03 = 0.721489 (* 0.0909091 = 0.0655899 loss) | |
I0430 15:56:42.660378 15443 solver.cpp:406] Test net output #128: loss3/loss04 = 0.755104 (* 0.0909091 = 0.0686458 loss) | |
I0430 15:56:42.660392 15443 solver.cpp:406] Test net output #129: loss3/loss05 = 0.798566 (* 0.0909091 = 0.0725969 loss) | |
I0430 15:56:42.660405 15443 solver.cpp:406] Test net output #130: loss3/loss06 = 0.655941 (* 0.0909091 = 0.059631 loss) | |
I0430 15:56:42.660418 15443 solver.cpp:406] Test net output #131: loss3/loss07 = 0.575565 (* 0.0909091 = 0.0523241 loss) | |
I0430 15:56:42.660431 15443 solver.cpp:406] Test net output #132: loss3/loss08 = 0.400542 (* 0.0909091 = 0.0364129 loss) | |
I0430 15:56:42.660444 15443 solver.cpp:406] Test net output #133: loss3/loss09 = 0.29493 (* 0.0909091 = 0.0268118 loss) | |
I0430 15:56:42.660459 15443 solver.cpp:406] Test net output #134: loss3/loss10 = 0.255281 (* 0.0909091 = 0.0232074 loss) | |
I0430 15:56:42.660471 15443 solver.cpp:406] Test net output #135: loss3/loss11 = 0.199863 (* 0.0909091 = 0.0181694 loss) | |
I0430 15:56:42.660485 15443 solver.cpp:406] Test net output #136: loss3/loss12 = 0.186615 (* 0.0909091 = 0.016965 loss) | |
I0430 15:56:42.660498 15443 solver.cpp:406] Test net output #137: loss3/loss13 = 0.158949 (* 0.0909091 = 0.0144499 loss) | |
I0430 15:56:42.660511 15443 solver.cpp:406] Test net output #138: loss3/loss14 = 0.130888 (* 0.0909091 = 0.0118989 loss) | |
I0430 15:56:42.660524 15443 solver.cpp:406] Test net output #139: loss3/loss15 = 0.121841 (* 0.0909091 = 0.0110764 loss) | |
I0430 15:56:42.660538 15443 solver.cpp:406] Test net output #140: loss3/loss16 = 0.0737945 (* 0.0909091 = 0.00670859 loss) | |
I0430 15:56:42.660552 15443 solver.cpp:406] Test net output #141: loss3/loss17 = 0.0410538 (* 0.0909091 = 0.00373217 loss) | |
I0430 15:56:42.660565 15443 solver.cpp:406] Test net output #142: loss3/loss18 = 0.01939 (* 0.0909091 = 0.00176273 loss) | |
I0430 15:56:42.660578 15443 solver.cpp:406] Test net output #143: loss3/loss19 = 0.0104091 (* 0.0909091 = 0.000946283 loss) | |
I0430 15:56:42.660593 15443 solver.cpp:406] Test net output #144: loss3/loss20 = 0.0100683 (* 0.0909091 = 0.000915304 loss) | |
I0430 15:56:42.660606 15443 solver.cpp:406] Test net output #145: loss3/loss21 = 0.00654461 (* 0.0909091 = 0.000594964 loss) | |
I0430 15:56:42.660619 15443 solver.cpp:406] Test net output #146: loss3/loss22 = 0.00010255 (* 0.0909091 = 9.3227e-06 loss) | |
I0430 15:56:42.660630 15443 solver.cpp:406] Test net output #147: total_accuracy = 0.519 | |
I0430 15:56:42.660642 15443 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.502 | |
I0430 15:56:42.660653 15443 solver.cpp:406] Test net output #149: total_confidence = 0.471937 | |
I0430 15:56:42.660676 15443 solver.cpp:406] Test net output #150: total_confidence_not_rec = 0.458286 | |
I0430 15:56:42.842408 15443 solver.cpp:229] Iteration 10000, loss = 3.70528 | |
I0430 15:56:42.842473 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.454545 | |
I0430 15:56:42.842490 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625 | |
I0430 15:56:42.842504 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0430 15:56:42.842515 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625 | |
I0430 15:56:42.842527 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0430 15:56:42.842541 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625 | |
I0430 15:56:42.842555 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375 | |
I0430 15:56:42.842566 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5 | |
I0430 15:56:42.842577 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75 | |
I0430 15:56:42.842591 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0430 15:56:42.842602 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0430 15:56:42.842614 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.75 | |
I0430 15:56:42.842627 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0430 15:56:42.842638 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0430 15:56:42.842650 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 15:56:42.842661 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 15:56:42.842674 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 15:56:42.842685 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 15:56:42.842696 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 15:56:42.842707 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 15:56:42.842720 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 15:56:42.842730 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 15:56:42.842742 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 15:56:42.842753 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.801136 | |
I0430 15:56:42.842766 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.727273 | |
I0430 15:56:42.842782 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.88793 (* 0.3 = 0.56638 loss) | |
I0430 15:56:42.842797 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.813465 (* 0.3 = 0.244039 loss) | |
I0430 15:56:42.842810 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 2.58952 (* 0.0272727 = 0.0706234 loss) | |
I0430 15:56:42.842824 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 2.53712 (* 0.0272727 = 0.0691942 loss) | |
I0430 15:56:42.842839 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.80864 (* 0.0272727 = 0.0493265 loss) | |
I0430 15:56:42.842852 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.87891 (* 0.0272727 = 0.0512429 loss) | |
I0430 15:56:42.842866 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.43981 (* 0.0272727 = 0.0392675 loss) | |
I0430 15:56:42.842880 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.52017 (* 0.0272727 = 0.0414591 loss) | |
I0430 15:56:42.842893 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.399 (* 0.0272727 = 0.0381546 loss) | |
I0430 15:56:42.842907 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.967871 (* 0.0272727 = 0.0263965 loss) | |
I0430 15:56:42.842921 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.560229 (* 0.0272727 = 0.015279 loss) | |
I0430 15:56:42.842934 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.890352 (* 0.0272727 = 0.0242823 loss) | |
I0430 15:56:42.842983 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.785818 (* 0.0272727 = 0.0214314 loss) | |
I0430 15:56:42.842998 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.445054 (* 0.0272727 = 0.0121378 loss) | |
I0430 15:56:42.843014 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.161953 (* 0.0272727 = 0.00441689 loss) | |
I0430 15:56:42.843027 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.114752 (* 0.0272727 = 0.0031296 loss) | |
I0430 15:56:42.843041 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0215919 (* 0.0272727 = 0.00058887 loss) | |
I0430 15:56:42.843055 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00391595 (* 0.0272727 = 0.000106799 loss) | |
I0430 15:56:42.843070 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000859993 (* 0.0272727 = 2.34543e-05 loss) | |
I0430 15:56:42.843085 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000371652 (* 0.0272727 = 1.0136e-05 loss) | |
I0430 15:56:42.843098 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000149147 (* 0.0272727 = 4.06765e-06 loss) | |
I0430 15:56:42.843112 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000156886 (* 0.0272727 = 4.27872e-06 loss) | |
I0430 15:56:42.843127 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 4.67833e-05 (* 0.0272727 = 1.27591e-06 loss) | |
I0430 15:56:42.843142 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 1.32478e-05 (* 0.0272727 = 3.61304e-07 loss) | |
I0430 15:56:42.843153 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.490909 | |
I0430 15:56:42.843165 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.5 | |
I0430 15:56:42.843178 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.375 | |
I0430 15:56:42.843189 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375 | |
I0430 15:56:42.843200 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5 | |
I0430 15:56:42.843216 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.75 | |
I0430 15:56:42.843227 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5 | |
I0430 15:56:42.843240 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0430 15:56:42.843250 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625 | |
I0430 15:56:42.843262 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0430 15:56:42.843274 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.75 | |
I0430 15:56:42.843286 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.75 | |
I0430 15:56:42.843297 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0430 15:56:42.843309 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0430 15:56:42.843322 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 15:56:42.843333 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 15:56:42.843343 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 15:56:42.843355 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 15:56:42.843366 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 15:56:42.843379 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 15:56:42.843389 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 15:56:42.843400 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 15:56:42.843411 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 15:56:42.843422 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.823864 | |
I0430 15:56:42.843435 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.8 | |
I0430 15:56:42.843448 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.66422 (* 0.3 = 0.499265 loss) | |
I0430 15:56:42.843462 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.66482 (* 0.3 = 0.199446 loss) | |
I0430 15:56:42.843511 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 1.41852 (* 0.0272727 = 0.038687 loss) | |
I0430 15:56:42.843526 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 2.81417 (* 0.0272727 = 0.0767501 loss) | |
I0430 15:56:42.843540 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 2.0323 (* 0.0272727 = 0.0554263 loss) | |
I0430 15:56:42.843554 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.82073 (* 0.0272727 = 0.0496563 loss) | |
I0430 15:56:42.843569 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.29225 (* 0.0272727 = 0.0352431 loss) | |
I0430 15:56:42.843582 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.52624 (* 0.0272727 = 0.0416248 loss) | |
I0430 15:56:42.843598 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 1.19276 (* 0.0272727 = 0.0325297 loss) | |
I0430 15:56:42.843613 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.916988 (* 0.0272727 = 0.0250088 loss) | |
I0430 15:56:42.843627 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.566391 (* 0.0272727 = 0.015447 loss) | |
I0430 15:56:42.843641 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.852305 (* 0.0272727 = 0.0232447 loss) | |
I0430 15:56:42.843654 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.731657 (* 0.0272727 = 0.0199543 loss) | |
I0430 15:56:42.843668 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.583997 (* 0.0272727 = 0.0159272 loss) | |
I0430 15:56:42.843683 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.175236 (* 0.0272727 = 0.00477916 loss) | |
I0430 15:56:42.843696 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0171975 (* 0.0272727 = 0.000469024 loss) | |
I0430 15:56:42.843710 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00612079 (* 0.0272727 = 0.000166931 loss) | |
I0430 15:56:42.843724 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000381349 (* 0.0272727 = 1.04004e-05 loss) | |
I0430 15:56:42.843739 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000114902 (* 0.0272727 = 3.13369e-06 loss) | |
I0430 15:56:42.843753 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 9.83539e-05 (* 0.0272727 = 2.68238e-06 loss) | |
I0430 15:56:42.843767 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 3.32108e-05 (* 0.0272727 = 9.05749e-07 loss) | |
I0430 15:56:42.843781 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 6.79e-05 (* 0.0272727 = 1.85182e-06 loss) | |
I0430 15:56:42.843796 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 4.54119e-05 (* 0.0272727 = 1.23851e-06 loss) | |
I0430 15:56:42.843809 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 1.39184e-05 (* 0.0272727 = 3.79593e-07 loss) | |
I0430 15:56:42.843822 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.636364 | |
I0430 15:56:42.843833 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75 | |
I0430 15:56:42.843845 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.375 | |
I0430 15:56:42.843858 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625 | |
I0430 15:56:42.843869 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0430 15:56:42.843880 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0430 15:56:42.843893 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625 | |
I0430 15:56:42.843904 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0430 15:56:42.843915 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75 | |
I0430 15:56:42.843927 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0430 15:56:42.843940 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0430 15:56:42.843950 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.75 | |
I0430 15:56:42.843962 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0430 15:56:42.843973 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0430 15:56:42.843997 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0430 15:56:42.844009 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 15:56:42.844022 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 15:56:42.844033 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 15:56:42.844044 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 15:56:42.844056 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 15:56:42.844069 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 15:56:42.844079 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 15:56:42.844091 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 15:56:42.844102 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.863636 | |
I0430 15:56:42.844115 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.836364 | |
I0430 15:56:42.844127 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.24764 (* 1 = 1.24764 loss) | |
I0430 15:56:42.844141 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.583723 (* 1 = 0.583723 loss) | |
I0430 15:56:42.844156 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 2.44014 (* 0.0909091 = 0.221831 loss) | |
I0430 15:56:42.844169 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 2.77291 (* 0.0909091 = 0.252083 loss) | |
I0430 15:56:42.844183 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 2.06668 (* 0.0909091 = 0.18788 loss) | |
I0430 15:56:42.844197 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 1.02716 (* 0.0909091 = 0.0933783 loss) | |
I0430 15:56:42.844210 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.816427 (* 0.0909091 = 0.0742207 loss) | |
I0430 15:56:42.844224 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 1.1635 (* 0.0909091 = 0.105772 loss) | |
I0430 15:56:42.844238 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.797607 (* 0.0909091 = 0.0725097 loss) | |
I0430 15:56:42.844252 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.566904 (* 0.0909091 = 0.0515367 loss) | |
I0430 15:56:42.844270 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.558031 (* 0.0909091 = 0.0507301 loss) | |
I0430 15:56:42.844285 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.625433 (* 0.0909091 = 0.0568575 loss) | |
I0430 15:56:42.844298 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.570615 (* 0.0909091 = 0.0518741 loss) | |
I0430 15:56:42.844311 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.307941 (* 0.0909091 = 0.0279946 loss) | |
I0430 15:56:42.844326 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0499091 (* 0.0909091 = 0.00453719 loss) | |
I0430 15:56:42.844341 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.2055 (* 0.0909091 = 0.0186819 loss) | |
I0430 15:56:42.844353 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.0596069 (* 0.0909091 = 0.00541881 loss) | |
I0430 15:56:42.844367 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00594494 (* 0.0909091 = 0.00054045 loss) | |
I0430 15:56:42.844382 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00278412 (* 0.0909091 = 0.000253102 loss) | |
I0430 15:56:42.844395 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000594003 (* 0.0909091 = 5.40003e-05 loss) | |
I0430 15:56:42.844409 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000123607 (* 0.0909091 = 1.1237e-05 loss) | |
I0430 15:56:42.844424 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 2.45879e-05 (* 0.0909091 = 2.23526e-06 loss) | |
I0430 15:56:42.844437 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 1.19808e-05 (* 0.0909091 = 1.08917e-06 loss) | |
I0430 15:56:42.844450 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 3.77005e-06 (* 0.0909091 = 3.42731e-07 loss) | |
I0430 15:56:42.844473 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.25 | |
I0430 15:56:42.844486 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375 | |
I0430 15:56:42.844498 15443 solver.cpp:245] Train net output #149: total_confidence = 0.459927 | |
I0430 15:56:42.844509 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.470452 | |
I0430 15:56:42.844522 15443 sgd_solver.cpp:106] Iteration 10000, lr = 0.001 | |
I0430 15:58:59.877534 15443 solver.cpp:229] Iteration 10500, loss = 3.65666 | |
I0430 15:58:59.877692 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.47619 | |
I0430 15:58:59.877713 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0430 15:58:59.877727 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0430 15:58:59.877738 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5 | |
I0430 15:58:59.877750 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0430 15:58:59.877763 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625 | |
I0430 15:58:59.877774 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75 | |
I0430 15:58:59.877786 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0430 15:58:59.877797 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75 | |
I0430 15:58:59.877810 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0430 15:58:59.877821 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0430 15:58:59.877833 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0430 15:58:59.877846 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0430 15:58:59.877857 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0430 15:58:59.877868 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 15:58:59.877881 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 15:58:59.877892 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 15:58:59.877904 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 15:58:59.877915 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 15:58:59.877928 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 15:58:59.877938 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 15:58:59.877950 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 15:58:59.877962 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 15:58:59.877974 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.840909 | |
I0430 15:58:59.877985 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.714286 | |
I0430 15:58:59.878005 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.64032 (* 0.3 = 0.492095 loss) | |
I0430 15:58:59.878021 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.496794 (* 0.3 = 0.149038 loss) | |
I0430 15:58:59.878036 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.70922 (* 0.0272727 = 0.0193424 loss) | |
I0430 15:58:59.878049 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.97463 (* 0.0272727 = 0.0538535 loss) | |
I0430 15:58:59.878063 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.90849 (* 0.0272727 = 0.0520498 loss) | |
I0430 15:58:59.878077 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.32917 (* 0.0272727 = 0.03625 loss) | |
I0430 15:58:59.878090 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.16406 (* 0.0272727 = 0.031747 loss) | |
I0430 15:58:59.878104 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 0.771279 (* 0.0272727 = 0.0210349 loss) | |
I0430 15:58:59.878118 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 0.720064 (* 0.0272727 = 0.0196381 loss) | |
I0430 15:58:59.878131 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.451651 (* 0.0272727 = 0.0123177 loss) | |
I0430 15:58:59.878145 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.298223 (* 0.0272727 = 0.00813335 loss) | |
I0430 15:58:59.878159 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.173615 (* 0.0272727 = 0.00473495 loss) | |
I0430 15:58:59.878173 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.231642 (* 0.0272727 = 0.00631751 loss) | |
I0430 15:58:59.878187 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.171881 (* 0.0272727 = 0.00468767 loss) | |
I0430 15:58:59.878201 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0764842 (* 0.0272727 = 0.00208593 loss) | |
I0430 15:58:59.878235 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0265 (* 0.0272727 = 0.000722726 loss) | |
I0430 15:58:59.878252 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.010042 (* 0.0272727 = 0.000273874 loss) | |
I0430 15:58:59.878265 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00272288 (* 0.0272727 = 7.42603e-05 loss) | |
I0430 15:58:59.878279 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00100745 (* 0.0272727 = 2.74759e-05 loss) | |
I0430 15:58:59.878294 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000185251 (* 0.0272727 = 5.0523e-06 loss) | |
I0430 15:58:59.878309 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000160682 (* 0.0272727 = 4.38224e-06 loss) | |
I0430 15:58:59.878325 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000164627 (* 0.0272727 = 4.48983e-06 loss) | |
I0430 15:58:59.878340 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000116283 (* 0.0272727 = 3.17135e-06 loss) | |
I0430 15:58:59.878353 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000118737 (* 0.0272727 = 3.23827e-06 loss) | |
I0430 15:58:59.878366 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.571429 | |
I0430 15:58:59.878378 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1 | |
I0430 15:58:59.878389 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625 | |
I0430 15:58:59.878401 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5 | |
I0430 15:58:59.878413 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5 | |
I0430 15:58:59.878425 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.75 | |
I0430 15:58:59.878437 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75 | |
I0430 15:58:59.878448 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75 | |
I0430 15:58:59.878460 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0430 15:58:59.878471 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0430 15:58:59.878484 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0430 15:58:59.878495 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0430 15:58:59.878506 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0430 15:58:59.878517 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0430 15:58:59.878528 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 15:58:59.878540 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 15:58:59.878551 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 15:58:59.878563 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 15:58:59.878574 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 15:58:59.878585 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 15:58:59.878597 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 15:58:59.878608 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 15:58:59.878619 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 15:58:59.878631 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.875 | |
I0430 15:58:59.878643 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.857143 | |
I0430 15:58:59.878657 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.30309 (* 0.3 = 0.390926 loss) | |
I0430 15:58:59.878670 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.389342 (* 0.3 = 0.116803 loss) | |
I0430 15:58:59.878684 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.379656 (* 0.0272727 = 0.0103543 loss) | |
I0430 15:58:59.878703 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 1.40871 (* 0.0272727 = 0.0384193 loss) | |
I0430 15:58:59.878729 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.88748 (* 0.0272727 = 0.0514768 loss) | |
I0430 15:58:59.878744 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.33613 (* 0.0272727 = 0.0364398 loss) | |
I0430 15:58:59.878762 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.18248 (* 0.0272727 = 0.0322494 loss) | |
I0430 15:58:59.878777 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 0.627636 (* 0.0272727 = 0.0171173 loss) | |
I0430 15:58:59.878790 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 0.705015 (* 0.0272727 = 0.0192277 loss) | |
I0430 15:58:59.878804 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.476274 (* 0.0272727 = 0.0129893 loss) | |
I0430 15:58:59.878818 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.286264 (* 0.0272727 = 0.00780721 loss) | |
I0430 15:58:59.878832 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.340676 (* 0.0272727 = 0.00929116 loss) | |
I0430 15:58:59.878846 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.175098 (* 0.0272727 = 0.00477539 loss) | |
I0430 15:58:59.878860 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.114056 (* 0.0272727 = 0.00311063 loss) | |
I0430 15:58:59.878875 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0684968 (* 0.0272727 = 0.00186809 loss) | |
I0430 15:58:59.878888 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0210343 (* 0.0272727 = 0.000573664 loss) | |
I0430 15:58:59.878902 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0131932 (* 0.0272727 = 0.000359815 loss) | |
I0430 15:58:59.878916 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00461276 (* 0.0272727 = 0.000125802 loss) | |
I0430 15:58:59.878929 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00227119 (* 0.0272727 = 6.19414e-05 loss) | |
I0430 15:58:59.878943 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0015172 (* 0.0272727 = 4.13782e-05 loss) | |
I0430 15:58:59.878957 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00184323 (* 0.0272727 = 5.02699e-05 loss) | |
I0430 15:58:59.878973 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000779564 (* 0.0272727 = 2.12608e-05 loss) | |
I0430 15:58:59.878986 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00146312 (* 0.0272727 = 3.99032e-05 loss) | |
I0430 15:58:59.879000 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00120829 (* 0.0272727 = 3.29533e-05 loss) | |
I0430 15:58:59.879012 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.666667 | |
I0430 15:58:59.879024 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0430 15:58:59.879035 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.625 | |
I0430 15:58:59.879047 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.375 | |
I0430 15:58:59.879060 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75 | |
I0430 15:58:59.879070 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0430 15:58:59.879082 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0430 15:58:59.879093 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0430 15:58:59.879106 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75 | |
I0430 15:58:59.879117 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0430 15:58:59.879128 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0430 15:58:59.879139 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0430 15:58:59.879151 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0430 15:58:59.879163 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0430 15:58:59.879174 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 15:58:59.879185 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 15:58:59.879196 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 15:58:59.879218 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 15:58:59.879231 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 15:58:59.879243 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 15:58:59.879254 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 15:58:59.879266 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 15:58:59.879277 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 15:58:59.879288 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.909091 | |
I0430 15:58:59.879300 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.904762 | |
I0430 15:58:59.879314 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.890291 (* 1 = 0.890291 loss) | |
I0430 15:58:59.879328 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.255985 (* 1 = 0.255985 loss) | |
I0430 15:58:59.879343 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.282535 (* 0.0909091 = 0.025685 loss) | |
I0430 15:58:59.879355 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 1.14205 (* 0.0909091 = 0.103823 loss) | |
I0430 15:58:59.879372 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 1.7292 (* 0.0909091 = 0.1572 loss) | |
I0430 15:58:59.879386 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.637662 (* 0.0909091 = 0.0579693 loss) | |
I0430 15:58:59.879400 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.258447 (* 0.0909091 = 0.0234952 loss) | |
I0430 15:58:59.879413 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.467354 (* 0.0909091 = 0.0424867 loss) | |
I0430 15:58:59.879427 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.980361 (* 0.0909091 = 0.0891238 loss) | |
I0430 15:58:59.879441 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.62675 (* 0.0909091 = 0.0569773 loss) | |
I0430 15:58:59.879454 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0798045 (* 0.0909091 = 0.00725496 loss) | |
I0430 15:58:59.879482 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.0927714 (* 0.0909091 = 0.00843377 loss) | |
I0430 15:58:59.879498 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.239922 (* 0.0909091 = 0.0218111 loss) | |
I0430 15:58:59.879511 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.126183 (* 0.0909091 = 0.0114712 loss) | |
I0430 15:58:59.879525 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0386697 (* 0.0909091 = 0.00351543 loss) | |
I0430 15:58:59.879539 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00362423 (* 0.0909091 = 0.000329476 loss) | |
I0430 15:58:59.879554 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00114309 (* 0.0909091 = 0.000103917 loss) | |
I0430 15:58:59.879567 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000183232 (* 0.0909091 = 1.66574e-05 loss) | |
I0430 15:58:59.879581 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000115125 (* 0.0909091 = 1.04659e-05 loss) | |
I0430 15:58:59.879595 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 3.6868e-05 (* 0.0909091 = 3.35164e-06 loss) | |
I0430 15:58:59.879608 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 2.47669e-05 (* 0.0909091 = 2.25154e-06 loss) | |
I0430 15:58:59.879622 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 1.50657e-05 (* 0.0909091 = 1.36961e-06 loss) | |
I0430 15:58:59.879637 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 1.24579e-05 (* 0.0909091 = 1.13254e-06 loss) | |
I0430 15:58:59.879650 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 9.552e-06 (* 0.0909091 = 8.68364e-07 loss) | |
I0430 15:58:59.879662 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.375 | |
I0430 15:58:59.879674 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375 | |
I0430 15:58:59.879698 15443 solver.cpp:245] Train net output #149: total_confidence = 0.368022 | |
I0430 15:58:59.879710 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.395719 | |
I0430 15:58:59.879724 15443 sgd_solver.cpp:106] Iteration 10500, lr = 0.001 | |
I0430 16:01:16.828362 15443 solver.cpp:229] Iteration 11000, loss = 3.65696 | |
I0430 16:01:16.828537 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.415385 | |
I0430 16:01:16.828558 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0430 16:01:16.828572 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625 | |
I0430 16:01:16.828584 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0430 16:01:16.828596 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375 | |
I0430 16:01:16.828608 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0430 16:01:16.828620 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5 | |
I0430 16:01:16.828632 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5 | |
I0430 16:01:16.828644 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75 | |
I0430 16:01:16.828656 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0430 16:01:16.828667 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0430 16:01:16.828680 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.75 | |
I0430 16:01:16.828691 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0430 16:01:16.828703 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.75 | |
I0430 16:01:16.828716 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.75 | |
I0430 16:01:16.828728 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875 | |
I0430 16:01:16.828742 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875 | |
I0430 16:01:16.828753 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 16:01:16.828765 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 16:01:16.828776 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 16:01:16.828788 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 16:01:16.828800 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 16:01:16.828811 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 16:01:16.828824 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.784091 | |
I0430 16:01:16.828836 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.676923 | |
I0430 16:01:16.828852 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.92782 (* 0.3 = 0.578346 loss) | |
I0430 16:01:16.828867 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.751574 (* 0.3 = 0.225472 loss) | |
I0430 16:01:16.828882 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.843308 (* 0.0272727 = 0.0229993 loss) | |
I0430 16:01:16.828896 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.39166 (* 0.0272727 = 0.0379544 loss) | |
I0430 16:01:16.828912 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 2.89617 (* 0.0272727 = 0.0789865 loss) | |
I0430 16:01:16.828925 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.96068 (* 0.0272727 = 0.0534732 loss) | |
I0430 16:01:16.828946 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.93377 (* 0.0272727 = 0.0527391 loss) | |
I0430 16:01:16.828969 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.33443 (* 0.0272727 = 0.0363937 loss) | |
I0430 16:01:16.828984 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.33482 (* 0.0272727 = 0.0364042 loss) | |
I0430 16:01:16.828999 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.789932 (* 0.0272727 = 0.0215436 loss) | |
I0430 16:01:16.829013 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.613068 (* 0.0272727 = 0.01672 loss) | |
I0430 16:01:16.829027 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.927776 (* 0.0272727 = 0.025303 loss) | |
I0430 16:01:16.829041 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.83863 (* 0.0272727 = 0.0228717 loss) | |
I0430 16:01:16.829056 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.422728 (* 0.0272727 = 0.011529 loss) | |
I0430 16:01:16.829090 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.754693 (* 0.0272727 = 0.0205825 loss) | |
I0430 16:01:16.829107 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 1.23129 (* 0.0272727 = 0.0335807 loss) | |
I0430 16:01:16.829120 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.394578 (* 0.0272727 = 0.0107612 loss) | |
I0430 16:01:16.829134 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.371494 (* 0.0272727 = 0.0101317 loss) | |
I0430 16:01:16.829149 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0236757 (* 0.0272727 = 0.000645701 loss) | |
I0430 16:01:16.829162 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0142298 (* 0.0272727 = 0.000388086 loss) | |
I0430 16:01:16.829176 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00540869 (* 0.0272727 = 0.00014751 loss) | |
I0430 16:01:16.829191 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000920094 (* 0.0272727 = 2.50935e-05 loss) | |
I0430 16:01:16.829205 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000536913 (* 0.0272727 = 1.46431e-05 loss) | |
I0430 16:01:16.829219 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000360903 (* 0.0272727 = 9.8428e-06 loss) | |
I0430 16:01:16.829231 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.476923 | |
I0430 16:01:16.829244 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0430 16:01:16.829255 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625 | |
I0430 16:01:16.829267 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5 | |
I0430 16:01:16.829278 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375 | |
I0430 16:01:16.829290 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375 | |
I0430 16:01:16.829303 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0430 16:01:16.829318 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5 | |
I0430 16:01:16.829329 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75 | |
I0430 16:01:16.829339 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.75 | |
I0430 16:01:16.829346 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.75 | |
I0430 16:01:16.829358 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.75 | |
I0430 16:01:16.829370 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.75 | |
I0430 16:01:16.829382 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.75 | |
I0430 16:01:16.829394 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.75 | |
I0430 16:01:16.829406 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875 | |
I0430 16:01:16.829422 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875 | |
I0430 16:01:16.829447 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 16:01:16.829463 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 16:01:16.829474 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 16:01:16.829485 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 16:01:16.829498 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 16:01:16.829509 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 16:01:16.829519 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.806818 | |
I0430 16:01:16.829531 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.738462 | |
I0430 16:01:16.829550 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.63956 (* 0.3 = 0.491867 loss) | |
I0430 16:01:16.829565 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.62129 (* 0.3 = 0.186387 loss) | |
I0430 16:01:16.829579 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.412664 (* 0.0272727 = 0.0112545 loss) | |
I0430 16:01:16.829593 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 1.51584 (* 0.0272727 = 0.0413411 loss) | |
I0430 16:01:16.829619 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.90134 (* 0.0272727 = 0.0518548 loss) | |
I0430 16:01:16.829634 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.704 (* 0.0272727 = 0.0464727 loss) | |
I0430 16:01:16.829649 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 2.05866 (* 0.0272727 = 0.0561452 loss) | |
I0430 16:01:16.829663 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.00678 (* 0.0272727 = 0.0274575 loss) | |
I0430 16:01:16.829676 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 1.54706 (* 0.0272727 = 0.0421925 loss) | |
I0430 16:01:16.829690 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.792619 (* 0.0272727 = 0.0216169 loss) | |
I0430 16:01:16.829704 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.722737 (* 0.0272727 = 0.019711 loss) | |
I0430 16:01:16.829720 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.664293 (* 0.0272727 = 0.0181171 loss) | |
I0430 16:01:16.829732 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.859639 (* 0.0272727 = 0.0234447 loss) | |
I0430 16:01:16.829746 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.750653 (* 0.0272727 = 0.0204723 loss) | |
I0430 16:01:16.829761 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.817744 (* 0.0272727 = 0.0223021 loss) | |
I0430 16:01:16.829774 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 1.3101 (* 0.0272727 = 0.0357301 loss) | |
I0430 16:01:16.829787 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.36966 (* 0.0272727 = 0.0100816 loss) | |
I0430 16:01:16.829802 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.309074 (* 0.0272727 = 0.00842928 loss) | |
I0430 16:01:16.829815 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00993251 (* 0.0272727 = 0.000270887 loss) | |
I0430 16:01:16.829829 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00373515 (* 0.0272727 = 0.000101868 loss) | |
I0430 16:01:16.829843 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00115663 (* 0.0272727 = 3.15444e-05 loss) | |
I0430 16:01:16.829856 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000279895 (* 0.0272727 = 7.6335e-06 loss) | |
I0430 16:01:16.829870 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 5.29522e-05 (* 0.0272727 = 1.44415e-06 loss) | |
I0430 16:01:16.829885 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 2.05205e-05 (* 0.0272727 = 5.59651e-07 loss) | |
I0430 16:01:16.829897 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.615385 | |
I0430 16:01:16.829910 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0430 16:01:16.829921 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.625 | |
I0430 16:01:16.829932 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625 | |
I0430 16:01:16.829944 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0430 16:01:16.829957 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625 | |
I0430 16:01:16.829968 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0430 16:01:16.829979 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0430 16:01:16.829991 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75 | |
I0430 16:01:16.830003 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75 | |
I0430 16:01:16.830014 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0430 16:01:16.830026 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.75 | |
I0430 16:01:16.830037 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.75 | |
I0430 16:01:16.830049 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0430 16:01:16.830060 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.75 | |
I0430 16:01:16.830072 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 16:01:16.830093 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 16:01:16.830106 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 16:01:16.830118 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 16:01:16.830130 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 16:01:16.830142 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 16:01:16.830152 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 16:01:16.830164 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 16:01:16.830175 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.852273 | |
I0430 16:01:16.830188 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.876923 | |
I0430 16:01:16.830201 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.23045 (* 1 = 1.23045 loss) | |
I0430 16:01:16.830215 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.467895 (* 1 = 0.467895 loss) | |
I0430 16:01:16.830229 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.556135 (* 0.0909091 = 0.0505577 loss) | |
I0430 16:01:16.830243 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.933777 (* 0.0909091 = 0.0848888 loss) | |
I0430 16:01:16.830256 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 1.09435 (* 0.0909091 = 0.0994864 loss) | |
I0430 16:01:16.830271 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.362161 (* 0.0909091 = 0.0329237 loss) | |
I0430 16:01:16.830284 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.840432 (* 0.0909091 = 0.0764029 loss) | |
I0430 16:01:16.830297 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.747853 (* 0.0909091 = 0.0679867 loss) | |
I0430 16:01:16.830312 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.542373 (* 0.0909091 = 0.0493067 loss) | |
I0430 16:01:16.830325 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.76341 (* 0.0909091 = 0.0694009 loss) | |
I0430 16:01:16.830339 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.48706 (* 0.0909091 = 0.0442781 loss) | |
I0430 16:01:16.830353 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.721619 (* 0.0909091 = 0.0656017 loss) | |
I0430 16:01:16.830369 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.6003 (* 0.0909091 = 0.0545728 loss) | |
I0430 16:01:16.830384 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.5622 (* 0.0909091 = 0.0511091 loss) | |
I0430 16:01:16.830397 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.496191 (* 0.0909091 = 0.0451082 loss) | |
I0430 16:01:16.830411 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 1.1047 (* 0.0909091 = 0.100427 loss) | |
I0430 16:01:16.830425 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.103519 (* 0.0909091 = 0.00941085 loss) | |
I0430 16:01:16.830440 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.104562 (* 0.0909091 = 0.00950561 loss) | |
I0430 16:01:16.830453 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.070816 (* 0.0909091 = 0.00643782 loss) | |
I0430 16:01:16.830467 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0129807 (* 0.0909091 = 0.00118006 loss) | |
I0430 16:01:16.830482 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00205032 (* 0.0909091 = 0.000186393 loss) | |
I0430 16:01:16.830495 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000376405 (* 0.0909091 = 3.42186e-05 loss) | |
I0430 16:01:16.830510 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000119271 (* 0.0909091 = 1.08428e-05 loss) | |
I0430 16:01:16.830524 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 1.19065e-05 (* 0.0909091 = 1.08241e-06 loss) | |
I0430 16:01:16.830536 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.375 | |
I0430 16:01:16.830548 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375 | |
I0430 16:01:16.830569 15443 solver.cpp:245] Train net output #149: total_confidence = 0.350124 | |
I0430 16:01:16.830582 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.479965 | |
I0430 16:01:16.830600 15443 sgd_solver.cpp:106] Iteration 11000, lr = 0.001 | |
I0430 16:03:33.764289 15443 solver.cpp:229] Iteration 11500, loss = 3.61426 | |
I0430 16:03:33.764456 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.491525 | |
I0430 16:03:33.764477 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625 | |
I0430 16:03:33.764490 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375 | |
I0430 16:03:33.764503 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.75 | |
I0430 16:03:33.764515 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.75 | |
I0430 16:03:33.764528 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625 | |
I0430 16:03:33.764539 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0430 16:03:33.764550 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0430 16:03:33.764562 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75 | |
I0430 16:03:33.764575 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75 | |
I0430 16:03:33.764585 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.75 | |
I0430 16:03:33.764597 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.75 | |
I0430 16:03:33.764610 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0430 16:03:33.764621 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0430 16:03:33.764633 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0430 16:03:33.764645 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 16:03:33.764657 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 16:03:33.764669 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 16:03:33.764680 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 16:03:33.764693 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 16:03:33.764703 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 16:03:33.764715 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 16:03:33.764726 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 16:03:33.764739 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.829545 | |
I0430 16:03:33.764750 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.661017 | |
I0430 16:03:33.764766 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.78974 (* 0.3 = 0.536921 loss) | |
I0430 16:03:33.764781 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.608593 (* 0.3 = 0.182578 loss) | |
I0430 16:03:33.764796 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.993135 (* 0.0272727 = 0.0270855 loss) | |
I0430 16:03:33.764811 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.60823 (* 0.0272727 = 0.0438609 loss) | |
I0430 16:03:33.764824 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 0.800402 (* 0.0272727 = 0.0218291 loss) | |
I0430 16:03:33.764838 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.47004 (* 0.0272727 = 0.0400919 loss) | |
I0430 16:03:33.764853 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.31962 (* 0.0272727 = 0.0359896 loss) | |
I0430 16:03:33.764866 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.40385 (* 0.0272727 = 0.0382868 loss) | |
I0430 16:03:33.764880 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.0956 (* 0.0272727 = 0.0298801 loss) | |
I0430 16:03:33.764894 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.913914 (* 0.0272727 = 0.0249249 loss) | |
I0430 16:03:33.764909 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.939277 (* 0.0272727 = 0.0256167 loss) | |
I0430 16:03:33.764922 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 1.11164 (* 0.0272727 = 0.0303174 loss) | |
I0430 16:03:33.764935 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 1.00322 (* 0.0272727 = 0.0273604 loss) | |
I0430 16:03:33.764950 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.512131 (* 0.0272727 = 0.0139672 loss) | |
I0430 16:03:33.764983 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.59162 (* 0.0272727 = 0.0161351 loss) | |
I0430 16:03:33.764998 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.680825 (* 0.0272727 = 0.0185679 loss) | |
I0430 16:03:33.765013 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0052717 (* 0.0272727 = 0.000143774 loss) | |
I0430 16:03:33.765028 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00196995 (* 0.0272727 = 5.37259e-05 loss) | |
I0430 16:03:33.765043 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00103375 (* 0.0272727 = 2.8193e-05 loss) | |
I0430 16:03:33.765056 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000585981 (* 0.0272727 = 1.59813e-05 loss) | |
I0430 16:03:33.765070 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00150089 (* 0.0272727 = 4.09333e-05 loss) | |
I0430 16:03:33.765084 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00113423 (* 0.0272727 = 3.09335e-05 loss) | |
I0430 16:03:33.765099 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00121973 (* 0.0272727 = 3.32653e-05 loss) | |
I0430 16:03:33.765112 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 0.00165069 (* 0.0272727 = 4.50189e-05 loss) | |
I0430 16:03:33.765125 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.610169 | |
I0430 16:03:33.765136 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0430 16:03:33.765148 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875 | |
I0430 16:03:33.765161 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75 | |
I0430 16:03:33.765172 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625 | |
I0430 16:03:33.765184 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625 | |
I0430 16:03:33.765197 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75 | |
I0430 16:03:33.765208 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0430 16:03:33.765219 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75 | |
I0430 16:03:33.765231 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.75 | |
I0430 16:03:33.765244 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.75 | |
I0430 16:03:33.765254 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.75 | |
I0430 16:03:33.765266 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0430 16:03:33.765278 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0430 16:03:33.765292 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0430 16:03:33.765305 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 16:03:33.765318 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 16:03:33.765331 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 16:03:33.765342 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 16:03:33.765354 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 16:03:33.765365 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 16:03:33.765377 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 16:03:33.765388 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 16:03:33.765399 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.857955 | |
I0430 16:03:33.765411 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.779661 | |
I0430 16:03:33.765425 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.43539 (* 0.3 = 0.430617 loss) | |
I0430 16:03:33.765439 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.531679 (* 0.3 = 0.159504 loss) | |
I0430 16:03:33.765453 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.349065 (* 0.0272727 = 0.00951994 loss) | |
I0430 16:03:33.765472 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 0.482102 (* 0.0272727 = 0.0131482 loss) | |
I0430 16:03:33.765498 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 0.678207 (* 0.0272727 = 0.0184965 loss) | |
I0430 16:03:33.765514 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.60189 (* 0.0272727 = 0.0436879 loss) | |
I0430 16:03:33.765528 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.17354 (* 0.0272727 = 0.0320056 loss) | |
I0430 16:03:33.765542 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.10144 (* 0.0272727 = 0.0300392 loss) | |
I0430 16:03:33.765555 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 0.846507 (* 0.0272727 = 0.0230865 loss) | |
I0430 16:03:33.765569 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.896418 (* 0.0272727 = 0.0244478 loss) | |
I0430 16:03:33.765583 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 1.02509 (* 0.0272727 = 0.0279571 loss) | |
I0430 16:03:33.765597 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.985787 (* 0.0272727 = 0.0268851 loss) | |
I0430 16:03:33.765611 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.716744 (* 0.0272727 = 0.0195476 loss) | |
I0430 16:03:33.765625 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.384501 (* 0.0272727 = 0.0104864 loss) | |
I0430 16:03:33.765638 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.661824 (* 0.0272727 = 0.0180498 loss) | |
I0430 16:03:33.765652 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.639922 (* 0.0272727 = 0.0174524 loss) | |
I0430 16:03:33.765666 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00899636 (* 0.0272727 = 0.000245355 loss) | |
I0430 16:03:33.765679 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00197038 (* 0.0272727 = 5.37376e-05 loss) | |
I0430 16:03:33.765693 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000354127 (* 0.0272727 = 9.658e-06 loss) | |
I0430 16:03:33.765707 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000110491 (* 0.0272727 = 3.01339e-06 loss) | |
I0430 16:03:33.765722 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 3.32544e-05 (* 0.0272727 = 9.06938e-07 loss) | |
I0430 16:03:33.765735 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 7.56995e-06 (* 0.0272727 = 2.06453e-07 loss) | |
I0430 16:03:33.765748 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 2.78654e-06 (* 0.0272727 = 7.59967e-08 loss) | |
I0430 16:03:33.765763 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 1.1623e-06 (* 0.0272727 = 3.1699e-08 loss) | |
I0430 16:03:33.765775 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.745763 | |
I0430 16:03:33.765787 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0430 16:03:33.765799 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0430 16:03:33.765810 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1 | |
I0430 16:03:33.765822 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0430 16:03:33.765835 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0430 16:03:33.765846 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0430 16:03:33.765857 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0430 16:03:33.765869 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75 | |
I0430 16:03:33.765882 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75 | |
I0430 16:03:33.765893 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75 | |
I0430 16:03:33.765904 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0430 16:03:33.765915 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0430 16:03:33.765928 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0430 16:03:33.765939 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0430 16:03:33.765950 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 16:03:33.765971 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 16:03:33.765985 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 16:03:33.765996 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 16:03:33.766008 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 16:03:33.766019 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 16:03:33.766031 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 16:03:33.766042 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 16:03:33.766053 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.914773 | |
I0430 16:03:33.766065 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.847458 | |
I0430 16:03:33.766078 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.847761 (* 1 = 0.847761 loss) | |
I0430 16:03:33.766093 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.306756 (* 1 = 0.306756 loss) | |
I0430 16:03:33.766108 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0308955 (* 0.0909091 = 0.00280869 loss) | |
I0430 16:03:33.766121 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0337271 (* 0.0909091 = 0.0030661 loss) | |
I0430 16:03:33.766135 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.119963 (* 0.0909091 = 0.0109057 loss) | |
I0430 16:03:33.766149 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.541719 (* 0.0909091 = 0.0492472 loss) | |
I0430 16:03:33.766162 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.201186 (* 0.0909091 = 0.0182896 loss) | |
I0430 16:03:33.766176 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.730663 (* 0.0909091 = 0.0664239 loss) | |
I0430 16:03:33.766191 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.575822 (* 0.0909091 = 0.0523475 loss) | |
I0430 16:03:33.766204 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 1.04826 (* 0.0909091 = 0.095296 loss) | |
I0430 16:03:33.766217 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.859003 (* 0.0909091 = 0.0780911 loss) | |
I0430 16:03:33.766232 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.906112 (* 0.0909091 = 0.0823738 loss) | |
I0430 16:03:33.766244 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.605188 (* 0.0909091 = 0.0550171 loss) | |
I0430 16:03:33.766258 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.428634 (* 0.0909091 = 0.0389667 loss) | |
I0430 16:03:33.766271 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.402796 (* 0.0909091 = 0.0366179 loss) | |
I0430 16:03:33.766285 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.397172 (* 0.0909091 = 0.0361066 loss) | |
I0430 16:03:33.766299 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00913929 (* 0.0909091 = 0.000830844 loss) | |
I0430 16:03:33.766314 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00235823 (* 0.0909091 = 0.000214385 loss) | |
I0430 16:03:33.766327 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000746843 (* 0.0909091 = 6.78948e-05 loss) | |
I0430 16:03:33.766341 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000355655 (* 0.0909091 = 3.23322e-05 loss) | |
I0430 16:03:33.766355 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000159851 (* 0.0909091 = 1.45319e-05 loss) | |
I0430 16:03:33.766372 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 6.7407e-05 (* 0.0909091 = 6.12791e-06 loss) | |
I0430 16:03:33.766386 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 1.66898e-05 (* 0.0909091 = 1.51726e-06 loss) | |
I0430 16:03:33.766401 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 3.62102e-06 (* 0.0909091 = 3.29183e-07 loss) | |
I0430 16:03:33.766412 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.75 | |
I0430 16:03:33.766424 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.75 | |
I0430 16:03:33.766445 15443 solver.cpp:245] Train net output #149: total_confidence = 0.580078 | |
I0430 16:03:33.766458 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.603886 | |
I0430 16:03:33.766470 15443 sgd_solver.cpp:106] Iteration 11500, lr = 0.001 | |
I0430 16:05:50.909764 15443 solver.cpp:229] Iteration 12000, loss = 3.69655 | |
I0430 16:05:50.910025 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.395833 | |
I0430 16:05:50.910048 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875 | |
I0430 16:05:50.910060 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625 | |
I0430 16:05:50.910073 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0430 16:05:50.910085 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0430 16:05:50.910097 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.75 | |
I0430 16:05:50.910109 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5 | |
I0430 16:05:50.910120 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875 | |
I0430 16:05:50.910132 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0430 16:05:50.910145 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0430 16:05:50.910156 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0430 16:05:50.910168 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0430 16:05:50.910181 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0430 16:05:50.910192 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0430 16:05:50.910203 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 16:05:50.910215 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 16:05:50.910226 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 16:05:50.910238 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 16:05:50.910250 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 16:05:50.910262 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 16:05:50.910274 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 16:05:50.910285 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 16:05:50.910297 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 16:05:50.910310 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.823864 | |
I0430 16:05:50.910325 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.708333 | |
I0430 16:05:50.910341 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.90112 (* 0.3 = 0.570336 loss) | |
I0430 16:05:50.910356 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.562414 (* 0.3 = 0.168724 loss) | |
I0430 16:05:50.910370 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.8845 (* 0.0272727 = 0.0241227 loss) | |
I0430 16:05:50.910384 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.88655 (* 0.0272727 = 0.0514515 loss) | |
I0430 16:05:50.910398 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 2.34642 (* 0.0272727 = 0.0639931 loss) | |
I0430 16:05:50.910413 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.73966 (* 0.0272727 = 0.0474451 loss) | |
I0430 16:05:50.910426 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 0.973605 (* 0.0272727 = 0.0265529 loss) | |
I0430 16:05:50.910439 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 2.45163 (* 0.0272727 = 0.0668627 loss) | |
I0430 16:05:50.910454 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 0.537782 (* 0.0272727 = 0.0146668 loss) | |
I0430 16:05:50.910467 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.257769 (* 0.0272727 = 0.00703007 loss) | |
I0430 16:05:50.910482 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.492654 (* 0.0272727 = 0.013436 loss) | |
I0430 16:05:50.910496 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.21231 (* 0.0272727 = 0.00579028 loss) | |
I0430 16:05:50.910511 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.371663 (* 0.0272727 = 0.0101363 loss) | |
I0430 16:05:50.910524 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.269271 (* 0.0272727 = 0.00734375 loss) | |
I0430 16:05:50.910552 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0196743 (* 0.0272727 = 0.000536572 loss) | |
I0430 16:05:50.910568 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00509849 (* 0.0272727 = 0.00013905 loss) | |
I0430 16:05:50.910583 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000670871 (* 0.0272727 = 1.82965e-05 loss) | |
I0430 16:05:50.910596 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000147677 (* 0.0272727 = 4.02755e-06 loss) | |
I0430 16:05:50.910610 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 2.83435e-05 (* 0.0272727 = 7.73005e-07 loss) | |
I0430 16:05:50.910625 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 5.01207e-05 (* 0.0272727 = 1.36693e-06 loss) | |
I0430 16:05:50.910640 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 1.99688e-05 (* 0.0272727 = 5.44604e-07 loss) | |
I0430 16:05:50.910652 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 3.17057e-05 (* 0.0272727 = 8.64701e-07 loss) | |
I0430 16:05:50.910666 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 1.66306e-05 (* 0.0272727 = 4.53563e-07 loss) | |
I0430 16:05:50.910681 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 3.33156e-05 (* 0.0272727 = 9.08608e-07 loss) | |
I0430 16:05:50.910696 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.583333 | |
I0430 16:05:50.910725 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1 | |
I0430 16:05:50.910737 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0430 16:05:50.910750 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375 | |
I0430 16:05:50.910761 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375 | |
I0430 16:05:50.910773 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625 | |
I0430 16:05:50.910785 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5 | |
I0430 16:05:50.910796 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0430 16:05:50.910807 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1 | |
I0430 16:05:50.910820 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0430 16:05:50.910830 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0430 16:05:50.910842 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0430 16:05:50.910854 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0430 16:05:50.910866 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0430 16:05:50.910876 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 16:05:50.910888 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 16:05:50.910899 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 16:05:50.910910 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 16:05:50.910923 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 16:05:50.910933 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 16:05:50.910944 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 16:05:50.910956 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 16:05:50.910967 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 16:05:50.910979 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.857955 | |
I0430 16:05:50.910990 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.729167 | |
I0430 16:05:50.911005 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.57001 (* 0.3 = 0.471002 loss) | |
I0430 16:05:50.911018 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.504381 (* 0.3 = 0.151314 loss) | |
I0430 16:05:50.911039 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.312015 (* 0.0272727 = 0.00850949 loss) | |
I0430 16:05:50.911054 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 1.31083 (* 0.0272727 = 0.03575 loss) | |
I0430 16:05:50.911080 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.61562 (* 0.0272727 = 0.0440623 loss) | |
I0430 16:05:50.911095 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.81429 (* 0.0272727 = 0.0494807 loss) | |
I0430 16:05:50.911109 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.52351 (* 0.0272727 = 0.0415503 loss) | |
I0430 16:05:50.911123 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.66462 (* 0.0272727 = 0.0453987 loss) | |
I0430 16:05:50.911136 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 0.433905 (* 0.0272727 = 0.0118338 loss) | |
I0430 16:05:50.911150 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.271936 (* 0.0272727 = 0.00741644 loss) | |
I0430 16:05:50.911164 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.373826 (* 0.0272727 = 0.0101953 loss) | |
I0430 16:05:50.911178 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.351968 (* 0.0272727 = 0.00959912 loss) | |
I0430 16:05:50.911192 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.273184 (* 0.0272727 = 0.00745048 loss) | |
I0430 16:05:50.911206 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.327271 (* 0.0272727 = 0.00892556 loss) | |
I0430 16:05:50.911219 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.089162 (* 0.0272727 = 0.00243169 loss) | |
I0430 16:05:50.911234 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0283254 (* 0.0272727 = 0.000772511 loss) | |
I0430 16:05:50.911247 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00795396 (* 0.0272727 = 0.000216926 loss) | |
I0430 16:05:50.911262 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000624412 (* 0.0272727 = 1.70294e-05 loss) | |
I0430 16:05:50.911275 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000300147 (* 0.0272727 = 8.18584e-06 loss) | |
I0430 16:05:50.911288 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 5.09049e-05 (* 0.0272727 = 1.38832e-06 loss) | |
I0430 16:05:50.911303 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 6.20873e-05 (* 0.0272727 = 1.69329e-06 loss) | |
I0430 16:05:50.911316 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 5.79437e-05 (* 0.0272727 = 1.58028e-06 loss) | |
I0430 16:05:50.911329 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 2.74346e-05 (* 0.0272727 = 7.48216e-07 loss) | |
I0430 16:05:50.911344 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 3.53575e-05 (* 0.0272727 = 9.64296e-07 loss) | |
I0430 16:05:50.911355 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.625 | |
I0430 16:05:50.911370 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0430 16:05:50.911381 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75 | |
I0430 16:05:50.911392 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625 | |
I0430 16:05:50.911404 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625 | |
I0430 16:05:50.911415 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625 | |
I0430 16:05:50.911427 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625 | |
I0430 16:05:50.911438 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0430 16:05:50.911450 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1 | |
I0430 16:05:50.911461 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0430 16:05:50.911487 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0430 16:05:50.911500 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0430 16:05:50.911511 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0430 16:05:50.911523 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0430 16:05:50.911535 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 16:05:50.911546 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 16:05:50.911569 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 16:05:50.911582 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 16:05:50.911594 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 16:05:50.911605 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 16:05:50.911617 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 16:05:50.911628 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 16:05:50.911640 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 16:05:50.911651 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.892045 | |
I0430 16:05:50.911664 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.875 | |
I0430 16:05:50.911677 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.17253 (* 1 = 1.17253 loss) | |
I0430 16:05:50.911690 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.354446 (* 1 = 0.354446 loss) | |
I0430 16:05:50.911705 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0646614 (* 0.0909091 = 0.00587831 loss) | |
I0430 16:05:50.911720 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.79142 (* 0.0909091 = 0.0719472 loss) | |
I0430 16:05:50.911733 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 1.05602 (* 0.0909091 = 0.0960015 loss) | |
I0430 16:05:50.911746 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.866369 (* 0.0909091 = 0.0787608 loss) | |
I0430 16:05:50.911761 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.591777 (* 0.0909091 = 0.0537979 loss) | |
I0430 16:05:50.911773 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 1.42856 (* 0.0909091 = 0.129869 loss) | |
I0430 16:05:50.911787 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.489895 (* 0.0909091 = 0.0445359 loss) | |
I0430 16:05:50.911800 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.183673 (* 0.0909091 = 0.0166975 loss) | |
I0430 16:05:50.911814 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.504252 (* 0.0909091 = 0.0458411 loss) | |
I0430 16:05:50.911828 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.265305 (* 0.0909091 = 0.0241186 loss) | |
I0430 16:05:50.911841 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.445757 (* 0.0909091 = 0.0405234 loss) | |
I0430 16:05:50.911855 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.321296 (* 0.0909091 = 0.0292087 loss) | |
I0430 16:05:50.911870 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0233228 (* 0.0909091 = 0.00212025 loss) | |
I0430 16:05:50.911882 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00493266 (* 0.0909091 = 0.000448424 loss) | |
I0430 16:05:50.911896 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00151412 (* 0.0909091 = 0.000137647 loss) | |
I0430 16:05:50.911911 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00162974 (* 0.0909091 = 0.000148158 loss) | |
I0430 16:05:50.911924 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000668313 (* 0.0909091 = 6.07557e-05 loss) | |
I0430 16:05:50.911938 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000430879 (* 0.0909091 = 3.91708e-05 loss) | |
I0430 16:05:50.911952 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00065393 (* 0.0909091 = 5.94482e-05 loss) | |
I0430 16:05:50.911965 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000434642 (* 0.0909091 = 3.95129e-05 loss) | |
I0430 16:05:50.911979 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000326699 (* 0.0909091 = 2.96999e-05 loss) | |
I0430 16:05:50.911993 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 6.70055e-05 (* 0.0909091 = 6.09141e-06 loss) | |
I0430 16:05:50.912005 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.25 | |
I0430 16:05:50.912017 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125 | |
I0430 16:05:50.912039 15443 solver.cpp:245] Train net output #149: total_confidence = 0.257778 | |
I0430 16:05:50.912051 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.238868 | |
I0430 16:05:50.912065 15443 sgd_solver.cpp:106] Iteration 12000, lr = 0.001 | |
I0430 16:07:29.600847 15443 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.8071 > 30) by scale factor 0.973801 | |
I0430 16:08:07.951339 15443 solver.cpp:229] Iteration 12500, loss = 3.76566 | |
I0430 16:08:07.951503 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.583333 | |
I0430 16:08:07.951522 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0430 16:08:07.951536 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625 | |
I0430 16:08:07.951548 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0430 16:08:07.951560 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0430 16:08:07.951573 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.75 | |
I0430 16:08:07.951586 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.875 | |
I0430 16:08:07.951598 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0430 16:08:07.951619 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1 | |
I0430 16:08:07.951643 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0430 16:08:07.951665 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0430 16:08:07.951688 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0430 16:08:07.951710 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0430 16:08:07.951733 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0430 16:08:07.951756 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 16:08:07.951779 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 16:08:07.951803 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 16:08:07.951827 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 16:08:07.951850 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 16:08:07.951874 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 16:08:07.951896 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 16:08:07.951918 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 16:08:07.951941 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 16:08:07.951963 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.880682 | |
I0430 16:08:07.951987 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.8125 | |
I0430 16:08:07.952011 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.39711 (* 0.3 = 0.419133 loss) | |
I0430 16:08:07.952041 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.405178 (* 0.3 = 0.121553 loss) | |
I0430 16:08:07.952070 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.906859 (* 0.0272727 = 0.0247325 loss) | |
I0430 16:08:07.952100 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 0.96044 (* 0.0272727 = 0.0261938 loss) | |
I0430 16:08:07.952128 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 2.25314 (* 0.0272727 = 0.0614493 loss) | |
I0430 16:08:07.952157 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.2886 (* 0.0272727 = 0.0351436 loss) | |
I0430 16:08:07.952184 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 0.879476 (* 0.0272727 = 0.0239857 loss) | |
I0430 16:08:07.952213 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 0.856666 (* 0.0272727 = 0.0233636 loss) | |
I0430 16:08:07.952240 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.45093 (* 0.0272727 = 0.0395708 loss) | |
I0430 16:08:07.952270 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.0713425 (* 0.0272727 = 0.00194571 loss) | |
I0430 16:08:07.952299 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.00202393 (* 0.0272727 = 5.51981e-05 loss) | |
I0430 16:08:07.952330 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.000268605 (* 0.0272727 = 7.32558e-06 loss) | |
I0430 16:08:07.952347 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 8.48759e-05 (* 0.0272727 = 2.3148e-06 loss) | |
I0430 16:08:07.952363 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 3.82965e-06 (* 0.0272727 = 1.04445e-07 loss) | |
I0430 16:08:07.952400 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 2.96536e-06 (* 0.0272727 = 8.08736e-08 loss) | |
I0430 16:08:07.952415 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 1.49012e-06 (* 0.0272727 = 4.06398e-08 loss) | |
I0430 16:08:07.952430 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 3.57628e-07 (* 0.0272727 = 9.7535e-09 loss) | |
I0430 16:08:07.952443 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 2.98023e-08 (* 0.0272727 = 8.12791e-10 loss) | |
I0430 16:08:07.952458 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0 (* 0.0272727 = 0 loss) | |
I0430 16:08:07.952472 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0 (* 0.0272727 = 0 loss) | |
I0430 16:08:07.952486 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 1.49012e-08 (* 0.0272727 = 4.06395e-10 loss) | |
I0430 16:08:07.952502 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0 (* 0.0272727 = 0 loss) | |
I0430 16:08:07.952519 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0 (* 0.0272727 = 0 loss) | |
I0430 16:08:07.952533 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 0 (* 0.0272727 = 0 loss) | |
I0430 16:08:07.952545 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.666667 | |
I0430 16:08:07.952558 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0430 16:08:07.952569 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875 | |
I0430 16:08:07.952581 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0430 16:08:07.952594 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25 | |
I0430 16:08:07.952605 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 1 | |
I0430 16:08:07.952616 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75 | |
I0430 16:08:07.952627 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0430 16:08:07.952639 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1 | |
I0430 16:08:07.952651 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0430 16:08:07.952662 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0430 16:08:07.952673 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0430 16:08:07.952685 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0430 16:08:07.952697 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0430 16:08:07.952708 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 16:08:07.952719 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 16:08:07.952730 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 16:08:07.952742 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 16:08:07.952754 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 16:08:07.952764 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 16:08:07.952776 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 16:08:07.952787 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 16:08:07.952798 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 16:08:07.952811 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.897727 | |
I0430 16:08:07.952822 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.9375 | |
I0430 16:08:07.952836 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.926254 (* 0.3 = 0.277876 loss) | |
I0430 16:08:07.952849 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.278066 (* 0.3 = 0.0834198 loss) | |
I0430 16:08:07.952863 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.685914 (* 0.0272727 = 0.0187067 loss) | |
I0430 16:08:07.952877 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 0.737974 (* 0.0272727 = 0.0201266 loss) | |
I0430 16:08:07.952891 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.01544 (* 0.0272727 = 0.0276939 loss) | |
I0430 16:08:07.952918 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.41229 (* 0.0272727 = 0.0385169 loss) | |
I0430 16:08:07.952932 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 0.56648 (* 0.0272727 = 0.0154495 loss) | |
I0430 16:08:07.952944 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 0.762964 (* 0.0272727 = 0.0208081 loss) | |
I0430 16:08:07.952958 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 0.997852 (* 0.0272727 = 0.0272142 loss) | |
I0430 16:08:07.952972 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.039492 (* 0.0272727 = 0.00107705 loss) | |
I0430 16:08:07.952987 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00075194 (* 0.0272727 = 2.05075e-05 loss) | |
I0430 16:08:07.953001 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.000256088 (* 0.0272727 = 6.98421e-06 loss) | |
I0430 16:08:07.953016 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 3.21134e-05 (* 0.0272727 = 8.7582e-07 loss) | |
I0430 16:08:07.953029 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 1.73752e-05 (* 0.0272727 = 4.7387e-07 loss) | |
I0430 16:08:07.953042 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 9.16433e-06 (* 0.0272727 = 2.49936e-07 loss) | |
I0430 16:08:07.953057 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 4.6045e-06 (* 0.0272727 = 1.25577e-07 loss) | |
I0430 16:08:07.953070 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 3.17397e-06 (* 0.0272727 = 8.65628e-08 loss) | |
I0430 16:08:07.953083 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 8.04664e-07 (* 0.0272727 = 2.19454e-08 loss) | |
I0430 16:08:07.953097 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 3.87431e-07 (* 0.0272727 = 1.05663e-08 loss) | |
I0430 16:08:07.953110 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 2.38419e-07 (* 0.0272727 = 6.50233e-09 loss) | |
I0430 16:08:07.953125 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 3.87431e-07 (* 0.0272727 = 1.05663e-08 loss) | |
I0430 16:08:07.953137 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 5.0664e-07 (* 0.0272727 = 1.38175e-08 loss) | |
I0430 16:08:07.953151 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 3.57628e-07 (* 0.0272727 = 9.7535e-09 loss) | |
I0430 16:08:07.953166 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 1.1921e-06 (* 0.0272727 = 3.25118e-08 loss) | |
I0430 16:08:07.953177 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.916667 | |
I0430 16:08:07.953189 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0430 16:08:07.953200 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0430 16:08:07.953212 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1 | |
I0430 16:08:07.953223 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75 | |
I0430 16:08:07.953235 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1 | |
I0430 16:08:07.953246 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1 | |
I0430 16:08:07.953258 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0430 16:08:07.953269 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1 | |
I0430 16:08:07.953280 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0430 16:08:07.953291 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0430 16:08:07.953304 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0430 16:08:07.953315 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0430 16:08:07.953325 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0430 16:08:07.953337 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 16:08:07.953348 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 16:08:07.953359 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 16:08:07.953383 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 16:08:07.953397 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 16:08:07.953408 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 16:08:07.953420 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 16:08:07.953431 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 16:08:07.953443 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 16:08:07.953454 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.971591 | |
I0430 16:08:07.953466 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.979167 | |
I0430 16:08:07.953480 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.436861 (* 1 = 0.436861 loss) | |
I0430 16:08:07.953495 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.141494 (* 1 = 0.141494 loss) | |
I0430 16:08:07.953508 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.30234 (* 0.0909091 = 0.0274855 loss) | |
I0430 16:08:07.953522 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.310207 (* 0.0909091 = 0.0282007 loss) | |
I0430 16:08:07.953536 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.163779 (* 0.0909091 = 0.014889 loss) | |
I0430 16:08:07.953550 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.285724 (* 0.0909091 = 0.0259749 loss) | |
I0430 16:08:07.953567 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.210728 (* 0.0909091 = 0.019157 loss) | |
I0430 16:08:07.953583 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.135825 (* 0.0909091 = 0.0123477 loss) | |
I0430 16:08:07.953595 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 1.33246 (* 0.0909091 = 0.121133 loss) | |
I0430 16:08:07.953609 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0570286 (* 0.0909091 = 0.00518442 loss) | |
I0430 16:08:07.953624 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00808181 (* 0.0909091 = 0.00073471 loss) | |
I0430 16:08:07.953637 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.000717745 (* 0.0909091 = 6.52496e-05 loss) | |
I0430 16:08:07.953651 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.000227991 (* 0.0909091 = 2.07265e-05 loss) | |
I0430 16:08:07.953665 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 4.40735e-05 (* 0.0909091 = 4.00668e-06 loss) | |
I0430 16:08:07.953678 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 3.74635e-05 (* 0.0909091 = 3.40578e-06 loss) | |
I0430 16:08:07.953692 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 1.49313e-05 (* 0.0909091 = 1.35739e-06 loss) | |
I0430 16:08:07.953707 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 1.13698e-05 (* 0.0909091 = 1.03362e-06 loss) | |
I0430 16:08:07.953722 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 7.46556e-06 (* 0.0909091 = 6.78688e-07 loss) | |
I0430 16:08:07.953734 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 3.29317e-06 (* 0.0909091 = 2.99379e-07 loss) | |
I0430 16:08:07.953748 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 2.3693e-06 (* 0.0909091 = 2.15391e-07 loss) | |
I0430 16:08:07.953763 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 3.20378e-06 (* 0.0909091 = 2.91253e-07 loss) | |
I0430 16:08:07.953776 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 2.20539e-06 (* 0.0909091 = 2.0049e-07 loss) | |
I0430 16:08:07.953790 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 9.68578e-07 (* 0.0909091 = 8.80525e-08 loss) | |
I0430 16:08:07.953804 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 8.34467e-07 (* 0.0909091 = 7.58606e-08 loss) | |
I0430 16:08:07.953816 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.625 | |
I0430 16:08:07.953829 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625 | |
I0430 16:08:07.953840 15443 solver.cpp:245] Train net output #149: total_confidence = 0.506507 | |
I0430 16:08:07.953860 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.483702 | |
I0430 16:08:07.953874 15443 sgd_solver.cpp:106] Iteration 12500, lr = 0.001 | |
I0430 16:10:24.948482 15443 solver.cpp:229] Iteration 13000, loss = 3.63056 | |
I0430 16:10:24.948652 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.54902 | |
I0430 16:10:24.948673 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0430 16:10:24.948685 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75 | |
I0430 16:10:24.948698 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625 | |
I0430 16:10:24.948710 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0430 16:10:24.948722 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375 | |
I0430 16:10:24.948734 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0430 16:10:24.948745 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0430 16:10:24.948758 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0430 16:10:24.948770 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0430 16:10:24.948781 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0430 16:10:24.948793 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0430 16:10:24.948806 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0430 16:10:24.948817 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0430 16:10:24.948828 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 16:10:24.948840 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 16:10:24.948853 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 16:10:24.948863 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 16:10:24.948875 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 16:10:24.948886 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 16:10:24.948899 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 16:10:24.948910 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 16:10:24.948922 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 16:10:24.948933 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.863636 | |
I0430 16:10:24.948946 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.745098 | |
I0430 16:10:24.948962 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.42722 (* 0.3 = 0.728165 loss) | |
I0430 16:10:24.948976 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.71691 (* 0.3 = 0.215073 loss) | |
I0430 16:10:24.948992 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.598918 (* 0.0272727 = 0.0163341 loss) | |
I0430 16:10:24.949005 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.89249 (* 0.0272727 = 0.0516133 loss) | |
I0430 16:10:24.949019 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.20726 (* 0.0272727 = 0.0329253 loss) | |
I0430 16:10:24.949033 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 2.68625 (* 0.0272727 = 0.0732614 loss) | |
I0430 16:10:24.949046 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.59386 (* 0.0272727 = 0.0434689 loss) | |
I0430 16:10:24.949060 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.6565 (* 0.0272727 = 0.0451772 loss) | |
I0430 16:10:24.949074 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.41626 (* 0.0272727 = 0.0386254 loss) | |
I0430 16:10:24.949087 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 1.02232 (* 0.0272727 = 0.0278814 loss) | |
I0430 16:10:24.949101 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 2.04498 (* 0.0272727 = 0.0557722 loss) | |
I0430 16:10:24.949115 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 1.73577 (* 0.0272727 = 0.0473391 loss) | |
I0430 16:10:24.949127 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 2.03992 (* 0.0272727 = 0.0556342 loss) | |
I0430 16:10:24.949141 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 4.02332e-07 (* 0.0272727 = 1.09727e-08 loss) | |
I0430 16:10:24.949177 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 4.02332e-07 (* 0.0272727 = 1.09727e-08 loss) | |
I0430 16:10:24.949193 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 4.91739e-07 (* 0.0272727 = 1.34111e-08 loss) | |
I0430 16:10:24.949206 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 5.81147e-07 (* 0.0272727 = 1.58495e-08 loss) | |
I0430 16:10:24.949220 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 4.02332e-07 (* 0.0272727 = 1.09727e-08 loss) | |
I0430 16:10:24.949234 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 1.04308e-07 (* 0.0272727 = 2.84477e-09 loss) | |
I0430 16:10:24.949247 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 1.49012e-08 (* 0.0272727 = 4.06395e-10 loss) | |
I0430 16:10:24.949261 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 1.49012e-08 (* 0.0272727 = 4.06395e-10 loss) | |
I0430 16:10:24.949276 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0 (* 0.0272727 = 0 loss) | |
I0430 16:10:24.949290 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0 (* 0.0272727 = 0 loss) | |
I0430 16:10:24.949303 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 0 (* 0.0272727 = 0 loss) | |
I0430 16:10:24.949318 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.588235 | |
I0430 16:10:24.949331 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0430 16:10:24.949342 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625 | |
I0430 16:10:24.949354 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0430 16:10:24.949367 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625 | |
I0430 16:10:24.949378 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0430 16:10:24.949388 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75 | |
I0430 16:10:24.949400 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75 | |
I0430 16:10:24.949412 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0430 16:10:24.949424 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0430 16:10:24.949434 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0430 16:10:24.949446 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0430 16:10:24.949458 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0430 16:10:24.949470 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0430 16:10:24.949481 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 16:10:24.949492 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 16:10:24.949504 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 16:10:24.949515 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 16:10:24.949527 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 16:10:24.949537 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 16:10:24.949543 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 16:10:24.949555 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 16:10:24.949568 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 16:10:24.949579 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.863636 | |
I0430 16:10:24.949590 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.745098 | |
I0430 16:10:24.949604 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.83949 (* 0.3 = 0.551848 loss) | |
I0430 16:10:24.949617 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.573257 (* 0.3 = 0.171977 loss) | |
I0430 16:10:24.949631 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.355441 (* 0.0272727 = 0.00969384 loss) | |
I0430 16:10:24.949645 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 1.55034 (* 0.0272727 = 0.0422819 loss) | |
I0430 16:10:24.949676 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.0671 (* 0.0272727 = 0.0291027 loss) | |
I0430 16:10:24.949692 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.39189 (* 0.0272727 = 0.0379607 loss) | |
I0430 16:10:24.949705 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.54012 (* 0.0272727 = 0.0420032 loss) | |
I0430 16:10:24.949718 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.11276 (* 0.0272727 = 0.0303481 loss) | |
I0430 16:10:24.949733 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 1.10569 (* 0.0272727 = 0.0301552 loss) | |
I0430 16:10:24.949746 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.788321 (* 0.0272727 = 0.0214997 loss) | |
I0430 16:10:24.949760 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 1.21245 (* 0.0272727 = 0.0330669 loss) | |
I0430 16:10:24.949774 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.929337 (* 0.0272727 = 0.0253455 loss) | |
I0430 16:10:24.949787 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 1.08914 (* 0.0272727 = 0.0297039 loss) | |
I0430 16:10:24.949801 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.000874833 (* 0.0272727 = 2.38591e-05 loss) | |
I0430 16:10:24.949815 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000249967 (* 0.0272727 = 6.81727e-06 loss) | |
I0430 16:10:24.949829 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000136798 (* 0.0272727 = 3.73086e-06 loss) | |
I0430 16:10:24.949843 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 8.25694e-05 (* 0.0272727 = 2.25189e-06 loss) | |
I0430 16:10:24.949856 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 6.97639e-05 (* 0.0272727 = 1.90265e-06 loss) | |
I0430 16:10:24.949870 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 3.82046e-05 (* 0.0272727 = 1.04194e-06 loss) | |
I0430 16:10:24.949884 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 2.65491e-05 (* 0.0272727 = 7.24067e-07 loss) | |
I0430 16:10:24.949898 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 7.58491e-06 (* 0.0272727 = 2.06861e-07 loss) | |
I0430 16:10:24.949911 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 8.04686e-06 (* 0.0272727 = 2.1946e-07 loss) | |
I0430 16:10:24.949925 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 9.2389e-06 (* 0.0272727 = 2.5197e-07 loss) | |
I0430 16:10:24.949939 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 2.62263e-06 (* 0.0272727 = 7.15261e-08 loss) | |
I0430 16:10:24.949951 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.764706 | |
I0430 16:10:24.949964 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0430 16:10:24.949975 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0430 16:10:24.949986 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0430 16:10:24.949998 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0430 16:10:24.950009 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0430 16:10:24.950021 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0430 16:10:24.950033 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0430 16:10:24.950044 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0430 16:10:24.950057 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0430 16:10:24.950068 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0430 16:10:24.950079 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0430 16:10:24.950091 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0430 16:10:24.950103 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0430 16:10:24.950114 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 16:10:24.950125 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 16:10:24.950136 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 16:10:24.950157 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 16:10:24.950170 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 16:10:24.950182 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 16:10:24.950194 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 16:10:24.950206 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 16:10:24.950217 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 16:10:24.950228 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.931818 | |
I0430 16:10:24.950240 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.823529 | |
I0430 16:10:24.950253 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.18 (* 1 = 1.18 loss) | |
I0430 16:10:24.950268 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.344004 (* 1 = 0.344004 loss) | |
I0430 16:10:24.950281 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.325884 (* 0.0909091 = 0.0296259 loss) | |
I0430 16:10:24.950295 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.778106 (* 0.0909091 = 0.0707369 loss) | |
I0430 16:10:24.950309 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.574598 (* 0.0909091 = 0.0522362 loss) | |
I0430 16:10:24.950322 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.676848 (* 0.0909091 = 0.0615316 loss) | |
I0430 16:10:24.950336 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.746878 (* 0.0909091 = 0.067898 loss) | |
I0430 16:10:24.950350 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.854804 (* 0.0909091 = 0.0777094 loss) | |
I0430 16:10:24.950366 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.697815 (* 0.0909091 = 0.0634377 loss) | |
I0430 16:10:24.950381 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.629149 (* 0.0909091 = 0.0571954 loss) | |
I0430 16:10:24.950394 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 1.03287 (* 0.0909091 = 0.0938971 loss) | |
I0430 16:10:24.950408 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.858931 (* 0.0909091 = 0.0780846 loss) | |
I0430 16:10:24.950422 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 1.09255 (* 0.0909091 = 0.0993228 loss) | |
I0430 16:10:24.950435 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00102165 (* 0.0909091 = 9.28771e-05 loss) | |
I0430 16:10:24.950450 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00077085 (* 0.0909091 = 7.00773e-05 loss) | |
I0430 16:10:24.950464 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00080761 (* 0.0909091 = 7.34191e-05 loss) | |
I0430 16:10:24.950479 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000673089 (* 0.0909091 = 6.11899e-05 loss) | |
I0430 16:10:24.950492 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000517269 (* 0.0909091 = 4.70244e-05 loss) | |
I0430 16:10:24.950505 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000354507 (* 0.0909091 = 3.22279e-05 loss) | |
I0430 16:10:24.950520 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000257376 (* 0.0909091 = 2.33978e-05 loss) | |
I0430 16:10:24.950533 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000228837 (* 0.0909091 = 2.08034e-05 loss) | |
I0430 16:10:24.950547 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000200335 (* 0.0909091 = 1.82123e-05 loss) | |
I0430 16:10:24.950562 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000183806 (* 0.0909091 = 1.67097e-05 loss) | |
I0430 16:10:24.950574 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000202387 (* 0.0909091 = 1.83988e-05 loss) | |
I0430 16:10:24.950587 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.75 | |
I0430 16:10:24.950598 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.75 | |
I0430 16:10:24.950619 15443 solver.cpp:245] Train net output #149: total_confidence = 0.495744 | |
I0430 16:10:24.950633 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.384281 | |
I0430 16:10:24.950645 15443 sgd_solver.cpp:106] Iteration 13000, lr = 0.001 | |
I0430 16:12:41.840829 15443 solver.cpp:229] Iteration 13500, loss = 3.5792 | |
I0430 16:12:41.840996 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.45098 | |
I0430 16:12:41.841017 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625 | |
I0430 16:12:41.841030 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0430 16:12:41.841043 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625 | |
I0430 16:12:41.841055 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375 | |
I0430 16:12:41.841068 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0430 16:12:41.841079 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0430 16:12:41.841090 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0430 16:12:41.841102 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1 | |
I0430 16:12:41.841114 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0430 16:12:41.841126 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0430 16:12:41.841138 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0430 16:12:41.841150 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0430 16:12:41.841161 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0430 16:12:41.841173 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0430 16:12:41.841186 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875 | |
I0430 16:12:41.841197 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 16:12:41.841209 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 16:12:41.841220 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 16:12:41.841233 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 16:12:41.841243 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 16:12:41.841255 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 16:12:41.841266 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 16:12:41.841279 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.823864 | |
I0430 16:12:41.841290 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.686275 | |
I0430 16:12:41.841306 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.83056 (* 0.3 = 0.549167 loss) | |
I0430 16:12:41.841323 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.575264 (* 0.3 = 0.172579 loss) | |
I0430 16:12:41.841338 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 1.0756 (* 0.0272727 = 0.0293346 loss) | |
I0430 16:12:41.841353 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.37517 (* 0.0272727 = 0.0375047 loss) | |
I0430 16:12:41.841367 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.82927 (* 0.0272727 = 0.0498892 loss) | |
I0430 16:12:41.841382 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.77481 (* 0.0272727 = 0.0484038 loss) | |
I0430 16:12:41.841395 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.62406 (* 0.0272727 = 0.0442926 loss) | |
I0430 16:12:41.841409 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 0.941816 (* 0.0272727 = 0.0256859 loss) | |
I0430 16:12:41.841423 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 0.782108 (* 0.0272727 = 0.0213302 loss) | |
I0430 16:12:41.841439 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.229231 (* 0.0272727 = 0.00625176 loss) | |
I0430 16:12:41.841452 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.465352 (* 0.0272727 = 0.0126914 loss) | |
I0430 16:12:41.841466 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.358061 (* 0.0272727 = 0.00976529 loss) | |
I0430 16:12:41.841480 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.344714 (* 0.0272727 = 0.00940129 loss) | |
I0430 16:12:41.841495 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.220022 (* 0.0272727 = 0.00600061 loss) | |
I0430 16:12:41.841529 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.680939 (* 0.0272727 = 0.0185711 loss) | |
I0430 16:12:41.841545 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.246592 (* 0.0272727 = 0.00672523 loss) | |
I0430 16:12:41.841559 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.629002 (* 0.0272727 = 0.0171546 loss) | |
I0430 16:12:41.841574 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0134332 (* 0.0272727 = 0.000366361 loss) | |
I0430 16:12:41.841588 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00405831 (* 0.0272727 = 0.000110681 loss) | |
I0430 16:12:41.841603 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00173864 (* 0.0272727 = 4.74173e-05 loss) | |
I0430 16:12:41.841616 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00110589 (* 0.0272727 = 3.01607e-05 loss) | |
I0430 16:12:41.841630 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000155564 (* 0.0272727 = 4.24266e-06 loss) | |
I0430 16:12:41.841645 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 4.69508e-05 (* 0.0272727 = 1.28047e-06 loss) | |
I0430 16:12:41.841658 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 1.60346e-05 (* 0.0272727 = 4.37306e-07 loss) | |
I0430 16:12:41.841670 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.588235 | |
I0430 16:12:41.841682 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75 | |
I0430 16:12:41.841694 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875 | |
I0430 16:12:41.841706 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0430 16:12:41.841717 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5 | |
I0430 16:12:41.841729 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375 | |
I0430 16:12:41.841742 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75 | |
I0430 16:12:41.841753 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0430 16:12:41.841764 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1 | |
I0430 16:12:41.841776 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0430 16:12:41.841789 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0430 16:12:41.841800 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0430 16:12:41.841809 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0430 16:12:41.841817 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0430 16:12:41.841837 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0430 16:12:41.841858 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875 | |
I0430 16:12:41.841879 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 16:12:41.841897 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 16:12:41.841909 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 16:12:41.841922 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 16:12:41.841933 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 16:12:41.841943 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 16:12:41.841955 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 16:12:41.841966 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.869318 | |
I0430 16:12:41.841977 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.803922 | |
I0430 16:12:41.841992 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.5043 (* 0.3 = 0.45129 loss) | |
I0430 16:12:41.842010 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.469659 (* 0.3 = 0.140898 loss) | |
I0430 16:12:41.842025 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.842963 (* 0.0272727 = 0.0229899 loss) | |
I0430 16:12:41.842038 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 0.519784 (* 0.0272727 = 0.0141759 loss) | |
I0430 16:12:41.842066 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 0.892398 (* 0.0272727 = 0.0243381 loss) | |
I0430 16:12:41.842082 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.72222 (* 0.0272727 = 0.0469695 loss) | |
I0430 16:12:41.842095 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.76492 (* 0.0272727 = 0.0481342 loss) | |
I0430 16:12:41.842108 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 0.702501 (* 0.0272727 = 0.0191591 loss) | |
I0430 16:12:41.842123 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 0.521097 (* 0.0272727 = 0.0142117 loss) | |
I0430 16:12:41.842138 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.247988 (* 0.0272727 = 0.00676331 loss) | |
I0430 16:12:41.842151 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.478517 (* 0.0272727 = 0.0130505 loss) | |
I0430 16:12:41.842165 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.31748 (* 0.0272727 = 0.00865854 loss) | |
I0430 16:12:41.842178 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.313663 (* 0.0272727 = 0.00855444 loss) | |
I0430 16:12:41.842192 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.248888 (* 0.0272727 = 0.00678786 loss) | |
I0430 16:12:41.842206 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.693725 (* 0.0272727 = 0.0189198 loss) | |
I0430 16:12:41.842221 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.327514 (* 0.0272727 = 0.00893221 loss) | |
I0430 16:12:41.842234 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.497674 (* 0.0272727 = 0.0135729 loss) | |
I0430 16:12:41.842248 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0112887 (* 0.0272727 = 0.000307875 loss) | |
I0430 16:12:41.842262 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00514357 (* 0.0272727 = 0.000140279 loss) | |
I0430 16:12:41.842275 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00108319 (* 0.0272727 = 2.95415e-05 loss) | |
I0430 16:12:41.842289 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000202558 (* 0.0272727 = 5.52431e-06 loss) | |
I0430 16:12:41.842303 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 3.79354e-05 (* 0.0272727 = 1.0346e-06 loss) | |
I0430 16:12:41.842316 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 1.16679e-05 (* 0.0272727 = 3.18215e-07 loss) | |
I0430 16:12:41.842330 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 8.88138e-06 (* 0.0272727 = 2.42219e-07 loss) | |
I0430 16:12:41.842342 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.745098 | |
I0430 16:12:41.842355 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0430 16:12:41.842368 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0430 16:12:41.842381 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0430 16:12:41.842392 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75 | |
I0430 16:12:41.842404 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0430 16:12:41.842417 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625 | |
I0430 16:12:41.842427 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1 | |
I0430 16:12:41.842439 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0430 16:12:41.842450 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0430 16:12:41.842463 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0430 16:12:41.842473 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0430 16:12:41.842485 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0430 16:12:41.842496 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0430 16:12:41.842507 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 16:12:41.842519 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875 | |
I0430 16:12:41.842540 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 16:12:41.842553 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 16:12:41.842566 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 16:12:41.842577 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 16:12:41.842588 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 16:12:41.842599 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 16:12:41.842612 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 16:12:41.842622 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.914773 | |
I0430 16:12:41.842634 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.862745 | |
I0430 16:12:41.842648 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.23016 (* 1 = 1.23016 loss) | |
I0430 16:12:41.842661 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.402229 (* 1 = 0.402229 loss) | |
I0430 16:12:41.842676 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.233912 (* 0.0909091 = 0.0212648 loss) | |
I0430 16:12:41.842690 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.489489 (* 0.0909091 = 0.044499 loss) | |
I0430 16:12:41.842705 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 1.36981 (* 0.0909091 = 0.124529 loss) | |
I0430 16:12:41.842717 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 1.61485 (* 0.0909091 = 0.146805 loss) | |
I0430 16:12:41.842731 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 1.86864 (* 0.0909091 = 0.169876 loss) | |
I0430 16:12:41.842744 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.680022 (* 0.0909091 = 0.0618202 loss) | |
I0430 16:12:41.842758 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.137152 (* 0.0909091 = 0.0124683 loss) | |
I0430 16:12:41.842772 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.214142 (* 0.0909091 = 0.0194675 loss) | |
I0430 16:12:41.842785 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.488938 (* 0.0909091 = 0.0444489 loss) | |
I0430 16:12:41.842798 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.336342 (* 0.0909091 = 0.0305765 loss) | |
I0430 16:12:41.842813 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.296667 (* 0.0909091 = 0.0269697 loss) | |
I0430 16:12:41.842825 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.110119 (* 0.0909091 = 0.0100108 loss) | |
I0430 16:12:41.842839 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.436043 (* 0.0909091 = 0.0396403 loss) | |
I0430 16:12:41.842852 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.11074 (* 0.0909091 = 0.0100673 loss) | |
I0430 16:12:41.842866 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.501748 (* 0.0909091 = 0.0456134 loss) | |
I0430 16:12:41.842880 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00438383 (* 0.0909091 = 0.00039853 loss) | |
I0430 16:12:41.842895 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00423688 (* 0.0909091 = 0.000385171 loss) | |
I0430 16:12:41.842908 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00196443 (* 0.0909091 = 0.000178584 loss) | |
I0430 16:12:41.842922 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00106887 (* 0.0909091 = 9.71699e-05 loss) | |
I0430 16:12:41.842936 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000339927 (* 0.0909091 = 3.09025e-05 loss) | |
I0430 16:12:41.842950 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.0002391 (* 0.0909091 = 2.17364e-05 loss) | |
I0430 16:12:41.842963 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000106056 (* 0.0909091 = 9.64147e-06 loss) | |
I0430 16:12:41.842977 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.375 | |
I0430 16:12:41.842988 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375 | |
I0430 16:12:41.843008 15443 solver.cpp:245] Train net output #149: total_confidence = 0.424107 | |
I0430 16:12:41.843021 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.477769 | |
I0430 16:12:41.843034 15443 sgd_solver.cpp:106] Iteration 13500, lr = 0.001 | |
I0430 16:14:35.362535 15443 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 37.1191 > 30) by scale factor 0.808209 | |
I0430 16:14:35.919958 15443 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.079 > 30) by scale factor 0.965281 | |
I0430 16:14:58.837294 15443 solver.cpp:229] Iteration 14000, loss = 3.70748 | |
I0430 16:14:58.837375 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.5 | |
I0430 16:14:58.837393 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0430 16:14:58.837406 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.875 | |
I0430 16:14:58.837420 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0430 16:14:58.837432 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.625 | |
I0430 16:14:58.837445 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625 | |
I0430 16:14:58.837456 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0430 16:14:58.837467 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0430 16:14:58.837481 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0430 16:14:58.837491 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75 | |
I0430 16:14:58.837503 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0430 16:14:58.837515 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0430 16:14:58.837527 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0430 16:14:58.837539 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0430 16:14:58.837551 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 16:14:58.837563 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 16:14:58.837576 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 16:14:58.837589 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 16:14:58.837601 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 16:14:58.837612 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 16:14:58.837625 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 16:14:58.837636 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 16:14:58.837649 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 16:14:58.837661 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.835227 | |
I0430 16:14:58.837672 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.659091 | |
I0430 16:14:58.837689 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.94216 (* 0.3 = 0.582647 loss) | |
I0430 16:14:58.837703 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.634954 (* 0.3 = 0.190486 loss) | |
I0430 16:14:58.837718 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 1.08566 (* 0.0272727 = 0.0296088 loss) | |
I0430 16:14:58.837733 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 0.892228 (* 0.0272727 = 0.0243335 loss) | |
I0430 16:14:58.837748 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.90166 (* 0.0272727 = 0.0518634 loss) | |
I0430 16:14:58.837761 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.53049 (* 0.0272727 = 0.0417405 loss) | |
I0430 16:14:58.837775 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.6266 (* 0.0272727 = 0.0443618 loss) | |
I0430 16:14:58.837790 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.15141 (* 0.0272727 = 0.031402 loss) | |
I0430 16:14:58.837805 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.03293 (* 0.0272727 = 0.0281709 loss) | |
I0430 16:14:58.837818 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.884866 (* 0.0272727 = 0.0241327 loss) | |
I0430 16:14:58.837832 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.751031 (* 0.0272727 = 0.0204827 loss) | |
I0430 16:14:58.837846 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.504371 (* 0.0272727 = 0.0137556 loss) | |
I0430 16:14:58.837860 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.446325 (* 0.0272727 = 0.0121725 loss) | |
I0430 16:14:58.837916 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.448074 (* 0.0272727 = 0.0122202 loss) | |
I0430 16:14:58.837932 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.110412 (* 0.0272727 = 0.00301124 loss) | |
I0430 16:14:58.837947 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0521296 (* 0.0272727 = 0.00142172 loss) | |
I0430 16:14:58.837961 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0277287 (* 0.0272727 = 0.000756237 loss) | |
I0430 16:14:58.837975 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0105078 (* 0.0272727 = 0.000286576 loss) | |
I0430 16:14:58.837990 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00417088 (* 0.0272727 = 0.000113751 loss) | |
I0430 16:14:58.838003 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00192038 (* 0.0272727 = 5.23741e-05 loss) | |
I0430 16:14:58.838017 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00196906 (* 0.0272727 = 5.37015e-05 loss) | |
I0430 16:14:58.838032 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00102796 (* 0.0272727 = 2.80352e-05 loss) | |
I0430 16:14:58.838045 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00110032 (* 0.0272727 = 3.00088e-05 loss) | |
I0430 16:14:58.838059 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000564301 (* 0.0272727 = 1.539e-05 loss) | |
I0430 16:14:58.838071 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.5 | |
I0430 16:14:58.838083 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75 | |
I0430 16:14:58.838094 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875 | |
I0430 16:14:58.838106 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0430 16:14:58.838119 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625 | |
I0430 16:14:58.838130 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625 | |
I0430 16:14:58.838141 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0430 16:14:58.838153 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75 | |
I0430 16:14:58.838165 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75 | |
I0430 16:14:58.838176 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0430 16:14:58.838192 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0430 16:14:58.838206 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0430 16:14:58.838217 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0430 16:14:58.838228 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0430 16:14:58.838239 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 16:14:58.838251 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 16:14:58.838263 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 16:14:58.838274 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 16:14:58.838285 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 16:14:58.838296 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 16:14:58.838309 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 16:14:58.838320 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 16:14:58.838331 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 16:14:58.838342 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.846591 | |
I0430 16:14:58.838354 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.636364 | |
I0430 16:14:58.838368 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.86025 (* 0.3 = 0.558074 loss) | |
I0430 16:14:58.838382 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.571729 (* 0.3 = 0.171519 loss) | |
I0430 16:14:58.838408 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 1.13597 (* 0.0272727 = 0.030981 loss) | |
I0430 16:14:58.838426 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 0.553032 (* 0.0272727 = 0.0150827 loss) | |
I0430 16:14:58.838436 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.58728 (* 0.0272727 = 0.0432895 loss) | |
I0430 16:14:58.838446 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.12382 (* 0.0272727 = 0.0306497 loss) | |
I0430 16:14:58.838460 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.49202 (* 0.0272727 = 0.0406915 loss) | |
I0430 16:14:58.838475 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.25298 (* 0.0272727 = 0.0341721 loss) | |
I0430 16:14:58.838488 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 1.08611 (* 0.0272727 = 0.0296213 loss) | |
I0430 16:14:58.838502 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.861981 (* 0.0272727 = 0.0235086 loss) | |
I0430 16:14:58.838516 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.5874 (* 0.0272727 = 0.01602 loss) | |
I0430 16:14:58.838531 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.472195 (* 0.0272727 = 0.012878 loss) | |
I0430 16:14:58.838543 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.403863 (* 0.0272727 = 0.0110144 loss) | |
I0430 16:14:58.838557 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.413182 (* 0.0272727 = 0.0112686 loss) | |
I0430 16:14:58.838572 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0936882 (* 0.0272727 = 0.00255513 loss) | |
I0430 16:14:58.838585 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0530381 (* 0.0272727 = 0.00144649 loss) | |
I0430 16:14:58.838598 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0367542 (* 0.0272727 = 0.00100239 loss) | |
I0430 16:14:58.838613 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0261016 (* 0.0272727 = 0.000711863 loss) | |
I0430 16:14:58.838629 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0122781 (* 0.0272727 = 0.000334858 loss) | |
I0430 16:14:58.838642 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.007873 (* 0.0272727 = 0.000214718 loss) | |
I0430 16:14:58.838656 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00476092 (* 0.0272727 = 0.000129843 loss) | |
I0430 16:14:58.838670 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00317931 (* 0.0272727 = 8.67086e-05 loss) | |
I0430 16:14:58.838683 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00499869 (* 0.0272727 = 0.000136328 loss) | |
I0430 16:14:58.838697 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000546756 (* 0.0272727 = 1.49115e-05 loss) | |
I0430 16:14:58.838709 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.636364 | |
I0430 16:14:58.838721 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0430 16:14:58.838732 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0430 16:14:58.838743 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625 | |
I0430 16:14:58.838755 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625 | |
I0430 16:14:58.838767 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625 | |
I0430 16:14:58.838778 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625 | |
I0430 16:14:58.838788 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0430 16:14:58.838800 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75 | |
I0430 16:14:58.838811 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75 | |
I0430 16:14:58.838824 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0430 16:14:58.838835 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0430 16:14:58.838846 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0430 16:14:58.838857 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0430 16:14:58.838879 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 16:14:58.838892 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 16:14:58.838903 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 16:14:58.838914 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 16:14:58.838927 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 16:14:58.838938 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 16:14:58.838949 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 16:14:58.838960 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 16:14:58.838973 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 16:14:58.838984 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.886364 | |
I0430 16:14:58.838996 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.704545 | |
I0430 16:14:58.839010 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.69857 (* 1 = 1.69857 loss) | |
I0430 16:14:58.839023 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.511335 (* 1 = 0.511335 loss) | |
I0430 16:14:58.839037 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.996989 (* 0.0909091 = 0.0906353 loss) | |
I0430 16:14:58.839051 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.441783 (* 0.0909091 = 0.0401621 loss) | |
I0430 16:14:58.839066 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 1.15883 (* 0.0909091 = 0.105349 loss) | |
I0430 16:14:58.839078 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 1.19652 (* 0.0909091 = 0.108774 loss) | |
I0430 16:14:58.839092 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 1.43068 (* 0.0909091 = 0.130062 loss) | |
I0430 16:14:58.839105 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.972493 (* 0.0909091 = 0.0884085 loss) | |
I0430 16:14:58.839119 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 1.1874 (* 0.0909091 = 0.107945 loss) | |
I0430 16:14:58.839133 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.826739 (* 0.0909091 = 0.0751581 loss) | |
I0430 16:14:58.839146 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.685576 (* 0.0909091 = 0.0623251 loss) | |
I0430 16:14:58.839160 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.425178 (* 0.0909091 = 0.0386526 loss) | |
I0430 16:14:58.839174 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.315086 (* 0.0909091 = 0.0286442 loss) | |
I0430 16:14:58.839186 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.400794 (* 0.0909091 = 0.0364358 loss) | |
I0430 16:14:58.839200 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.042823 (* 0.0909091 = 0.003893 loss) | |
I0430 16:14:58.839215 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.0197701 (* 0.0909091 = 0.00179728 loss) | |
I0430 16:14:58.839228 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00720644 (* 0.0909091 = 0.000655131 loss) | |
I0430 16:14:58.839247 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00416803 (* 0.0909091 = 0.000378912 loss) | |
I0430 16:14:58.839262 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0021362 (* 0.0909091 = 0.0001942 loss) | |
I0430 16:14:58.839289 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00123752 (* 0.0909091 = 0.000112502 loss) | |
I0430 16:14:58.839308 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00110001 (* 0.0909091 = 0.000100001 loss) | |
I0430 16:14:58.839323 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000830196 (* 0.0909091 = 7.54724e-05 loss) | |
I0430 16:14:58.839336 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000625909 (* 0.0909091 = 5.69009e-05 loss) | |
I0430 16:14:58.839350 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000193867 (* 0.0909091 = 1.76243e-05 loss) | |
I0430 16:14:58.839373 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.625 | |
I0430 16:14:58.839386 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5 | |
I0430 16:14:58.839398 15443 solver.cpp:245] Train net output #149: total_confidence = 0.479499 | |
I0430 16:14:58.839409 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.506014 | |
I0430 16:14:58.839422 15443 sgd_solver.cpp:106] Iteration 14000, lr = 0.001 | |
I0430 16:15:29.848376 15443 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 32.784 > 30) by scale factor 0.91508 | |
I0430 16:17:15.833968 15443 solver.cpp:229] Iteration 14500, loss = 3.71331 | |
I0430 16:17:15.834159 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.530612 | |
I0430 16:17:15.834183 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0430 16:17:15.834197 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625 | |
I0430 16:17:15.834209 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0430 16:17:15.834221 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0430 16:17:15.834233 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0430 16:17:15.834245 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75 | |
I0430 16:17:15.834257 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625 | |
I0430 16:17:15.834270 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0430 16:17:15.834281 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0430 16:17:15.834293 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0430 16:17:15.834306 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0430 16:17:15.834321 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0430 16:17:15.834332 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0430 16:17:15.834345 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 16:17:15.834357 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 16:17:15.834368 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 16:17:15.834381 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 16:17:15.834393 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 16:17:15.834404 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 16:17:15.834415 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 16:17:15.834427 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 16:17:15.834439 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 16:17:15.834452 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.852273 | |
I0430 16:17:15.834473 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.755102 | |
I0430 16:17:15.834501 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.70734 (* 0.3 = 0.512201 loss) | |
I0430 16:17:15.834527 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.537561 (* 0.3 = 0.161268 loss) | |
I0430 16:17:15.834550 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.891073 (* 0.0272727 = 0.024302 loss) | |
I0430 16:17:15.834574 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.63237 (* 0.0272727 = 0.0445192 loss) | |
I0430 16:17:15.834599 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.68 (* 0.0272727 = 0.0458183 loss) | |
I0430 16:17:15.834625 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.7561 (* 0.0272727 = 0.0478937 loss) | |
I0430 16:17:15.834640 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.48508 (* 0.0272727 = 0.0405021 loss) | |
I0430 16:17:15.834655 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 0.91528 (* 0.0272727 = 0.0249622 loss) | |
I0430 16:17:15.834668 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 0.679655 (* 0.0272727 = 0.018536 loss) | |
I0430 16:17:15.834682 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.430038 (* 0.0272727 = 0.0117283 loss) | |
I0430 16:17:15.834697 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.703189 (* 0.0272727 = 0.0191779 loss) | |
I0430 16:17:15.834710 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.342625 (* 0.0272727 = 0.00934431 loss) | |
I0430 16:17:15.834725 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.478026 (* 0.0272727 = 0.0130371 loss) | |
I0430 16:17:15.834739 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.495247 (* 0.0272727 = 0.0135067 loss) | |
I0430 16:17:15.834777 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.412871 (* 0.0272727 = 0.0112601 loss) | |
I0430 16:17:15.834794 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0220051 (* 0.0272727 = 0.000600139 loss) | |
I0430 16:17:15.834807 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00840147 (* 0.0272727 = 0.000229131 loss) | |
I0430 16:17:15.834821 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00493781 (* 0.0272727 = 0.000134668 loss) | |
I0430 16:17:15.834836 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00327329 (* 0.0272727 = 8.92714e-05 loss) | |
I0430 16:17:15.834849 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00251254 (* 0.0272727 = 6.85239e-05 loss) | |
I0430 16:17:15.834863 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00168812 (* 0.0272727 = 4.60398e-05 loss) | |
I0430 16:17:15.834877 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000784502 (* 0.0272727 = 2.13955e-05 loss) | |
I0430 16:17:15.834892 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000236884 (* 0.0272727 = 6.46049e-06 loss) | |
I0430 16:17:15.834905 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 8.17969e-05 (* 0.0272727 = 2.23082e-06 loss) | |
I0430 16:17:15.834918 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.612245 | |
I0430 16:17:15.834929 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75 | |
I0430 16:17:15.834941 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625 | |
I0430 16:17:15.834954 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75 | |
I0430 16:17:15.834964 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5 | |
I0430 16:17:15.834975 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0430 16:17:15.834988 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0430 16:17:15.835000 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75 | |
I0430 16:17:15.835011 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0430 16:17:15.835022 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0430 16:17:15.835034 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0430 16:17:15.835046 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0430 16:17:15.835057 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0430 16:17:15.835065 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0430 16:17:15.835073 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 16:17:15.835085 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 16:17:15.835100 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 16:17:15.835122 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 16:17:15.835146 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 16:17:15.835180 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 16:17:15.835202 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 16:17:15.835216 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 16:17:15.835227 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 16:17:15.835238 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.875 | |
I0430 16:17:15.835250 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.836735 | |
I0430 16:17:15.835264 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.3071 (* 0.3 = 0.392129 loss) | |
I0430 16:17:15.835279 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.419084 (* 0.3 = 0.125725 loss) | |
I0430 16:17:15.835294 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.782063 (* 0.0272727 = 0.021329 loss) | |
I0430 16:17:15.835307 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 1.09828 (* 0.0272727 = 0.029953 loss) | |
I0430 16:17:15.835335 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.01367 (* 0.0272727 = 0.0276454 loss) | |
I0430 16:17:15.835350 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.10676 (* 0.0272727 = 0.0301843 loss) | |
I0430 16:17:15.835367 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.42598 (* 0.0272727 = 0.0388903 loss) | |
I0430 16:17:15.835381 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.19117 (* 0.0272727 = 0.0324864 loss) | |
I0430 16:17:15.835396 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 0.711472 (* 0.0272727 = 0.0194038 loss) | |
I0430 16:17:15.835410 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.346207 (* 0.0272727 = 0.00944201 loss) | |
I0430 16:17:15.835424 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.586949 (* 0.0272727 = 0.0160077 loss) | |
I0430 16:17:15.835438 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.30231 (* 0.0272727 = 0.00824482 loss) | |
I0430 16:17:15.835453 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.486252 (* 0.0272727 = 0.0132614 loss) | |
I0430 16:17:15.835480 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.462006 (* 0.0272727 = 0.0126002 loss) | |
I0430 16:17:15.835496 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.420139 (* 0.0272727 = 0.0114583 loss) | |
I0430 16:17:15.835511 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0366296 (* 0.0272727 = 0.000998989 loss) | |
I0430 16:17:15.835525 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0209542 (* 0.0272727 = 0.000571479 loss) | |
I0430 16:17:15.835538 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.016567 (* 0.0272727 = 0.000451828 loss) | |
I0430 16:17:15.835552 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00775518 (* 0.0272727 = 0.000211505 loss) | |
I0430 16:17:15.835566 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00319631 (* 0.0272727 = 8.7172e-05 loss) | |
I0430 16:17:15.835580 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00142838 (* 0.0272727 = 3.89558e-05 loss) | |
I0430 16:17:15.835594 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00134881 (* 0.0272727 = 3.67858e-05 loss) | |
I0430 16:17:15.835608 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000562895 (* 0.0272727 = 1.53517e-05 loss) | |
I0430 16:17:15.835621 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 7.15381e-05 (* 0.0272727 = 1.95104e-06 loss) | |
I0430 16:17:15.835633 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.734694 | |
I0430 16:17:15.835645 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75 | |
I0430 16:17:15.835657 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75 | |
I0430 16:17:15.835669 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0430 16:17:15.835680 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0430 16:17:15.835691 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0430 16:17:15.835703 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625 | |
I0430 16:17:15.835716 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0430 16:17:15.835726 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0430 16:17:15.835738 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0430 16:17:15.835749 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0430 16:17:15.835762 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0430 16:17:15.835772 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0430 16:17:15.835783 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0430 16:17:15.835794 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 16:17:15.835806 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 16:17:15.835829 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 16:17:15.835842 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 16:17:15.835855 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 16:17:15.835866 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 16:17:15.835877 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 16:17:15.835888 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 16:17:15.835901 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 16:17:15.835911 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.920455 | |
I0430 16:17:15.835923 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.836735 | |
I0430 16:17:15.835937 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.07639 (* 1 = 1.07639 loss) | |
I0430 16:17:15.835950 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.319135 (* 1 = 0.319135 loss) | |
I0430 16:17:15.835964 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.557955 (* 0.0909091 = 0.0507231 loss) | |
I0430 16:17:15.835978 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.674403 (* 0.0909091 = 0.0613094 loss) | |
I0430 16:17:15.835991 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.720536 (* 0.0909091 = 0.0655033 loss) | |
I0430 16:17:15.836005 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.534309 (* 0.0909091 = 0.0485735 loss) | |
I0430 16:17:15.836019 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 1.05543 (* 0.0909091 = 0.0959479 loss) | |
I0430 16:17:15.836032 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 1.28129 (* 0.0909091 = 0.116481 loss) | |
I0430 16:17:15.836046 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.61977 (* 0.0909091 = 0.0563428 loss) | |
I0430 16:17:15.836061 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.2864 (* 0.0909091 = 0.0260364 loss) | |
I0430 16:17:15.836073 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.730558 (* 0.0909091 = 0.0664144 loss) | |
I0430 16:17:15.836087 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.396325 (* 0.0909091 = 0.0360296 loss) | |
I0430 16:17:15.836102 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.615519 (* 0.0909091 = 0.0559563 loss) | |
I0430 16:17:15.836114 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.397922 (* 0.0909091 = 0.0361748 loss) | |
I0430 16:17:15.836128 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.475474 (* 0.0909091 = 0.0432249 loss) | |
I0430 16:17:15.836141 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.0138226 (* 0.0909091 = 0.0012566 loss) | |
I0430 16:17:15.836155 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00104841 (* 0.0909091 = 9.53103e-05 loss) | |
I0430 16:17:15.836170 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000480315 (* 0.0909091 = 4.3665e-05 loss) | |
I0430 16:17:15.836184 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000557875 (* 0.0909091 = 5.07159e-05 loss) | |
I0430 16:17:15.836199 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000256092 (* 0.0909091 = 2.32811e-05 loss) | |
I0430 16:17:15.836215 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000157149 (* 0.0909091 = 1.42863e-05 loss) | |
I0430 16:17:15.836230 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000133917 (* 0.0909091 = 1.21743e-05 loss) | |
I0430 16:17:15.836244 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 9.63217e-05 (* 0.0909091 = 8.75652e-06 loss) | |
I0430 16:17:15.836258 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 7.13337e-05 (* 0.0909091 = 6.48488e-06 loss) | |
I0430 16:17:15.836271 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.75 | |
I0430 16:17:15.836282 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625 | |
I0430 16:17:15.836303 15443 solver.cpp:245] Train net output #149: total_confidence = 0.372044 | |
I0430 16:17:15.836316 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.429915 | |
I0430 16:17:15.836328 15443 sgd_solver.cpp:106] Iteration 14500, lr = 0.001 | |
I0430 16:17:23.009541 15443 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 34.9143 > 30) by scale factor 0.859246 | |
I0430 16:19:32.594528 15443 solver.cpp:338] Iteration 15000, Testing net (#0) | |
I0430 16:20:13.490738 15443 solver.cpp:393] Test loss: 2.31174 | |
I0430 16:20:13.490890 15443 solver.cpp:406] Test net output #0: loss1/accuracy = 0.637096 | |
I0430 16:20:13.490911 15443 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.85 | |
I0430 16:20:13.490924 15443 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.72 | |
I0430 16:20:13.490936 15443 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.576 | |
I0430 16:20:13.490948 15443 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.573 | |
I0430 16:20:13.490959 15443 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.556 | |
I0430 16:20:13.490972 15443 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.669 | |
I0430 16:20:13.490983 15443 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.813 | |
I0430 16:20:13.490994 15443 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.898 | |
I0430 16:20:13.491005 15443 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.983 | |
I0430 16:20:13.491017 15443 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.994 | |
I0430 16:20:13.491029 15443 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.997 | |
I0430 16:20:13.491040 15443 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.999 | |
I0430 16:20:13.491051 15443 solver.cpp:406] Test net output #13: loss1/accuracy13 = 1 | |
I0430 16:20:13.491062 15443 solver.cpp:406] Test net output #14: loss1/accuracy14 = 1 | |
I0430 16:20:13.491073 15443 solver.cpp:406] Test net output #15: loss1/accuracy15 = 1 | |
I0430 16:20:13.491085 15443 solver.cpp:406] Test net output #16: loss1/accuracy16 = 1 | |
I0430 16:20:13.491096 15443 solver.cpp:406] Test net output #17: loss1/accuracy17 = 1 | |
I0430 16:20:13.491107 15443 solver.cpp:406] Test net output #18: loss1/accuracy18 = 1 | |
I0430 16:20:13.491118 15443 solver.cpp:406] Test net output #19: loss1/accuracy19 = 1 | |
I0430 16:20:13.491129 15443 solver.cpp:406] Test net output #20: loss1/accuracy20 = 1 | |
I0430 16:20:13.491142 15443 solver.cpp:406] Test net output #21: loss1/accuracy21 = 1 | |
I0430 16:20:13.491153 15443 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1 | |
I0430 16:20:13.491164 15443 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.893001 | |
I0430 16:20:13.491175 15443 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.862959 | |
I0430 16:20:13.491191 15443 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.16654 (* 0.3 = 0.349962 loss) | |
I0430 16:20:13.491206 15443 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.352524 (* 0.3 = 0.105757 loss) | |
I0430 16:20:13.491220 15443 solver.cpp:406] Test net output #27: loss1/loss01 = 0.57707 (* 0.0272727 = 0.0157383 loss) | |
I0430 16:20:13.491233 15443 solver.cpp:406] Test net output #28: loss1/loss02 = 0.988097 (* 0.0272727 = 0.0269481 loss) | |
I0430 16:20:13.491247 15443 solver.cpp:406] Test net output #29: loss1/loss03 = 1.38917 (* 0.0272727 = 0.0378866 loss) | |
I0430 16:20:13.491261 15443 solver.cpp:406] Test net output #30: loss1/loss04 = 1.36815 (* 0.0272727 = 0.0373133 loss) | |
I0430 16:20:13.491274 15443 solver.cpp:406] Test net output #31: loss1/loss05 = 1.3444 (* 0.0272727 = 0.0366654 loss) | |
I0430 16:20:13.491287 15443 solver.cpp:406] Test net output #32: loss1/loss06 = 1.01898 (* 0.0272727 = 0.0277904 loss) | |
I0430 16:20:13.491300 15443 solver.cpp:406] Test net output #33: loss1/loss07 = 0.576318 (* 0.0272727 = 0.0157178 loss) | |
I0430 16:20:13.491317 15443 solver.cpp:406] Test net output #34: loss1/loss08 = 0.300419 (* 0.0272727 = 0.00819325 loss) | |
I0430 16:20:13.491331 15443 solver.cpp:406] Test net output #35: loss1/loss09 = 0.0783467 (* 0.0272727 = 0.00213673 loss) | |
I0430 16:20:13.491345 15443 solver.cpp:406] Test net output #36: loss1/loss10 = 0.033004 (* 0.0272727 = 0.000900109 loss) | |
I0430 16:20:13.491361 15443 solver.cpp:406] Test net output #37: loss1/loss11 = 0.0144523 (* 0.0272727 = 0.000394154 loss) | |
I0430 16:20:13.491375 15443 solver.cpp:406] Test net output #38: loss1/loss12 = 0.00893894 (* 0.0272727 = 0.000243789 loss) | |
I0430 16:20:13.491389 15443 solver.cpp:406] Test net output #39: loss1/loss13 = 0.00614785 (* 0.0272727 = 0.000167669 loss) | |
I0430 16:20:13.491423 15443 solver.cpp:406] Test net output #40: loss1/loss14 = 0.00385937 (* 0.0272727 = 0.000105255 loss) | |
I0430 16:20:13.491438 15443 solver.cpp:406] Test net output #41: loss1/loss15 = 0.00248812 (* 0.0272727 = 6.78578e-05 loss) | |
I0430 16:20:13.491452 15443 solver.cpp:406] Test net output #42: loss1/loss16 = 0.00152938 (* 0.0272727 = 4.17104e-05 loss) | |
I0430 16:20:13.491479 15443 solver.cpp:406] Test net output #43: loss1/loss17 = 0.0010036 (* 0.0272727 = 2.7371e-05 loss) | |
I0430 16:20:13.491495 15443 solver.cpp:406] Test net output #44: loss1/loss18 = 0.000669227 (* 0.0272727 = 1.82517e-05 loss) | |
I0430 16:20:13.491509 15443 solver.cpp:406] Test net output #45: loss1/loss19 = 0.000530841 (* 0.0272727 = 1.44775e-05 loss) | |
I0430 16:20:13.491523 15443 solver.cpp:406] Test net output #46: loss1/loss20 = 0.000439814 (* 0.0272727 = 1.19949e-05 loss) | |
I0430 16:20:13.491536 15443 solver.cpp:406] Test net output #47: loss1/loss21 = 0.000377546 (* 0.0272727 = 1.02967e-05 loss) | |
I0430 16:20:13.491549 15443 solver.cpp:406] Test net output #48: loss1/loss22 = 0.000337808 (* 0.0272727 = 9.21296e-06 loss) | |
I0430 16:20:13.491561 15443 solver.cpp:406] Test net output #49: loss2/accuracy = 0.738115 | |
I0430 16:20:13.491574 15443 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.882 | |
I0430 16:20:13.491585 15443 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.831 | |
I0430 16:20:13.491595 15443 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.728 | |
I0430 16:20:13.491606 15443 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.649 | |
I0430 16:20:13.491618 15443 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.644 | |
I0430 16:20:13.491629 15443 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.71 | |
I0430 16:20:13.491641 15443 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.845 | |
I0430 16:20:13.491652 15443 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.913 | |
I0430 16:20:13.491662 15443 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.983 | |
I0430 16:20:13.491674 15443 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.994 | |
I0430 16:20:13.491685 15443 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.998 | |
I0430 16:20:13.491696 15443 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.999 | |
I0430 16:20:13.491708 15443 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.999 | |
I0430 16:20:13.491719 15443 solver.cpp:406] Test net output #63: loss2/accuracy14 = 1 | |
I0430 16:20:13.491729 15443 solver.cpp:406] Test net output #64: loss2/accuracy15 = 1 | |
I0430 16:20:13.491740 15443 solver.cpp:406] Test net output #65: loss2/accuracy16 = 1 | |
I0430 16:20:13.491751 15443 solver.cpp:406] Test net output #66: loss2/accuracy17 = 1 | |
I0430 16:20:13.491762 15443 solver.cpp:406] Test net output #67: loss2/accuracy18 = 1 | |
I0430 16:20:13.491772 15443 solver.cpp:406] Test net output #68: loss2/accuracy19 = 1 | |
I0430 16:20:13.491783 15443 solver.cpp:406] Test net output #69: loss2/accuracy20 = 1 | |
I0430 16:20:13.491794 15443 solver.cpp:406] Test net output #70: loss2/accuracy21 = 1 | |
I0430 16:20:13.491806 15443 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1 | |
I0430 16:20:13.491816 15443 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.921092 | |
I0430 16:20:13.491827 15443 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.905399 | |
I0430 16:20:13.491842 15443 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 0.873241 (* 0.3 = 0.261972 loss) | |
I0430 16:20:13.491854 15443 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.269415 (* 0.3 = 0.0808247 loss) | |
I0430 16:20:13.491868 15443 solver.cpp:406] Test net output #76: loss2/loss01 = 0.505428 (* 0.0272727 = 0.0137844 loss) | |
I0430 16:20:13.491881 15443 solver.cpp:406] Test net output #77: loss2/loss02 = 0.665347 (* 0.0272727 = 0.0181458 loss) | |
I0430 16:20:13.491909 15443 solver.cpp:406] Test net output #78: loss2/loss03 = 0.990997 (* 0.0272727 = 0.0270272 loss) | |
I0430 16:20:13.491925 15443 solver.cpp:406] Test net output #79: loss2/loss04 = 1.11384 (* 0.0272727 = 0.0303776 loss) | |
I0430 16:20:13.491938 15443 solver.cpp:406] Test net output #80: loss2/loss05 = 1.13842 (* 0.0272727 = 0.0310479 loss) | |
I0430 16:20:13.491952 15443 solver.cpp:406] Test net output #81: loss2/loss06 = 0.887869 (* 0.0272727 = 0.0242146 loss) | |
I0430 16:20:13.491967 15443 solver.cpp:406] Test net output #82: loss2/loss07 = 0.496807 (* 0.0272727 = 0.0135493 loss) | |
I0430 16:20:13.491981 15443 solver.cpp:406] Test net output #83: loss2/loss08 = 0.271317 (* 0.0272727 = 0.00739955 loss) | |
I0430 16:20:13.491997 15443 solver.cpp:406] Test net output #84: loss2/loss09 = 0.0730923 (* 0.0272727 = 0.00199343 loss) | |
I0430 16:20:13.492010 15443 solver.cpp:406] Test net output #85: loss2/loss10 = 0.0329949 (* 0.0272727 = 0.000899862 loss) | |
I0430 16:20:13.492024 15443 solver.cpp:406] Test net output #86: loss2/loss11 = 0.0150452 (* 0.0272727 = 0.000410323 loss) | |
I0430 16:20:13.492038 15443 solver.cpp:406] Test net output #87: loss2/loss12 = 0.00917852 (* 0.0272727 = 0.000250323 loss) | |
I0430 16:20:13.492051 15443 solver.cpp:406] Test net output #88: loss2/loss13 = 0.00600894 (* 0.0272727 = 0.00016388 loss) | |
I0430 16:20:13.492064 15443 solver.cpp:406] Test net output #89: loss2/loss14 = 0.00382909 (* 0.0272727 = 0.00010443 loss) | |
I0430 16:20:13.492079 15443 solver.cpp:406] Test net output #90: loss2/loss15 = 0.0022021 (* 0.0272727 = 6.00573e-05 loss) | |
I0430 16:20:13.492091 15443 solver.cpp:406] Test net output #91: loss2/loss16 = 0.00115751 (* 0.0272727 = 3.15685e-05 loss) | |
I0430 16:20:13.492105 15443 solver.cpp:406] Test net output #92: loss2/loss17 = 0.00050927 (* 0.0272727 = 1.38892e-05 loss) | |
I0430 16:20:13.492118 15443 solver.cpp:406] Test net output #93: loss2/loss18 = 0.000271765 (* 0.0272727 = 7.41178e-06 loss) | |
I0430 16:20:13.492131 15443 solver.cpp:406] Test net output #94: loss2/loss19 = 0.000196322 (* 0.0272727 = 5.35423e-06 loss) | |
I0430 16:20:13.492144 15443 solver.cpp:406] Test net output #95: loss2/loss20 = 0.000150155 (* 0.0272727 = 4.09515e-06 loss) | |
I0430 16:20:13.492157 15443 solver.cpp:406] Test net output #96: loss2/loss21 = 0.000141235 (* 0.0272727 = 3.85186e-06 loss) | |
I0430 16:20:13.492171 15443 solver.cpp:406] Test net output #97: loss2/loss22 = 0.000112593 (* 0.0272727 = 3.07072e-06 loss) | |
I0430 16:20:13.492182 15443 solver.cpp:406] Test net output #98: loss3/accuracy = 0.850162 | |
I0430 16:20:13.492193 15443 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.9 | |
I0430 16:20:13.492204 15443 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.874 | |
I0430 16:20:13.492215 15443 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.834 | |
I0430 16:20:13.492226 15443 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.832 | |
I0430 16:20:13.492238 15443 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.831 | |
I0430 16:20:13.492249 15443 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.857 | |
I0430 16:20:13.492259 15443 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.893 | |
I0430 16:20:13.492270 15443 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.943 | |
I0430 16:20:13.492281 15443 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.983 | |
I0430 16:20:13.492292 15443 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.992 | |
I0430 16:20:13.492303 15443 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.998 | |
I0430 16:20:13.492314 15443 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.999 | |
I0430 16:20:13.492326 15443 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.999 | |
I0430 16:20:13.492336 15443 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.999 | |
I0430 16:20:13.492347 15443 solver.cpp:406] Test net output #113: loss3/accuracy15 = 1 | |
I0430 16:20:13.492358 15443 solver.cpp:406] Test net output #114: loss3/accuracy16 = 1 | |
I0430 16:20:13.492383 15443 solver.cpp:406] Test net output #115: loss3/accuracy17 = 1 | |
I0430 16:20:13.492395 15443 solver.cpp:406] Test net output #116: loss3/accuracy18 = 1 | |
I0430 16:20:13.492406 15443 solver.cpp:406] Test net output #117: loss3/accuracy19 = 1 | |
I0430 16:20:13.492418 15443 solver.cpp:406] Test net output #118: loss3/accuracy20 = 1 | |
I0430 16:20:13.492429 15443 solver.cpp:406] Test net output #119: loss3/accuracy21 = 1 | |
I0430 16:20:13.492439 15443 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1 | |
I0430 16:20:13.492450 15443 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.953455 | |
I0430 16:20:13.492461 15443 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.925259 | |
I0430 16:20:13.492475 15443 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.580015 (* 1 = 0.580015 loss) | |
I0430 16:20:13.492488 15443 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.184664 (* 1 = 0.184664 loss) | |
I0430 16:20:13.492501 15443 solver.cpp:406] Test net output #125: loss3/loss01 = 0.408 (* 0.0909091 = 0.0370909 loss) | |
I0430 16:20:13.492514 15443 solver.cpp:406] Test net output #126: loss3/loss02 = 0.509898 (* 0.0909091 = 0.0463544 loss) | |
I0430 16:20:13.492527 15443 solver.cpp:406] Test net output #127: loss3/loss03 = 0.656089 (* 0.0909091 = 0.0596445 loss) | |
I0430 16:20:13.492542 15443 solver.cpp:406] Test net output #128: loss3/loss04 = 0.603999 (* 0.0909091 = 0.054909 loss) | |
I0430 16:20:13.492554 15443 solver.cpp:406] Test net output #129: loss3/loss05 = 0.660394 (* 0.0909091 = 0.0600358 loss) | |
I0430 16:20:13.492568 15443 solver.cpp:406] Test net output #130: loss3/loss06 = 0.528315 (* 0.0909091 = 0.0480286 loss) | |
I0430 16:20:13.492580 15443 solver.cpp:406] Test net output #131: loss3/loss07 = 0.357087 (* 0.0909091 = 0.0324625 loss) | |
I0430 16:20:13.492594 15443 solver.cpp:406] Test net output #132: loss3/loss08 = 0.195411 (* 0.0909091 = 0.0177647 loss) | |
I0430 16:20:13.492607 15443 solver.cpp:406] Test net output #133: loss3/loss09 = 0.0645271 (* 0.0909091 = 0.0058661 loss) | |
I0430 16:20:13.492621 15443 solver.cpp:406] Test net output #134: loss3/loss10 = 0.0333775 (* 0.0909091 = 0.00303432 loss) | |
I0430 16:20:13.492635 15443 solver.cpp:406] Test net output #135: loss3/loss11 = 0.0143239 (* 0.0909091 = 0.00130217 loss) | |
I0430 16:20:13.492648 15443 solver.cpp:406] Test net output #136: loss3/loss12 = 0.00976188 (* 0.0909091 = 0.000887443 loss) | |
I0430 16:20:13.492661 15443 solver.cpp:406] Test net output #137: loss3/loss13 = 0.00641939 (* 0.0909091 = 0.000583581 loss) | |
I0430 16:20:13.492674 15443 solver.cpp:406] Test net output #138: loss3/loss14 = 0.00362161 (* 0.0909091 = 0.000329237 loss) | |
I0430 16:20:13.492688 15443 solver.cpp:406] Test net output #139: loss3/loss15 = 0.0019131 (* 0.0909091 = 0.000173918 loss) | |
I0430 16:20:13.492702 15443 solver.cpp:406] Test net output #140: loss3/loss16 = 0.000968893 (* 0.0909091 = 8.80812e-05 loss) | |
I0430 16:20:13.492715 15443 solver.cpp:406] Test net output #141: loss3/loss17 = 0.000395066 (* 0.0909091 = 3.5915e-05 loss) | |
I0430 16:20:13.492728 15443 solver.cpp:406] Test net output #142: loss3/loss18 = 0.000216596 (* 0.0909091 = 1.96905e-05 loss) | |
I0430 16:20:13.492741 15443 solver.cpp:406] Test net output #143: loss3/loss19 = 0.000156624 (* 0.0909091 = 1.42386e-05 loss) | |
I0430 16:20:13.492754 15443 solver.cpp:406] Test net output #144: loss3/loss20 = 0.000102159 (* 0.0909091 = 9.28716e-06 loss) | |
I0430 16:20:13.492769 15443 solver.cpp:406] Test net output #145: loss3/loss21 = 7.95252e-05 (* 0.0909091 = 7.22956e-06 loss) | |
I0430 16:20:13.492781 15443 solver.cpp:406] Test net output #146: loss3/loss22 = 6.89089e-05 (* 0.0909091 = 6.26445e-06 loss) | |
I0430 16:20:13.492792 15443 solver.cpp:406] Test net output #147: total_accuracy = 0.616 | |
I0430 16:20:13.492805 15443 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.577 | |
I0430 16:20:13.492815 15443 solver.cpp:406] Test net output #149: total_confidence = 0.544777 | |
I0430 16:20:13.492836 15443 solver.cpp:406] Test net output #150: total_confidence_not_rec = 0.517389 | |
I0430 16:20:13.492851 15443 solver.cpp:338] Iteration 15000, Testing net (#1) | |
I0430 16:20:54.379060 15443 solver.cpp:393] Test loss: 3.14952 | |
I0430 16:20:54.379206 15443 solver.cpp:406] Test net output #0: loss1/accuracy = 0.595637 | |
I0430 16:20:54.379235 15443 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.789 | |
I0430 16:20:54.379256 15443 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.675 | |
I0430 16:20:54.379274 15443 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.541 | |
I0430 16:20:54.379294 15443 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.536 | |
I0430 16:20:54.379320 15443 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.553 | |
I0430 16:20:54.379343 15443 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.649 | |
I0430 16:20:54.379364 15443 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.763 | |
I0430 16:20:54.379384 15443 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.856 | |
I0430 16:20:54.379405 15443 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.905 | |
I0430 16:20:54.379427 15443 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.922 | |
I0430 16:20:54.379449 15443 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.932 | |
I0430 16:20:54.379490 15443 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.939 | |
I0430 16:20:54.379513 15443 solver.cpp:406] Test net output #13: loss1/accuracy13 = 0.956 | |
I0430 16:20:54.379537 15443 solver.cpp:406] Test net output #14: loss1/accuracy14 = 0.963 | |
I0430 16:20:54.379560 15443 solver.cpp:406] Test net output #15: loss1/accuracy15 = 0.967 | |
I0430 16:20:54.379582 15443 solver.cpp:406] Test net output #16: loss1/accuracy16 = 0.977 | |
I0430 16:20:54.379604 15443 solver.cpp:406] Test net output #17: loss1/accuracy17 = 0.99 | |
I0430 16:20:54.379626 15443 solver.cpp:406] Test net output #18: loss1/accuracy18 = 0.995 | |
I0430 16:20:54.379647 15443 solver.cpp:406] Test net output #19: loss1/accuracy19 = 0.998 | |
I0430 16:20:54.379667 15443 solver.cpp:406] Test net output #20: loss1/accuracy20 = 0.998 | |
I0430 16:20:54.379696 15443 solver.cpp:406] Test net output #21: loss1/accuracy21 = 0.999 | |
I0430 16:20:54.379716 15443 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1 | |
I0430 16:20:54.379737 15443 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.858956 | |
I0430 16:20:54.379758 15443 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.822903 | |
I0430 16:20:54.379786 15443 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.32043 (* 0.3 = 0.396129 loss) | |
I0430 16:20:54.379812 15443 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.467396 (* 0.3 = 0.140219 loss) | |
I0430 16:20:54.379838 15443 solver.cpp:406] Test net output #27: loss1/loss01 = 0.792019 (* 0.0272727 = 0.0216005 loss) | |
I0430 16:20:54.379863 15443 solver.cpp:406] Test net output #28: loss1/loss02 = 1.13404 (* 0.0272727 = 0.0309283 loss) | |
I0430 16:20:54.379889 15443 solver.cpp:406] Test net output #29: loss1/loss03 = 1.46923 (* 0.0272727 = 0.04007 loss) | |
I0430 16:20:54.379914 15443 solver.cpp:406] Test net output #30: loss1/loss04 = 1.49461 (* 0.0272727 = 0.0407622 loss) | |
I0430 16:20:54.379940 15443 solver.cpp:406] Test net output #31: loss1/loss05 = 1.37821 (* 0.0272727 = 0.0375876 loss) | |
I0430 16:20:54.379964 15443 solver.cpp:406] Test net output #32: loss1/loss06 = 1.09592 (* 0.0272727 = 0.0298887 loss) | |
I0430 16:20:54.379988 15443 solver.cpp:406] Test net output #33: loss1/loss07 = 0.773968 (* 0.0272727 = 0.0211082 loss) | |
I0430 16:20:54.380013 15443 solver.cpp:406] Test net output #34: loss1/loss08 = 0.492541 (* 0.0272727 = 0.0134329 loss) | |
I0430 16:20:54.380040 15443 solver.cpp:406] Test net output #35: loss1/loss09 = 0.340611 (* 0.0272727 = 0.0092894 loss) | |
I0430 16:20:54.380065 15443 solver.cpp:406] Test net output #36: loss1/loss10 = 0.274882 (* 0.0272727 = 0.00749679 loss) | |
I0430 16:20:54.380090 15443 solver.cpp:406] Test net output #37: loss1/loss11 = 0.213295 (* 0.0272727 = 0.00581715 loss) | |
I0430 16:20:54.380116 15443 solver.cpp:406] Test net output #38: loss1/loss12 = 0.210339 (* 0.0272727 = 0.00573651 loss) | |
I0430 16:20:54.380167 15443 solver.cpp:406] Test net output #39: loss1/loss13 = 0.174706 (* 0.0272727 = 0.00476472 loss) | |
I0430 16:20:54.380195 15443 solver.cpp:406] Test net output #40: loss1/loss14 = 0.144742 (* 0.0272727 = 0.00394752 loss) | |
I0430 16:20:54.380220 15443 solver.cpp:406] Test net output #41: loss1/loss15 = 0.135373 (* 0.0272727 = 0.00369198 loss) | |
I0430 16:20:54.380247 15443 solver.cpp:406] Test net output #42: loss1/loss16 = 0.0907345 (* 0.0272727 = 0.00247458 loss) | |
I0430 16:20:54.380273 15443 solver.cpp:406] Test net output #43: loss1/loss17 = 0.0441327 (* 0.0272727 = 0.00120362 loss) | |
I0430 16:20:54.380300 15443 solver.cpp:406] Test net output #44: loss1/loss18 = 0.02666 (* 0.0272727 = 0.00072709 loss) | |
I0430 16:20:54.380326 15443 solver.cpp:406] Test net output #45: loss1/loss19 = 0.0136762 (* 0.0272727 = 0.000372987 loss) | |
I0430 16:20:54.380350 15443 solver.cpp:406] Test net output #46: loss1/loss20 = 0.0128926 (* 0.0272727 = 0.000351616 loss) | |
I0430 16:20:54.380380 15443 solver.cpp:406] Test net output #47: loss1/loss21 = 0.0104609 (* 0.0272727 = 0.000285297 loss) | |
I0430 16:20:54.380409 15443 solver.cpp:406] Test net output #48: loss1/loss22 = 3.74658e-05 (* 0.0272727 = 1.0218e-06 loss) | |
I0430 16:20:54.380432 15443 solver.cpp:406] Test net output #49: loss2/accuracy = 0.689351 | |
I0430 16:20:54.380448 15443 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.829 | |
I0430 16:20:54.380472 15443 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.779 | |
I0430 16:20:54.380494 15443 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.691 | |
I0430 16:20:54.380517 15443 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.618 | |
I0430 16:20:54.380537 15443 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.634 | |
I0430 16:20:54.380556 15443 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.697 | |
I0430 16:20:54.380578 15443 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.787 | |
I0430 16:20:54.380599 15443 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.843 | |
I0430 16:20:54.380620 15443 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.898 | |
I0430 16:20:54.380641 15443 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.926 | |
I0430 16:20:54.380663 15443 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.943 | |
I0430 16:20:54.380683 15443 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.941 | |
I0430 16:20:54.380704 15443 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.953 | |
I0430 16:20:54.380731 15443 solver.cpp:406] Test net output #63: loss2/accuracy14 = 0.962 | |
I0430 16:20:54.380753 15443 solver.cpp:406] Test net output #64: loss2/accuracy15 = 0.97 | |
I0430 16:20:54.380772 15443 solver.cpp:406] Test net output #65: loss2/accuracy16 = 0.977 | |
I0430 16:20:54.380795 15443 solver.cpp:406] Test net output #66: loss2/accuracy17 = 0.99 | |
I0430 16:20:54.380815 15443 solver.cpp:406] Test net output #67: loss2/accuracy18 = 0.995 | |
I0430 16:20:54.380836 15443 solver.cpp:406] Test net output #68: loss2/accuracy19 = 0.998 | |
I0430 16:20:54.380857 15443 solver.cpp:406] Test net output #69: loss2/accuracy20 = 0.998 | |
I0430 16:20:54.380878 15443 solver.cpp:406] Test net output #70: loss2/accuracy21 = 0.999 | |
I0430 16:20:54.380897 15443 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1 | |
I0430 16:20:54.380918 15443 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.88782 | |
I0430 16:20:54.380939 15443 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.868597 | |
I0430 16:20:54.380964 15443 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 1.04309 (* 0.3 = 0.312926 loss) | |
I0430 16:20:54.380990 15443 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.379928 (* 0.3 = 0.113978 loss) | |
I0430 16:20:54.381016 15443 solver.cpp:406] Test net output #76: loss2/loss01 = 0.658743 (* 0.0272727 = 0.0179657 loss) | |
I0430 16:20:54.381042 15443 solver.cpp:406] Test net output #77: loss2/loss02 = 0.801951 (* 0.0272727 = 0.0218714 loss) | |
I0430 16:20:54.381085 15443 solver.cpp:406] Test net output #78: loss2/loss03 = 1.10221 (* 0.0272727 = 0.0300604 loss) | |
I0430 16:20:54.381113 15443 solver.cpp:406] Test net output #79: loss2/loss04 = 1.24274 (* 0.0272727 = 0.0338928 loss) | |
I0430 16:20:54.381137 15443 solver.cpp:406] Test net output #80: loss2/loss05 = 1.1721 (* 0.0272727 = 0.0319664 loss) | |
I0430 16:20:54.381163 15443 solver.cpp:406] Test net output #81: loss2/loss06 = 0.954927 (* 0.0272727 = 0.0260435 loss) | |
I0430 16:20:54.381188 15443 solver.cpp:406] Test net output #82: loss2/loss07 = 0.681773 (* 0.0272727 = 0.0185938 loss) | |
I0430 16:20:54.381213 15443 solver.cpp:406] Test net output #83: loss2/loss08 = 0.487068 (* 0.0272727 = 0.0132837 loss) | |
I0430 16:20:54.381238 15443 solver.cpp:406] Test net output #84: loss2/loss09 = 0.341831 (* 0.0272727 = 0.00932265 loss) | |
I0430 16:20:54.381265 15443 solver.cpp:406] Test net output #85: loss2/loss10 = 0.27576 (* 0.0272727 = 0.00752073 loss) | |
I0430 16:20:54.381290 15443 solver.cpp:406] Test net output #86: loss2/loss11 = 0.217402 (* 0.0272727 = 0.00592915 loss) | |
I0430 16:20:54.381316 15443 solver.cpp:406] Test net output #87: loss2/loss12 = 0.206432 (* 0.0272727 = 0.00562997 loss) | |
I0430 16:20:54.381341 15443 solver.cpp:406] Test net output #88: loss2/loss13 = 0.1744 (* 0.0272727 = 0.00475635 loss) | |
I0430 16:20:54.381366 15443 solver.cpp:406] Test net output #89: loss2/loss14 = 0.144184 (* 0.0272727 = 0.00393229 loss) | |
I0430 16:20:54.381389 15443 solver.cpp:406] Test net output #90: loss2/loss15 = 0.135951 (* 0.0272727 = 0.00370775 loss) | |
I0430 16:20:54.381415 15443 solver.cpp:406] Test net output #91: loss2/loss16 = 0.0941084 (* 0.0272727 = 0.00256659 loss) | |
I0430 16:20:54.381445 15443 solver.cpp:406] Test net output #92: loss2/loss17 = 0.0486505 (* 0.0272727 = 0.00132683 loss) | |
I0430 16:20:54.381469 15443 solver.cpp:406] Test net output #93: loss2/loss18 = 0.0249154 (* 0.0272727 = 0.00067951 loss) | |
I0430 16:20:54.381494 15443 solver.cpp:406] Test net output #94: loss2/loss19 = 0.0136426 (* 0.0272727 = 0.000372071 loss) | |
I0430 16:20:54.381520 15443 solver.cpp:406] Test net output #95: loss2/loss20 = 0.0133093 (* 0.0272727 = 0.00036298 loss) | |
I0430 16:20:54.381544 15443 solver.cpp:406] Test net output #96: loss2/loss21 = 0.00735594 (* 0.0272727 = 0.000200616 loss) | |
I0430 16:20:54.381570 15443 solver.cpp:406] Test net output #97: loss2/loss22 = 9.56856e-05 (* 0.0272727 = 2.60961e-06 loss) | |
I0430 16:20:54.381592 15443 solver.cpp:406] Test net output #98: loss3/accuracy = 0.788302 | |
I0430 16:20:54.381614 15443 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.861 | |
I0430 16:20:54.381634 15443 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.827 | |
I0430 16:20:54.381654 15443 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.812 | |
I0430 16:20:54.381675 15443 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.796 | |
I0430 16:20:54.381696 15443 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.786 | |
I0430 16:20:54.381716 15443 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.828 | |
I0430 16:20:54.381736 15443 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.825 | |
I0430 16:20:54.381758 15443 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.873 | |
I0430 16:20:54.381783 15443 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.912 | |
I0430 16:20:54.381804 15443 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.922 | |
I0430 16:20:54.381825 15443 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.94 | |
I0430 16:20:54.381846 15443 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.941 | |
I0430 16:20:54.381865 15443 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.957 | |
I0430 16:20:54.381886 15443 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.964 | |
I0430 16:20:54.381906 15443 solver.cpp:406] Test net output #113: loss3/accuracy15 = 0.973 | |
I0430 16:20:54.381927 15443 solver.cpp:406] Test net output #114: loss3/accuracy16 = 0.978 | |
I0430 16:20:54.381963 15443 solver.cpp:406] Test net output #115: loss3/accuracy17 = 0.99 | |
I0430 16:20:54.381986 15443 solver.cpp:406] Test net output #116: loss3/accuracy18 = 0.995 | |
I0430 16:20:54.382007 15443 solver.cpp:406] Test net output #117: loss3/accuracy19 = 0.998 | |
I0430 16:20:54.382026 15443 solver.cpp:406] Test net output #118: loss3/accuracy20 = 0.998 | |
I0430 16:20:54.382046 15443 solver.cpp:406] Test net output #119: loss3/accuracy21 = 0.999 | |
I0430 16:20:54.382068 15443 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1 | |
I0430 16:20:54.382088 15443 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.917273 | |
I0430 16:20:54.382108 15443 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.894465 | |
I0430 16:20:54.382133 15443 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.772464 (* 1 = 0.772464 loss) | |
I0430 16:20:54.382159 15443 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.297482 (* 1 = 0.297482 loss) | |
I0430 16:20:54.382184 15443 solver.cpp:406] Test net output #125: loss3/loss01 = 0.573875 (* 0.0909091 = 0.0521704 loss) | |
I0430 16:20:54.382210 15443 solver.cpp:406] Test net output #126: loss3/loss02 = 0.61535 (* 0.0909091 = 0.0559409 loss) | |
I0430 16:20:54.382235 15443 solver.cpp:406] Test net output #127: loss3/loss03 = 0.714904 (* 0.0909091 = 0.0649912 loss) | |
I0430 16:20:54.382259 15443 solver.cpp:406] Test net output #128: loss3/loss04 = 0.736726 (* 0.0909091 = 0.0669751 loss) | |
I0430 16:20:54.382283 15443 solver.cpp:406] Test net output #129: loss3/loss05 = 0.749801 (* 0.0909091 = 0.0681637 loss) | |
I0430 16:20:54.382308 15443 solver.cpp:406] Test net output #130: loss3/loss06 = 0.64165 (* 0.0909091 = 0.0583318 loss) | |
I0430 16:20:54.382333 15443 solver.cpp:406] Test net output #131: loss3/loss07 = 0.56115 (* 0.0909091 = 0.0510137 loss) | |
I0430 16:20:54.382357 15443 solver.cpp:406] Test net output #132: loss3/loss08 = 0.404153 (* 0.0909091 = 0.0367412 loss) | |
I0430 16:20:54.382382 15443 solver.cpp:406] Test net output #133: loss3/loss09 = 0.311215 (* 0.0909091 = 0.0282922 loss) | |
I0430 16:20:54.382408 15443 solver.cpp:406] Test net output #134: loss3/loss10 = 0.260942 (* 0.0909091 = 0.023722 loss) | |
I0430 16:20:54.382432 15443 solver.cpp:406] Test net output #135: loss3/loss11 = 0.202941 (* 0.0909091 = 0.0184492 loss) | |
I0430 16:20:54.382457 15443 solver.cpp:406] Test net output #136: loss3/loss12 = 0.188634 (* 0.0909091 = 0.0171485 loss) | |
I0430 16:20:54.382485 15443 solver.cpp:406] Test net output #137: loss3/loss13 = 0.162975 (* 0.0909091 = 0.0148159 loss) | |
I0430 16:20:54.382511 15443 solver.cpp:406] Test net output #138: loss3/loss14 = 0.129277 (* 0.0909091 = 0.0117524 loss) | |
I0430 16:20:54.382535 15443 solver.cpp:406] Test net output #139: loss3/loss15 = 0.120078 (* 0.0909091 = 0.0109162 loss) | |
I0430 16:20:54.382560 15443 solver.cpp:406] Test net output #140: loss3/loss16 = 0.0770295 (* 0.0909091 = 0.00700268 loss) | |
I0430 16:20:54.382586 15443 solver.cpp:406] Test net output #141: loss3/loss17 = 0.0431558 (* 0.0909091 = 0.00392325 loss) | |
I0430 16:20:54.382611 15443 solver.cpp:406] Test net output #142: loss3/loss18 = 0.019991 (* 0.0909091 = 0.00181736 loss) | |
I0430 16:20:54.382637 15443 solver.cpp:406] Test net output #143: loss3/loss19 = 0.0113818 (* 0.0909091 = 0.0010347 loss) | |
I0430 16:20:54.382663 15443 solver.cpp:406] Test net output #144: loss3/loss20 = 0.0106981 (* 0.0909091 = 0.000972551 loss) | |
I0430 16:20:54.382688 15443 solver.cpp:406] Test net output #145: loss3/loss21 = 0.00672681 (* 0.0909091 = 0.000611528 loss) | |
I0430 16:20:54.382714 15443 solver.cpp:406] Test net output #146: loss3/loss22 = 0.000118592 (* 0.0909091 = 1.07811e-05 loss) | |
I0430 16:20:54.382735 15443 solver.cpp:406] Test net output #147: total_accuracy = 0.514 | |
I0430 16:20:54.382756 15443 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.515 | |
I0430 16:20:54.382776 15443 solver.cpp:406] Test net output #149: total_confidence = 0.472529 | |
I0430 16:20:54.382812 15443 solver.cpp:406] Test net output #150: total_confidence_not_rec = 0.45119 | |
I0430 16:20:54.563714 15443 solver.cpp:229] Iteration 15000, loss = 3.6514 | |
I0430 16:20:54.563792 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.574468 | |
I0430 16:20:54.563819 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875 | |
I0430 16:20:54.563840 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625 | |
I0430 16:20:54.563860 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0430 16:20:54.563882 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0430 16:20:54.563904 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.75 | |
I0430 16:20:54.563926 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75 | |
I0430 16:20:54.563948 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0430 16:20:54.563971 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0430 16:20:54.563993 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0430 16:20:54.564016 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0430 16:20:54.564043 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0430 16:20:54.564065 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0430 16:20:54.564087 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0430 16:20:54.564113 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 16:20:54.564136 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 16:20:54.564157 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 16:20:54.564182 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 16:20:54.564204 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 16:20:54.564225 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 16:20:54.564249 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 16:20:54.564270 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 16:20:54.564291 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 16:20:54.564313 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.880682 | |
I0430 16:20:54.564337 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.744681 | |
I0430 16:20:54.564365 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.64877 (* 0.3 = 0.494631 loss) | |
I0430 16:20:54.564393 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.482111 (* 0.3 = 0.144633 loss) | |
I0430 16:20:54.564420 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.604967 (* 0.0272727 = 0.0164991 loss) | |
I0430 16:20:54.564446 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 0.759294 (* 0.0272727 = 0.020708 loss) | |
I0430 16:20:54.564474 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 2.63776 (* 0.0272727 = 0.0719388 loss) | |
I0430 16:20:54.564501 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.87898 (* 0.0272727 = 0.0512449 loss) | |
I0430 16:20:54.564527 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.02212 (* 0.0272727 = 0.0278759 loss) | |
I0430 16:20:54.564553 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.48926 (* 0.0272727 = 0.0406162 loss) | |
I0430 16:20:54.564580 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 0.830166 (* 0.0272727 = 0.0226409 loss) | |
I0430 16:20:54.564611 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.542356 (* 0.0272727 = 0.0147915 loss) | |
I0430 16:20:54.564640 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.200781 (* 0.0272727 = 0.00547586 loss) | |
I0430 16:20:54.564667 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.469468 (* 0.0272727 = 0.0128037 loss) | |
I0430 16:20:54.564694 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.000523084 (* 0.0272727 = 1.42659e-05 loss) | |
I0430 16:20:54.564764 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 8.52748e-05 (* 0.0272727 = 2.32568e-06 loss) | |
I0430 16:20:54.564795 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 4.48046e-05 (* 0.0272727 = 1.22194e-06 loss) | |
I0430 16:20:54.564822 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 2.39475e-05 (* 0.0272727 = 6.53114e-07 loss) | |
I0430 16:20:54.564851 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 1.28453e-05 (* 0.0272727 = 3.50326e-07 loss) | |
I0430 16:20:54.564878 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 1.02821e-05 (* 0.0272727 = 2.80422e-07 loss) | |
I0430 16:20:54.564904 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 7.83824e-06 (* 0.0272727 = 2.1377e-07 loss) | |
I0430 16:20:54.564932 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 2.56302e-06 (* 0.0272727 = 6.99007e-08 loss) | |
I0430 16:20:54.564961 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 2.02657e-06 (* 0.0272727 = 5.52702e-08 loss) | |
I0430 16:20:54.564990 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 1.14739e-06 (* 0.0272727 = 3.12926e-08 loss) | |
I0430 16:20:54.565021 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 3.68064e-06 (* 0.0272727 = 1.00381e-07 loss) | |
I0430 16:20:54.565048 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 1.83285e-06 (* 0.0272727 = 4.99869e-08 loss) | |
I0430 16:20:54.565071 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.553191 | |
I0430 16:20:54.565100 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75 | |
I0430 16:20:54.565124 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0430 16:20:54.565146 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0430 16:20:54.565168 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5 | |
I0430 16:20:54.565191 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.75 | |
I0430 16:20:54.565213 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375 | |
I0430 16:20:54.565234 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0430 16:20:54.565258 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0430 16:20:54.565279 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0430 16:20:54.565301 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0430 16:20:54.565323 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0430 16:20:54.565346 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0430 16:20:54.565366 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0430 16:20:54.565389 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 16:20:54.565412 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 16:20:54.565433 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 16:20:54.565454 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 16:20:54.565476 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 16:20:54.565498 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 16:20:54.565521 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 16:20:54.565543 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 16:20:54.565564 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 16:20:54.565587 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.869318 | |
I0430 16:20:54.565609 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.829787 | |
I0430 16:20:54.565634 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.40288 (* 0.3 = 0.420864 loss) | |
I0430 16:20:54.565666 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.442329 (* 0.3 = 0.132699 loss) | |
I0430 16:20:54.565711 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.77814 (* 0.0272727 = 0.021222 loss) | |
I0430 16:20:54.565740 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 0.665567 (* 0.0272727 = 0.0181518 loss) | |
I0430 16:20:54.565768 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 2.11646 (* 0.0272727 = 0.0577216 loss) | |
I0430 16:20:54.565794 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.50147 (* 0.0272727 = 0.0409492 loss) | |
I0430 16:20:54.565820 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 0.916082 (* 0.0272727 = 0.024984 loss) | |
I0430 16:20:54.565846 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.38324 (* 0.0272727 = 0.0377247 loss) | |
I0430 16:20:54.565874 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 0.478992 (* 0.0272727 = 0.0130634 loss) | |
I0430 16:20:54.565901 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.413437 (* 0.0272727 = 0.0112756 loss) | |
I0430 16:20:54.565927 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.311395 (* 0.0272727 = 0.00849259 loss) | |
I0430 16:20:54.565954 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.44452 (* 0.0272727 = 0.0121233 loss) | |
I0430 16:20:54.565980 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.018496 (* 0.0272727 = 0.000504437 loss) | |
I0430 16:20:54.566004 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.022157 (* 0.0272727 = 0.00060428 loss) | |
I0430 16:20:54.566030 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.00554729 (* 0.0272727 = 0.00015129 loss) | |
I0430 16:20:54.566058 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00291324 (* 0.0272727 = 7.94519e-05 loss) | |
I0430 16:20:54.566084 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00169516 (* 0.0272727 = 4.62317e-05 loss) | |
I0430 16:20:54.566110 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000907457 (* 0.0272727 = 2.47488e-05 loss) | |
I0430 16:20:54.566141 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000443178 (* 0.0272727 = 1.20867e-05 loss) | |
I0430 16:20:54.566169 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000274445 (* 0.0272727 = 7.48487e-06 loss) | |
I0430 16:20:54.566196 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000171779 (* 0.0272727 = 4.68489e-06 loss) | |
I0430 16:20:54.566223 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 2.43434e-05 (* 0.0272727 = 6.63911e-07 loss) | |
I0430 16:20:54.566249 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 3.30626e-05 (* 0.0272727 = 9.01707e-07 loss) | |
I0430 16:20:54.566275 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 1.65414e-05 (* 0.0272727 = 4.51128e-07 loss) | |
I0430 16:20:54.566299 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.680851 | |
I0430 16:20:54.566320 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0430 16:20:54.566341 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75 | |
I0430 16:20:54.566364 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625 | |
I0430 16:20:54.566387 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0430 16:20:54.566408 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0430 16:20:54.566431 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625 | |
I0430 16:20:54.566454 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0430 16:20:54.566475 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0430 16:20:54.566498 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0430 16:20:54.566519 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0430 16:20:54.566540 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0430 16:20:54.566561 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0430 16:20:54.566582 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0430 16:20:54.566620 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 16:20:54.566644 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 16:20:54.566665 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 16:20:54.566686 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 16:20:54.566711 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 16:20:54.566733 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 16:20:54.566754 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 16:20:54.566777 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 16:20:54.566798 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 16:20:54.566819 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.903409 | |
I0430 16:20:54.566841 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.893617 | |
I0430 16:20:54.566867 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.03489 (* 1 = 1.03489 loss) | |
I0430 16:20:54.566893 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.336262 (* 1 = 0.336262 loss) | |
I0430 16:20:54.566920 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.158769 (* 0.0909091 = 0.0144335 loss) | |
I0430 16:20:54.566948 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.539015 (* 0.0909091 = 0.0490013 loss) | |
I0430 16:20:54.566973 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 1.49356 (* 0.0909091 = 0.135778 loss) | |
I0430 16:20:54.566999 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.626773 (* 0.0909091 = 0.0569794 loss) | |
I0430 16:20:54.567026 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.82397 (* 0.0909091 = 0.0749064 loss) | |
I0430 16:20:54.567052 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.768985 (* 0.0909091 = 0.0699077 loss) | |
I0430 16:20:54.567077 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.781333 (* 0.0909091 = 0.0710303 loss) | |
I0430 16:20:54.567104 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.475814 (* 0.0909091 = 0.0432558 loss) | |
I0430 16:20:54.567131 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0948828 (* 0.0909091 = 0.00862571 loss) | |
I0430 16:20:54.567157 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.381709 (* 0.0909091 = 0.0347008 loss) | |
I0430 16:20:54.567188 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00155806 (* 0.0909091 = 0.000141642 loss) | |
I0430 16:20:54.567217 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.000754966 (* 0.0909091 = 6.86332e-05 loss) | |
I0430 16:20:54.567244 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.000291384 (* 0.0909091 = 2.64895e-05 loss) | |
I0430 16:20:54.567270 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000109989 (* 0.0909091 = 9.99896e-06 loss) | |
I0430 16:20:54.567297 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 4.94046e-05 (* 0.0909091 = 4.49133e-06 loss) | |
I0430 16:20:54.567323 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 1.33518e-05 (* 0.0909091 = 1.2138e-06 loss) | |
I0430 16:20:54.567350 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 1.36499e-05 (* 0.0909091 = 1.2409e-06 loss) | |
I0430 16:20:54.567378 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 4.57469e-06 (* 0.0909091 = 4.15881e-07 loss) | |
I0430 16:20:54.567404 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 2.22028e-06 (* 0.0909091 = 2.01844e-07 loss) | |
I0430 16:20:54.567430 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 8.04664e-07 (* 0.0909091 = 7.31512e-08 loss) | |
I0430 16:20:54.567457 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 6.40751e-07 (* 0.0909091 = 5.82501e-08 loss) | |
I0430 16:20:54.567504 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 4.61936e-07 (* 0.0909091 = 4.19942e-08 loss) | |
I0430 16:20:54.567546 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.5 | |
I0430 16:20:54.567571 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5 | |
I0430 16:20:54.567594 15443 solver.cpp:245] Train net output #149: total_confidence = 0.394119 | |
I0430 16:20:54.567615 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.408941 | |
I0430 16:20:54.567632 15443 sgd_solver.cpp:106] Iteration 15000, lr = 0.001 | |
I0430 16:23:11.592226 15443 solver.cpp:229] Iteration 15500, loss = 3.74013 | |
I0430 16:23:11.592447 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.275362 | |
I0430 16:23:11.592468 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625 | |
I0430 16:23:11.592481 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0430 16:23:11.592494 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25 | |
I0430 16:23:11.592505 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0 | |
I0430 16:23:11.592517 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0430 16:23:11.592530 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375 | |
I0430 16:23:11.592541 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5 | |
I0430 16:23:11.592552 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625 | |
I0430 16:23:11.592564 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75 | |
I0430 16:23:11.592576 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.625 | |
I0430 16:23:11.592588 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.75 | |
I0430 16:23:11.592600 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0430 16:23:11.592612 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.75 | |
I0430 16:23:11.592623 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.75 | |
I0430 16:23:11.592636 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.75 | |
I0430 16:23:11.592648 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.75 | |
I0430 16:23:11.592659 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 16:23:11.592671 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 16:23:11.592682 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 16:23:11.592694 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 16:23:11.592706 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 16:23:11.592717 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 16:23:11.592730 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.698864 | |
I0430 16:23:11.592741 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.521739 | |
I0430 16:23:11.592757 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.43534 (* 0.3 = 0.730601 loss) | |
I0430 16:23:11.592772 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.04379 (* 0.3 = 0.313138 loss) | |
I0430 16:23:11.592790 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 2.11311 (* 0.0272727 = 0.0576302 loss) | |
I0430 16:23:11.592818 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.61736 (* 0.0272727 = 0.0441097 loss) | |
I0430 16:23:11.592845 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 2.09882 (* 0.0272727 = 0.0572407 loss) | |
I0430 16:23:11.592870 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 2.24301 (* 0.0272727 = 0.0611729 loss) | |
I0430 16:23:11.592895 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.9293 (* 0.0272727 = 0.0526173 loss) | |
I0430 16:23:11.592921 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.73706 (* 0.0272727 = 0.0473743 loss) | |
I0430 16:23:11.592941 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.97695 (* 0.0272727 = 0.0539169 loss) | |
I0430 16:23:11.592955 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 1.17918 (* 0.0272727 = 0.0321595 loss) | |
I0430 16:23:11.592969 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 1.49179 (* 0.0272727 = 0.0406852 loss) | |
I0430 16:23:11.592983 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 1.62951 (* 0.0272727 = 0.0444411 loss) | |
I0430 16:23:11.592996 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.69773 (* 0.0272727 = 0.019029 loss) | |
I0430 16:23:11.593010 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.693826 (* 0.0272727 = 0.0189225 loss) | |
I0430 16:23:11.593042 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.920275 (* 0.0272727 = 0.0250984 loss) | |
I0430 16:23:11.593058 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.848983 (* 0.0272727 = 0.0231541 loss) | |
I0430 16:23:11.593072 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.950598 (* 0.0272727 = 0.0259254 loss) | |
I0430 16:23:11.593086 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 1.13631 (* 0.0272727 = 0.0309902 loss) | |
I0430 16:23:11.593101 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0628577 (* 0.0272727 = 0.0017143 loss) | |
I0430 16:23:11.593116 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0311471 (* 0.0272727 = 0.000849467 loss) | |
I0430 16:23:11.593129 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0179176 (* 0.0272727 = 0.000488663 loss) | |
I0430 16:23:11.593143 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00767801 (* 0.0272727 = 0.0002094 loss) | |
I0430 16:23:11.593158 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00472975 (* 0.0272727 = 0.000128993 loss) | |
I0430 16:23:11.593170 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 0.00379142 (* 0.0272727 = 0.000103402 loss) | |
I0430 16:23:11.593183 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.434783 | |
I0430 16:23:11.593195 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.5 | |
I0430 16:23:11.593206 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0430 16:23:11.593219 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5 | |
I0430 16:23:11.593230 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25 | |
I0430 16:23:11.593241 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25 | |
I0430 16:23:11.593253 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0430 16:23:11.593264 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0430 16:23:11.593276 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75 | |
I0430 16:23:11.593287 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.75 | |
I0430 16:23:11.593299 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.625 | |
I0430 16:23:11.593313 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0430 16:23:11.593327 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.75 | |
I0430 16:23:11.593338 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.75 | |
I0430 16:23:11.593349 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.75 | |
I0430 16:23:11.593361 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.75 | |
I0430 16:23:11.593372 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.75 | |
I0430 16:23:11.593384 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 16:23:11.593395 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 16:23:11.593407 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 16:23:11.593418 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 16:23:11.593430 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 16:23:11.593441 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 16:23:11.593456 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.75 | |
I0430 16:23:11.593469 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.710145 | |
I0430 16:23:11.593483 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.88929 (* 0.3 = 0.566787 loss) | |
I0430 16:23:11.593497 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.840835 (* 0.3 = 0.252251 loss) | |
I0430 16:23:11.593513 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 1.63683 (* 0.0272727 = 0.0446408 loss) | |
I0430 16:23:11.593523 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 1.09582 (* 0.0272727 = 0.029886 loss) | |
I0430 16:23:11.593549 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.45557 (* 0.0272727 = 0.0396973 loss) | |
I0430 16:23:11.593564 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.90612 (* 0.0272727 = 0.051985 loss) | |
I0430 16:23:11.593577 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.79294 (* 0.0272727 = 0.0488983 loss) | |
I0430 16:23:11.593590 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.34219 (* 0.0272727 = 0.0366051 loss) | |
I0430 16:23:11.593605 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 1.53465 (* 0.0272727 = 0.0418542 loss) | |
I0430 16:23:11.593617 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.915101 (* 0.0272727 = 0.0249573 loss) | |
I0430 16:23:11.593631 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 1.09141 (* 0.0272727 = 0.0297656 loss) | |
I0430 16:23:11.593644 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 1.1209 (* 0.0272727 = 0.0305699 loss) | |
I0430 16:23:11.593658 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.705872 (* 0.0272727 = 0.0192511 loss) | |
I0430 16:23:11.593672 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.869258 (* 0.0272727 = 0.023707 loss) | |
I0430 16:23:11.593685 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.718248 (* 0.0272727 = 0.0195886 loss) | |
I0430 16:23:11.593698 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.815135 (* 0.0272727 = 0.022231 loss) | |
I0430 16:23:11.593713 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.805402 (* 0.0272727 = 0.0219655 loss) | |
I0430 16:23:11.593725 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.997544 (* 0.0272727 = 0.0272057 loss) | |
I0430 16:23:11.593739 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0705137 (* 0.0272727 = 0.0019231 loss) | |
I0430 16:23:11.593753 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0420886 (* 0.0272727 = 0.00114787 loss) | |
I0430 16:23:11.593766 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0146808 (* 0.0272727 = 0.000400384 loss) | |
I0430 16:23:11.593780 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00401827 (* 0.0272727 = 0.000109589 loss) | |
I0430 16:23:11.593794 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 0.0011372 (* 0.0272727 = 3.10146e-05 loss) | |
I0430 16:23:11.593807 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00110834 (* 0.0272727 = 3.02275e-05 loss) | |
I0430 16:23:11.593819 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.536232 | |
I0430 16:23:11.593832 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.5 | |
I0430 16:23:11.593842 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75 | |
I0430 16:23:11.593853 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625 | |
I0430 16:23:11.593865 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.5 | |
I0430 16:23:11.593876 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625 | |
I0430 16:23:11.593888 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.5 | |
I0430 16:23:11.593899 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.375 | |
I0430 16:23:11.593910 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0430 16:23:11.593922 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75 | |
I0430 16:23:11.593933 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.625 | |
I0430 16:23:11.593945 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0430 16:23:11.593956 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.75 | |
I0430 16:23:11.593967 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.75 | |
I0430 16:23:11.593978 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0430 16:23:11.593991 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.75 | |
I0430 16:23:11.594002 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.75 | |
I0430 16:23:11.594023 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 16:23:11.594036 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 16:23:11.594048 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 16:23:11.594059 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 16:23:11.594071 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 16:23:11.594082 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 16:23:11.594094 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.789773 | |
I0430 16:23:11.594105 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.73913 | |
I0430 16:23:11.594120 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.68757 (* 1 = 1.68757 loss) | |
I0430 16:23:11.594132 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.767685 (* 1 = 0.767685 loss) | |
I0430 16:23:11.594147 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 1.93742 (* 0.0909091 = 0.176129 loss) | |
I0430 16:23:11.594161 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.631 (* 0.0909091 = 0.0573636 loss) | |
I0430 16:23:11.594174 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 1.12119 (* 0.0909091 = 0.101926 loss) | |
I0430 16:23:11.594188 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 1.50658 (* 0.0909091 = 0.136962 loss) | |
I0430 16:23:11.594202 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 1.004 (* 0.0909091 = 0.0912729 loss) | |
I0430 16:23:11.594215 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 1.40564 (* 0.0909091 = 0.127786 loss) | |
I0430 16:23:11.594228 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 1.78226 (* 0.0909091 = 0.162024 loss) | |
I0430 16:23:11.594243 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.867816 (* 0.0909091 = 0.0788924 loss) | |
I0430 16:23:11.594255 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.97289 (* 0.0909091 = 0.0884445 loss) | |
I0430 16:23:11.594269 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.962322 (* 0.0909091 = 0.0874838 loss) | |
I0430 16:23:11.594282 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.595593 (* 0.0909091 = 0.0541448 loss) | |
I0430 16:23:11.594295 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.78773 (* 0.0909091 = 0.0716118 loss) | |
I0430 16:23:11.594310 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.743779 (* 0.0909091 = 0.0676162 loss) | |
I0430 16:23:11.594322 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.526946 (* 0.0909091 = 0.0479041 loss) | |
I0430 16:23:11.594336 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.751991 (* 0.0909091 = 0.0683629 loss) | |
I0430 16:23:11.594350 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.836151 (* 0.0909091 = 0.0760138 loss) | |
I0430 16:23:11.594367 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0296409 (* 0.0909091 = 0.00269463 loss) | |
I0430 16:23:11.594380 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0104986 (* 0.0909091 = 0.00095442 loss) | |
I0430 16:23:11.594394 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00336168 (* 0.0909091 = 0.000305607 loss) | |
I0430 16:23:11.594408 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00170387 (* 0.0909091 = 0.000154897 loss) | |
I0430 16:23:11.594422 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000319218 (* 0.0909091 = 2.90198e-05 loss) | |
I0430 16:23:11.594436 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000114291 (* 0.0909091 = 1.03901e-05 loss) | |
I0430 16:23:11.594449 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.25 | |
I0430 16:23:11.594460 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25 | |
I0430 16:23:11.594470 15443 solver.cpp:245] Train net output #149: total_confidence = 0.193123 | |
I0430 16:23:11.594492 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.173004 | |
I0430 16:23:11.594511 15443 sgd_solver.cpp:106] Iteration 15500, lr = 0.001 | |
I0430 16:25:28.813055 15443 solver.cpp:229] Iteration 16000, loss = 3.6464 | |
I0430 16:25:28.813240 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.560976 | |
I0430 16:25:28.813261 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 1 | |
I0430 16:25:28.813273 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.875 | |
I0430 16:25:28.813285 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625 | |
I0430 16:25:28.813297 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.625 | |
I0430 16:25:28.813308 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.75 | |
I0430 16:25:28.813320 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0430 16:25:28.813333 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0430 16:25:28.813344 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0430 16:25:28.813356 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0430 16:25:28.813367 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0430 16:25:28.813380 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0430 16:25:28.813390 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0430 16:25:28.813402 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0430 16:25:28.813415 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 16:25:28.813426 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 16:25:28.813437 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 16:25:28.813449 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 16:25:28.813460 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 16:25:28.813472 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 16:25:28.813483 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 16:25:28.813494 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 16:25:28.813506 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 16:25:28.813518 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.880682 | |
I0430 16:25:28.813529 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.853659 | |
I0430 16:25:28.813546 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.21227 (* 0.3 = 0.36368 loss) | |
I0430 16:25:28.813560 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.340995 (* 0.3 = 0.102299 loss) | |
I0430 16:25:28.813578 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.0992729 (* 0.0272727 = 0.00270744 loss) | |
I0430 16:25:28.813594 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 0.810105 (* 0.0272727 = 0.0220938 loss) | |
I0430 16:25:28.813608 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.06027 (* 0.0272727 = 0.0289163 loss) | |
I0430 16:25:28.813622 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.40996 (* 0.0272727 = 0.0384535 loss) | |
I0430 16:25:28.813637 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 0.990155 (* 0.0272727 = 0.0270042 loss) | |
I0430 16:25:28.813650 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.52854 (* 0.0272727 = 0.0416874 loss) | |
I0430 16:25:28.813663 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.02933 (* 0.0272727 = 0.0280725 loss) | |
I0430 16:25:28.813678 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.508983 (* 0.0272727 = 0.0138814 loss) | |
I0430 16:25:28.813691 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.46715 (* 0.0272727 = 0.0127405 loss) | |
I0430 16:25:28.813706 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00455683 (* 0.0272727 = 0.000124277 loss) | |
I0430 16:25:28.813720 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.00200666 (* 0.0272727 = 5.4727e-05 loss) | |
I0430 16:25:28.813735 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.00136664 (* 0.0272727 = 3.7272e-05 loss) | |
I0430 16:25:28.813772 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000343542 (* 0.0272727 = 9.36933e-06 loss) | |
I0430 16:25:28.813787 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 8.15425e-05 (* 0.0272727 = 2.22389e-06 loss) | |
I0430 16:25:28.813802 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 2.96642e-05 (* 0.0272727 = 8.09022e-07 loss) | |
I0430 16:25:28.813815 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 2.3842e-06 (* 0.0272727 = 6.50236e-08 loss) | |
I0430 16:25:28.813830 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 2.99516e-06 (* 0.0272727 = 8.16861e-08 loss) | |
I0430 16:25:28.813844 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 1.57953e-06 (* 0.0272727 = 4.3078e-08 loss) | |
I0430 16:25:28.813858 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 1.89246e-06 (* 0.0272727 = 5.16125e-08 loss) | |
I0430 16:25:28.813873 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 2.53322e-06 (* 0.0272727 = 6.90879e-08 loss) | |
I0430 16:25:28.813886 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 6.28844e-06 (* 0.0272727 = 1.71503e-07 loss) | |
I0430 16:25:28.813900 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 1.95207e-06 (* 0.0272727 = 5.32382e-08 loss) | |
I0430 16:25:28.813912 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.585366 | |
I0430 16:25:28.813925 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0430 16:25:28.813936 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0430 16:25:28.813948 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0430 16:25:28.813961 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5 | |
I0430 16:25:28.813972 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.75 | |
I0430 16:25:28.813984 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0430 16:25:28.813997 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75 | |
I0430 16:25:28.814007 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0430 16:25:28.814020 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0430 16:25:28.814031 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0430 16:25:28.814040 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0430 16:25:28.814049 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0430 16:25:28.814060 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0430 16:25:28.814071 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 16:25:28.814084 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 16:25:28.814095 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 16:25:28.814106 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 16:25:28.814117 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 16:25:28.814129 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 16:25:28.814141 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 16:25:28.814152 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 16:25:28.814167 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 16:25:28.814178 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.886364 | |
I0430 16:25:28.814190 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.804878 | |
I0430 16:25:28.814204 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.46046 (* 0.3 = 0.438137 loss) | |
I0430 16:25:28.814218 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.398364 (* 0.3 = 0.119509 loss) | |
I0430 16:25:28.814232 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.729118 (* 0.0272727 = 0.019885 loss) | |
I0430 16:25:28.814246 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 1.45558 (* 0.0272727 = 0.0396977 loss) | |
I0430 16:25:28.814271 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.21539 (* 0.0272727 = 0.0331471 loss) | |
I0430 16:25:28.814286 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.14542 (* 0.0272727 = 0.0312386 loss) | |
I0430 16:25:28.814301 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 0.908955 (* 0.0272727 = 0.0247897 loss) | |
I0430 16:25:28.814314 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.66361 (* 0.0272727 = 0.0453712 loss) | |
I0430 16:25:28.814327 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 1.16769 (* 0.0272727 = 0.0318461 loss) | |
I0430 16:25:28.814342 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.403184 (* 0.0272727 = 0.0109959 loss) | |
I0430 16:25:28.814355 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.401511 (* 0.0272727 = 0.0109503 loss) | |
I0430 16:25:28.814369 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.0360877 (* 0.0272727 = 0.000984211 loss) | |
I0430 16:25:28.814383 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.0289165 (* 0.0272727 = 0.000788633 loss) | |
I0430 16:25:28.814398 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00224294 (* 0.0272727 = 6.1171e-05 loss) | |
I0430 16:25:28.814411 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000636965 (* 0.0272727 = 1.73718e-05 loss) | |
I0430 16:25:28.814425 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000239428 (* 0.0272727 = 6.52985e-06 loss) | |
I0430 16:25:28.814438 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 2.06993e-05 (* 0.0272727 = 5.64526e-07 loss) | |
I0430 16:25:28.814452 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 5.12607e-06 (* 0.0272727 = 1.39802e-07 loss) | |
I0430 16:25:28.814466 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 6.70553e-07 (* 0.0272727 = 1.82878e-08 loss) | |
I0430 16:25:28.814479 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 3.8743e-07 (* 0.0272727 = 1.05663e-08 loss) | |
I0430 16:25:28.814493 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 1.63913e-07 (* 0.0272727 = 4.47035e-09 loss) | |
I0430 16:25:28.814507 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 2.68221e-07 (* 0.0272727 = 7.31512e-09 loss) | |
I0430 16:25:28.814522 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 2.5332e-07 (* 0.0272727 = 6.90872e-09 loss) | |
I0430 16:25:28.814535 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 2.38419e-07 (* 0.0272727 = 6.50233e-09 loss) | |
I0430 16:25:28.814548 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.756098 | |
I0430 16:25:28.814559 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0430 16:25:28.814571 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0430 16:25:28.814582 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75 | |
I0430 16:25:28.814594 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75 | |
I0430 16:25:28.814605 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0430 16:25:28.814617 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625 | |
I0430 16:25:28.814632 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0430 16:25:28.814645 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0430 16:25:28.814656 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0430 16:25:28.814667 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0430 16:25:28.814679 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0430 16:25:28.814690 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0430 16:25:28.814702 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0430 16:25:28.814713 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 16:25:28.814725 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 16:25:28.814746 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 16:25:28.814759 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 16:25:28.814771 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 16:25:28.814782 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 16:25:28.814795 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 16:25:28.814805 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 16:25:28.814817 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 16:25:28.814828 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.931818 | |
I0430 16:25:28.814841 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.926829 | |
I0430 16:25:28.814854 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.824264 (* 1 = 0.824264 loss) | |
I0430 16:25:28.814868 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.246883 (* 1 = 0.246883 loss) | |
I0430 16:25:28.814882 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.232093 (* 0.0909091 = 0.0210994 loss) | |
I0430 16:25:28.814896 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.697132 (* 0.0909091 = 0.0633757 loss) | |
I0430 16:25:28.814909 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.447582 (* 0.0909091 = 0.0406893 loss) | |
I0430 16:25:28.814924 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.742834 (* 0.0909091 = 0.0675304 loss) | |
I0430 16:25:28.814937 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.416427 (* 0.0909091 = 0.037857 loss) | |
I0430 16:25:28.814950 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 1.00981 (* 0.0909091 = 0.0918011 loss) | |
I0430 16:25:28.814965 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.3637 (* 0.0909091 = 0.0330636 loss) | |
I0430 16:25:28.814978 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.263585 (* 0.0909091 = 0.0239623 loss) | |
I0430 16:25:28.814991 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.277853 (* 0.0909091 = 0.0252594 loss) | |
I0430 16:25:28.815006 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.0446254 (* 0.0909091 = 0.00405686 loss) | |
I0430 16:25:28.815019 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.0178864 (* 0.0909091 = 0.00162604 loss) | |
I0430 16:25:28.815033 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00438398 (* 0.0909091 = 0.000398543 loss) | |
I0430 16:25:28.815047 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00137522 (* 0.0909091 = 0.00012502 loss) | |
I0430 16:25:28.815060 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000327214 (* 0.0909091 = 2.97467e-05 loss) | |
I0430 16:25:28.815074 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000152256 (* 0.0909091 = 1.38415e-05 loss) | |
I0430 16:25:28.815088 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 5.00268e-05 (* 0.0909091 = 4.54789e-06 loss) | |
I0430 16:25:28.815102 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 3.7076e-05 (* 0.0909091 = 3.37055e-06 loss) | |
I0430 16:25:28.815115 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 2.42598e-05 (* 0.0909091 = 2.20544e-06 loss) | |
I0430 16:25:28.815129 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 2.119e-05 (* 0.0909091 = 1.92636e-06 loss) | |
I0430 16:25:28.815143 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 1.62128e-05 (* 0.0909091 = 1.47389e-06 loss) | |
I0430 16:25:28.815157 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 1.18913e-05 (* 0.0909091 = 1.08103e-06 loss) | |
I0430 16:25:28.815171 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 1.16231e-05 (* 0.0909091 = 1.05665e-06 loss) | |
I0430 16:25:28.815182 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.5 | |
I0430 16:25:28.815194 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5 | |
I0430 16:25:28.815218 15443 solver.cpp:245] Train net output #149: total_confidence = 0.535802 | |
I0430 16:25:28.815232 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.437113 | |
I0430 16:25:28.815244 15443 sgd_solver.cpp:106] Iteration 16000, lr = 0.001 | |
I0430 16:27:45.797958 15443 solver.cpp:229] Iteration 16500, loss = 3.70552 | |
I0430 16:27:45.798075 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.290323 | |
I0430 16:27:45.798095 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625 | |
I0430 16:27:45.798110 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0430 16:27:45.798122 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25 | |
I0430 16:27:45.798138 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25 | |
I0430 16:27:45.798151 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0430 16:27:45.798162 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5 | |
I0430 16:27:45.798174 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625 | |
I0430 16:27:45.798185 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75 | |
I0430 16:27:45.798197 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75 | |
I0430 16:27:45.798209 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.75 | |
I0430 16:27:45.798220 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.75 | |
I0430 16:27:45.798233 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0430 16:27:45.798244 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.75 | |
I0430 16:27:45.798256 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.75 | |
I0430 16:27:45.798267 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.75 | |
I0430 16:27:45.798280 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.75 | |
I0430 16:27:45.798291 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 16:27:45.798303 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 16:27:45.798315 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 16:27:45.798326 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 16:27:45.798337 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 16:27:45.798348 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 16:27:45.798360 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.744318 | |
I0430 16:27:45.798372 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.612903 | |
I0430 16:27:45.798388 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.09604 (* 0.3 = 0.628813 loss) | |
I0430 16:27:45.798403 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.758944 (* 0.3 = 0.227683 loss) | |
I0430 16:27:45.798418 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 1.13638 (* 0.0272727 = 0.0309921 loss) | |
I0430 16:27:45.798431 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.1333 (* 0.0272727 = 0.0309081 loss) | |
I0430 16:27:45.798452 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.91534 (* 0.0272727 = 0.0522366 loss) | |
I0430 16:27:45.798473 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 2.55057 (* 0.0272727 = 0.0695611 loss) | |
I0430 16:27:45.798487 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.20427 (* 0.0272727 = 0.0328438 loss) | |
I0430 16:27:45.798501 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.31211 (* 0.0272727 = 0.0357847 loss) | |
I0430 16:27:45.798514 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.0144 (* 0.0272727 = 0.0276654 loss) | |
I0430 16:27:45.798528 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.854539 (* 0.0272727 = 0.0233056 loss) | |
I0430 16:27:45.798542 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.820533 (* 0.0272727 = 0.0223782 loss) | |
I0430 16:27:45.798555 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.651192 (* 0.0272727 = 0.0177598 loss) | |
I0430 16:27:45.798573 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.786998 (* 0.0272727 = 0.0214636 loss) | |
I0430 16:27:45.798586 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.86603 (* 0.0272727 = 0.023619 loss) | |
I0430 16:27:45.798620 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.699625 (* 0.0272727 = 0.0190807 loss) | |
I0430 16:27:45.798635 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.957455 (* 0.0272727 = 0.0261124 loss) | |
I0430 16:27:45.798650 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 1.04389 (* 0.0272727 = 0.0284698 loss) | |
I0430 16:27:45.798663 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 1.01592 (* 0.0272727 = 0.027707 loss) | |
I0430 16:27:45.798677 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0238904 (* 0.0272727 = 0.000651557 loss) | |
I0430 16:27:45.798691 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00569936 (* 0.0272727 = 0.000155437 loss) | |
I0430 16:27:45.798707 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00283316 (* 0.0272727 = 7.72681e-05 loss) | |
I0430 16:27:45.798719 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00139631 (* 0.0272727 = 3.80811e-05 loss) | |
I0430 16:27:45.798733 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00172124 (* 0.0272727 = 4.69429e-05 loss) | |
I0430 16:27:45.798748 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000701736 (* 0.0272727 = 1.91382e-05 loss) | |
I0430 16:27:45.798759 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.451613 | |
I0430 16:27:45.798771 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75 | |
I0430 16:27:45.798784 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5 | |
I0430 16:27:45.798795 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.875 | |
I0430 16:27:45.798806 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375 | |
I0430 16:27:45.798818 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0430 16:27:45.798830 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5 | |
I0430 16:27:45.798841 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0430 16:27:45.798853 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75 | |
I0430 16:27:45.798864 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.75 | |
I0430 16:27:45.798876 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.75 | |
I0430 16:27:45.798887 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.75 | |
I0430 16:27:45.798899 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.75 | |
I0430 16:27:45.798912 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.75 | |
I0430 16:27:45.798919 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.75 | |
I0430 16:27:45.798926 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.75 | |
I0430 16:27:45.798934 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.75 | |
I0430 16:27:45.798946 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 16:27:45.798959 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 16:27:45.798969 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 16:27:45.798981 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 16:27:45.798992 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 16:27:45.799011 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 16:27:45.799028 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.801136 | |
I0430 16:27:45.799041 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.693548 | |
I0430 16:27:45.799057 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.03776 (* 0.3 = 0.611328 loss) | |
I0430 16:27:45.799077 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.727558 (* 0.3 = 0.218267 loss) | |
I0430 16:27:45.799093 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.956595 (* 0.0272727 = 0.0260889 loss) | |
I0430 16:27:45.799106 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 1.65194 (* 0.0272727 = 0.0450529 loss) | |
I0430 16:27:45.799134 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 0.885439 (* 0.0272727 = 0.0241483 loss) | |
I0430 16:27:45.799149 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 2.12577 (* 0.0272727 = 0.0579756 loss) | |
I0430 16:27:45.799162 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.59017 (* 0.0272727 = 0.0433682 loss) | |
I0430 16:27:45.799180 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.59998 (* 0.0272727 = 0.0436358 loss) | |
I0430 16:27:45.799195 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 0.957232 (* 0.0272727 = 0.0261063 loss) | |
I0430 16:27:45.799208 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.75654 (* 0.0272727 = 0.0206329 loss) | |
I0430 16:27:45.799222 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.687586 (* 0.0272727 = 0.0187524 loss) | |
I0430 16:27:45.799237 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.626533 (* 0.0272727 = 0.0170873 loss) | |
I0430 16:27:45.799249 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.826417 (* 0.0272727 = 0.0225386 loss) | |
I0430 16:27:45.799263 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 1.03714 (* 0.0272727 = 0.0282857 loss) | |
I0430 16:27:45.799276 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.575806 (* 0.0272727 = 0.0157038 loss) | |
I0430 16:27:45.799290 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.941681 (* 0.0272727 = 0.0256822 loss) | |
I0430 16:27:45.799304 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.935704 (* 0.0272727 = 0.0255192 loss) | |
I0430 16:27:45.799317 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 1.03746 (* 0.0272727 = 0.0282942 loss) | |
I0430 16:27:45.799331 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0098394 (* 0.0272727 = 0.000268347 loss) | |
I0430 16:27:45.799345 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00174846 (* 0.0272727 = 4.76853e-05 loss) | |
I0430 16:27:45.799360 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000931382 (* 0.0272727 = 2.54013e-05 loss) | |
I0430 16:27:45.799372 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000245378 (* 0.0272727 = 6.69213e-06 loss) | |
I0430 16:27:45.799386 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 7.92797e-05 (* 0.0272727 = 2.16217e-06 loss) | |
I0430 16:27:45.799401 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 1.61385e-05 (* 0.0272727 = 4.4014e-07 loss) | |
I0430 16:27:45.799412 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.5 | |
I0430 16:27:45.799423 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0430 16:27:45.799435 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75 | |
I0430 16:27:45.799446 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625 | |
I0430 16:27:45.799458 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.5 | |
I0430 16:27:45.799489 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0430 16:27:45.799502 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625 | |
I0430 16:27:45.799515 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0430 16:27:45.799526 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75 | |
I0430 16:27:45.799538 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75 | |
I0430 16:27:45.799549 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0430 16:27:45.799561 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.75 | |
I0430 16:27:45.799573 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.75 | |
I0430 16:27:45.799584 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.75 | |
I0430 16:27:45.799597 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.75 | |
I0430 16:27:45.799609 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.75 | |
I0430 16:27:45.799621 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.75 | |
I0430 16:27:45.799645 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 16:27:45.799659 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 16:27:45.799670 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 16:27:45.799681 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 16:27:45.799693 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 16:27:45.799705 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 16:27:45.799715 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.823864 | |
I0430 16:27:45.799727 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.774194 | |
I0430 16:27:45.799741 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.63406 (* 1 = 1.63406 loss) | |
I0430 16:27:45.799756 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.586377 (* 1 = 0.586377 loss) | |
I0430 16:27:45.799769 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.382251 (* 0.0909091 = 0.0347501 loss) | |
I0430 16:27:45.799783 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.894461 (* 0.0909091 = 0.0813146 loss) | |
I0430 16:27:45.799798 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 1.2897 (* 0.0909091 = 0.117246 loss) | |
I0430 16:27:45.799811 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 1.97454 (* 0.0909091 = 0.179504 loss) | |
I0430 16:27:45.799824 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 1.24035 (* 0.0909091 = 0.11276 loss) | |
I0430 16:27:45.799839 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.933787 (* 0.0909091 = 0.0848897 loss) | |
I0430 16:27:45.799852 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.613353 (* 0.0909091 = 0.0557593 loss) | |
I0430 16:27:45.799866 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.66961 (* 0.0909091 = 0.0608736 loss) | |
I0430 16:27:45.799880 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.578214 (* 0.0909091 = 0.0525649 loss) | |
I0430 16:27:45.799893 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.456587 (* 0.0909091 = 0.0415079 loss) | |
I0430 16:27:45.799906 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.767782 (* 0.0909091 = 0.0697984 loss) | |
I0430 16:27:45.799921 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.979085 (* 0.0909091 = 0.0890078 loss) | |
I0430 16:27:45.799934 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.676157 (* 0.0909091 = 0.0614688 loss) | |
I0430 16:27:45.799947 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.721654 (* 0.0909091 = 0.0656049 loss) | |
I0430 16:27:45.799962 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.687881 (* 0.0909091 = 0.0625346 loss) | |
I0430 16:27:45.799974 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.738213 (* 0.0909091 = 0.0671102 loss) | |
I0430 16:27:45.799988 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0160817 (* 0.0909091 = 0.00146197 loss) | |
I0430 16:27:45.800003 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00546945 (* 0.0909091 = 0.000497223 loss) | |
I0430 16:27:45.800016 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00250124 (* 0.0909091 = 0.000227386 loss) | |
I0430 16:27:45.800030 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000901986 (* 0.0909091 = 8.19987e-05 loss) | |
I0430 16:27:45.800045 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000206468 (* 0.0909091 = 1.87699e-05 loss) | |
I0430 16:27:45.800058 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 5.93509e-05 (* 0.0909091 = 5.39554e-06 loss) | |
I0430 16:27:45.800071 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.375 | |
I0430 16:27:45.800081 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25 | |
I0430 16:27:45.800103 15443 solver.cpp:245] Train net output #149: total_confidence = 0.295031 | |
I0430 16:27:45.800117 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.249823 | |
I0430 16:27:45.800129 15443 sgd_solver.cpp:106] Iteration 16500, lr = 0.001 | |
I0430 16:30:02.693073 15443 solver.cpp:229] Iteration 17000, loss = 3.63587 | |
I0430 16:30:02.693236 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.516129 | |
I0430 16:30:02.693258 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875 | |
I0430 16:30:02.693270 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75 | |
I0430 16:30:02.693282 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625 | |
I0430 16:30:02.693295 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0430 16:30:02.693306 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.75 | |
I0430 16:30:02.693321 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75 | |
I0430 16:30:02.693333 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5 | |
I0430 16:30:02.693346 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1 | |
I0430 16:30:02.693358 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75 | |
I0430 16:30:02.693370 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.75 | |
I0430 16:30:02.693382 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0430 16:30:02.693394 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0430 16:30:02.693405 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0430 16:30:02.693418 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0430 16:30:02.693429 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875 | |
I0430 16:30:02.693441 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875 | |
I0430 16:30:02.693452 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875 | |
I0430 16:30:02.693464 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 16:30:02.693476 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 16:30:02.693488 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 16:30:02.693500 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 16:30:02.693512 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 16:30:02.693523 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.829545 | |
I0430 16:30:02.693536 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.709677 | |
I0430 16:30:02.693550 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.64533 (* 0.3 = 0.493599 loss) | |
I0430 16:30:02.693565 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.592236 (* 0.3 = 0.177671 loss) | |
I0430 16:30:02.693579 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.641076 (* 0.0272727 = 0.0174839 loss) | |
I0430 16:30:02.693593 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.03766 (* 0.0272727 = 0.0282998 loss) | |
I0430 16:30:02.693608 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.25678 (* 0.0272727 = 0.0342758 loss) | |
I0430 16:30:02.693621 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.54273 (* 0.0272727 = 0.0420744 loss) | |
I0430 16:30:02.693635 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 0.985617 (* 0.0272727 = 0.0268805 loss) | |
I0430 16:30:02.693650 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 0.920818 (* 0.0272727 = 0.0251132 loss) | |
I0430 16:30:02.693663 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.95036 (* 0.0272727 = 0.0531916 loss) | |
I0430 16:30:02.693677 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.479355 (* 0.0272727 = 0.0130733 loss) | |
I0430 16:30:02.693691 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.812105 (* 0.0272727 = 0.0221483 loss) | |
I0430 16:30:02.693704 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.893246 (* 0.0272727 = 0.0243613 loss) | |
I0430 16:30:02.693718 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.779569 (* 0.0272727 = 0.021261 loss) | |
I0430 16:30:02.693732 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.319573 (* 0.0272727 = 0.00871562 loss) | |
I0430 16:30:02.693768 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.53655 (* 0.0272727 = 0.0146332 loss) | |
I0430 16:30:02.693783 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.398792 (* 0.0272727 = 0.0108762 loss) | |
I0430 16:30:02.693796 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.339932 (* 0.0272727 = 0.00927087 loss) | |
I0430 16:30:02.693810 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.431697 (* 0.0272727 = 0.0117735 loss) | |
I0430 16:30:02.693825 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.519466 (* 0.0272727 = 0.0141672 loss) | |
I0430 16:30:02.693838 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00932963 (* 0.0272727 = 0.000254444 loss) | |
I0430 16:30:02.693852 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00306804 (* 0.0272727 = 8.36738e-05 loss) | |
I0430 16:30:02.693866 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000124349 (* 0.0272727 = 3.39133e-06 loss) | |
I0430 16:30:02.693881 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 9.10479e-06 (* 0.0272727 = 2.48312e-07 loss) | |
I0430 16:30:02.693894 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 3.57628e-07 (* 0.0272727 = 9.7535e-09 loss) | |
I0430 16:30:02.693907 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.516129 | |
I0430 16:30:02.693918 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0430 16:30:02.693930 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625 | |
I0430 16:30:02.693941 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0430 16:30:02.693953 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5 | |
I0430 16:30:02.693965 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625 | |
I0430 16:30:02.693976 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0430 16:30:02.693989 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0430 16:30:02.694000 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0430 16:30:02.694011 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.75 | |
I0430 16:30:02.694023 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.75 | |
I0430 16:30:02.694034 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.75 | |
I0430 16:30:02.694046 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0430 16:30:02.694057 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0430 16:30:02.694068 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0430 16:30:02.694080 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875 | |
I0430 16:30:02.694092 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875 | |
I0430 16:30:02.694103 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875 | |
I0430 16:30:02.694114 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 16:30:02.694126 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 16:30:02.694138 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 16:30:02.694149 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 16:30:02.694160 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 16:30:02.694174 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.829545 | |
I0430 16:30:02.694185 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.725806 | |
I0430 16:30:02.694200 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.47762 (* 0.3 = 0.443285 loss) | |
I0430 16:30:02.694212 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.533829 (* 0.3 = 0.160149 loss) | |
I0430 16:30:02.694226 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.420102 (* 0.0272727 = 0.0114573 loss) | |
I0430 16:30:02.694241 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 0.831491 (* 0.0272727 = 0.022677 loss) | |
I0430 16:30:02.694270 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 0.989405 (* 0.0272727 = 0.0269838 loss) | |
I0430 16:30:02.694285 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.30939 (* 0.0272727 = 0.0357107 loss) | |
I0430 16:30:02.694299 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 0.959376 (* 0.0272727 = 0.0261648 loss) | |
I0430 16:30:02.694314 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 0.93386 (* 0.0272727 = 0.0254689 loss) | |
I0430 16:30:02.694327 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 1.32665 (* 0.0272727 = 0.0361815 loss) | |
I0430 16:30:02.694340 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.420176 (* 0.0272727 = 0.0114593 loss) | |
I0430 16:30:02.694355 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.893056 (* 0.0272727 = 0.0243561 loss) | |
I0430 16:30:02.694371 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.762547 (* 0.0272727 = 0.0207967 loss) | |
I0430 16:30:02.694386 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.850747 (* 0.0272727 = 0.0232022 loss) | |
I0430 16:30:02.694399 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.351977 (* 0.0272727 = 0.00959937 loss) | |
I0430 16:30:02.694413 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.386431 (* 0.0272727 = 0.010539 loss) | |
I0430 16:30:02.694427 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.392224 (* 0.0272727 = 0.010697 loss) | |
I0430 16:30:02.694442 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.2583 (* 0.0272727 = 0.00704454 loss) | |
I0430 16:30:02.694454 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.372204 (* 0.0272727 = 0.010151 loss) | |
I0430 16:30:02.694468 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.50377 (* 0.0272727 = 0.0137392 loss) | |
I0430 16:30:02.694481 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0340152 (* 0.0272727 = 0.000927686 loss) | |
I0430 16:30:02.694495 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0132993 (* 0.0272727 = 0.000362707 loss) | |
I0430 16:30:02.694509 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00446481 (* 0.0272727 = 0.000121768 loss) | |
I0430 16:30:02.694522 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 0.0010391 (* 0.0272727 = 2.8339e-05 loss) | |
I0430 16:30:02.694536 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000123368 (* 0.0272727 = 3.36458e-06 loss) | |
I0430 16:30:02.694548 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.677419 | |
I0430 16:30:02.694561 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0430 16:30:02.694571 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0430 16:30:02.694582 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1 | |
I0430 16:30:02.694594 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75 | |
I0430 16:30:02.694605 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0430 16:30:02.694617 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0430 16:30:02.694628 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0430 16:30:02.694639 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0430 16:30:02.694651 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0430 16:30:02.694664 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75 | |
I0430 16:30:02.694674 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0430 16:30:02.694685 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0430 16:30:02.694697 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0430 16:30:02.694708 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 16:30:02.694720 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875 | |
I0430 16:30:02.694741 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875 | |
I0430 16:30:02.694754 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.875 | |
I0430 16:30:02.694766 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 16:30:02.694778 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 16:30:02.694789 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 16:30:02.694802 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 16:30:02.694813 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 16:30:02.694824 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.886364 | |
I0430 16:30:02.694836 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.822581 | |
I0430 16:30:02.694850 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.04358 (* 1 = 1.04358 loss) | |
I0430 16:30:02.694864 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.384073 (* 1 = 0.384073 loss) | |
I0430 16:30:02.694878 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.469897 (* 0.0909091 = 0.0427179 loss) | |
I0430 16:30:02.694891 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.411773 (* 0.0909091 = 0.0374339 loss) | |
I0430 16:30:02.694905 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.00803882 (* 0.0909091 = 0.000730802 loss) | |
I0430 16:30:02.694919 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.540663 (* 0.0909091 = 0.0491512 loss) | |
I0430 16:30:02.694933 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.62426 (* 0.0909091 = 0.0567509 loss) | |
I0430 16:30:02.694947 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.358174 (* 0.0909091 = 0.0325613 loss) | |
I0430 16:30:02.694960 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.592183 (* 0.0909091 = 0.0538348 loss) | |
I0430 16:30:02.694974 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.278823 (* 0.0909091 = 0.0253476 loss) | |
I0430 16:30:02.694988 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.500382 (* 0.0909091 = 0.0454893 loss) | |
I0430 16:30:02.695001 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.867131 (* 0.0909091 = 0.0788301 loss) | |
I0430 16:30:02.695014 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 1.07965 (* 0.0909091 = 0.09815 loss) | |
I0430 16:30:02.695029 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.380649 (* 0.0909091 = 0.0346045 loss) | |
I0430 16:30:02.695041 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.297649 (* 0.0909091 = 0.027059 loss) | |
I0430 16:30:02.695055 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.220617 (* 0.0909091 = 0.0200561 loss) | |
I0430 16:30:02.695068 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.270443 (* 0.0909091 = 0.0245857 loss) | |
I0430 16:30:02.695082 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.326767 (* 0.0909091 = 0.0297061 loss) | |
I0430 16:30:02.695096 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.44671 (* 0.0909091 = 0.04061 loss) | |
I0430 16:30:02.695109 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00803891 (* 0.0909091 = 0.00073081 loss) | |
I0430 16:30:02.695123 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00480847 (* 0.0909091 = 0.000437134 loss) | |
I0430 16:30:02.695137 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00152221 (* 0.0909091 = 0.000138383 loss) | |
I0430 16:30:02.695152 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000307989 (* 0.0909091 = 2.7999e-05 loss) | |
I0430 16:30:02.695164 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 4.30717e-05 (* 0.0909091 = 3.91561e-06 loss) | |
I0430 16:30:02.695178 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.5 | |
I0430 16:30:02.695188 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5 | |
I0430 16:30:02.695209 15443 solver.cpp:245] Train net output #149: total_confidence = 0.546935 | |
I0430 16:30:02.695222 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.588134 | |
I0430 16:30:02.695235 15443 sgd_solver.cpp:106] Iteration 17000, lr = 0.001 | |
I0430 16:32:19.892537 15443 solver.cpp:229] Iteration 17500, loss = 3.64418 | |
I0430 16:32:19.892683 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.302632 | |
I0430 16:32:19.892702 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625 | |
I0430 16:32:19.892715 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375 | |
I0430 16:32:19.892729 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0430 16:32:19.892740 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0430 16:32:19.892751 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625 | |
I0430 16:32:19.892763 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.25 | |
I0430 16:32:19.892776 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5 | |
I0430 16:32:19.892787 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1 | |
I0430 16:32:19.892799 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.625 | |
I0430 16:32:19.892812 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.625 | |
I0430 16:32:19.892822 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.625 | |
I0430 16:32:19.892834 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.625 | |
I0430 16:32:19.892846 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.75 | |
I0430 16:32:19.892858 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.625 | |
I0430 16:32:19.892869 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.625 | |
I0430 16:32:19.892881 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.75 | |
I0430 16:32:19.892892 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875 | |
I0430 16:32:19.892904 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 16:32:19.892916 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 16:32:19.892927 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 16:32:19.892940 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 16:32:19.892951 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 16:32:19.892961 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.676136 | |
I0430 16:32:19.892982 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.565789 | |
I0430 16:32:19.893002 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.23551 (* 0.3 = 0.670653 loss) | |
I0430 16:32:19.893018 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.09768 (* 0.3 = 0.329304 loss) | |
I0430 16:32:19.893031 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 1.77078 (* 0.0272727 = 0.048294 loss) | |
I0430 16:32:19.893045 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 2.50639 (* 0.0272727 = 0.0683561 loss) | |
I0430 16:32:19.893059 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.6749 (* 0.0272727 = 0.0456791 loss) | |
I0430 16:32:19.893074 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.86833 (* 0.0272727 = 0.0509544 loss) | |
I0430 16:32:19.893086 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.49095 (* 0.0272727 = 0.0406622 loss) | |
I0430 16:32:19.893100 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 2.34352 (* 0.0272727 = 0.0639142 loss) | |
I0430 16:32:19.893113 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.4596 (* 0.0272727 = 0.0398072 loss) | |
I0430 16:32:19.893126 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.714429 (* 0.0272727 = 0.0194844 loss) | |
I0430 16:32:19.893141 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 1.37353 (* 0.0272727 = 0.0374599 loss) | |
I0430 16:32:19.893154 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.967508 (* 0.0272727 = 0.0263866 loss) | |
I0430 16:32:19.893167 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 1.01674 (* 0.0272727 = 0.0277292 loss) | |
I0430 16:32:19.893182 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 1.85446 (* 0.0272727 = 0.0505762 loss) | |
I0430 16:32:19.893213 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.884645 (* 0.0272727 = 0.0241267 loss) | |
I0430 16:32:19.893227 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 1.46284 (* 0.0272727 = 0.0398956 loss) | |
I0430 16:32:19.893240 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.897945 (* 0.0272727 = 0.0244894 loss) | |
I0430 16:32:19.893254 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.973897 (* 0.0272727 = 0.0265608 loss) | |
I0430 16:32:19.893268 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.743453 (* 0.0272727 = 0.020276 loss) | |
I0430 16:32:19.893282 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.123759 (* 0.0272727 = 0.00337525 loss) | |
I0430 16:32:19.893296 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0409283 (* 0.0272727 = 0.00111623 loss) | |
I0430 16:32:19.893309 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.0311669 (* 0.0272727 = 0.000850005 loss) | |
I0430 16:32:19.893327 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00792125 (* 0.0272727 = 0.000216034 loss) | |
I0430 16:32:19.893342 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 0.00123259 (* 0.0272727 = 3.36162e-05 loss) | |
I0430 16:32:19.893352 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.368421 | |
I0430 16:32:19.893364 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75 | |
I0430 16:32:19.893376 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5 | |
I0430 16:32:19.893388 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375 | |
I0430 16:32:19.893399 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375 | |
I0430 16:32:19.893410 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625 | |
I0430 16:32:19.893422 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375 | |
I0430 16:32:19.893434 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.375 | |
I0430 16:32:19.893445 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625 | |
I0430 16:32:19.893456 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.625 | |
I0430 16:32:19.893467 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.625 | |
I0430 16:32:19.893479 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.625 | |
I0430 16:32:19.893491 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.625 | |
I0430 16:32:19.893502 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.75 | |
I0430 16:32:19.893513 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.625 | |
I0430 16:32:19.893525 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.625 | |
I0430 16:32:19.893537 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875 | |
I0430 16:32:19.893548 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875 | |
I0430 16:32:19.893559 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 16:32:19.893571 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 16:32:19.893582 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 16:32:19.893594 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 16:32:19.893605 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 16:32:19.893616 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.710227 | |
I0430 16:32:19.893627 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.605263 | |
I0430 16:32:19.893641 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.14445 (* 0.3 = 0.643334 loss) | |
I0430 16:32:19.893656 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 1.03407 (* 0.3 = 0.310222 loss) | |
I0430 16:32:19.893668 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 1.33067 (* 0.0272727 = 0.0362909 loss) | |
I0430 16:32:19.893682 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 1.82866 (* 0.0272727 = 0.0498727 loss) | |
I0430 16:32:19.893710 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.80791 (* 0.0272727 = 0.0493066 loss) | |
I0430 16:32:19.893726 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.8892 (* 0.0272727 = 0.0515235 loss) | |
I0430 16:32:19.893739 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.50538 (* 0.0272727 = 0.0410558 loss) | |
I0430 16:32:19.893754 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.93128 (* 0.0272727 = 0.0526714 loss) | |
I0430 16:32:19.893766 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 1.54615 (* 0.0272727 = 0.0421676 loss) | |
I0430 16:32:19.893780 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 1.04644 (* 0.0272727 = 0.0285393 loss) | |
I0430 16:32:19.893793 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 1.25327 (* 0.0272727 = 0.0341801 loss) | |
I0430 16:32:19.893806 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 1.10028 (* 0.0272727 = 0.0300077 loss) | |
I0430 16:32:19.893820 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 1.12878 (* 0.0272727 = 0.0307849 loss) | |
I0430 16:32:19.893832 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 1.40697 (* 0.0272727 = 0.0383719 loss) | |
I0430 16:32:19.893846 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.903916 (* 0.0272727 = 0.0246523 loss) | |
I0430 16:32:19.893859 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 1.61531 (* 0.0272727 = 0.0440538 loss) | |
I0430 16:32:19.893872 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 1.27128 (* 0.0272727 = 0.0346712 loss) | |
I0430 16:32:19.893885 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.653867 (* 0.0272727 = 0.0178327 loss) | |
I0430 16:32:19.893899 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.695921 (* 0.0272727 = 0.0189797 loss) | |
I0430 16:32:19.893913 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.102684 (* 0.0272727 = 0.00280048 loss) | |
I0430 16:32:19.893926 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0397161 (* 0.0272727 = 0.00108317 loss) | |
I0430 16:32:19.893940 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.0236383 (* 0.0272727 = 0.00064468 loss) | |
I0430 16:32:19.893954 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 0.0101259 (* 0.0272727 = 0.00027616 loss) | |
I0430 16:32:19.893967 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00246372 (* 0.0272727 = 6.71924e-05 loss) | |
I0430 16:32:19.893980 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.421053 | |
I0430 16:32:19.893991 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75 | |
I0430 16:32:19.894002 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75 | |
I0430 16:32:19.894014 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.5 | |
I0430 16:32:19.894026 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625 | |
I0430 16:32:19.894037 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625 | |
I0430 16:32:19.894047 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.5 | |
I0430 16:32:19.894059 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625 | |
I0430 16:32:19.894070 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75 | |
I0430 16:32:19.894083 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.625 | |
I0430 16:32:19.894093 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75 | |
I0430 16:32:19.894105 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0430 16:32:19.894116 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.625 | |
I0430 16:32:19.894127 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0430 16:32:19.894139 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.75 | |
I0430 16:32:19.894150 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.75 | |
I0430 16:32:19.894161 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875 | |
I0430 16:32:19.894182 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.875 | |
I0430 16:32:19.894196 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 16:32:19.894207 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 16:32:19.894218 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 16:32:19.894229 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 16:32:19.894240 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 16:32:19.894253 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.744318 | |
I0430 16:32:19.894263 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.671053 | |
I0430 16:32:19.894280 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.73153 (* 1 = 1.73153 loss) | |
I0430 16:32:19.894290 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.839544 (* 1 = 0.839544 loss) | |
I0430 16:32:19.894305 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 1.11035 (* 0.0909091 = 0.100941 loss) | |
I0430 16:32:19.894318 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 1.64296 (* 0.0909091 = 0.14936 loss) | |
I0430 16:32:19.894332 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 1.07962 (* 0.0909091 = 0.0981477 loss) | |
I0430 16:32:19.894345 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 1.18677 (* 0.0909091 = 0.107888 loss) | |
I0430 16:32:19.894366 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.968429 (* 0.0909091 = 0.088039 loss) | |
I0430 16:32:19.894387 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 1.65902 (* 0.0909091 = 0.15082 loss) | |
I0430 16:32:19.894402 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 1.08709 (* 0.0909091 = 0.0988264 loss) | |
I0430 16:32:19.894421 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.869009 (* 0.0909091 = 0.0790009 loss) | |
I0430 16:32:19.894438 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.960324 (* 0.0909091 = 0.0873022 loss) | |
I0430 16:32:19.894453 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.766363 (* 0.0909091 = 0.0696694 loss) | |
I0430 16:32:19.894465 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.592621 (* 0.0909091 = 0.0538746 loss) | |
I0430 16:32:19.894479 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 1.31882 (* 0.0909091 = 0.119893 loss) | |
I0430 16:32:19.894492 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.740535 (* 0.0909091 = 0.0673214 loss) | |
I0430 16:32:19.894505 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.891006 (* 0.0909091 = 0.0810005 loss) | |
I0430 16:32:19.894518 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.758694 (* 0.0909091 = 0.0689721 loss) | |
I0430 16:32:19.894532 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.541129 (* 0.0909091 = 0.0491936 loss) | |
I0430 16:32:19.894546 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.322315 (* 0.0909091 = 0.0293014 loss) | |
I0430 16:32:19.894559 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.106191 (* 0.0909091 = 0.00965372 loss) | |
I0430 16:32:19.894572 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.088217 (* 0.0909091 = 0.00801973 loss) | |
I0430 16:32:19.894587 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.0826596 (* 0.0909091 = 0.00751451 loss) | |
I0430 16:32:19.894599 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.0327345 (* 0.0909091 = 0.00297587 loss) | |
I0430 16:32:19.894613 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 0.00397146 (* 0.0909091 = 0.000361042 loss) | |
I0430 16:32:19.894624 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.375 | |
I0430 16:32:19.894635 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375 | |
I0430 16:32:19.894646 15443 solver.cpp:245] Train net output #149: total_confidence = 0.281911 | |
I0430 16:32:19.894670 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.320244 | |
I0430 16:32:19.894683 15443 sgd_solver.cpp:106] Iteration 17500, lr = 0.001 | |
I0430 16:33:36.935142 15443 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.9646 > 30) by scale factor 0.968847 | |
I0430 16:34:36.884011 15443 solver.cpp:229] Iteration 18000, loss = 3.72678 | |
I0430 16:34:36.884124 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.571429 | |
I0430 16:34:36.884155 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0430 16:34:36.884179 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625 | |
I0430 16:34:36.884202 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5 | |
I0430 16:34:36.884224 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.625 | |
I0430 16:34:36.884246 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.75 | |
I0430 16:34:36.884269 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0430 16:34:36.884294 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625 | |
I0430 16:34:36.884315 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75 | |
I0430 16:34:36.884340 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0430 16:34:36.884361 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0430 16:34:36.884382 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0430 16:34:36.884402 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0430 16:34:36.884423 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0430 16:34:36.884444 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 16:34:36.884465 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 16:34:36.884487 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 16:34:36.884516 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 16:34:36.884538 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 16:34:36.884559 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 16:34:36.884582 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 16:34:36.884606 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 16:34:36.884629 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 16:34:36.884652 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.880682 | |
I0430 16:34:36.884675 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.690476 | |
I0430 16:34:36.884702 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.77503 (* 0.3 = 0.532509 loss) | |
I0430 16:34:36.884730 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.496336 (* 0.3 = 0.148901 loss) | |
I0430 16:34:36.884759 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 1.2354 (* 0.0272727 = 0.0336927 loss) | |
I0430 16:34:36.884789 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.34626 (* 0.0272727 = 0.0367162 loss) | |
I0430 16:34:36.884817 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.10598 (* 0.0272727 = 0.0301631 loss) | |
I0430 16:34:36.884845 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.45062 (* 0.0272727 = 0.0395623 loss) | |
I0430 16:34:36.884872 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 0.918044 (* 0.0272727 = 0.0250376 loss) | |
I0430 16:34:36.884898 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.80057 (* 0.0272727 = 0.0491064 loss) | |
I0430 16:34:36.884925 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.82842 (* 0.0272727 = 0.0498659 loss) | |
I0430 16:34:36.884950 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 1.11224 (* 0.0272727 = 0.0303337 loss) | |
I0430 16:34:36.884977 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.110512 (* 0.0272727 = 0.00301396 loss) | |
I0430 16:34:36.885006 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0306662 (* 0.0272727 = 0.00083635 loss) | |
I0430 16:34:36.885032 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.00246323 (* 0.0272727 = 6.7179e-05 loss) | |
I0430 16:34:36.885061 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.00083781 (* 0.0272727 = 2.28494e-05 loss) | |
I0430 16:34:36.885087 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000733485 (* 0.0272727 = 2.00041e-05 loss) | |
I0430 16:34:36.885138 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000309898 (* 0.0272727 = 8.45177e-06 loss) | |
I0430 16:34:36.885167 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000131707 (* 0.0272727 = 3.59202e-06 loss) | |
I0430 16:34:36.885196 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000133227 (* 0.0272727 = 3.63346e-06 loss) | |
I0430 16:34:36.885223 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 1.53937e-05 (* 0.0272727 = 4.19828e-07 loss) | |
I0430 16:34:36.885249 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 6.64608e-06 (* 0.0272727 = 1.81257e-07 loss) | |
I0430 16:34:36.885277 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 4.99198e-06 (* 0.0272727 = 1.36145e-07 loss) | |
I0430 16:34:36.885303 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 6.55668e-06 (* 0.0272727 = 1.78819e-07 loss) | |
I0430 16:34:36.885331 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 2.95046e-06 (* 0.0272727 = 8.04672e-08 loss) | |
I0430 16:34:36.885359 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 9.22416e-06 (* 0.0272727 = 2.51568e-07 loss) | |
I0430 16:34:36.885382 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.619048 | |
I0430 16:34:36.885406 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0430 16:34:36.885428 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0430 16:34:36.885452 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75 | |
I0430 16:34:36.885474 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5 | |
I0430 16:34:36.885495 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.875 | |
I0430 16:34:36.885517 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0430 16:34:36.885540 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0430 16:34:36.885566 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75 | |
I0430 16:34:36.885589 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0430 16:34:36.885610 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0430 16:34:36.885632 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0430 16:34:36.885656 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0430 16:34:36.885679 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0430 16:34:36.885700 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 16:34:36.885722 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 16:34:36.885743 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 16:34:36.885764 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 16:34:36.885787 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 16:34:36.885807 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 16:34:36.885828 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 16:34:36.885851 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 16:34:36.885872 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 16:34:36.885892 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.886364 | |
I0430 16:34:36.885915 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.738095 | |
I0430 16:34:36.885941 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.31431 (* 0.3 = 0.394293 loss) | |
I0430 16:34:36.885967 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.386894 (* 0.3 = 0.116068 loss) | |
I0430 16:34:36.885993 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.459458 (* 0.0272727 = 0.0125307 loss) | |
I0430 16:34:36.886020 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 0.934552 (* 0.0272727 = 0.0254878 loss) | |
I0430 16:34:36.886064 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 0.759561 (* 0.0272727 = 0.0207153 loss) | |
I0430 16:34:36.886091 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.43996 (* 0.0272727 = 0.0392715 loss) | |
I0430 16:34:36.886118 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 0.77525 (* 0.0272727 = 0.0211432 loss) | |
I0430 16:34:36.886144 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.59026 (* 0.0272727 = 0.0433708 loss) | |
I0430 16:34:36.886169 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 1.34301 (* 0.0272727 = 0.0366275 loss) | |
I0430 16:34:36.886195 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.890491 (* 0.0272727 = 0.0242861 loss) | |
I0430 16:34:36.886221 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.262423 (* 0.0272727 = 0.00715698 loss) | |
I0430 16:34:36.886247 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.102535 (* 0.0272727 = 0.00279642 loss) | |
I0430 16:34:36.886275 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.0236384 (* 0.0272727 = 0.000644683 loss) | |
I0430 16:34:36.886302 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00932796 (* 0.0272727 = 0.000254399 loss) | |
I0430 16:34:36.886330 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0118176 (* 0.0272727 = 0.000322299 loss) | |
I0430 16:34:36.886358 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00490099 (* 0.0272727 = 0.000133663 loss) | |
I0430 16:34:36.886385 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00263059 (* 0.0272727 = 7.17433e-05 loss) | |
I0430 16:34:36.886411 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00152298 (* 0.0272727 = 4.15359e-05 loss) | |
I0430 16:34:36.886440 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00201405 (* 0.0272727 = 5.49286e-05 loss) | |
I0430 16:34:36.886466 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00098457 (* 0.0272727 = 2.68519e-05 loss) | |
I0430 16:34:36.886492 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000442376 (* 0.0272727 = 1.20648e-05 loss) | |
I0430 16:34:36.886518 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000258197 (* 0.0272727 = 7.04175e-06 loss) | |
I0430 16:34:36.886545 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000211208 (* 0.0272727 = 5.76023e-06 loss) | |
I0430 16:34:36.886569 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000140215 (* 0.0272727 = 3.82405e-06 loss) | |
I0430 16:34:36.886589 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.761905 | |
I0430 16:34:36.886615 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75 | |
I0430 16:34:36.886637 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0430 16:34:36.886659 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0430 16:34:36.886682 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0430 16:34:36.886706 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625 | |
I0430 16:34:36.886729 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625 | |
I0430 16:34:36.886751 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625 | |
I0430 16:34:36.886773 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75 | |
I0430 16:34:36.886793 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0430 16:34:36.886814 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0430 16:34:36.886837 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0430 16:34:36.886858 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0430 16:34:36.886878 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0430 16:34:36.886899 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 16:34:36.886920 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 16:34:36.886958 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 16:34:36.886982 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 16:34:36.887004 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 16:34:36.887027 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 16:34:36.887048 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 16:34:36.887068 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 16:34:36.887089 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 16:34:36.887112 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.926136 | |
I0430 16:34:36.887133 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.857143 | |
I0430 16:34:36.887159 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.766814 (* 1 = 0.766814 loss) | |
I0430 16:34:36.887186 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.226565 (* 1 = 0.226565 loss) | |
I0430 16:34:36.887212 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.606162 (* 0.0909091 = 0.0551057 loss) | |
I0430 16:34:36.887238 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.428289 (* 0.0909091 = 0.0389354 loss) | |
I0430 16:34:36.887264 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.493548 (* 0.0909091 = 0.044868 loss) | |
I0430 16:34:36.887291 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.4759 (* 0.0909091 = 0.0432636 loss) | |
I0430 16:34:36.887318 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.661536 (* 0.0909091 = 0.0601397 loss) | |
I0430 16:34:36.887344 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 1.16269 (* 0.0909091 = 0.105699 loss) | |
I0430 16:34:36.887370 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.973925 (* 0.0909091 = 0.0885386 loss) | |
I0430 16:34:36.887398 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.716342 (* 0.0909091 = 0.065122 loss) | |
I0430 16:34:36.887423 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.112295 (* 0.0909091 = 0.0102087 loss) | |
I0430 16:34:36.887449 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.0208494 (* 0.0909091 = 0.0018954 loss) | |
I0430 16:34:36.887497 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.0015116 (* 0.0909091 = 0.000137418 loss) | |
I0430 16:34:36.887528 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00049896 (* 0.0909091 = 4.536e-05 loss) | |
I0430 16:34:36.887554 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.000330742 (* 0.0909091 = 3.00675e-05 loss) | |
I0430 16:34:36.887583 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000184677 (* 0.0909091 = 1.67888e-05 loss) | |
I0430 16:34:36.887609 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 7.4271e-05 (* 0.0909091 = 6.75191e-06 loss) | |
I0430 16:34:36.887635 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 3.90219e-05 (* 0.0909091 = 3.54744e-06 loss) | |
I0430 16:34:36.887668 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 1.65856e-05 (* 0.0909091 = 1.50778e-06 loss) | |
I0430 16:34:36.887696 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 8.34482e-06 (* 0.0909091 = 7.5862e-07 loss) | |
I0430 16:34:36.887722 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 2.90575e-06 (* 0.0909091 = 2.64159e-07 loss) | |
I0430 16:34:36.887748 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 1.05798e-06 (* 0.0909091 = 9.61805e-08 loss) | |
I0430 16:34:36.887779 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 4.02332e-07 (* 0.0909091 = 3.65756e-08 loss) | |
I0430 16:34:36.887805 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 3.42727e-07 (* 0.0909091 = 3.1157e-08 loss) | |
I0430 16:34:36.887827 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.375 | |
I0430 16:34:36.887850 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5 | |
I0430 16:34:36.887889 15443 solver.cpp:245] Train net output #149: total_confidence = 0.480904 | |
I0430 16:34:36.887913 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.507659 | |
I0430 16:34:36.887935 15443 sgd_solver.cpp:106] Iteration 18000, lr = 0.001 | |
I0430 16:36:03.176672 15443 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 49.1279 > 30) by scale factor 0.610651 | |
I0430 16:36:53.897325 15443 solver.cpp:229] Iteration 18500, loss = 3.67406 | |
I0430 16:36:53.897481 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.362319 | |
I0430 16:36:53.897502 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875 | |
I0430 16:36:53.897516 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0430 16:36:53.897527 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25 | |
I0430 16:36:53.897539 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25 | |
I0430 16:36:53.897552 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0430 16:36:53.897562 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75 | |
I0430 16:36:53.897574 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0430 16:36:53.897586 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625 | |
I0430 16:36:53.897598 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75 | |
I0430 16:36:53.897609 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.75 | |
I0430 16:36:53.897621 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.75 | |
I0430 16:36:53.897634 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.75 | |
I0430 16:36:53.897644 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.75 | |
I0430 16:36:53.897656 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.75 | |
I0430 16:36:53.897668 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.75 | |
I0430 16:36:53.897680 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.75 | |
I0430 16:36:53.897691 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875 | |
I0430 16:36:53.897703 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 16:36:53.897716 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 16:36:53.897727 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 16:36:53.897738 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 16:36:53.897750 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 16:36:53.897761 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.738636 | |
I0430 16:36:53.897773 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.73913 | |
I0430 16:36:53.897789 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.97227 (* 0.3 = 0.591681 loss) | |
I0430 16:36:53.897804 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.811559 (* 0.3 = 0.243468 loss) | |
I0430 16:36:53.897817 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.721524 (* 0.0272727 = 0.0196779 loss) | |
I0430 16:36:53.897832 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.69348 (* 0.0272727 = 0.0461857 loss) | |
I0430 16:36:53.897846 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.94712 (* 0.0272727 = 0.0531034 loss) | |
I0430 16:36:53.897861 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.67717 (* 0.0272727 = 0.0457411 loss) | |
I0430 16:36:53.897873 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.92455 (* 0.0272727 = 0.0524878 loss) | |
I0430 16:36:53.897887 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.18344 (* 0.0272727 = 0.0322757 loss) | |
I0430 16:36:53.897902 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 0.978118 (* 0.0272727 = 0.026676 loss) | |
I0430 16:36:53.897915 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.776819 (* 0.0272727 = 0.021186 loss) | |
I0430 16:36:53.897929 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.804042 (* 0.0272727 = 0.0219284 loss) | |
I0430 16:36:53.897943 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.652516 (* 0.0272727 = 0.0177959 loss) | |
I0430 16:36:53.897956 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.806131 (* 0.0272727 = 0.0219854 loss) | |
I0430 16:36:53.897970 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.700682 (* 0.0272727 = 0.0191095 loss) | |
I0430 16:36:53.898005 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.752319 (* 0.0272727 = 0.0205178 loss) | |
I0430 16:36:53.898021 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.771221 (* 0.0272727 = 0.0210333 loss) | |
I0430 16:36:53.898036 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.8338 (* 0.0272727 = 0.02274 loss) | |
I0430 16:36:53.898049 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 1.05223 (* 0.0272727 = 0.0286971 loss) | |
I0430 16:36:53.898062 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.650284 (* 0.0272727 = 0.017735 loss) | |
I0430 16:36:53.898077 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0581139 (* 0.0272727 = 0.00158492 loss) | |
I0430 16:36:53.898092 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0148926 (* 0.0272727 = 0.000406163 loss) | |
I0430 16:36:53.898105 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00498498 (* 0.0272727 = 0.000135954 loss) | |
I0430 16:36:53.898119 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000339393 (* 0.0272727 = 9.25616e-06 loss) | |
I0430 16:36:53.898133 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 4.5896e-06 (* 0.0272727 = 1.25171e-07 loss) | |
I0430 16:36:53.898145 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.449275 | |
I0430 16:36:53.898157 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75 | |
I0430 16:36:53.898169 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625 | |
I0430 16:36:53.898181 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0430 16:36:53.898193 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375 | |
I0430 16:36:53.898205 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.125 | |
I0430 16:36:53.898216 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875 | |
I0430 16:36:53.898228 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75 | |
I0430 16:36:53.898239 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0430 16:36:53.898252 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0430 16:36:53.898263 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.75 | |
I0430 16:36:53.898274 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.75 | |
I0430 16:36:53.898286 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.75 | |
I0430 16:36:53.898298 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.75 | |
I0430 16:36:53.898309 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.75 | |
I0430 16:36:53.898324 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.75 | |
I0430 16:36:53.898336 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.75 | |
I0430 16:36:53.898347 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875 | |
I0430 16:36:53.898360 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 16:36:53.898371 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 16:36:53.898382 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 16:36:53.898393 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 16:36:53.898406 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 16:36:53.898416 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.767045 | |
I0430 16:36:53.898428 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.681159 | |
I0430 16:36:53.898442 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.84245 (* 0.3 = 0.552736 loss) | |
I0430 16:36:53.898457 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.766918 (* 0.3 = 0.230075 loss) | |
I0430 16:36:53.898469 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.974234 (* 0.0272727 = 0.02657 loss) | |
I0430 16:36:53.898483 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 1.00771 (* 0.0272727 = 0.0274829 loss) | |
I0430 16:36:53.898515 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.46147 (* 0.0272727 = 0.0398582 loss) | |
I0430 16:36:53.898543 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.86516 (* 0.0272727 = 0.0508681 loss) | |
I0430 16:36:53.898569 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.92427 (* 0.0272727 = 0.05248 loss) | |
I0430 16:36:53.898584 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.05303 (* 0.0272727 = 0.028719 loss) | |
I0430 16:36:53.898610 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 1.2501 (* 0.0272727 = 0.0340936 loss) | |
I0430 16:36:53.898632 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.75518 (* 0.0272727 = 0.0205958 loss) | |
I0430 16:36:53.898646 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.802064 (* 0.0272727 = 0.0218745 loss) | |
I0430 16:36:53.898660 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.857919 (* 0.0272727 = 0.0233978 loss) | |
I0430 16:36:53.898674 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.869764 (* 0.0272727 = 0.0237208 loss) | |
I0430 16:36:53.898687 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.715522 (* 0.0272727 = 0.0195142 loss) | |
I0430 16:36:53.898701 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.86914 (* 0.0272727 = 0.0237038 loss) | |
I0430 16:36:53.898715 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 1.00421 (* 0.0272727 = 0.0273875 loss) | |
I0430 16:36:53.898728 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.9886 (* 0.0272727 = 0.0269618 loss) | |
I0430 16:36:53.898741 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 1.06027 (* 0.0272727 = 0.0289164 loss) | |
I0430 16:36:53.898756 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.741253 (* 0.0272727 = 0.020216 loss) | |
I0430 16:36:53.898768 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0191806 (* 0.0272727 = 0.000523108 loss) | |
I0430 16:36:53.898782 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0108007 (* 0.0272727 = 0.000294564 loss) | |
I0430 16:36:53.898797 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00811307 (* 0.0272727 = 0.000221266 loss) | |
I0430 16:36:53.898810 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00487338 (* 0.0272727 = 0.00013291 loss) | |
I0430 16:36:53.898824 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000820173 (* 0.0272727 = 2.23683e-05 loss) | |
I0430 16:36:53.898836 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.536232 | |
I0430 16:36:53.898849 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0430 16:36:53.898859 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75 | |
I0430 16:36:53.898870 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75 | |
I0430 16:36:53.898882 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625 | |
I0430 16:36:53.898893 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.5 | |
I0430 16:36:53.898905 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0430 16:36:53.898916 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0430 16:36:53.898928 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.625 | |
I0430 16:36:53.898939 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75 | |
I0430 16:36:53.898950 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75 | |
I0430 16:36:53.898962 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.75 | |
I0430 16:36:53.898973 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.75 | |
I0430 16:36:53.898984 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.75 | |
I0430 16:36:53.898996 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.75 | |
I0430 16:36:53.899008 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.75 | |
I0430 16:36:53.899019 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.75 | |
I0430 16:36:53.899055 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.875 | |
I0430 16:36:53.899075 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 16:36:53.899086 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 16:36:53.899097 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 16:36:53.899109 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 16:36:53.899121 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 16:36:53.899132 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.8125 | |
I0430 16:36:53.899143 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.652174 | |
I0430 16:36:53.899157 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.52435 (* 1 = 1.52435 loss) | |
I0430 16:36:53.899170 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.617622 (* 1 = 0.617622 loss) | |
I0430 16:36:53.899184 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.288989 (* 0.0909091 = 0.0262717 loss) | |
I0430 16:36:53.899199 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.901445 (* 0.0909091 = 0.0819495 loss) | |
I0430 16:36:53.899212 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.775671 (* 0.0909091 = 0.0705155 loss) | |
I0430 16:36:53.899226 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.927353 (* 0.0909091 = 0.0843048 loss) | |
I0430 16:36:53.899240 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 1.08687 (* 0.0909091 = 0.0988065 loss) | |
I0430 16:36:53.899253 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.754727 (* 0.0909091 = 0.0686115 loss) | |
I0430 16:36:53.899266 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.735448 (* 0.0909091 = 0.0668589 loss) | |
I0430 16:36:53.899281 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.694015 (* 0.0909091 = 0.0630923 loss) | |
I0430 16:36:53.899294 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.779608 (* 0.0909091 = 0.0708735 loss) | |
I0430 16:36:53.899307 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.945083 (* 0.0909091 = 0.0859166 loss) | |
I0430 16:36:53.899320 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.762225 (* 0.0909091 = 0.0692932 loss) | |
I0430 16:36:53.899334 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.718788 (* 0.0909091 = 0.0653444 loss) | |
I0430 16:36:53.899348 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.741294 (* 0.0909091 = 0.0673904 loss) | |
I0430 16:36:53.899361 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.888181 (* 0.0909091 = 0.0807438 loss) | |
I0430 16:36:53.899379 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.925931 (* 0.0909091 = 0.0841755 loss) | |
I0430 16:36:53.899392 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 1.12036 (* 0.0909091 = 0.101851 loss) | |
I0430 16:36:53.899405 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.757184 (* 0.0909091 = 0.0688349 loss) | |
I0430 16:36:53.899420 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00861708 (* 0.0909091 = 0.000783371 loss) | |
I0430 16:36:53.899435 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00512236 (* 0.0909091 = 0.000465669 loss) | |
I0430 16:36:53.899448 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00328047 (* 0.0909091 = 0.000298224 loss) | |
I0430 16:36:53.899461 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00177183 (* 0.0909091 = 0.000161075 loss) | |
I0430 16:36:53.899492 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000572194 (* 0.0909091 = 5.20177e-05 loss) | |
I0430 16:36:53.899504 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.375 | |
I0430 16:36:53.899516 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25 | |
I0430 16:36:53.899544 15443 solver.cpp:245] Train net output #149: total_confidence = 0.360291 | |
I0430 16:36:53.899557 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.329999 | |
I0430 16:36:53.899570 15443 sgd_solver.cpp:106] Iteration 18500, lr = 0.001 | |
I0430 16:39:10.873841 15443 solver.cpp:229] Iteration 19000, loss = 3.58621 | |
I0430 16:39:10.873986 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.574074 | |
I0430 16:39:10.874014 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875 | |
I0430 16:39:10.874037 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625 | |
I0430 16:39:10.874058 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625 | |
I0430 16:39:10.874080 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.125 | |
I0430 16:39:10.874101 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.75 | |
I0430 16:39:10.874124 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5 | |
I0430 16:39:10.874145 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625 | |
I0430 16:39:10.874166 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625 | |
I0430 16:39:10.874188 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0430 16:39:10.874209 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0430 16:39:10.874230 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0430 16:39:10.874253 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0430 16:39:10.874276 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0430 16:39:10.874296 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 16:39:10.874323 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 16:39:10.874346 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 16:39:10.874366 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 16:39:10.874388 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 16:39:10.874409 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 16:39:10.874430 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 16:39:10.874451 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 16:39:10.874475 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 16:39:10.874495 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.857955 | |
I0430 16:39:10.874516 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.925926 | |
I0430 16:39:10.874544 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.09601 (* 0.3 = 0.328802 loss) | |
I0430 16:39:10.874570 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.360776 (* 0.3 = 0.108233 loss) | |
I0430 16:39:10.874598 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.162307 (* 0.0272727 = 0.00442656 loss) | |
I0430 16:39:10.874626 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.20079 (* 0.0272727 = 0.0327489 loss) | |
I0430 16:39:10.874652 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.11021 (* 0.0272727 = 0.0302783 loss) | |
I0430 16:39:10.874680 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.63694 (* 0.0272727 = 0.0446438 loss) | |
I0430 16:39:10.874704 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 0.857049 (* 0.0272727 = 0.0233741 loss) | |
I0430 16:39:10.874732 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.19261 (* 0.0272727 = 0.0325257 loss) | |
I0430 16:39:10.874758 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 0.909488 (* 0.0272727 = 0.0248042 loss) | |
I0430 16:39:10.874784 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.656374 (* 0.0272727 = 0.0179011 loss) | |
I0430 16:39:10.874810 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0474375 (* 0.0272727 = 0.00129375 loss) | |
I0430 16:39:10.874837 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.227247 (* 0.0272727 = 0.00619766 loss) | |
I0430 16:39:10.874863 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.0105527 (* 0.0272727 = 0.000287801 loss) | |
I0430 16:39:10.874891 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.000767514 (* 0.0272727 = 2.09322e-05 loss) | |
I0430 16:39:10.874940 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000312835 (* 0.0272727 = 8.53185e-06 loss) | |
I0430 16:39:10.874969 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 7.37375e-05 (* 0.0272727 = 2.01102e-06 loss) | |
I0430 16:39:10.875001 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 1.73014e-05 (* 0.0272727 = 4.71857e-07 loss) | |
I0430 16:39:10.875033 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 1.93715e-07 (* 0.0272727 = 5.28314e-09 loss) | |
I0430 16:39:10.875061 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 1.04308e-07 (* 0.0272727 = 2.84477e-09 loss) | |
I0430 16:39:10.875089 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 1.49012e-08 (* 0.0272727 = 4.06395e-10 loss) | |
I0430 16:39:10.875118 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0 (* 0.0272727 = 0 loss) | |
I0430 16:39:10.875144 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 8.9407e-08 (* 0.0272727 = 2.43837e-09 loss) | |
I0430 16:39:10.875172 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 2.98023e-08 (* 0.0272727 = 8.12791e-10 loss) | |
I0430 16:39:10.875198 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 8.9407e-08 (* 0.0272727 = 2.43837e-09 loss) | |
I0430 16:39:10.875221 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.685185 | |
I0430 16:39:10.875243 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0430 16:39:10.875265 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875 | |
I0430 16:39:10.875288 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75 | |
I0430 16:39:10.875310 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5 | |
I0430 16:39:10.875331 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.75 | |
I0430 16:39:10.875354 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0430 16:39:10.875380 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.375 | |
I0430 16:39:10.875402 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625 | |
I0430 16:39:10.875424 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0430 16:39:10.875445 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0430 16:39:10.875481 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0430 16:39:10.875509 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0430 16:39:10.875532 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0430 16:39:10.875555 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 16:39:10.875576 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 16:39:10.875598 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 16:39:10.875619 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 16:39:10.875641 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 16:39:10.875663 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 16:39:10.875684 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 16:39:10.875705 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 16:39:10.875726 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 16:39:10.875747 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.897727 | |
I0430 16:39:10.875771 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.962963 | |
I0430 16:39:10.875797 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.830536 (* 0.3 = 0.249161 loss) | |
I0430 16:39:10.875824 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.27351 (* 0.3 = 0.0820531 loss) | |
I0430 16:39:10.875852 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.139434 (* 0.0272727 = 0.00380276 loss) | |
I0430 16:39:10.875879 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 0.707459 (* 0.0272727 = 0.0192943 loss) | |
I0430 16:39:10.875924 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 0.55427 (* 0.0272727 = 0.0151165 loss) | |
I0430 16:39:10.875953 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.30115 (* 0.0272727 = 0.035486 loss) | |
I0430 16:39:10.875982 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 0.835848 (* 0.0272727 = 0.0227959 loss) | |
I0430 16:39:10.876008 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 0.90954 (* 0.0272727 = 0.0248056 loss) | |
I0430 16:39:10.876034 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 1.08962 (* 0.0272727 = 0.0297168 loss) | |
I0430 16:39:10.876063 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 1.21241 (* 0.0272727 = 0.0330656 loss) | |
I0430 16:39:10.876090 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0390982 (* 0.0272727 = 0.00106632 loss) | |
I0430 16:39:10.876117 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.111168 (* 0.0272727 = 0.00303185 loss) | |
I0430 16:39:10.876143 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.0268542 (* 0.0272727 = 0.000732388 loss) | |
I0430 16:39:10.876168 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.0111958 (* 0.0272727 = 0.000305339 loss) | |
I0430 16:39:10.876194 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.00117599 (* 0.0272727 = 3.20725e-05 loss) | |
I0430 16:39:10.876221 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000566747 (* 0.0272727 = 1.54567e-05 loss) | |
I0430 16:39:10.876247 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00010317 (* 0.0272727 = 2.81373e-06 loss) | |
I0430 16:39:10.876273 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 9.80523e-06 (* 0.0272727 = 2.67415e-07 loss) | |
I0430 16:39:10.876301 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 1.49012e-06 (* 0.0272727 = 4.06397e-08 loss) | |
I0430 16:39:10.876327 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 1.46032e-06 (* 0.0272727 = 3.98269e-08 loss) | |
I0430 16:39:10.876351 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 4.76838e-07 (* 0.0272727 = 1.30047e-08 loss) | |
I0430 16:39:10.876379 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 2.98023e-08 (* 0.0272727 = 8.12791e-10 loss) | |
I0430 16:39:10.876405 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 2.83122e-07 (* 0.0272727 = 7.72152e-09 loss) | |
I0430 16:39:10.876435 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 3.12925e-07 (* 0.0272727 = 8.53431e-09 loss) | |
I0430 16:39:10.876457 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.851852 | |
I0430 16:39:10.876478 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0430 16:39:10.876499 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0430 16:39:10.876519 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1 | |
I0430 16:39:10.876541 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0430 16:39:10.876562 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1 | |
I0430 16:39:10.876584 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0430 16:39:10.876605 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.5 | |
I0430 16:39:10.876627 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75 | |
I0430 16:39:10.876647 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0430 16:39:10.876668 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0430 16:39:10.876688 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0430 16:39:10.876710 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0430 16:39:10.876731 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0430 16:39:10.876752 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 16:39:10.876773 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 16:39:10.876796 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 16:39:10.876832 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 16:39:10.876855 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 16:39:10.876878 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 16:39:10.876898 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 16:39:10.876917 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 16:39:10.876938 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 16:39:10.876960 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.943182 | |
I0430 16:39:10.876982 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.981481 | |
I0430 16:39:10.877007 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.330986 (* 1 = 0.330986 loss) | |
I0430 16:39:10.877034 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.115894 (* 1 = 0.115894 loss) | |
I0430 16:39:10.877060 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0162467 (* 0.0909091 = 0.00147697 loss) | |
I0430 16:39:10.877086 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.202131 (* 0.0909091 = 0.0183756 loss) | |
I0430 16:39:10.877117 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0380187 (* 0.0909091 = 0.00345624 loss) | |
I0430 16:39:10.877145 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.273512 (* 0.0909091 = 0.0248648 loss) | |
I0430 16:39:10.877171 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.212989 (* 0.0909091 = 0.0193626 loss) | |
I0430 16:39:10.877197 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.430899 (* 0.0909091 = 0.0391727 loss) | |
I0430 16:39:10.877223 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.815431 (* 0.0909091 = 0.0741301 loss) | |
I0430 16:39:10.877248 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.670155 (* 0.0909091 = 0.0609232 loss) | |
I0430 16:39:10.877274 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0326191 (* 0.0909091 = 0.00296537 loss) | |
I0430 16:39:10.877300 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.137375 (* 0.0909091 = 0.0124887 loss) | |
I0430 16:39:10.877326 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00983922 (* 0.0909091 = 0.000894474 loss) | |
I0430 16:39:10.877354 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00323004 (* 0.0909091 = 0.00029364 loss) | |
I0430 16:39:10.877382 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.000845459 (* 0.0909091 = 7.68599e-05 loss) | |
I0430 16:39:10.877414 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000387076 (* 0.0909091 = 3.51887e-05 loss) | |
I0430 16:39:10.877442 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000212085 (* 0.0909091 = 1.92805e-05 loss) | |
I0430 16:39:10.877473 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 4.42038e-05 (* 0.0909091 = 4.01853e-06 loss) | |
I0430 16:39:10.877501 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 1.0908e-05 (* 0.0909091 = 9.91638e-07 loss) | |
I0430 16:39:10.877526 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 7.76372e-06 (* 0.0909091 = 7.05793e-07 loss) | |
I0430 16:39:10.877553 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 3.74024e-06 (* 0.0909091 = 3.40022e-07 loss) | |
I0430 16:39:10.877578 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 1.04308e-06 (* 0.0909091 = 9.48259e-08 loss) | |
I0430 16:39:10.877604 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 5.0664e-07 (* 0.0909091 = 4.60582e-08 loss) | |
I0430 16:39:10.877630 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 1.63913e-07 (* 0.0909091 = 1.49012e-08 loss) | |
I0430 16:39:10.877652 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.375 | |
I0430 16:39:10.877673 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375 | |
I0430 16:39:10.877712 15443 solver.cpp:245] Train net output #149: total_confidence = 0.494054 | |
I0430 16:39:10.877735 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.434662 | |
I0430 16:39:10.877758 15443 sgd_solver.cpp:106] Iteration 19000, lr = 0.001 | |
I0430 16:41:27.805430 15443 solver.cpp:229] Iteration 19500, loss = 3.67102 | |
I0430 16:41:27.805613 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.513514 | |
I0430 16:41:27.805634 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0430 16:41:27.805646 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625 | |
I0430 16:41:27.805660 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625 | |
I0430 16:41:27.805671 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.625 | |
I0430 16:41:27.805682 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.75 | |
I0430 16:41:27.805694 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.875 | |
I0430 16:41:27.805706 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875 | |
I0430 16:41:27.805717 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0430 16:41:27.805729 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0430 16:41:27.805742 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0430 16:41:27.805753 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0430 16:41:27.805765 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0430 16:41:27.805776 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0430 16:41:27.805788 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 16:41:27.805800 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 16:41:27.805811 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 16:41:27.805824 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 16:41:27.805835 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 16:41:27.805846 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 16:41:27.805857 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 16:41:27.805869 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 16:41:27.805881 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 16:41:27.805892 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.886364 | |
I0430 16:41:27.805904 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.756757 | |
I0430 16:41:27.805920 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.52233 (* 0.3 = 0.456698 loss) | |
I0430 16:41:27.805934 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.355032 (* 0.3 = 0.10651 loss) | |
I0430 16:41:27.805949 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.890559 (* 0.0272727 = 0.024288 loss) | |
I0430 16:41:27.805963 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 0.925941 (* 0.0272727 = 0.0252529 loss) | |
I0430 16:41:27.805977 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.42689 (* 0.0272727 = 0.0389152 loss) | |
I0430 16:41:27.805991 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 0.967833 (* 0.0272727 = 0.0263954 loss) | |
I0430 16:41:27.806005 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 0.977254 (* 0.0272727 = 0.0266524 loss) | |
I0430 16:41:27.806020 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 0.437776 (* 0.0272727 = 0.0119393 loss) | |
I0430 16:41:27.806033 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 0.38682 (* 0.0272727 = 0.0105496 loss) | |
I0430 16:41:27.806046 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.504757 (* 0.0272727 = 0.0137661 loss) | |
I0430 16:41:27.806061 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.843077 (* 0.0272727 = 0.022993 loss) | |
I0430 16:41:27.806074 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.212443 (* 0.0272727 = 0.0057939 loss) | |
I0430 16:41:27.806089 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.00457028 (* 0.0272727 = 0.000124644 loss) | |
I0430 16:41:27.806103 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.00158959 (* 0.0272727 = 4.33524e-05 loss) | |
I0430 16:41:27.806138 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000551609 (* 0.0272727 = 1.50439e-05 loss) | |
I0430 16:41:27.806152 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000388492 (* 0.0272727 = 1.05952e-05 loss) | |
I0430 16:41:27.806166 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000238882 (* 0.0272727 = 6.51497e-06 loss) | |
I0430 16:41:27.806180 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000142119 (* 0.0272727 = 3.87598e-06 loss) | |
I0430 16:41:27.806193 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000284516 (* 0.0272727 = 7.75952e-06 loss) | |
I0430 16:41:27.806207 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 7.78526e-05 (* 0.0272727 = 2.12325e-06 loss) | |
I0430 16:41:27.806221 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000125478 (* 0.0272727 = 3.42213e-06 loss) | |
I0430 16:41:27.806234 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 6.09605e-05 (* 0.0272727 = 1.66256e-06 loss) | |
I0430 16:41:27.806248 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 6.35544e-05 (* 0.0272727 = 1.7333e-06 loss) | |
I0430 16:41:27.806262 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 2.23983e-05 (* 0.0272727 = 6.10863e-07 loss) | |
I0430 16:41:27.806274 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.540541 | |
I0430 16:41:27.806287 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75 | |
I0430 16:41:27.806298 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875 | |
I0430 16:41:27.806309 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0430 16:41:27.806324 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625 | |
I0430 16:41:27.806336 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.75 | |
I0430 16:41:27.806349 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875 | |
I0430 16:41:27.806360 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75 | |
I0430 16:41:27.806371 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0430 16:41:27.806382 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0430 16:41:27.806394 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0430 16:41:27.806406 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0430 16:41:27.806417 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0430 16:41:27.806428 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0430 16:41:27.806439 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 16:41:27.806450 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 16:41:27.806463 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 16:41:27.806473 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 16:41:27.806484 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 16:41:27.806496 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 16:41:27.806507 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 16:41:27.806519 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 16:41:27.806529 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 16:41:27.806540 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.886364 | |
I0430 16:41:27.806552 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.756757 | |
I0430 16:41:27.806566 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.34444 (* 0.3 = 0.403332 loss) | |
I0430 16:41:27.806579 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.349023 (* 0.3 = 0.104707 loss) | |
I0430 16:41:27.806593 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.99307 (* 0.0272727 = 0.0270837 loss) | |
I0430 16:41:27.806607 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 0.54564 (* 0.0272727 = 0.0148811 loss) | |
I0430 16:41:27.806638 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.16721 (* 0.0272727 = 0.031833 loss) | |
I0430 16:41:27.806653 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.00655 (* 0.0272727 = 0.0274515 loss) | |
I0430 16:41:27.806666 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.19447 (* 0.0272727 = 0.0325764 loss) | |
I0430 16:41:27.806681 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 0.512851 (* 0.0272727 = 0.0139869 loss) | |
I0430 16:41:27.806690 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 0.371846 (* 0.0272727 = 0.0101413 loss) | |
I0430 16:41:27.806700 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.467115 (* 0.0272727 = 0.0127395 loss) | |
I0430 16:41:27.806715 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.851471 (* 0.0272727 = 0.0232219 loss) | |
I0430 16:41:27.806728 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.5155 (* 0.0272727 = 0.0140591 loss) | |
I0430 16:41:27.806742 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.00719706 (* 0.0272727 = 0.000196283 loss) | |
I0430 16:41:27.806756 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00494961 (* 0.0272727 = 0.000134989 loss) | |
I0430 16:41:27.806769 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.00266231 (* 0.0272727 = 7.26083e-05 loss) | |
I0430 16:41:27.806783 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00172184 (* 0.0272727 = 4.69592e-05 loss) | |
I0430 16:41:27.806797 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00174988 (* 0.0272727 = 4.77241e-05 loss) | |
I0430 16:41:27.806810 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000880431 (* 0.0272727 = 2.40118e-05 loss) | |
I0430 16:41:27.806824 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000316957 (* 0.0272727 = 8.64427e-06 loss) | |
I0430 16:41:27.806838 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000326035 (* 0.0272727 = 8.89185e-06 loss) | |
I0430 16:41:27.806850 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000263976 (* 0.0272727 = 7.19934e-06 loss) | |
I0430 16:41:27.806864 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000290436 (* 0.0272727 = 7.92099e-06 loss) | |
I0430 16:41:27.806877 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000368794 (* 0.0272727 = 1.0058e-05 loss) | |
I0430 16:41:27.806891 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000364425 (* 0.0272727 = 9.93887e-06 loss) | |
I0430 16:41:27.806902 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.702703 | |
I0430 16:41:27.806915 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75 | |
I0430 16:41:27.806926 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0430 16:41:27.806937 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625 | |
I0430 16:41:27.806948 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75 | |
I0430 16:41:27.806959 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1 | |
I0430 16:41:27.806972 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1 | |
I0430 16:41:27.806982 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1 | |
I0430 16:41:27.806993 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0430 16:41:27.807005 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0430 16:41:27.807016 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0430 16:41:27.807027 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0430 16:41:27.807039 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0430 16:41:27.807049 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0430 16:41:27.807060 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 16:41:27.807071 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 16:41:27.807092 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 16:41:27.807106 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 16:41:27.807116 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 16:41:27.807127 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 16:41:27.807139 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 16:41:27.807150 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 16:41:27.807162 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 16:41:27.807173 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.931818 | |
I0430 16:41:27.807184 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.810811 | |
I0430 16:41:27.807199 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.908535 (* 1 = 0.908535 loss) | |
I0430 16:41:27.807212 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.211659 (* 1 = 0.211659 loss) | |
I0430 16:41:27.807226 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.723402 (* 0.0909091 = 0.0657638 loss) | |
I0430 16:41:27.807240 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.411739 (* 0.0909091 = 0.0374308 loss) | |
I0430 16:41:27.807253 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.965974 (* 0.0909091 = 0.0878158 loss) | |
I0430 16:41:27.807266 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.668222 (* 0.0909091 = 0.0607475 loss) | |
I0430 16:41:27.807281 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.0536505 (* 0.0909091 = 0.00487731 loss) | |
I0430 16:41:27.807294 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.0230516 (* 0.0909091 = 0.0020956 loss) | |
I0430 16:41:27.807308 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.0777757 (* 0.0909091 = 0.00707052 loss) | |
I0430 16:41:27.807322 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.350779 (* 0.0909091 = 0.031889 loss) | |
I0430 16:41:27.807335 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.511029 (* 0.0909091 = 0.0464572 loss) | |
I0430 16:41:27.807349 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.0460974 (* 0.0909091 = 0.00419067 loss) | |
I0430 16:41:27.807365 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00433536 (* 0.0909091 = 0.000394123 loss) | |
I0430 16:41:27.807379 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00248699 (* 0.0909091 = 0.00022609 loss) | |
I0430 16:41:27.807394 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00182921 (* 0.0909091 = 0.000166292 loss) | |
I0430 16:41:27.807407 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00119046 (* 0.0909091 = 0.000108224 loss) | |
I0430 16:41:27.807421 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000950536 (* 0.0909091 = 8.64124e-05 loss) | |
I0430 16:41:27.807435 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000783482 (* 0.0909091 = 7.12256e-05 loss) | |
I0430 16:41:27.807448 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000426912 (* 0.0909091 = 3.88102e-05 loss) | |
I0430 16:41:27.807462 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000255447 (* 0.0909091 = 2.32225e-05 loss) | |
I0430 16:41:27.807492 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000209885 (* 0.0909091 = 1.90804e-05 loss) | |
I0430 16:41:27.807505 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000152911 (* 0.0909091 = 1.3901e-05 loss) | |
I0430 16:41:27.807519 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000110697 (* 0.0909091 = 1.00633e-05 loss) | |
I0430 16:41:27.807533 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 8.32128e-05 (* 0.0909091 = 7.5648e-06 loss) | |
I0430 16:41:27.807544 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.375 | |
I0430 16:41:27.807556 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375 | |
I0430 16:41:27.807579 15443 solver.cpp:245] Train net output #149: total_confidence = 0.385515 | |
I0430 16:41:27.807590 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.464559 | |
I0430 16:41:27.807603 15443 sgd_solver.cpp:106] Iteration 19500, lr = 0.001 | |
I0430 16:42:26.453346 15443 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 32.9507 > 30) by scale factor 0.91045 | |
I0430 16:43:44.574877 15443 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm14_bn_iter_20000.caffemodel | |
I0430 16:43:53.446482 15443 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm14_bn_iter_20000.solverstate | |
I0430 16:43:57.046567 15443 solver.cpp:338] Iteration 20000, Testing net (#0) | |
I0430 16:44:37.852020 15443 solver.cpp:393] Test loss: 2.336 | |
I0430 16:44:37.852151 15443 solver.cpp:406] Test net output #0: loss1/accuracy = 0.638281 | |
I0430 16:44:37.852171 15443 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.843 | |
I0430 16:44:37.852185 15443 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.716 | |
I0430 16:44:37.852196 15443 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.57 | |
I0430 16:44:37.852208 15443 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.576 | |
I0430 16:44:37.852219 15443 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.572 | |
I0430 16:44:37.852231 15443 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.681 | |
I0430 16:44:37.852242 15443 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.809 | |
I0430 16:44:37.852253 15443 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.894 | |
I0430 16:44:37.852265 15443 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.983 | |
I0430 16:44:37.852277 15443 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.994 | |
I0430 16:44:37.852288 15443 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.998 | |
I0430 16:44:37.852299 15443 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.999 | |
I0430 16:44:37.852313 15443 solver.cpp:406] Test net output #13: loss1/accuracy13 = 0.999 | |
I0430 16:44:37.852325 15443 solver.cpp:406] Test net output #14: loss1/accuracy14 = 1 | |
I0430 16:44:37.852337 15443 solver.cpp:406] Test net output #15: loss1/accuracy15 = 1 | |
I0430 16:44:37.852349 15443 solver.cpp:406] Test net output #16: loss1/accuracy16 = 1 | |
I0430 16:44:37.852360 15443 solver.cpp:406] Test net output #17: loss1/accuracy17 = 1 | |
I0430 16:44:37.852371 15443 solver.cpp:406] Test net output #18: loss1/accuracy18 = 1 | |
I0430 16:44:37.852382 15443 solver.cpp:406] Test net output #19: loss1/accuracy19 = 1 | |
I0430 16:44:37.852393 15443 solver.cpp:406] Test net output #20: loss1/accuracy20 = 1 | |
I0430 16:44:37.852406 15443 solver.cpp:406] Test net output #21: loss1/accuracy21 = 1 | |
I0430 16:44:37.852416 15443 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1 | |
I0430 16:44:37.852427 15443 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.891593 | |
I0430 16:44:37.852439 15443 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.863632 | |
I0430 16:44:37.852455 15443 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.1624 (* 0.3 = 0.34872 loss) | |
I0430 16:44:37.852469 15443 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.355905 (* 0.3 = 0.106771 loss) | |
I0430 16:44:37.852484 15443 solver.cpp:406] Test net output #27: loss1/loss01 = 0.592212 (* 0.0272727 = 0.0161512 loss) | |
I0430 16:44:37.852497 15443 solver.cpp:406] Test net output #28: loss1/loss02 = 0.99735 (* 0.0272727 = 0.0272005 loss) | |
I0430 16:44:37.852511 15443 solver.cpp:406] Test net output #29: loss1/loss03 = 1.41325 (* 0.0272727 = 0.0385432 loss) | |
I0430 16:44:37.852524 15443 solver.cpp:406] Test net output #30: loss1/loss04 = 1.36912 (* 0.0272727 = 0.0373396 loss) | |
I0430 16:44:37.852546 15443 solver.cpp:406] Test net output #31: loss1/loss05 = 1.32158 (* 0.0272727 = 0.036043 loss) | |
I0430 16:44:37.852560 15443 solver.cpp:406] Test net output #32: loss1/loss06 = 1.01685 (* 0.0272727 = 0.0277323 loss) | |
I0430 16:44:37.852573 15443 solver.cpp:406] Test net output #33: loss1/loss07 = 0.585564 (* 0.0272727 = 0.0159699 loss) | |
I0430 16:44:37.852587 15443 solver.cpp:406] Test net output #34: loss1/loss08 = 0.303679 (* 0.0272727 = 0.00828214 loss) | |
I0430 16:44:37.852602 15443 solver.cpp:406] Test net output #35: loss1/loss09 = 0.0931388 (* 0.0272727 = 0.00254015 loss) | |
I0430 16:44:37.852615 15443 solver.cpp:406] Test net output #36: loss1/loss10 = 0.0348995 (* 0.0272727 = 0.000951804 loss) | |
I0430 16:44:37.852628 15443 solver.cpp:406] Test net output #37: loss1/loss11 = 0.0146865 (* 0.0272727 = 0.000400541 loss) | |
I0430 16:44:37.852646 15443 solver.cpp:406] Test net output #38: loss1/loss12 = 0.00940922 (* 0.0272727 = 0.000256615 loss) | |
I0430 16:44:37.852668 15443 solver.cpp:406] Test net output #39: loss1/loss13 = 0.00639762 (* 0.0272727 = 0.000174481 loss) | |
I0430 16:44:37.852702 15443 solver.cpp:406] Test net output #40: loss1/loss14 = 0.00397434 (* 0.0272727 = 0.000108391 loss) | |
I0430 16:44:37.852718 15443 solver.cpp:406] Test net output #41: loss1/loss15 = 0.00253513 (* 0.0272727 = 6.914e-05 loss) | |
I0430 16:44:37.852732 15443 solver.cpp:406] Test net output #42: loss1/loss16 = 0.00153331 (* 0.0272727 = 4.18176e-05 loss) | |
I0430 16:44:37.852746 15443 solver.cpp:406] Test net output #43: loss1/loss17 = 0.000940312 (* 0.0272727 = 2.56449e-05 loss) | |
I0430 16:44:37.852761 15443 solver.cpp:406] Test net output #44: loss1/loss18 = 0.000503219 (* 0.0272727 = 1.37242e-05 loss) | |
I0430 16:44:37.852773 15443 solver.cpp:406] Test net output #45: loss1/loss19 = 0.000310622 (* 0.0272727 = 8.4715e-06 loss) | |
I0430 16:44:37.852787 15443 solver.cpp:406] Test net output #46: loss1/loss20 = 0.000203373 (* 0.0272727 = 5.54655e-06 loss) | |
I0430 16:44:37.852802 15443 solver.cpp:406] Test net output #47: loss1/loss21 = 0.000139761 (* 0.0272727 = 3.81166e-06 loss) | |
I0430 16:44:37.852814 15443 solver.cpp:406] Test net output #48: loss1/loss22 = 0.000108657 (* 0.0272727 = 2.96336e-06 loss) | |
I0430 16:44:37.852826 15443 solver.cpp:406] Test net output #49: loss2/accuracy = 0.738716 | |
I0430 16:44:37.852838 15443 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.875 | |
I0430 16:44:37.852849 15443 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.829 | |
I0430 16:44:37.852860 15443 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.725 | |
I0430 16:44:37.852872 15443 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.659 | |
I0430 16:44:37.852883 15443 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.634 | |
I0430 16:44:37.852895 15443 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.707 | |
I0430 16:44:37.852906 15443 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.852 | |
I0430 16:44:37.852917 15443 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.906 | |
I0430 16:44:37.852928 15443 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.981 | |
I0430 16:44:37.852941 15443 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.994 | |
I0430 16:44:37.852952 15443 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.998 | |
I0430 16:44:37.852963 15443 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.999 | |
I0430 16:44:37.852974 15443 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.999 | |
I0430 16:44:37.852985 15443 solver.cpp:406] Test net output #63: loss2/accuracy14 = 1 | |
I0430 16:44:37.852996 15443 solver.cpp:406] Test net output #64: loss2/accuracy15 = 1 | |
I0430 16:44:37.853008 15443 solver.cpp:406] Test net output #65: loss2/accuracy16 = 1 | |
I0430 16:44:37.853018 15443 solver.cpp:406] Test net output #66: loss2/accuracy17 = 1 | |
I0430 16:44:37.853029 15443 solver.cpp:406] Test net output #67: loss2/accuracy18 = 1 | |
I0430 16:44:37.853040 15443 solver.cpp:406] Test net output #68: loss2/accuracy19 = 1 | |
I0430 16:44:37.853051 15443 solver.cpp:406] Test net output #69: loss2/accuracy20 = 1 | |
I0430 16:44:37.853062 15443 solver.cpp:406] Test net output #70: loss2/accuracy21 = 1 | |
I0430 16:44:37.853073 15443 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1 | |
I0430 16:44:37.853085 15443 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.920637 | |
I0430 16:44:37.853096 15443 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.901552 | |
I0430 16:44:37.853109 15443 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 0.876162 (* 0.3 = 0.262849 loss) | |
I0430 16:44:37.853122 15443 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.27215 (* 0.3 = 0.0816449 loss) | |
I0430 16:44:37.853137 15443 solver.cpp:406] Test net output #76: loss2/loss01 = 0.5159 (* 0.0272727 = 0.01407 loss) | |
I0430 16:44:37.853149 15443 solver.cpp:406] Test net output #77: loss2/loss02 = 0.664668 (* 0.0272727 = 0.0181273 loss) | |
I0430 16:44:37.853178 15443 solver.cpp:406] Test net output #78: loss2/loss03 = 1.00389 (* 0.0272727 = 0.0273788 loss) | |
I0430 16:44:37.853190 15443 solver.cpp:406] Test net output #79: loss2/loss04 = 1.11158 (* 0.0272727 = 0.0303157 loss) | |
I0430 16:44:37.853199 15443 solver.cpp:406] Test net output #80: loss2/loss05 = 1.13046 (* 0.0272727 = 0.0308308 loss) | |
I0430 16:44:37.853209 15443 solver.cpp:406] Test net output #81: loss2/loss06 = 0.891955 (* 0.0272727 = 0.0243261 loss) | |
I0430 16:44:37.853222 15443 solver.cpp:406] Test net output #82: loss2/loss07 = 0.498047 (* 0.0272727 = 0.0135831 loss) | |
I0430 16:44:37.853237 15443 solver.cpp:406] Test net output #83: loss2/loss08 = 0.281914 (* 0.0272727 = 0.00768856 loss) | |
I0430 16:44:37.853250 15443 solver.cpp:406] Test net output #84: loss2/loss09 = 0.0911213 (* 0.0272727 = 0.00248513 loss) | |
I0430 16:44:37.853265 15443 solver.cpp:406] Test net output #85: loss2/loss10 = 0.0341427 (* 0.0272727 = 0.000931165 loss) | |
I0430 16:44:37.853284 15443 solver.cpp:406] Test net output #86: loss2/loss11 = 0.0139341 (* 0.0272727 = 0.000380021 loss) | |
I0430 16:44:37.853303 15443 solver.cpp:406] Test net output #87: loss2/loss12 = 0.00838577 (* 0.0272727 = 0.000228703 loss) | |
I0430 16:44:37.853317 15443 solver.cpp:406] Test net output #88: loss2/loss13 = 0.00537615 (* 0.0272727 = 0.000146622 loss) | |
I0430 16:44:37.853330 15443 solver.cpp:406] Test net output #89: loss2/loss14 = 0.00326607 (* 0.0272727 = 8.90747e-05 loss) | |
I0430 16:44:37.853344 15443 solver.cpp:406] Test net output #90: loss2/loss15 = 0.00192272 (* 0.0272727 = 5.24379e-05 loss) | |
I0430 16:44:37.853358 15443 solver.cpp:406] Test net output #91: loss2/loss16 = 0.00103013 (* 0.0272727 = 2.80945e-05 loss) | |
I0430 16:44:37.853375 15443 solver.cpp:406] Test net output #92: loss2/loss17 = 0.000466211 (* 0.0272727 = 1.27148e-05 loss) | |
I0430 16:44:37.853389 15443 solver.cpp:406] Test net output #93: loss2/loss18 = 0.000224102 (* 0.0272727 = 6.11188e-06 loss) | |
I0430 16:44:37.853402 15443 solver.cpp:406] Test net output #94: loss2/loss19 = 0.000134348 (* 0.0272727 = 3.66404e-06 loss) | |
I0430 16:44:37.853415 15443 solver.cpp:406] Test net output #95: loss2/loss20 = 8.84072e-05 (* 0.0272727 = 2.41111e-06 loss) | |
I0430 16:44:37.853428 15443 solver.cpp:406] Test net output #96: loss2/loss21 = 7.63515e-05 (* 0.0272727 = 2.08231e-06 loss) | |
I0430 16:44:37.853441 15443 solver.cpp:406] Test net output #97: loss2/loss22 = 6.18383e-05 (* 0.0272727 = 1.6865e-06 loss) | |
I0430 16:44:37.853453 15443 solver.cpp:406] Test net output #98: loss3/accuracy = 0.846155 | |
I0430 16:44:37.853464 15443 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.892 | |
I0430 16:44:37.853476 15443 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.884 | |
I0430 16:44:37.853487 15443 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.826 | |
I0430 16:44:37.853497 15443 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.836 | |
I0430 16:44:37.853508 15443 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.82 | |
I0430 16:44:37.853520 15443 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.862 | |
I0430 16:44:37.853531 15443 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.878 | |
I0430 16:44:37.853543 15443 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.941 | |
I0430 16:44:37.853554 15443 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.98 | |
I0430 16:44:37.853564 15443 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.991 | |
I0430 16:44:37.853575 15443 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.998 | |
I0430 16:44:37.853586 15443 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.999 | |
I0430 16:44:37.853597 15443 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.999 | |
I0430 16:44:37.853608 15443 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.999 | |
I0430 16:44:37.853620 15443 solver.cpp:406] Test net output #113: loss3/accuracy15 = 1 | |
I0430 16:44:37.853631 15443 solver.cpp:406] Test net output #114: loss3/accuracy16 = 1 | |
I0430 16:44:37.853653 15443 solver.cpp:406] Test net output #115: loss3/accuracy17 = 1 | |
I0430 16:44:37.853667 15443 solver.cpp:406] Test net output #116: loss3/accuracy18 = 1 | |
I0430 16:44:37.853677 15443 solver.cpp:406] Test net output #117: loss3/accuracy19 = 1 | |
I0430 16:44:37.853688 15443 solver.cpp:406] Test net output #118: loss3/accuracy20 = 1 | |
I0430 16:44:37.853699 15443 solver.cpp:406] Test net output #119: loss3/accuracy21 = 1 | |
I0430 16:44:37.853710 15443 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1 | |
I0430 16:44:37.853721 15443 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.950592 | |
I0430 16:44:37.853732 15443 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.926443 | |
I0430 16:44:37.853745 15443 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.58604 (* 1 = 0.58604 loss) | |
I0430 16:44:37.853759 15443 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.190562 (* 1 = 0.190562 loss) | |
I0430 16:44:37.853772 15443 solver.cpp:406] Test net output #125: loss3/loss01 = 0.416596 (* 0.0909091 = 0.0378723 loss) | |
I0430 16:44:37.853786 15443 solver.cpp:406] Test net output #126: loss3/loss02 = 0.514612 (* 0.0909091 = 0.0467829 loss) | |
I0430 16:44:37.853799 15443 solver.cpp:406] Test net output #127: loss3/loss03 = 0.669356 (* 0.0909091 = 0.0608505 loss) | |
I0430 16:44:37.853812 15443 solver.cpp:406] Test net output #128: loss3/loss04 = 0.612573 (* 0.0909091 = 0.0556885 loss) | |
I0430 16:44:37.853826 15443 solver.cpp:406] Test net output #129: loss3/loss05 = 0.650265 (* 0.0909091 = 0.059115 loss) | |
I0430 16:44:37.853839 15443 solver.cpp:406] Test net output #130: loss3/loss06 = 0.54513 (* 0.0909091 = 0.0495573 loss) | |
I0430 16:44:37.853852 15443 solver.cpp:406] Test net output #131: loss3/loss07 = 0.377912 (* 0.0909091 = 0.0343556 loss) | |
I0430 16:44:37.853865 15443 solver.cpp:406] Test net output #132: loss3/loss08 = 0.198183 (* 0.0909091 = 0.0180166 loss) | |
I0430 16:44:37.853878 15443 solver.cpp:406] Test net output #133: loss3/loss09 = 0.0786095 (* 0.0909091 = 0.00714632 loss) | |
I0430 16:44:37.853893 15443 solver.cpp:406] Test net output #134: loss3/loss10 = 0.0385075 (* 0.0909091 = 0.00350068 loss) | |
I0430 16:44:37.853905 15443 solver.cpp:406] Test net output #135: loss3/loss11 = 0.0164907 (* 0.0909091 = 0.00149916 loss) | |
I0430 16:44:37.853919 15443 solver.cpp:406] Test net output #136: loss3/loss12 = 0.0111749 (* 0.0909091 = 0.0010159 loss) | |
I0430 16:44:37.853932 15443 solver.cpp:406] Test net output #137: loss3/loss13 = 0.00716974 (* 0.0909091 = 0.000651795 loss) | |
I0430 16:44:37.853946 15443 solver.cpp:406] Test net output #138: loss3/loss14 = 0.00420519 (* 0.0909091 = 0.00038229 loss) | |
I0430 16:44:37.853960 15443 solver.cpp:406] Test net output #139: loss3/loss15 = 0.00231925 (* 0.0909091 = 0.000210841 loss) | |
I0430 16:44:37.853972 15443 solver.cpp:406] Test net output #140: loss3/loss16 = 0.00120437 (* 0.0909091 = 0.000109488 loss) | |
I0430 16:44:37.853986 15443 solver.cpp:406] Test net output #141: loss3/loss17 = 0.000540383 (* 0.0909091 = 4.91257e-05 loss) | |
I0430 16:44:37.854001 15443 solver.cpp:406] Test net output #142: loss3/loss18 = 0.000249301 (* 0.0909091 = 2.26638e-05 loss) | |
I0430 16:44:37.854013 15443 solver.cpp:406] Test net output #143: loss3/loss19 = 0.00015935 (* 0.0909091 = 1.44864e-05 loss) | |
I0430 16:44:37.854027 15443 solver.cpp:406] Test net output #144: loss3/loss20 = 7.57025e-05 (* 0.0909091 = 6.88204e-06 loss) | |
I0430 16:44:37.854039 15443 solver.cpp:406] Test net output #145: loss3/loss21 = 4.59118e-05 (* 0.0909091 = 4.1738e-06 loss) | |
I0430 16:44:37.854053 15443 solver.cpp:406] Test net output #146: loss3/loss22 = 3.44741e-05 (* 0.0909091 = 3.13401e-06 loss) | |
I0430 16:44:37.854064 15443 solver.cpp:406] Test net output #147: total_accuracy = 0.601 | |
I0430 16:44:37.854076 15443 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.576 | |
I0430 16:44:37.854087 15443 solver.cpp:406] Test net output #149: total_confidence = 0.542057 | |
I0430 16:44:37.854109 15443 solver.cpp:406] Test net output #150: total_confidence_not_rec = 0.517883 | |
I0430 16:44:37.854121 15443 solver.cpp:338] Iteration 20000, Testing net (#1) | |
I0430 16:45:18.941287 15443 solver.cpp:393] Test loss: 3.11848 | |
I0430 16:45:18.941433 15443 solver.cpp:406] Test net output #0: loss1/accuracy = 0.596494 | |
I0430 16:45:18.941460 15443 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.792 | |
I0430 16:45:18.941483 15443 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.676 | |
I0430 16:45:18.941505 15443 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.547 | |
I0430 16:45:18.941526 15443 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.545 | |
I0430 16:45:18.941546 15443 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.56 | |
I0430 16:45:18.941567 15443 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.644 | |
I0430 16:45:18.941587 15443 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.752 | |
I0430 16:45:18.941608 15443 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.85 | |
I0430 16:45:18.941628 15443 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.908 | |
I0430 16:45:18.941649 15443 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.921 | |
I0430 16:45:18.941671 15443 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.936 | |
I0430 16:45:18.941696 15443 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.937 | |
I0430 16:45:18.941718 15443 solver.cpp:406] Test net output #13: loss1/accuracy13 = 0.952 | |
I0430 16:45:18.941738 15443 solver.cpp:406] Test net output #14: loss1/accuracy14 = 0.961 | |
I0430 16:45:18.941761 15443 solver.cpp:406] Test net output #15: loss1/accuracy15 = 0.965 | |
I0430 16:45:18.941792 15443 solver.cpp:406] Test net output #16: loss1/accuracy16 = 0.978 | |
I0430 16:45:18.941814 15443 solver.cpp:406] Test net output #17: loss1/accuracy17 = 0.99 | |
I0430 16:45:18.941836 15443 solver.cpp:406] Test net output #18: loss1/accuracy18 = 0.995 | |
I0430 16:45:18.941857 15443 solver.cpp:406] Test net output #19: loss1/accuracy19 = 0.998 | |
I0430 16:45:18.941879 15443 solver.cpp:406] Test net output #20: loss1/accuracy20 = 0.998 | |
I0430 16:45:18.941901 15443 solver.cpp:406] Test net output #21: loss1/accuracy21 = 0.999 | |
I0430 16:45:18.941923 15443 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1 | |
I0430 16:45:18.941944 15443 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.85832 | |
I0430 16:45:18.941965 15443 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.82946 | |
I0430 16:45:18.941993 15443 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.29903 (* 0.3 = 0.389709 loss) | |
I0430 16:45:18.942019 15443 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.46927 (* 0.3 = 0.140781 loss) | |
I0430 16:45:18.942046 15443 solver.cpp:406] Test net output #27: loss1/loss01 = 0.778169 (* 0.0272727 = 0.0212228 loss) | |
I0430 16:45:18.942072 15443 solver.cpp:406] Test net output #28: loss1/loss02 = 1.11241 (* 0.0272727 = 0.0303385 loss) | |
I0430 16:45:18.942098 15443 solver.cpp:406] Test net output #29: loss1/loss03 = 1.44769 (* 0.0272727 = 0.0394824 loss) | |
I0430 16:45:18.942124 15443 solver.cpp:406] Test net output #30: loss1/loss04 = 1.47288 (* 0.0272727 = 0.0401693 loss) | |
I0430 16:45:18.942148 15443 solver.cpp:406] Test net output #31: loss1/loss05 = 1.41044 (* 0.0272727 = 0.0384665 loss) | |
I0430 16:45:18.942174 15443 solver.cpp:406] Test net output #32: loss1/loss06 = 1.1173 (* 0.0272727 = 0.0304717 loss) | |
I0430 16:45:18.942199 15443 solver.cpp:406] Test net output #33: loss1/loss07 = 0.787888 (* 0.0272727 = 0.0214879 loss) | |
I0430 16:45:18.942225 15443 solver.cpp:406] Test net output #34: loss1/loss08 = 0.482248 (* 0.0272727 = 0.0131522 loss) | |
I0430 16:45:18.942251 15443 solver.cpp:406] Test net output #35: loss1/loss09 = 0.327684 (* 0.0272727 = 0.00893685 loss) | |
I0430 16:45:18.942277 15443 solver.cpp:406] Test net output #36: loss1/loss10 = 0.277165 (* 0.0272727 = 0.00755904 loss) | |
I0430 16:45:18.942302 15443 solver.cpp:406] Test net output #37: loss1/loss11 = 0.213914 (* 0.0272727 = 0.00583402 loss) | |
I0430 16:45:18.942333 15443 solver.cpp:406] Test net output #38: loss1/loss12 = 0.206755 (* 0.0272727 = 0.00563878 loss) | |
I0430 16:45:18.942385 15443 solver.cpp:406] Test net output #39: loss1/loss13 = 0.176322 (* 0.0272727 = 0.00480879 loss) | |
I0430 16:45:18.942414 15443 solver.cpp:406] Test net output #40: loss1/loss14 = 0.157322 (* 0.0272727 = 0.00429059 loss) | |
I0430 16:45:18.942446 15443 solver.cpp:406] Test net output #41: loss1/loss15 = 0.149295 (* 0.0272727 = 0.00407167 loss) | |
I0430 16:45:18.942476 15443 solver.cpp:406] Test net output #42: loss1/loss16 = 0.0910477 (* 0.0272727 = 0.00248312 loss) | |
I0430 16:45:18.942513 15443 solver.cpp:406] Test net output #43: loss1/loss17 = 0.0444722 (* 0.0272727 = 0.00121288 loss) | |
I0430 16:45:18.942541 15443 solver.cpp:406] Test net output #44: loss1/loss18 = 0.0254422 (* 0.0272727 = 0.000693878 loss) | |
I0430 16:45:18.942566 15443 solver.cpp:406] Test net output #45: loss1/loss19 = 0.0134651 (* 0.0272727 = 0.000367229 loss) | |
I0430 16:45:18.942594 15443 solver.cpp:406] Test net output #46: loss1/loss20 = 0.012627 (* 0.0272727 = 0.000344373 loss) | |
I0430 16:45:18.942620 15443 solver.cpp:406] Test net output #47: loss1/loss21 = 0.0105618 (* 0.0272727 = 0.00028805 loss) | |
I0430 16:45:18.942646 15443 solver.cpp:406] Test net output #48: loss1/loss22 = 2.87161e-05 (* 0.0272727 = 7.83166e-07 loss) | |
I0430 16:45:18.942667 15443 solver.cpp:406] Test net output #49: loss2/accuracy = 0.69416 | |
I0430 16:45:18.942688 15443 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.842 | |
I0430 16:45:18.942710 15443 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.781 | |
I0430 16:45:18.942731 15443 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.705 | |
I0430 16:45:18.942754 15443 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.624 | |
I0430 16:45:18.942775 15443 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.615 | |
I0430 16:45:18.942796 15443 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.679 | |
I0430 16:45:18.942817 15443 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.787 | |
I0430 16:45:18.942837 15443 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.846 | |
I0430 16:45:18.942859 15443 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.904 | |
I0430 16:45:18.942880 15443 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.923 | |
I0430 16:45:18.942900 15443 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.939 | |
I0430 16:45:18.942924 15443 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.942 | |
I0430 16:45:18.942945 15443 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.953 | |
I0430 16:45:18.942965 15443 solver.cpp:406] Test net output #63: loss2/accuracy14 = 0.96 | |
I0430 16:45:18.942986 15443 solver.cpp:406] Test net output #64: loss2/accuracy15 = 0.967 | |
I0430 16:45:18.943006 15443 solver.cpp:406] Test net output #65: loss2/accuracy16 = 0.978 | |
I0430 16:45:18.943027 15443 solver.cpp:406] Test net output #66: loss2/accuracy17 = 0.99 | |
I0430 16:45:18.943048 15443 solver.cpp:406] Test net output #67: loss2/accuracy18 = 0.995 | |
I0430 16:45:18.943068 15443 solver.cpp:406] Test net output #68: loss2/accuracy19 = 0.998 | |
I0430 16:45:18.943089 15443 solver.cpp:406] Test net output #69: loss2/accuracy20 = 0.998 | |
I0430 16:45:18.943110 15443 solver.cpp:406] Test net output #70: loss2/accuracy21 = 0.999 | |
I0430 16:45:18.943132 15443 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1 | |
I0430 16:45:18.943152 15443 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.887592 | |
I0430 16:45:18.943173 15443 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.869176 | |
I0430 16:45:18.943199 15443 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 1.03634 (* 0.3 = 0.310902 loss) | |
I0430 16:45:18.943224 15443 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.383934 (* 0.3 = 0.11518 loss) | |
I0430 16:45:18.943249 15443 solver.cpp:406] Test net output #76: loss2/loss01 = 0.632029 (* 0.0272727 = 0.0172372 loss) | |
I0430 16:45:18.943275 15443 solver.cpp:406] Test net output #77: loss2/loss02 = 0.801587 (* 0.0272727 = 0.0218615 loss) | |
I0430 16:45:18.943320 15443 solver.cpp:406] Test net output #78: loss2/loss03 = 1.06741 (* 0.0272727 = 0.0291113 loss) | |
I0430 16:45:18.943347 15443 solver.cpp:406] Test net output #79: loss2/loss04 = 1.23898 (* 0.0272727 = 0.0337903 loss) | |
I0430 16:45:18.943377 15443 solver.cpp:406] Test net output #80: loss2/loss05 = 1.22695 (* 0.0272727 = 0.0334624 loss) | |
I0430 16:45:18.943404 15443 solver.cpp:406] Test net output #81: loss2/loss06 = 0.9955 (* 0.0272727 = 0.02715 loss) | |
I0430 16:45:18.943429 15443 solver.cpp:406] Test net output #82: loss2/loss07 = 0.696104 (* 0.0272727 = 0.0189847 loss) | |
I0430 16:45:18.943455 15443 solver.cpp:406] Test net output #83: loss2/loss08 = 0.47905 (* 0.0272727 = 0.013065 loss) | |
I0430 16:45:18.943500 15443 solver.cpp:406] Test net output #84: loss2/loss09 = 0.331539 (* 0.0272727 = 0.00904196 loss) | |
I0430 16:45:18.943528 15443 solver.cpp:406] Test net output #85: loss2/loss10 = 0.279001 (* 0.0272727 = 0.00760913 loss) | |
I0430 16:45:18.943554 15443 solver.cpp:406] Test net output #86: loss2/loss11 = 0.219126 (* 0.0272727 = 0.00597617 loss) | |
I0430 16:45:18.943579 15443 solver.cpp:406] Test net output #87: loss2/loss12 = 0.203079 (* 0.0272727 = 0.00553851 loss) | |
I0430 16:45:18.943605 15443 solver.cpp:406] Test net output #88: loss2/loss13 = 0.175182 (* 0.0272727 = 0.00477769 loss) | |
I0430 16:45:18.943630 15443 solver.cpp:406] Test net output #89: loss2/loss14 = 0.152583 (* 0.0272727 = 0.00416136 loss) | |
I0430 16:45:18.943656 15443 solver.cpp:406] Test net output #90: loss2/loss15 = 0.146087 (* 0.0272727 = 0.00398419 loss) | |
I0430 16:45:18.943681 15443 solver.cpp:406] Test net output #91: loss2/loss16 = 0.0966387 (* 0.0272727 = 0.0026356 loss) | |
I0430 16:45:18.943706 15443 solver.cpp:406] Test net output #92: loss2/loss17 = 0.049656 (* 0.0272727 = 0.00135425 loss) | |
I0430 16:45:18.943732 15443 solver.cpp:406] Test net output #93: loss2/loss18 = 0.0236201 (* 0.0272727 = 0.000644183 loss) | |
I0430 16:45:18.943758 15443 solver.cpp:406] Test net output #94: loss2/loss19 = 0.0129567 (* 0.0272727 = 0.000353363 loss) | |
I0430 16:45:18.943783 15443 solver.cpp:406] Test net output #95: loss2/loss20 = 0.0123345 (* 0.0272727 = 0.000336395 loss) | |
I0430 16:45:18.943809 15443 solver.cpp:406] Test net output #96: loss2/loss21 = 0.00772679 (* 0.0272727 = 0.000210731 loss) | |
I0430 16:45:18.943833 15443 solver.cpp:406] Test net output #97: loss2/loss22 = 7.89498e-05 (* 0.0272727 = 2.15318e-06 loss) | |
I0430 16:45:18.943856 15443 solver.cpp:406] Test net output #98: loss3/accuracy = 0.792057 | |
I0430 16:45:18.943876 15443 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.86 | |
I0430 16:45:18.943897 15443 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.823 | |
I0430 16:45:18.943918 15443 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.828 | |
I0430 16:45:18.943939 15443 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.794 | |
I0430 16:45:18.943960 15443 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.771 | |
I0430 16:45:18.943981 15443 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.82 | |
I0430 16:45:18.944001 15443 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.828 | |
I0430 16:45:18.944021 15443 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.877 | |
I0430 16:45:18.944041 15443 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.912 | |
I0430 16:45:18.944062 15443 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.926 | |
I0430 16:45:18.944083 15443 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.939 | |
I0430 16:45:18.944103 15443 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.94 | |
I0430 16:45:18.944124 15443 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.954 | |
I0430 16:45:18.944145 15443 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.963 | |
I0430 16:45:18.944165 15443 solver.cpp:406] Test net output #113: loss3/accuracy15 = 0.972 | |
I0430 16:45:18.944185 15443 solver.cpp:406] Test net output #114: loss3/accuracy16 = 0.979 | |
I0430 16:45:18.944223 15443 solver.cpp:406] Test net output #115: loss3/accuracy17 = 0.99 | |
I0430 16:45:18.944245 15443 solver.cpp:406] Test net output #116: loss3/accuracy18 = 0.996 | |
I0430 16:45:18.944267 15443 solver.cpp:406] Test net output #117: loss3/accuracy19 = 0.998 | |
I0430 16:45:18.944288 15443 solver.cpp:406] Test net output #118: loss3/accuracy20 = 0.998 | |
I0430 16:45:18.944308 15443 solver.cpp:406] Test net output #119: loss3/accuracy21 = 0.999 | |
I0430 16:45:18.944329 15443 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1 | |
I0430 16:45:18.944349 15443 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.916955 | |
I0430 16:45:18.944370 15443 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.900681 | |
I0430 16:45:18.944394 15443 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.749809 (* 1 = 0.749809 loss) | |
I0430 16:45:18.944423 15443 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.296508 (* 1 = 0.296508 loss) | |
I0430 16:45:18.944449 15443 solver.cpp:406] Test net output #125: loss3/loss01 = 0.542666 (* 0.0909091 = 0.0493332 loss) | |
I0430 16:45:18.944475 15443 solver.cpp:406] Test net output #126: loss3/loss02 = 0.611403 (* 0.0909091 = 0.0555821 loss) | |
I0430 16:45:18.944499 15443 solver.cpp:406] Test net output #127: loss3/loss03 = 0.646155 (* 0.0909091 = 0.0587413 loss) | |
I0430 16:45:18.944528 15443 solver.cpp:406] Test net output #128: loss3/loss04 = 0.733856 (* 0.0909091 = 0.0667142 loss) | |
I0430 16:45:18.944555 15443 solver.cpp:406] Test net output #129: loss3/loss05 = 0.800558 (* 0.0909091 = 0.072778 loss) | |
I0430 16:45:18.944581 15443 solver.cpp:406] Test net output #130: loss3/loss06 = 0.675554 (* 0.0909091 = 0.061414 loss) | |
I0430 16:45:18.944607 15443 solver.cpp:406] Test net output #131: loss3/loss07 = 0.5692 (* 0.0909091 = 0.0517454 loss) | |
I0430 16:45:18.944633 15443 solver.cpp:406] Test net output #132: loss3/loss08 = 0.394707 (* 0.0909091 = 0.0358825 loss) | |
I0430 16:45:18.944656 15443 solver.cpp:406] Test net output #133: loss3/loss09 = 0.297623 (* 0.0909091 = 0.0270566 loss) | |
I0430 16:45:18.944681 15443 solver.cpp:406] Test net output #134: loss3/loss10 = 0.263539 (* 0.0909091 = 0.0239581 loss) | |
I0430 16:45:18.944706 15443 solver.cpp:406] Test net output #135: loss3/loss11 = 0.205256 (* 0.0909091 = 0.0186596 loss) | |
I0430 16:45:18.944730 15443 solver.cpp:406] Test net output #136: loss3/loss12 = 0.186089 (* 0.0909091 = 0.0169171 loss) | |
I0430 16:45:18.944756 15443 solver.cpp:406] Test net output #137: loss3/loss13 = 0.160106 (* 0.0909091 = 0.0145551 loss) | |
I0430 16:45:18.944783 15443 solver.cpp:406] Test net output #138: loss3/loss14 = 0.136212 (* 0.0909091 = 0.0123829 loss) | |
I0430 16:45:18.944803 15443 solver.cpp:406] Test net output #139: loss3/loss15 = 0.129973 (* 0.0909091 = 0.0118158 loss) | |
I0430 16:45:18.944831 15443 solver.cpp:406] Test net output #140: loss3/loss16 = 0.0779458 (* 0.0909091 = 0.00708598 loss) | |
I0430 16:45:18.944867 15443 solver.cpp:406] Test net output #141: loss3/loss17 = 0.0432625 (* 0.0909091 = 0.00393296 loss) | |
I0430 16:45:18.944900 15443 solver.cpp:406] Test net output #142: loss3/loss18 = 0.0203725 (* 0.0909091 = 0.00185204 loss) | |
I0430 16:45:18.944927 15443 solver.cpp:406] Test net output #143: loss3/loss19 = 0.0112453 (* 0.0909091 = 0.0010223 loss) | |
I0430 16:45:18.944954 15443 solver.cpp:406] Test net output #144: loss3/loss20 = 0.0103392 (* 0.0909091 = 0.000939925 loss) | |
I0430 16:45:18.944978 15443 solver.cpp:406] Test net output #145: loss3/loss21 = 0.00669406 (* 0.0909091 = 0.000608551 loss) | |
I0430 16:45:18.945003 15443 solver.cpp:406] Test net output #146: loss3/loss22 = 9.40952e-05 (* 0.0909091 = 8.55411e-06 loss) | |
I0430 16:45:18.945026 15443 solver.cpp:406] Test net output #147: total_accuracy = 0.514 | |
I0430 16:45:18.945046 15443 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.508 | |
I0430 16:45:18.945066 15443 solver.cpp:406] Test net output #149: total_confidence = 0.476212 | |
I0430 16:45:18.945103 15443 solver.cpp:406] Test net output #150: total_confidence_not_rec = 0.462266 | |
I0430 16:45:19.124050 15443 solver.cpp:229] Iteration 20000, loss = 3.71068 | |
I0430 16:45:19.124125 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.409091 | |
I0430 16:45:19.124153 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875 | |
I0430 16:45:19.124174 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0430 16:45:19.124197 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25 | |
I0430 16:45:19.124218 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.625 | |
I0430 16:45:19.124238 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0430 16:45:19.124260 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0430 16:45:19.124282 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0430 16:45:19.124305 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0430 16:45:19.124326 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0430 16:45:19.124348 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0430 16:45:19.124369 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0430 16:45:19.124390 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0430 16:45:19.124413 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0430 16:45:19.124434 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 16:45:19.124457 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 16:45:19.124480 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 16:45:19.124502 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 16:45:19.124527 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 16:45:19.124550 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 16:45:19.124572 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 16:45:19.124593 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 16:45:19.124614 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 16:45:19.124637 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.840909 | |
I0430 16:45:19.124660 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.659091 | |
I0430 16:45:19.124687 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.92223 (* 0.3 = 0.57667 loss) | |
I0430 16:45:19.124714 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.549866 (* 0.3 = 0.16496 loss) | |
I0430 16:45:19.124742 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.848254 (* 0.0272727 = 0.0231342 loss) | |
I0430 16:45:19.124768 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.76356 (* 0.0272727 = 0.0480972 loss) | |
I0430 16:45:19.124795 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 2.63941 (* 0.0272727 = 0.0719838 loss) | |
I0430 16:45:19.124821 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.67488 (* 0.0272727 = 0.0456784 loss) | |
I0430 16:45:19.124848 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.55951 (* 0.0272727 = 0.042532 loss) | |
I0430 16:45:19.124873 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.16339 (* 0.0272727 = 0.0317287 loss) | |
I0430 16:45:19.124899 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 0.527976 (* 0.0272727 = 0.0143993 loss) | |
I0430 16:45:19.124927 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.581732 (* 0.0272727 = 0.0158654 loss) | |
I0430 16:45:19.124953 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.472796 (* 0.0272727 = 0.0128944 loss) | |
I0430 16:45:19.124980 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.217692 (* 0.0272727 = 0.00593705 loss) | |
I0430 16:45:19.125007 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.127019 (* 0.0272727 = 0.00346415 loss) | |
I0430 16:45:19.125075 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0714825 (* 0.0272727 = 0.00194952 loss) | |
I0430 16:45:19.125105 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0350059 (* 0.0272727 = 0.000954706 loss) | |
I0430 16:45:19.125133 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00955908 (* 0.0272727 = 0.000260702 loss) | |
I0430 16:45:19.125159 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00459419 (* 0.0272727 = 0.000125296 loss) | |
I0430 16:45:19.125187 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000691338 (* 0.0272727 = 1.88547e-05 loss) | |
I0430 16:45:19.125214 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000693422 (* 0.0272727 = 1.89115e-05 loss) | |
I0430 16:45:19.125244 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000229672 (* 0.0272727 = 6.26378e-06 loss) | |
I0430 16:45:19.125274 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 8.37648e-05 (* 0.0272727 = 2.28449e-06 loss) | |
I0430 16:45:19.125303 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 2.84121e-05 (* 0.0272727 = 7.74876e-07 loss) | |
I0430 16:45:19.125332 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 4.24157e-05 (* 0.0272727 = 1.15679e-06 loss) | |
I0430 16:45:19.125368 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 3.20638e-05 (* 0.0272727 = 8.74467e-07 loss) | |
I0430 16:45:19.125399 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.522727 | |
I0430 16:45:19.125424 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0430 16:45:19.125447 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625 | |
I0430 16:45:19.125469 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375 | |
I0430 16:45:19.125491 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625 | |
I0430 16:45:19.125514 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0430 16:45:19.125536 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5 | |
I0430 16:45:19.125558 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0430 16:45:19.125586 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75 | |
I0430 16:45:19.125609 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0430 16:45:19.125630 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0430 16:45:19.125653 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0430 16:45:19.125675 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0430 16:45:19.125695 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0430 16:45:19.125717 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 16:45:19.125740 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 16:45:19.125761 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 16:45:19.125782 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 16:45:19.125803 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 16:45:19.125823 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 16:45:19.125844 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 16:45:19.125866 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 16:45:19.125887 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 16:45:19.125908 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.863636 | |
I0430 16:45:19.125931 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.727273 | |
I0430 16:45:19.125957 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.53597 (* 0.3 = 0.46079 loss) | |
I0430 16:45:19.125984 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.47113 (* 0.3 = 0.141339 loss) | |
I0430 16:45:19.126029 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.539935 (* 0.0272727 = 0.0147255 loss) | |
I0430 16:45:19.126060 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 1.45214 (* 0.0272727 = 0.0396038 loss) | |
I0430 16:45:19.126086 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 2.04797 (* 0.0272727 = 0.0558537 loss) | |
I0430 16:45:19.126112 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.32915 (* 0.0272727 = 0.0362497 loss) | |
I0430 16:45:19.126139 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.30509 (* 0.0272727 = 0.0355933 loss) | |
I0430 16:45:19.126164 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.43032 (* 0.0272727 = 0.0390086 loss) | |
I0430 16:45:19.126191 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 0.485566 (* 0.0272727 = 0.0132427 loss) | |
I0430 16:45:19.126217 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.653194 (* 0.0272727 = 0.0178144 loss) | |
I0430 16:45:19.126243 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.500383 (* 0.0272727 = 0.0136468 loss) | |
I0430 16:45:19.126269 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.147675 (* 0.0272727 = 0.00402751 loss) | |
I0430 16:45:19.126297 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.104781 (* 0.0272727 = 0.00285767 loss) | |
I0430 16:45:19.126322 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.0717 (* 0.0272727 = 0.00195545 loss) | |
I0430 16:45:19.126348 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0442884 (* 0.0272727 = 0.00120787 loss) | |
I0430 16:45:19.126377 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0195695 (* 0.0272727 = 0.000533712 loss) | |
I0430 16:45:19.126404 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0132067 (* 0.0272727 = 0.000360182 loss) | |
I0430 16:45:19.126428 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00562264 (* 0.0272727 = 0.000153345 loss) | |
I0430 16:45:19.126456 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00260099 (* 0.0272727 = 7.0936e-05 loss) | |
I0430 16:45:19.126482 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00119497 (* 0.0272727 = 3.25901e-05 loss) | |
I0430 16:45:19.126508 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000975936 (* 0.0272727 = 2.66164e-05 loss) | |
I0430 16:45:19.126533 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000745202 (* 0.0272727 = 2.03237e-05 loss) | |
I0430 16:45:19.126561 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000371177 (* 0.0272727 = 1.0123e-05 loss) | |
I0430 16:45:19.126586 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000249662 (* 0.0272727 = 6.80897e-06 loss) | |
I0430 16:45:19.126608 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.659091 | |
I0430 16:45:19.126636 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0430 16:45:19.126657 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.375 | |
I0430 16:45:19.126678 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.5 | |
I0430 16:45:19.126700 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75 | |
I0430 16:45:19.126723 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625 | |
I0430 16:45:19.126742 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625 | |
I0430 16:45:19.126763 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0430 16:45:19.126785 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0430 16:45:19.126807 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0430 16:45:19.126827 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0430 16:45:19.126849 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0430 16:45:19.126871 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0430 16:45:19.126893 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0430 16:45:19.126929 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 16:45:19.126953 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 16:45:19.126974 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 16:45:19.126996 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 16:45:19.127015 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 16:45:19.127038 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 16:45:19.127059 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 16:45:19.127079 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 16:45:19.127100 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 16:45:19.127122 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.897727 | |
I0430 16:45:19.127145 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.772727 | |
I0430 16:45:19.127169 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.29233 (* 1 = 1.29233 loss) | |
I0430 16:45:19.127195 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.383044 (* 1 = 0.383044 loss) | |
I0430 16:45:19.127221 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.22853 (* 0.0909091 = 0.0207755 loss) | |
I0430 16:45:19.127248 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 1.48412 (* 0.0909091 = 0.13492 loss) | |
I0430 16:45:19.127274 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 1.76846 (* 0.0909091 = 0.160769 loss) | |
I0430 16:45:19.127301 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.840034 (* 0.0909091 = 0.0763667 loss) | |
I0430 16:45:19.127327 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 1.2847 (* 0.0909091 = 0.116791 loss) | |
I0430 16:45:19.127352 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.791372 (* 0.0909091 = 0.0719429 loss) | |
I0430 16:45:19.127378 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.431842 (* 0.0909091 = 0.0392583 loss) | |
I0430 16:45:19.127403 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.467165 (* 0.0909091 = 0.0424695 loss) | |
I0430 16:45:19.127429 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.427408 (* 0.0909091 = 0.0388553 loss) | |
I0430 16:45:19.127455 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.262343 (* 0.0909091 = 0.0238494 loss) | |
I0430 16:45:19.127501 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.15927 (* 0.0909091 = 0.0144791 loss) | |
I0430 16:45:19.127529 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.0742103 (* 0.0909091 = 0.00674639 loss) | |
I0430 16:45:19.127557 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0234111 (* 0.0909091 = 0.00212828 loss) | |
I0430 16:45:19.127583 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00622283 (* 0.0909091 = 0.000565712 loss) | |
I0430 16:45:19.127609 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.0021396 (* 0.0909091 = 0.000194509 loss) | |
I0430 16:45:19.127635 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000645839 (* 0.0909091 = 5.87127e-05 loss) | |
I0430 16:45:19.127662 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000261401 (* 0.0909091 = 2.37638e-05 loss) | |
I0430 16:45:19.127693 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00012021 (* 0.0909091 = 1.09282e-05 loss) | |
I0430 16:45:19.127720 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 5.90115e-05 (* 0.0909091 = 5.36468e-06 loss) | |
I0430 16:45:19.127748 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 2.97528e-05 (* 0.0909091 = 2.7048e-06 loss) | |
I0430 16:45:19.127774 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 1.75544e-05 (* 0.0909091 = 1.59585e-06 loss) | |
I0430 16:45:19.127800 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 5.76681e-06 (* 0.0909091 = 5.24255e-07 loss) | |
I0430 16:45:19.127845 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.25 | |
I0430 16:45:19.127869 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375 | |
I0430 16:45:19.127892 15443 solver.cpp:245] Train net output #149: total_confidence = 0.352372 | |
I0430 16:45:19.127912 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.361762 | |
I0430 16:45:19.127933 15443 sgd_solver.cpp:106] Iteration 20000, lr = 0.001 | |
I0430 16:45:46.822196 15443 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.1742 > 30) by scale factor 0.994228 | |
I0430 16:47:36.052430 15443 solver.cpp:229] Iteration 20500, loss = 3.56483 | |
I0430 16:47:36.052603 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.535714 | |
I0430 16:47:36.052624 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875 | |
I0430 16:47:36.052637 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.875 | |
I0430 16:47:36.052649 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.75 | |
I0430 16:47:36.052661 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0430 16:47:36.052673 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375 | |
I0430 16:47:36.052685 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5 | |
I0430 16:47:36.052696 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625 | |
I0430 16:47:36.052708 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625 | |
I0430 16:47:36.052719 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0430 16:47:36.052731 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0430 16:47:36.052743 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0430 16:47:36.052754 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0430 16:47:36.052767 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0430 16:47:36.052778 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 16:47:36.052790 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 16:47:36.052803 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 16:47:36.052814 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 16:47:36.052825 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 16:47:36.052836 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 16:47:36.052848 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 16:47:36.052860 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 16:47:36.052875 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 16:47:36.052888 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.840909 | |
I0430 16:47:36.052901 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.839286 | |
I0430 16:47:36.052916 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.32072 (* 0.3 = 0.396217 loss) | |
I0430 16:47:36.052930 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.483471 (* 0.3 = 0.145041 loss) | |
I0430 16:47:36.052944 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.4389 (* 0.0272727 = 0.01197 loss) | |
I0430 16:47:36.052959 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 0.490657 (* 0.0272727 = 0.0133816 loss) | |
I0430 16:47:36.052973 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 0.76839 (* 0.0272727 = 0.0209561 loss) | |
I0430 16:47:36.052986 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.74344 (* 0.0272727 = 0.0475483 loss) | |
I0430 16:47:36.053000 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 2.17289 (* 0.0272727 = 0.0592606 loss) | |
I0430 16:47:36.053019 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 2.26648 (* 0.0272727 = 0.061813 loss) | |
I0430 16:47:36.053032 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.1526 (* 0.0272727 = 0.0314346 loss) | |
I0430 16:47:36.053045 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 1.2288 (* 0.0272727 = 0.0335127 loss) | |
I0430 16:47:36.053059 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.37549 (* 0.0272727 = 0.0102406 loss) | |
I0430 16:47:36.053073 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.38281 (* 0.0272727 = 0.0104403 loss) | |
I0430 16:47:36.053086 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.372054 (* 0.0272727 = 0.0101469 loss) | |
I0430 16:47:36.053100 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.409871 (* 0.0272727 = 0.0111783 loss) | |
I0430 16:47:36.053114 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0174683 (* 0.0272727 = 0.000476409 loss) | |
I0430 16:47:36.053149 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0109818 (* 0.0272727 = 0.000299504 loss) | |
I0430 16:47:36.053165 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00508253 (* 0.0272727 = 0.000138614 loss) | |
I0430 16:47:36.053179 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000356518 (* 0.0272727 = 9.72322e-06 loss) | |
I0430 16:47:36.053194 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000203937 (* 0.0272727 = 5.56193e-06 loss) | |
I0430 16:47:36.053207 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 3.7042e-05 (* 0.0272727 = 1.01024e-06 loss) | |
I0430 16:47:36.053220 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 1.66904e-05 (* 0.0272727 = 4.55192e-07 loss) | |
I0430 16:47:36.053234 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 2.78007e-05 (* 0.0272727 = 7.58202e-07 loss) | |
I0430 16:47:36.053248 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 1.96859e-05 (* 0.0272727 = 5.36889e-07 loss) | |
I0430 16:47:36.053262 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 5.57313e-06 (* 0.0272727 = 1.51994e-07 loss) | |
I0430 16:47:36.053274 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.607143 | |
I0430 16:47:36.053287 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0430 16:47:36.053298 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0430 16:47:36.053309 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75 | |
I0430 16:47:36.053324 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625 | |
I0430 16:47:36.053335 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0430 16:47:36.053347 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0430 16:47:36.053359 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0430 16:47:36.053371 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75 | |
I0430 16:47:36.053382 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0430 16:47:36.053395 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0430 16:47:36.053406 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0430 16:47:36.053418 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0430 16:47:36.053429 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0430 16:47:36.053442 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 16:47:36.053450 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 16:47:36.053462 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 16:47:36.053473 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 16:47:36.053485 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 16:47:36.053496 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 16:47:36.053508 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 16:47:36.053519 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 16:47:36.053530 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 16:47:36.053545 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.863636 | |
I0430 16:47:36.053557 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.892857 | |
I0430 16:47:36.053571 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.07248 (* 0.3 = 0.321744 loss) | |
I0430 16:47:36.053586 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.382335 (* 0.3 = 0.1147 loss) | |
I0430 16:47:36.053602 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.331977 (* 0.0272727 = 0.00905391 loss) | |
I0430 16:47:36.053622 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 0.673108 (* 0.0272727 = 0.0183575 loss) | |
I0430 16:47:36.053648 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 0.740625 (* 0.0272727 = 0.0201989 loss) | |
I0430 16:47:36.053663 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.39821 (* 0.0272727 = 0.038133 loss) | |
I0430 16:47:36.053678 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.38907 (* 0.0272727 = 0.0378836 loss) | |
I0430 16:47:36.053691 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.1532 (* 0.0272727 = 0.031451 loss) | |
I0430 16:47:36.053704 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 0.930624 (* 0.0272727 = 0.0253807 loss) | |
I0430 16:47:36.053719 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 1.1411 (* 0.0272727 = 0.031121 loss) | |
I0430 16:47:36.053732 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.362944 (* 0.0272727 = 0.00989849 loss) | |
I0430 16:47:36.053746 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.328893 (* 0.0272727 = 0.00896981 loss) | |
I0430 16:47:36.053760 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.288734 (* 0.0272727 = 0.00787456 loss) | |
I0430 16:47:36.053773 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.411163 (* 0.0272727 = 0.0112135 loss) | |
I0430 16:47:36.053787 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0142147 (* 0.0272727 = 0.000387673 loss) | |
I0430 16:47:36.053802 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0061049 (* 0.0272727 = 0.000166497 loss) | |
I0430 16:47:36.053814 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00212804 (* 0.0272727 = 5.80374e-05 loss) | |
I0430 16:47:36.053828 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 5.44457e-05 (* 0.0272727 = 1.48488e-06 loss) | |
I0430 16:47:36.053841 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 5.37059e-05 (* 0.0272727 = 1.46471e-06 loss) | |
I0430 16:47:36.053855 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 2.59973e-05 (* 0.0272727 = 7.09019e-07 loss) | |
I0430 16:47:36.053869 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 3.14376e-05 (* 0.0272727 = 8.5739e-07 loss) | |
I0430 16:47:36.053882 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 5.67043e-05 (* 0.0272727 = 1.54648e-06 loss) | |
I0430 16:47:36.053895 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 8.20053e-05 (* 0.0272727 = 2.23651e-06 loss) | |
I0430 16:47:36.053910 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 4.07463e-05 (* 0.0272727 = 1.11126e-06 loss) | |
I0430 16:47:36.053920 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.875 | |
I0430 16:47:36.053932 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0430 16:47:36.053944 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0430 16:47:36.053956 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0430 16:47:36.053967 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75 | |
I0430 16:47:36.053978 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625 | |
I0430 16:47:36.053990 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1 | |
I0430 16:47:36.054002 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0430 16:47:36.054013 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75 | |
I0430 16:47:36.054024 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0430 16:47:36.054036 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0430 16:47:36.054047 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0430 16:47:36.054059 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0430 16:47:36.054069 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0430 16:47:36.054081 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 16:47:36.054092 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 16:47:36.054113 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 16:47:36.054126 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 16:47:36.054138 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 16:47:36.054149 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 16:47:36.054160 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 16:47:36.054172 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 16:47:36.054183 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 16:47:36.054195 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.954545 | |
I0430 16:47:36.054206 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1 | |
I0430 16:47:36.054220 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.431158 (* 1 = 0.431158 loss) | |
I0430 16:47:36.054234 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.166797 (* 1 = 0.166797 loss) | |
I0430 16:47:36.054249 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0493382 (* 0.0909091 = 0.00448529 loss) | |
I0430 16:47:36.054262 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0450038 (* 0.0909091 = 0.00409126 loss) | |
I0430 16:47:36.054276 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.186223 (* 0.0909091 = 0.0169294 loss) | |
I0430 16:47:36.054289 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.857765 (* 0.0909091 = 0.0779787 loss) | |
I0430 16:47:36.054303 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 1.0732 (* 0.0909091 = 0.0975636 loss) | |
I0430 16:47:36.054317 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.236906 (* 0.0909091 = 0.0215369 loss) | |
I0430 16:47:36.054330 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.443168 (* 0.0909091 = 0.040288 loss) | |
I0430 16:47:36.054343 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 1.00678 (* 0.0909091 = 0.0915256 loss) | |
I0430 16:47:36.054358 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.226215 (* 0.0909091 = 0.020565 loss) | |
I0430 16:47:36.054374 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.0826825 (* 0.0909091 = 0.00751659 loss) | |
I0430 16:47:36.054388 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.0967322 (* 0.0909091 = 0.00879383 loss) | |
I0430 16:47:36.054402 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.292269 (* 0.0909091 = 0.0265699 loss) | |
I0430 16:47:36.054416 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0213156 (* 0.0909091 = 0.00193779 loss) | |
I0430 16:47:36.054430 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00809029 (* 0.0909091 = 0.000735481 loss) | |
I0430 16:47:36.054445 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00201914 (* 0.0909091 = 0.000183558 loss) | |
I0430 16:47:36.054458 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000313745 (* 0.0909091 = 2.85222e-05 loss) | |
I0430 16:47:36.054472 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000137993 (* 0.0909091 = 1.25448e-05 loss) | |
I0430 16:47:36.054486 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 5.11493e-05 (* 0.0909091 = 4.64994e-06 loss) | |
I0430 16:47:36.054499 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 2.24428e-05 (* 0.0909091 = 2.04026e-06 loss) | |
I0430 16:47:36.054512 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 5.72215e-06 (* 0.0909091 = 5.20195e-07 loss) | |
I0430 16:47:36.054527 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 1.38581e-06 (* 0.0909091 = 1.25983e-07 loss) | |
I0430 16:47:36.054540 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 2.08616e-07 (* 0.0909091 = 1.89651e-08 loss) | |
I0430 16:47:36.054553 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.5 | |
I0430 16:47:36.054563 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375 | |
I0430 16:47:36.054585 15443 solver.cpp:245] Train net output #149: total_confidence = 0.466303 | |
I0430 16:47:36.054599 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.478255 | |
I0430 16:47:36.054611 15443 sgd_solver.cpp:106] Iteration 20500, lr = 0.001 | |
I0430 16:49:53.010582 15443 solver.cpp:229] Iteration 21000, loss = 3.69881 | |
I0430 16:49:53.010763 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.490566 | |
I0430 16:49:53.010784 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875 | |
I0430 16:49:53.010797 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625 | |
I0430 16:49:53.010809 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0430 16:49:53.010821 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.125 | |
I0430 16:49:53.010833 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625 | |
I0430 16:49:53.010845 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75 | |
I0430 16:49:53.010857 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5 | |
I0430 16:49:53.010869 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0430 16:49:53.010880 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0430 16:49:53.010893 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0430 16:49:53.010905 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0430 16:49:53.010916 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0430 16:49:53.010928 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0430 16:49:53.010941 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0430 16:49:53.010951 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 16:49:53.010963 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 16:49:53.010974 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 16:49:53.010987 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 16:49:53.010998 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 16:49:53.011009 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 16:49:53.011020 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 16:49:53.011032 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 16:49:53.011044 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.846591 | |
I0430 16:49:53.011055 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.849057 | |
I0430 16:49:53.011073 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.56231 (* 0.3 = 0.468694 loss) | |
I0430 16:49:53.011087 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.495284 (* 0.3 = 0.148585 loss) | |
I0430 16:49:53.011102 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.42953 (* 0.0272727 = 0.0117145 loss) | |
I0430 16:49:53.011116 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 0.986257 (* 0.0272727 = 0.0268979 loss) | |
I0430 16:49:53.011132 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 1.89612 (* 0.0272727 = 0.0517123 loss) | |
I0430 16:49:53.011145 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.82986 (* 0.0272727 = 0.0499052 loss) | |
I0430 16:49:53.011159 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.6116 (* 0.0272727 = 0.0439526 loss) | |
I0430 16:49:53.011173 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 0.703957 (* 0.0272727 = 0.0191988 loss) | |
I0430 16:49:53.011186 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.21786 (* 0.0272727 = 0.0332145 loss) | |
I0430 16:49:53.011200 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.367071 (* 0.0272727 = 0.010011 loss) | |
I0430 16:49:53.011215 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.271011 (* 0.0272727 = 0.00739121 loss) | |
I0430 16:49:53.011229 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.515279 (* 0.0272727 = 0.0140531 loss) | |
I0430 16:49:53.011243 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.455734 (* 0.0272727 = 0.0124291 loss) | |
I0430 16:49:53.011257 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.404897 (* 0.0272727 = 0.0110427 loss) | |
I0430 16:49:53.011292 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.319749 (* 0.0272727 = 0.00872041 loss) | |
I0430 16:49:53.011308 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.379297 (* 0.0272727 = 0.0103445 loss) | |
I0430 16:49:53.011325 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0192553 (* 0.0272727 = 0.000525145 loss) | |
I0430 16:49:53.011340 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0106434 (* 0.0272727 = 0.000290274 loss) | |
I0430 16:49:53.011354 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00446698 (* 0.0272727 = 0.000121827 loss) | |
I0430 16:49:53.011368 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00335222 (* 0.0272727 = 9.14241e-05 loss) | |
I0430 16:49:53.011381 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00138713 (* 0.0272727 = 3.78307e-05 loss) | |
I0430 16:49:53.011395 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.0018379 (* 0.0272727 = 5.01244e-05 loss) | |
I0430 16:49:53.011410 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000300566 (* 0.0272727 = 8.19727e-06 loss) | |
I0430 16:49:53.011425 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 3.87559e-05 (* 0.0272727 = 1.05698e-06 loss) | |
I0430 16:49:53.011436 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.566038 | |
I0430 16:49:53.011448 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0430 16:49:53.011461 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875 | |
I0430 16:49:53.011487 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.875 | |
I0430 16:49:53.011499 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5 | |
I0430 16:49:53.011512 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25 | |
I0430 16:49:53.011523 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875 | |
I0430 16:49:53.011535 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75 | |
I0430 16:49:53.011546 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0430 16:49:53.011559 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0430 16:49:53.011570 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0430 16:49:53.011581 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0430 16:49:53.011593 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0430 16:49:53.011605 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0430 16:49:53.011615 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0430 16:49:53.011627 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 16:49:53.011638 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 16:49:53.011651 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 16:49:53.011662 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 16:49:53.011673 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 16:49:53.011684 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 16:49:53.011695 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 16:49:53.011708 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 16:49:53.011718 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.863636 | |
I0430 16:49:53.011730 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.754717 | |
I0430 16:49:53.011744 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.33975 (* 0.3 = 0.401926 loss) | |
I0430 16:49:53.011759 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.422501 (* 0.3 = 0.12675 loss) | |
I0430 16:49:53.011775 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.395351 (* 0.0272727 = 0.0107823 loss) | |
I0430 16:49:53.011790 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 0.754169 (* 0.0272727 = 0.0205683 loss) | |
I0430 16:49:53.011817 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 0.885593 (* 0.0272727 = 0.0241525 loss) | |
I0430 16:49:53.011832 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.21555 (* 0.0272727 = 0.0331515 loss) | |
I0430 16:49:53.011847 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.56455 (* 0.0272727 = 0.0426697 loss) | |
I0430 16:49:53.011860 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 0.680358 (* 0.0272727 = 0.0185552 loss) | |
I0430 16:49:53.011874 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 0.73471 (* 0.0272727 = 0.0200375 loss) | |
I0430 16:49:53.011888 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.33676 (* 0.0272727 = 0.00918436 loss) | |
I0430 16:49:53.011903 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.370571 (* 0.0272727 = 0.0101065 loss) | |
I0430 16:49:53.011917 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.59339 (* 0.0272727 = 0.0161834 loss) | |
I0430 16:49:53.011931 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.361805 (* 0.0272727 = 0.00986742 loss) | |
I0430 16:49:53.011945 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.457956 (* 0.0272727 = 0.0124897 loss) | |
I0430 16:49:53.011955 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.604183 (* 0.0272727 = 0.0164777 loss) | |
I0430 16:49:53.011970 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.549927 (* 0.0272727 = 0.014998 loss) | |
I0430 16:49:53.011984 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0226548 (* 0.0272727 = 0.000617859 loss) | |
I0430 16:49:53.011998 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00736246 (* 0.0272727 = 0.000200794 loss) | |
I0430 16:49:53.012012 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00139803 (* 0.0272727 = 3.81282e-05 loss) | |
I0430 16:49:53.012027 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000437711 (* 0.0272727 = 1.19376e-05 loss) | |
I0430 16:49:53.012039 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000227277 (* 0.0272727 = 6.19846e-06 loss) | |
I0430 16:49:53.012053 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000188209 (* 0.0272727 = 5.13297e-06 loss) | |
I0430 16:49:53.012068 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 3.71466e-05 (* 0.0272727 = 1.01309e-06 loss) | |
I0430 16:49:53.012080 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 1.33372e-05 (* 0.0272727 = 3.63742e-07 loss) | |
I0430 16:49:53.012092 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.716981 | |
I0430 16:49:53.012104 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0430 16:49:53.012115 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0430 16:49:53.012127 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0430 16:49:53.012138 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0430 16:49:53.012150 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0430 16:49:53.012161 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1 | |
I0430 16:49:53.012172 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0430 16:49:53.012183 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0430 16:49:53.012195 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0430 16:49:53.012207 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0430 16:49:53.012218 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0430 16:49:53.012229 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0430 16:49:53.012240 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0430 16:49:53.012251 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0430 16:49:53.012264 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 16:49:53.012284 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 16:49:53.012297 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 16:49:53.012310 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 16:49:53.012320 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 16:49:53.012332 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 16:49:53.012343 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 16:49:53.012354 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 16:49:53.012368 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.914773 | |
I0430 16:49:53.012380 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.849057 | |
I0430 16:49:53.012394 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.910629 (* 1 = 0.910629 loss) | |
I0430 16:49:53.012408 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.277768 (* 1 = 0.277768 loss) | |
I0430 16:49:53.012423 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.437394 (* 0.0909091 = 0.0397631 loss) | |
I0430 16:49:53.012436 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.399839 (* 0.0909091 = 0.036349 loss) | |
I0430 16:49:53.012450 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.402828 (* 0.0909091 = 0.0366207 loss) | |
I0430 16:49:53.012465 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.540703 (* 0.0909091 = 0.0491548 loss) | |
I0430 16:49:53.012477 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.834977 (* 0.0909091 = 0.075907 loss) | |
I0430 16:49:53.012491 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.142976 (* 0.0909091 = 0.0129978 loss) | |
I0430 16:49:53.012506 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.465625 (* 0.0909091 = 0.0423296 loss) | |
I0430 16:49:53.012519 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.257217 (* 0.0909091 = 0.0233833 loss) | |
I0430 16:49:53.012532 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.242847 (* 0.0909091 = 0.022077 loss) | |
I0430 16:49:53.012547 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.604955 (* 0.0909091 = 0.0549959 loss) | |
I0430 16:49:53.012559 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.38739 (* 0.0909091 = 0.0352173 loss) | |
I0430 16:49:53.012573 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.327488 (* 0.0909091 = 0.0297717 loss) | |
I0430 16:49:53.012586 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.283841 (* 0.0909091 = 0.0258037 loss) | |
I0430 16:49:53.012600 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.278523 (* 0.0909091 = 0.0253203 loss) | |
I0430 16:49:53.012614 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00741597 (* 0.0909091 = 0.000674179 loss) | |
I0430 16:49:53.012629 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00216398 (* 0.0909091 = 0.000196726 loss) | |
I0430 16:49:53.012642 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0011557 (* 0.0909091 = 0.000105063 loss) | |
I0430 16:49:53.012656 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000600341 (* 0.0909091 = 5.45765e-05 loss) | |
I0430 16:49:53.012670 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000568236 (* 0.0909091 = 5.16578e-05 loss) | |
I0430 16:49:53.012683 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000313075 (* 0.0909091 = 2.84613e-05 loss) | |
I0430 16:49:53.012697 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000158908 (* 0.0909091 = 1.44462e-05 loss) | |
I0430 16:49:53.012712 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 2.71451e-05 (* 0.0909091 = 2.46774e-06 loss) | |
I0430 16:49:53.012723 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.625 | |
I0430 16:49:53.012734 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625 | |
I0430 16:49:53.012756 15443 solver.cpp:245] Train net output #149: total_confidence = 0.549923 | |
I0430 16:49:53.012769 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.592648 | |
I0430 16:49:53.012783 15443 sgd_solver.cpp:106] Iteration 21000, lr = 0.001 | |
I0430 16:52:09.944110 15443 solver.cpp:229] Iteration 21500, loss = 3.6552 | |
I0430 16:52:09.944281 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4 | |
I0430 16:52:09.944301 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625 | |
I0430 16:52:09.944317 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375 | |
I0430 16:52:09.944329 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25 | |
I0430 16:52:09.944342 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375 | |
I0430 16:52:09.944355 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.125 | |
I0430 16:52:09.944366 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375 | |
I0430 16:52:09.944377 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5 | |
I0430 16:52:09.944389 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1 | |
I0430 16:52:09.944401 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0430 16:52:09.944413 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0430 16:52:09.944425 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0430 16:52:09.944437 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0430 16:52:09.944448 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0430 16:52:09.944460 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0430 16:52:09.944473 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875 | |
I0430 16:52:09.944484 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 16:52:09.944495 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 16:52:09.944507 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 16:52:09.944519 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 16:52:09.944530 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 16:52:09.944541 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 16:52:09.944553 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 16:52:09.944564 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.772727 | |
I0430 16:52:09.944576 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.666667 | |
I0430 16:52:09.944592 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.02763 (* 0.3 = 0.608288 loss) | |
I0430 16:52:09.944607 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.78434 (* 0.3 = 0.235302 loss) | |
I0430 16:52:09.944622 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 1.62751 (* 0.0272727 = 0.0443865 loss) | |
I0430 16:52:09.944635 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.97766 (* 0.0272727 = 0.0539362 loss) | |
I0430 16:52:09.944648 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 2.24814 (* 0.0272727 = 0.0613128 loss) | |
I0430 16:52:09.944663 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.908 (* 0.0272727 = 0.0520364 loss) | |
I0430 16:52:09.944676 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 2.23396 (* 0.0272727 = 0.0609261 loss) | |
I0430 16:52:09.944690 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 2.17752 (* 0.0272727 = 0.059387 loss) | |
I0430 16:52:09.944703 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.17538 (* 0.0272727 = 0.0320559 loss) | |
I0430 16:52:09.944717 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.401023 (* 0.0272727 = 0.010937 loss) | |
I0430 16:52:09.944731 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.357833 (* 0.0272727 = 0.00975909 loss) | |
I0430 16:52:09.944746 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.176839 (* 0.0272727 = 0.00482289 loss) | |
I0430 16:52:09.944759 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.44751 (* 0.0272727 = 0.0122048 loss) | |
I0430 16:52:09.944773 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.440371 (* 0.0272727 = 0.0120101 loss) | |
I0430 16:52:09.944808 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.366986 (* 0.0272727 = 0.0100087 loss) | |
I0430 16:52:09.944824 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.271401 (* 0.0272727 = 0.00740183 loss) | |
I0430 16:52:09.944839 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.62828 (* 0.0272727 = 0.0171349 loss) | |
I0430 16:52:09.944852 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.153511 (* 0.0272727 = 0.00418668 loss) | |
I0430 16:52:09.944866 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0325043 (* 0.0272727 = 0.000886482 loss) | |
I0430 16:52:09.944880 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0065118 (* 0.0272727 = 0.000177595 loss) | |
I0430 16:52:09.944895 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00166187 (* 0.0272727 = 4.53237e-05 loss) | |
I0430 16:52:09.944910 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00194525 (* 0.0272727 = 5.30523e-05 loss) | |
I0430 16:52:09.944922 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0.0025265 (* 0.0272727 = 6.89044e-05 loss) | |
I0430 16:52:09.944936 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 0.00115159 (* 0.0272727 = 3.1407e-05 loss) | |
I0430 16:52:09.944948 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.45 | |
I0430 16:52:09.944960 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75 | |
I0430 16:52:09.944972 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5 | |
I0430 16:52:09.944984 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25 | |
I0430 16:52:09.944996 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5 | |
I0430 16:52:09.945008 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625 | |
I0430 16:52:09.945016 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.125 | |
I0430 16:52:09.945024 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5 | |
I0430 16:52:09.945031 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1 | |
I0430 16:52:09.945044 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0430 16:52:09.945056 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0430 16:52:09.945067 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0430 16:52:09.945080 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0430 16:52:09.945091 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0430 16:52:09.945102 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0430 16:52:09.945114 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875 | |
I0430 16:52:09.945125 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 16:52:09.945137 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 16:52:09.945148 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 16:52:09.945160 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 16:52:09.945171 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 16:52:09.945183 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 16:52:09.945194 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 16:52:09.945205 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.795455 | |
I0430 16:52:09.945216 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.733333 | |
I0430 16:52:09.945230 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.91791 (* 0.3 = 0.575372 loss) | |
I0430 16:52:09.945245 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.72631 (* 0.3 = 0.217893 loss) | |
I0430 16:52:09.945257 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 1.31416 (* 0.0272727 = 0.0358406 loss) | |
I0430 16:52:09.945271 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 2.40604 (* 0.0272727 = 0.0656194 loss) | |
I0430 16:52:09.945300 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.92919 (* 0.0272727 = 0.0526144 loss) | |
I0430 16:52:09.945317 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.71385 (* 0.0272727 = 0.0467412 loss) | |
I0430 16:52:09.945330 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.75497 (* 0.0272727 = 0.0478629 loss) | |
I0430 16:52:09.945343 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 2.30063 (* 0.0272727 = 0.0627443 loss) | |
I0430 16:52:09.945358 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 1.32225 (* 0.0272727 = 0.0360613 loss) | |
I0430 16:52:09.945374 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.221878 (* 0.0272727 = 0.00605122 loss) | |
I0430 16:52:09.945387 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.439035 (* 0.0272727 = 0.0119737 loss) | |
I0430 16:52:09.945402 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.316676 (* 0.0272727 = 0.00863662 loss) | |
I0430 16:52:09.945416 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.450381 (* 0.0272727 = 0.0122831 loss) | |
I0430 16:52:09.945430 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.328444 (* 0.0272727 = 0.00895756 loss) | |
I0430 16:52:09.945443 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.398852 (* 0.0272727 = 0.0108778 loss) | |
I0430 16:52:09.945457 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.352312 (* 0.0272727 = 0.00960852 loss) | |
I0430 16:52:09.945472 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.579623 (* 0.0272727 = 0.0158079 loss) | |
I0430 16:52:09.945484 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.169499 (* 0.0272727 = 0.00462271 loss) | |
I0430 16:52:09.945498 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0667417 (* 0.0272727 = 0.00182023 loss) | |
I0430 16:52:09.945513 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0274358 (* 0.0272727 = 0.000748249 loss) | |
I0430 16:52:09.945526 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0117631 (* 0.0272727 = 0.000320812 loss) | |
I0430 16:52:09.945539 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00404095 (* 0.0272727 = 0.000110208 loss) | |
I0430 16:52:09.945554 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000508608 (* 0.0272727 = 1.38711e-05 loss) | |
I0430 16:52:09.945567 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000296293 (* 0.0272727 = 8.08073e-06 loss) | |
I0430 16:52:09.945580 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.683333 | |
I0430 16:52:09.945591 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75 | |
I0430 16:52:09.945603 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75 | |
I0430 16:52:09.945614 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1 | |
I0430 16:52:09.945626 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0430 16:52:09.945638 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625 | |
I0430 16:52:09.945649 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.5 | |
I0430 16:52:09.945662 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0430 16:52:09.945672 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1 | |
I0430 16:52:09.945684 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0430 16:52:09.945696 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0430 16:52:09.945708 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0430 16:52:09.945719 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0430 16:52:09.945730 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0430 16:52:09.945741 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0430 16:52:09.945752 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875 | |
I0430 16:52:09.945765 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 16:52:09.945787 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 16:52:09.945801 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 16:52:09.945812 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 16:52:09.945823 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 16:52:09.945835 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 16:52:09.945847 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 16:52:09.945858 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.892045 | |
I0430 16:52:09.945870 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.816667 | |
I0430 16:52:09.945883 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.15982 (* 1 = 1.15982 loss) | |
I0430 16:52:09.945897 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.42934 (* 1 = 0.42934 loss) | |
I0430 16:52:09.945911 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 1.11272 (* 0.0909091 = 0.101156 loss) | |
I0430 16:52:09.945925 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.953863 (* 0.0909091 = 0.0867148 loss) | |
I0430 16:52:09.945940 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.628143 (* 0.0909091 = 0.0571039 loss) | |
I0430 16:52:09.945953 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 0.898435 (* 0.0909091 = 0.0816759 loss) | |
I0430 16:52:09.945967 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.981817 (* 0.0909091 = 0.0892561 loss) | |
I0430 16:52:09.945981 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 1.85222 (* 0.0909091 = 0.168383 loss) | |
I0430 16:52:09.945994 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.872675 (* 0.0909091 = 0.0793341 loss) | |
I0430 16:52:09.946008 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.134828 (* 0.0909091 = 0.0122571 loss) | |
I0430 16:52:09.946022 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.367314 (* 0.0909091 = 0.0333921 loss) | |
I0430 16:52:09.946035 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.17283 (* 0.0909091 = 0.0157118 loss) | |
I0430 16:52:09.946048 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.496114 (* 0.0909091 = 0.0451013 loss) | |
I0430 16:52:09.946063 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.352937 (* 0.0909091 = 0.0320852 loss) | |
I0430 16:52:09.946075 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.390087 (* 0.0909091 = 0.0354624 loss) | |
I0430 16:52:09.946089 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.272816 (* 0.0909091 = 0.0248015 loss) | |
I0430 16:52:09.946104 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.58923 (* 0.0909091 = 0.0535664 loss) | |
I0430 16:52:09.946117 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.044266 (* 0.0909091 = 0.00402418 loss) | |
I0430 16:52:09.946131 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0157897 (* 0.0909091 = 0.00143543 loss) | |
I0430 16:52:09.946146 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00844 (* 0.0909091 = 0.000767273 loss) | |
I0430 16:52:09.946158 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00178282 (* 0.0909091 = 0.000162075 loss) | |
I0430 16:52:09.946172 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000532846 (* 0.0909091 = 4.84406e-05 loss) | |
I0430 16:52:09.946187 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000191353 (* 0.0909091 = 1.73958e-05 loss) | |
I0430 16:52:09.946200 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 5.08596e-05 (* 0.0909091 = 4.6236e-06 loss) | |
I0430 16:52:09.946213 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.25 | |
I0430 16:52:09.946224 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125 | |
I0430 16:52:09.946236 15443 solver.cpp:245] Train net output #149: total_confidence = 0.216883 | |
I0430 16:52:09.946257 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.187777 | |
I0430 16:52:09.946272 15443 sgd_solver.cpp:106] Iteration 21500, lr = 0.001 | |
I0430 16:52:45.842980 15443 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.567 > 30) by scale factor 0.95036 | |
I0430 16:54:26.838058 15443 solver.cpp:229] Iteration 22000, loss = 3.60076 | |
I0430 16:54:26.838168 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.325301 | |
I0430 16:54:26.838187 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625 | |
I0430 16:54:26.838201 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75 | |
I0430 16:54:26.838213 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5 | |
I0430 16:54:26.838224 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375 | |
I0430 16:54:26.838237 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0430 16:54:26.838248 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5 | |
I0430 16:54:26.838259 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0430 16:54:26.838271 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625 | |
I0430 16:54:26.838282 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.5 | |
I0430 16:54:26.838294 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.625 | |
I0430 16:54:26.838305 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.75 | |
I0430 16:54:26.838317 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.75 | |
I0430 16:54:26.838330 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.625 | |
I0430 16:54:26.838341 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.5 | |
I0430 16:54:26.838352 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.625 | |
I0430 16:54:26.838364 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.625 | |
I0430 16:54:26.838377 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875 | |
I0430 16:54:26.838388 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 0.875 | |
I0430 16:54:26.838400 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 0.875 | |
I0430 16:54:26.838413 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 0.875 | |
I0430 16:54:26.838424 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 16:54:26.838435 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 16:54:26.838448 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.676136 | |
I0430 16:54:26.838459 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.481928 | |
I0430 16:54:26.838474 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.1992 (* 0.3 = 0.65976 loss) | |
I0430 16:54:26.838490 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.07496 (* 0.3 = 0.322489 loss) | |
I0430 16:54:26.838503 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 1.1038 (* 0.0272727 = 0.0301037 loss) | |
I0430 16:54:26.838517 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.42941 (* 0.0272727 = 0.038984 loss) | |
I0430 16:54:26.838531 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 2.02805 (* 0.0272727 = 0.0553104 loss) | |
I0430 16:54:26.838547 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.59401 (* 0.0272727 = 0.0434731 loss) | |
I0430 16:54:26.838562 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.5396 (* 0.0272727 = 0.0419892 loss) | |
I0430 16:54:26.838575 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.0613 (* 0.0272727 = 0.0289446 loss) | |
I0430 16:54:26.838589 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.17589 (* 0.0272727 = 0.0320697 loss) | |
I0430 16:54:26.838603 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 1.18628 (* 0.0272727 = 0.0323532 loss) | |
I0430 16:54:26.838616 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 1.38307 (* 0.0272727 = 0.0377201 loss) | |
I0430 16:54:26.838630 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 1.16562 (* 0.0272727 = 0.0317895 loss) | |
I0430 16:54:26.838644 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 1.48081 (* 0.0272727 = 0.0403857 loss) | |
I0430 16:54:26.838656 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 1.25528 (* 0.0272727 = 0.0342349 loss) | |
I0430 16:54:26.838690 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 1.33518 (* 0.0272727 = 0.0364141 loss) | |
I0430 16:54:26.838706 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 1.53119 (* 0.0272727 = 0.0417598 loss) | |
I0430 16:54:26.838719 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 1.63111 (* 0.0272727 = 0.0444849 loss) | |
I0430 16:54:26.838733 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 1.44208 (* 0.0272727 = 0.0393296 loss) | |
I0430 16:54:26.838747 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.531466 (* 0.0272727 = 0.0144945 loss) | |
I0430 16:54:26.838760 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.594142 (* 0.0272727 = 0.0162039 loss) | |
I0430 16:54:26.838779 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.363426 (* 0.0272727 = 0.00991163 loss) | |
I0430 16:54:26.838793 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.335377 (* 0.0272727 = 0.00914664 loss) | |
I0430 16:54:26.838807 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00156778 (* 0.0272727 = 4.27577e-05 loss) | |
I0430 16:54:26.838821 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 9.29983e-05 (* 0.0272727 = 2.53632e-06 loss) | |
I0430 16:54:26.838834 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.313253 | |
I0430 16:54:26.838845 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.375 | |
I0430 16:54:26.838857 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0430 16:54:26.838870 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5 | |
I0430 16:54:26.838881 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375 | |
I0430 16:54:26.838892 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0430 16:54:26.838904 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5 | |
I0430 16:54:26.838915 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0430 16:54:26.838927 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625 | |
I0430 16:54:26.838938 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.5 | |
I0430 16:54:26.838950 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.5 | |
I0430 16:54:26.838961 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.75 | |
I0430 16:54:26.838973 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.75 | |
I0430 16:54:26.838984 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.5 | |
I0430 16:54:26.838996 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.5 | |
I0430 16:54:26.839010 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.5 | |
I0430 16:54:26.839021 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.625 | |
I0430 16:54:26.839032 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875 | |
I0430 16:54:26.839045 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 0.875 | |
I0430 16:54:26.839056 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 0.875 | |
I0430 16:54:26.839067 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 0.875 | |
I0430 16:54:26.839079 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 16:54:26.839090 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 16:54:26.839102 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.676136 | |
I0430 16:54:26.839114 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.53012 | |
I0430 16:54:26.839128 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.2582 (* 0.3 = 0.677459 loss) | |
I0430 16:54:26.839141 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 1.08931 (* 0.3 = 0.326794 loss) | |
I0430 16:54:26.839155 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 1.4631 (* 0.0272727 = 0.0399027 loss) | |
I0430 16:54:26.839169 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 1.08029 (* 0.0272727 = 0.0294625 loss) | |
I0430 16:54:26.839193 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 1.97689 (* 0.0272727 = 0.0539151 loss) | |
I0430 16:54:26.839208 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.81851 (* 0.0272727 = 0.0495958 loss) | |
I0430 16:54:26.839222 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.42845 (* 0.0272727 = 0.0389578 loss) | |
I0430 16:54:26.839236 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.08565 (* 0.0272727 = 0.0296086 loss) | |
I0430 16:54:26.839249 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 1.26142 (* 0.0272727 = 0.0344023 loss) | |
I0430 16:54:26.839262 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 1.27147 (* 0.0272727 = 0.0346763 loss) | |
I0430 16:54:26.839277 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 1.42282 (* 0.0272727 = 0.0388041 loss) | |
I0430 16:54:26.839289 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 1.38338 (* 0.0272727 = 0.0377284 loss) | |
I0430 16:54:26.839303 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 1.42875 (* 0.0272727 = 0.0389658 loss) | |
I0430 16:54:26.839315 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 1.44496 (* 0.0272727 = 0.0394081 loss) | |
I0430 16:54:26.839329 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 1.52608 (* 0.0272727 = 0.0416203 loss) | |
I0430 16:54:26.839342 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 1.65019 (* 0.0272727 = 0.0450053 loss) | |
I0430 16:54:26.839355 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 1.60566 (* 0.0272727 = 0.0437909 loss) | |
I0430 16:54:26.839370 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 1.38408 (* 0.0272727 = 0.0377477 loss) | |
I0430 16:54:26.839382 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.513962 (* 0.0272727 = 0.0140171 loss) | |
I0430 16:54:26.839395 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.546928 (* 0.0272727 = 0.0149162 loss) | |
I0430 16:54:26.839408 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.375813 (* 0.0272727 = 0.0102494 loss) | |
I0430 16:54:26.839422 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.370988 (* 0.0272727 = 0.0101179 loss) | |
I0430 16:54:26.839437 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 0.0280419 (* 0.0272727 = 0.00076478 loss) | |
I0430 16:54:26.839449 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 0.0205235 (* 0.0272727 = 0.000559731 loss) | |
I0430 16:54:26.839462 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.46988 | |
I0430 16:54:26.839488 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.625 | |
I0430 16:54:26.839501 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0430 16:54:26.839512 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625 | |
I0430 16:54:26.839524 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75 | |
I0430 16:54:26.839536 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625 | |
I0430 16:54:26.839547 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0430 16:54:26.839560 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0430 16:54:26.839570 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.625 | |
I0430 16:54:26.839582 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.5 | |
I0430 16:54:26.839596 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.5 | |
I0430 16:54:26.839608 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.75 | |
I0430 16:54:26.839620 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.75 | |
I0430 16:54:26.839632 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.5 | |
I0430 16:54:26.839643 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.5 | |
I0430 16:54:26.839655 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.5 | |
I0430 16:54:26.839666 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.625 | |
I0430 16:54:26.839689 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.875 | |
I0430 16:54:26.839702 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 0.875 | |
I0430 16:54:26.839715 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 0.875 | |
I0430 16:54:26.839726 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 0.875 | |
I0430 16:54:26.839738 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 16:54:26.839750 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 16:54:26.839761 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.75 | |
I0430 16:54:26.839772 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.626506 | |
I0430 16:54:26.839787 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.88881 (* 1 = 1.88881 loss) | |
I0430 16:54:26.839800 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.914682 (* 1 = 0.914682 loss) | |
I0430 16:54:26.839814 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 1.06887 (* 0.0909091 = 0.0971703 loss) | |
I0430 16:54:26.839833 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.729046 (* 0.0909091 = 0.0662769 loss) | |
I0430 16:54:26.839846 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 1.27234 (* 0.0909091 = 0.115667 loss) | |
I0430 16:54:26.839860 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 1.12064 (* 0.0909091 = 0.101876 loss) | |
I0430 16:54:26.839884 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 1.14615 (* 0.0909091 = 0.104195 loss) | |
I0430 16:54:26.839906 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.842627 (* 0.0909091 = 0.0766024 loss) | |
I0430 16:54:26.839920 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 1.04541 (* 0.0909091 = 0.0950369 loss) | |
I0430 16:54:26.839934 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 1.06002 (* 0.0909091 = 0.0963652 loss) | |
I0430 16:54:26.839948 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 1.35174 (* 0.0909091 = 0.122886 loss) | |
I0430 16:54:26.839962 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 1.26714 (* 0.0909091 = 0.115194 loss) | |
I0430 16:54:26.839975 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 1.27112 (* 0.0909091 = 0.115557 loss) | |
I0430 16:54:26.839989 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 1.11192 (* 0.0909091 = 0.101083 loss) | |
I0430 16:54:26.840003 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 1.4665 (* 0.0909091 = 0.133318 loss) | |
I0430 16:54:26.840015 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 1.51815 (* 0.0909091 = 0.138014 loss) | |
I0430 16:54:26.840029 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 1.5707 (* 0.0909091 = 0.142791 loss) | |
I0430 16:54:26.840042 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 1.38493 (* 0.0909091 = 0.125903 loss) | |
I0430 16:54:26.840056 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.492817 (* 0.0909091 = 0.0448015 loss) | |
I0430 16:54:26.840070 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.527107 (* 0.0909091 = 0.0479188 loss) | |
I0430 16:54:26.840083 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.396007 (* 0.0909091 = 0.0360006 loss) | |
I0430 16:54:26.840097 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.442944 (* 0.0909091 = 0.0402676 loss) | |
I0430 16:54:26.840111 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 0.0159924 (* 0.0909091 = 0.00145386 loss) | |
I0430 16:54:26.840126 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 0.00464862 (* 0.0909091 = 0.000422602 loss) | |
I0430 16:54:26.840137 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.5 | |
I0430 16:54:26.840148 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5 | |
I0430 16:54:26.840160 15443 solver.cpp:245] Train net output #149: total_confidence = 0.474276 | |
I0430 16:54:26.840183 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.48585 | |
I0430 16:54:26.840198 15443 sgd_solver.cpp:106] Iteration 22000, lr = 0.001 | |
I0430 16:56:19.204946 15443 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 34.3764 > 30) by scale factor 0.872691 | |
I0430 16:56:43.807881 15443 solver.cpp:229] Iteration 22500, loss = 3.66754 | |
I0430 16:56:43.807960 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.471698 | |
I0430 16:56:43.807978 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 1 | |
I0430 16:56:43.807992 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0430 16:56:43.808007 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25 | |
I0430 16:56:43.808019 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0430 16:56:43.808032 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0430 16:56:43.808043 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0430 16:56:43.808054 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625 | |
I0430 16:56:43.808066 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625 | |
I0430 16:56:43.808078 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0430 16:56:43.808089 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0430 16:56:43.808101 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0430 16:56:43.808114 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0430 16:56:43.808125 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0430 16:56:43.808136 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 16:56:43.808148 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 16:56:43.808159 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 16:56:43.808171 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 16:56:43.808183 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 16:56:43.808195 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 16:56:43.808207 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 16:56:43.808218 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 16:56:43.808229 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 16:56:43.808240 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.835227 | |
I0430 16:56:43.808253 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.716981 | |
I0430 16:56:43.808269 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.61352 (* 0.3 = 0.484057 loss) | |
I0430 16:56:43.808284 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.524305 (* 0.3 = 0.157291 loss) | |
I0430 16:56:43.808298 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.328012 (* 0.0272727 = 0.00894579 loss) | |
I0430 16:56:43.808312 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.13794 (* 0.0272727 = 0.0310348 loss) | |
I0430 16:56:43.808326 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 2.0081 (* 0.0272727 = 0.0547663 loss) | |
I0430 16:56:43.808339 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 1.52822 (* 0.0272727 = 0.0416789 loss) | |
I0430 16:56:43.808353 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 1.59798 (* 0.0272727 = 0.0435812 loss) | |
I0430 16:56:43.808367 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.63708 (* 0.0272727 = 0.0446477 loss) | |
I0430 16:56:43.808380 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 1.1018 (* 0.0272727 = 0.0300492 loss) | |
I0430 16:56:43.808393 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 1.16286 (* 0.0272727 = 0.0317143 loss) | |
I0430 16:56:43.808406 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.424758 (* 0.0272727 = 0.0115843 loss) | |
I0430 16:56:43.808420 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.372746 (* 0.0272727 = 0.0101658 loss) | |
I0430 16:56:43.808434 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.463036 (* 0.0272727 = 0.0126282 loss) | |
I0430 16:56:43.808449 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.51431 (* 0.0272727 = 0.0140266 loss) | |
I0430 16:56:43.808502 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0886034 (* 0.0272727 = 0.00241646 loss) | |
I0430 16:56:43.808518 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0242174 (* 0.0272727 = 0.000660473 loss) | |
I0430 16:56:43.808532 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0105801 (* 0.0272727 = 0.000288549 loss) | |
I0430 16:56:43.808547 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00320358 (* 0.0272727 = 8.73704e-05 loss) | |
I0430 16:56:43.808560 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00256208 (* 0.0272727 = 6.98748e-05 loss) | |
I0430 16:56:43.808574 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000471003 (* 0.0272727 = 1.28455e-05 loss) | |
I0430 16:56:43.808588 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000209291 (* 0.0272727 = 5.70792e-06 loss) | |
I0430 16:56:43.808603 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000253719 (* 0.0272727 = 6.9196e-06 loss) | |
I0430 16:56:43.808619 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00027458 (* 0.0272727 = 7.48853e-06 loss) | |
I0430 16:56:43.808634 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000116059 (* 0.0272727 = 3.16526e-06 loss) | |
I0430 16:56:43.808645 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.566038 | |
I0430 16:56:43.808657 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0430 16:56:43.808670 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875 | |
I0430 16:56:43.808681 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25 | |
I0430 16:56:43.808692 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625 | |
I0430 16:56:43.808704 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625 | |
I0430 16:56:43.808715 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5 | |
I0430 16:56:43.808727 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0430 16:56:43.808738 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625 | |
I0430 16:56:43.808750 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0430 16:56:43.808761 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0430 16:56:43.808773 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0430 16:56:43.808784 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0430 16:56:43.808796 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0430 16:56:43.808807 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 16:56:43.808820 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 16:56:43.808831 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 16:56:43.808842 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 16:56:43.808854 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 16:56:43.808868 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 16:56:43.808876 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 16:56:43.808883 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 16:56:43.808890 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 16:56:43.808902 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.840909 | |
I0430 16:56:43.808914 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.792453 | |
I0430 16:56:43.808928 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.38383 (* 0.3 = 0.415149 loss) | |
I0430 16:56:43.808941 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.513085 (* 0.3 = 0.153925 loss) | |
I0430 16:56:43.808955 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.340045 (* 0.0272727 = 0.00927396 loss) | |
I0430 16:56:43.808981 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 0.743428 (* 0.0272727 = 0.0202753 loss) | |
I0430 16:56:43.808996 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 2.03137 (* 0.0272727 = 0.0554011 loss) | |
I0430 16:56:43.809010 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 1.40689 (* 0.0272727 = 0.0383697 loss) | |
I0430 16:56:43.809025 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.33108 (* 0.0272727 = 0.0363022 loss) | |
I0430 16:56:43.809037 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 1.5807 (* 0.0272727 = 0.0431099 loss) | |
I0430 16:56:43.809052 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 0.84883 (* 0.0272727 = 0.0231499 loss) | |
I0430 16:56:43.809067 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 1.08356 (* 0.0272727 = 0.0295518 loss) | |
I0430 16:56:43.809082 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.315919 (* 0.0272727 = 0.00861598 loss) | |
I0430 16:56:43.809095 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.484012 (* 0.0272727 = 0.0132003 loss) | |
I0430 16:56:43.809108 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.491998 (* 0.0272727 = 0.0134181 loss) | |
I0430 16:56:43.809123 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.5938 (* 0.0272727 = 0.0161945 loss) | |
I0430 16:56:43.809135 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.234335 (* 0.0272727 = 0.00639096 loss) | |
I0430 16:56:43.809149 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.183959 (* 0.0272727 = 0.00501705 loss) | |
I0430 16:56:43.809164 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.108112 (* 0.0272727 = 0.0029485 loss) | |
I0430 16:56:43.809177 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0753912 (* 0.0272727 = 0.00205612 loss) | |
I0430 16:56:43.809190 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0113467 (* 0.0272727 = 0.000309456 loss) | |
I0430 16:56:43.809204 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00622247 (* 0.0272727 = 0.000169704 loss) | |
I0430 16:56:43.809218 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00382582 (* 0.0272727 = 0.000104341 loss) | |
I0430 16:56:43.809231 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000869684 (* 0.0272727 = 2.37187e-05 loss) | |
I0430 16:56:43.809245 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00018777 (* 0.0272727 = 5.121e-06 loss) | |
I0430 16:56:43.809259 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 1.09825e-05 (* 0.0272727 = 2.99523e-07 loss) | |
I0430 16:56:43.809272 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.830189 | |
I0430 16:56:43.809283 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0430 16:56:43.809294 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0430 16:56:43.809305 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0430 16:56:43.809317 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625 | |
I0430 16:56:43.809329 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0430 16:56:43.809340 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.5 | |
I0430 16:56:43.809352 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0430 16:56:43.809363 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0430 16:56:43.809376 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0430 16:56:43.809386 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0430 16:56:43.809398 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0430 16:56:43.809409 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0430 16:56:43.809422 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0430 16:56:43.809433 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 16:56:43.809444 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 16:56:43.809466 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 16:56:43.809479 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 16:56:43.809490 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 16:56:43.809502 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 16:56:43.809514 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 16:56:43.809525 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 16:56:43.809536 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 16:56:43.809548 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.931818 | |
I0430 16:56:43.809561 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.924528 | |
I0430 16:56:43.809573 15443 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.629915 (* 1 = 0.629915 loss) | |
I0430 16:56:43.809588 15443 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.246845 (* 1 = 0.246845 loss) | |
I0430 16:56:43.809602 15443 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0227186 (* 0.0909091 = 0.00206532 loss) | |
I0430 16:56:43.809617 15443 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0954579 (* 0.0909091 = 0.00867799 loss) | |
I0430 16:56:43.809630 15443 solver.cpp:245] Train net output #127: loss3/loss03 = 0.804344 (* 0.0909091 = 0.0731222 loss) | |
I0430 16:56:43.809644 15443 solver.cpp:245] Train net output #128: loss3/loss04 = 1.00236 (* 0.0909091 = 0.0911233 loss) | |
I0430 16:56:43.809658 15443 solver.cpp:245] Train net output #129: loss3/loss05 = 0.846244 (* 0.0909091 = 0.0769313 loss) | |
I0430 16:56:43.809674 15443 solver.cpp:245] Train net output #130: loss3/loss06 = 0.717335 (* 0.0909091 = 0.0652122 loss) | |
I0430 16:56:43.809689 15443 solver.cpp:245] Train net output #131: loss3/loss07 = 0.623016 (* 0.0909091 = 0.0566378 loss) | |
I0430 16:56:43.809702 15443 solver.cpp:245] Train net output #132: loss3/loss08 = 0.73326 (* 0.0909091 = 0.06666 loss) | |
I0430 16:56:43.809715 15443 solver.cpp:245] Train net output #133: loss3/loss09 = 0.378422 (* 0.0909091 = 0.034402 loss) | |
I0430 16:56:43.809730 15443 solver.cpp:245] Train net output #134: loss3/loss10 = 0.177429 (* 0.0909091 = 0.0161299 loss) | |
I0430 16:56:43.809743 15443 solver.cpp:245] Train net output #135: loss3/loss11 = 0.0580558 (* 0.0909091 = 0.0052778 loss) | |
I0430 16:56:43.809756 15443 solver.cpp:245] Train net output #136: loss3/loss12 = 0.508483 (* 0.0909091 = 0.0462258 loss) | |
I0430 16:56:43.809769 15443 solver.cpp:245] Train net output #137: loss3/loss13 = 0.262101 (* 0.0909091 = 0.0238274 loss) | |
I0430 16:56:43.809783 15443 solver.cpp:245] Train net output #138: loss3/loss14 = 0.18287 (* 0.0909091 = 0.0166246 loss) | |
I0430 16:56:43.809798 15443 solver.cpp:245] Train net output #139: loss3/loss15 = 0.0342513 (* 0.0909091 = 0.00311375 loss) | |
I0430 16:56:43.809811 15443 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00563868 (* 0.0909091 = 0.000512607 loss) | |
I0430 16:56:43.809824 15443 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00207224 (* 0.0909091 = 0.000188386 loss) | |
I0430 16:56:43.809839 15443 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000446225 (* 0.0909091 = 4.05659e-05 loss) | |
I0430 16:56:43.809852 15443 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000434996 (* 0.0909091 = 3.95451e-05 loss) | |
I0430 16:56:43.809865 15443 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000136882 (* 0.0909091 = 1.24438e-05 loss) | |
I0430 16:56:43.809880 15443 solver.cpp:245] Train net output #145: loss3/loss21 = 7.53927e-05 (* 0.0909091 = 6.85388e-06 loss) | |
I0430 16:56:43.809893 15443 solver.cpp:245] Train net output #146: loss3/loss22 = 2.53122e-05 (* 0.0909091 = 2.30111e-06 loss) | |
I0430 16:56:43.809905 15443 solver.cpp:245] Train net output #147: total_accuracy = 0.75 | |
I0430 16:56:43.809916 15443 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375 | |
I0430 16:56:43.809937 15443 solver.cpp:245] Train net output #149: total_confidence = 0.335207 | |
I0430 16:56:43.809950 15443 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.359083 | |
I0430 16:56:43.809963 15443 sgd_solver.cpp:106] Iteration 22500, lr = 0.001 | |
I0430 16:57:50.217910 15443 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 32.513 > 30) by scale factor 0.922707 | |
I0430 16:59:00.771482 15443 solver.cpp:229] Iteration 23000, loss = 3.63249 | |
I0430 16:59:00.771601 15443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.659091 | |
I0430 16:59:00.771620 15443 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875 | |
I0430 16:59:00.771633 15443 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0430 16:59:00.771646 15443 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.875 | |
I0430 16:59:00.771658 15443 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.75 | |
I0430 16:59:00.771673 15443 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625 | |
I0430 16:59:00.771687 15443 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0430 16:59:00.771698 15443 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875 | |
I0430 16:59:00.771710 15443 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0430 16:59:00.771723 15443 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0430 16:59:00.771734 15443 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0430 16:59:00.771746 15443 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0430 16:59:00.771757 15443 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0430 16:59:00.771770 15443 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0430 16:59:00.771781 15443 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0430 16:59:00.771793 15443 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0430 16:59:00.771805 15443 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0430 16:59:00.771816 15443 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0430 16:59:00.771828 15443 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0430 16:59:00.771841 15443 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0430 16:59:00.771852 15443 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0430 16:59:00.771864 15443 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0430 16:59:00.771875 15443 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0430 16:59:00.771888 15443 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.886364 | |
I0430 16:59:00.771899 15443 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.886364 | |
I0430 16:59:00.771915 15443 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.12291 (* 0.3 = 0.336872 loss) | |
I0430 16:59:00.771930 15443 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.341913 (* 0.3 = 0.102574 loss) | |
I0430 16:59:00.771944 15443 solver.cpp:245] Train net output #27: loss1/loss01 = 0.463823 (* 0.0272727 = 0.0126497 loss) | |
I0430 16:59:00.771960 15443 solver.cpp:245] Train net output #28: loss1/loss02 = 1.20882 (* 0.0272727 = 0.0329679 loss) | |
I0430 16:59:00.771973 15443 solver.cpp:245] Train net output #29: loss1/loss03 = 0.577676 (* 0.0272727 = 0.0157548 loss) | |
I0430 16:59:00.771987 15443 solver.cpp:245] Train net output #30: loss1/loss04 = 0.690791 (* 0.0272727 = 0.0188398 loss) | |
I0430 16:59:00.772001 15443 solver.cpp:245] Train net output #31: loss1/loss05 = 0.68781 (* 0.0272727 = 0.0187585 loss) | |
I0430 16:59:00.772016 15443 solver.cpp:245] Train net output #32: loss1/loss06 = 1.15753 (* 0.0272727 = 0.031569 loss) | |
I0430 16:59:00.772029 15443 solver.cpp:245] Train net output #33: loss1/loss07 = 0.342376 (* 0.0272727 = 0.00933752 loss) | |
I0430 16:59:00.772043 15443 solver.cpp:245] Train net output #34: loss1/loss08 = 0.34414 (* 0.0272727 = 0.00938565 loss) | |
I0430 16:59:00.772058 15443 solver.cpp:245] Train net output #35: loss1/loss09 = 0.309672 (* 0.0272727 = 0.0084456 loss) | |
I0430 16:59:00.772071 15443 solver.cpp:245] Train net output #36: loss1/loss10 = 0.320599 (* 0.0272727 = 0.00874361 loss) | |
I0430 16:59:00.772085 15443 solver.cpp:245] Train net output #37: loss1/loss11 = 0.297268 (* 0.0272727 = 0.00810731 loss) | |
I0430 16:59:00.772109 15443 solver.cpp:245] Train net output #38: loss1/loss12 = 0.397601 (* 0.0272727 = 0.0108437 loss) | |
I0430 16:59:00.772153 15443 solver.cpp:245] Train net output #39: loss1/loss13 = 0.444294 (* 0.0272727 = 0.0121171 loss) | |
I0430 16:59:00.772171 15443 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0152888 (* 0.0272727 = 0.000416968 loss) | |
I0430 16:59:00.772184 15443 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00859124 (* 0.0272727 = 0.000234307 loss) | |
I0430 16:59:00.772198 15443 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00159313 (* 0.0272727 = 4.34489e-05 loss) | |
I0430 16:59:00.772212 15443 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000705958 (* 0.0272727 = 1.92534e-05 loss) | |
I0430 16:59:00.772227 15443 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000284063 (* 0.0272727 = 7.74717e-06 loss) | |
I0430 16:59:00.772240 15443 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000105858 (* 0.0272727 = 2.88704e-06 loss) | |
I0430 16:59:00.772254 15443 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000180307 (* 0.0272727 = 4.91747e-06 loss) | |
I0430 16:59:00.772269 15443 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000106932 (* 0.0272727 = 2.91632e-06 loss) | |
I0430 16:59:00.772282 15443 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000203178 (* 0.0272727 = 5.54123e-06 loss) | |
I0430 16:59:00.772294 15443 solver.cpp:245] Train net output #49: loss2/accuracy = 0.659091 | |
I0430 16:59:00.772306 15443 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0430 16:59:00.772318 15443 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625 | |
I0430 16:59:00.772330 15443 solver.cpp:245] Train net output #52: loss2/accuracy03 = 1 | |
I0430 16:59:00.772341 15443 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.875 | |
I0430 16:59:00.772353 15443 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0430 16:59:00.772366 15443 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75 | |
I0430 16:59:00.772377 15443 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0430 16:59:00.772388 15443 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0430 16:59:00.772399 15443 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0430 16:59:00.772411 15443 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0430 16:59:00.772423 15443 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0430 16:59:00.772435 15443 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0430 16:59:00.772446 15443 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0430 16:59:00.772457 15443 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0430 16:59:00.772469 15443 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0430 16:59:00.772480 15443 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0430 16:59:00.772492 15443 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0430 16:59:00.772503 15443 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0430 16:59:00.772514 15443 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0430 16:59:00.772526 15443 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0430 16:59:00.772537 15443 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0430 16:59:00.772549 15443 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0430 16:59:00.772560 15443 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.897727 | |
I0430 16:59:00.772572 15443 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.909091 | |
I0430 16:59:00.772583 15443 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.923314 (* 0.3 = 0.276994 loss) | |
I0430 16:59:00.772593 15443 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.316597 (* 0.3 = 0.0949792 loss) | |
I0430 16:59:00.772608 15443 solver.cpp:245] Train net output #76: loss2/loss01 = 0.436849 (* 0.0272727 = 0.0119141 loss) | |
I0430 16:59:00.772625 15443 solver.cpp:245] Train net output #77: loss2/loss02 = 1.10379 (* 0.0272727 = 0.0301034 loss) | |
I0430 16:59:00.772651 15443 solver.cpp:245] Train net output #78: loss2/loss03 = 0.191666 (* 0.0272727 = 0.00522726 loss) | |
I0430 16:59:00.772667 15443 solver.cpp:245] Train net output #79: loss2/loss04 = 0.5307 (* 0.0272727 = 0.0144736 loss) | |
I0430 16:59:00.772681 15443 solver.cpp:245] Train net output #80: loss2/loss05 = 1.00479 (* 0.0272727 = 0.0274033 loss) | |
I0430 16:59:00.772694 15443 solver.cpp:245] Train net output #81: loss2/loss06 = 0.937184 (* 0.0272727 = 0.0255596 loss) | |
I0430 16:59:00.772708 15443 solver.cpp:245] Train net output #82: loss2/loss07 = 0.410267 (* 0.0272727 = 0.0111891 loss) | |
I0430 16:59:00.772725 15443 solver.cpp:245] Train net output #83: loss2/loss08 = 0.330154 (* 0.0272727 = 0.00900419 loss) | |
I0430 16:59:00.772740 15443 solver.cpp:245] Train net output #84: loss2/loss09 = 0.272161 (* 0.0272727 = 0.00742258 loss) | |
I0430 16:59:00.772754 15443 solver.cpp:245] Train net output #85: loss2/loss10 = 0.281955 (* 0.0272727 = 0.00768968 loss) | |
I0430 16:59:00.772768 15443 solver.cpp:245] Train net output #86: loss2/loss11 = 0.440531 (* 0.0272727 = 0.0120145 loss) | |
I0430 16:59:00.772783 15443 solver.cpp:245] Train net output #87: loss2/loss12 = 0.298077 (* 0.0272727 = 0.00812936 loss) | |
I0430 16:59:00.772796 15443 solver.cpp:245] Train net output #88: loss2/loss13 = 0.404852 (* 0.0272727 = 0.0110414 loss) | |
I0430 16:59:00.772810 15443 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0411173 (* 0.0272727 = 0.00112138 loss) | |
I0430 16:59:00.772825 15443 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00837459 (* 0.0272727 = 0.000228398 loss) | |
I0430 16:59:00.772838 15443 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00116788 (* 0.0272727 = 3.18512e-05 loss) | |
I0430 16:59:00.772852 15443 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000210582 (* 0.0272727 = 5.74314e-06 loss) | |
I0430 16:59:00.772866 15443 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00010934 (* 0.0272727 = 2.98201e-06 loss) | |
I0430 16:59:00.772879 15443 solver.cpp:245] Train net output #94: loss2/loss19 = 6.06475e-05 (* 0.0272727 = 1.65402e-06 loss) | |
I0430 16:59:00.772892 15443 solver.cpp:245] Train net output #95: loss2/loss20 = 4.52034e-05 (* 0.0272727 = 1.23282e-06 loss) | |
I0430 16:59:00.772907 15443 solver.cpp:245] Train net output #96: loss2/loss21 = 1.03716e-05 (* 0.0272727 = 2.82863e-07 loss) | |
I0430 16:59:00.772920 15443 solver.cpp:245] Train net output #97: loss2/loss22 = 4.48533e-06 (* 0.0272727 = 1.22327e-07 loss) | |
I0430 16:59:00.772933 15443 solver.cpp:245] Train net output #98: loss3/accuracy = 0.795455 | |
I0430 16:59:00.772944 15443 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0430 16:59:00.772955 15443 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75 | |
I0430 16:59:00.772966 15443 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1 | |
I0430 16:59:00.772979 15443 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0430 16:59:00.772989 15443 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0430 16:59:00.773001 15443 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0430 16:59:00.773012 15443 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0430 16:59:00.773025 15443 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0430 16:59:00.773036 15443 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0430 16:59:00.773047 15443 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0430 16:59:00.773059 15443 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0430 16:59:00.773071 15443 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0430 16:59:00.773082 15443 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0430 16:59:00.773093 15443 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0430 16:59:00.773105 15443 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0430 16:59:00.773128 15443 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0430 16:59:00.773140 15443 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0430 16:59:00.773152 15443 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0430 16:59:00.773164 15443 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0430 16:59:00.773175 15443 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0430 16:59:00.773186 15443 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0430 16:59:00.773198 15443 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0430 16:59:00.773210 15443 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.943182 | |
I0430 16:59:00.773221 15443 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.977273 | |
I0430 16:59:00.773236 1 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment