Last active
April 5, 2016 10:45
-
-
Save stas-sl/ee750d8f3b92b13ae5745f8be920432c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
I0404 23:42:02.924360 26022 solver.cpp:280] Solving | |
I0404 23:42:02.924372 26022 solver.cpp:281] Learning Rate Policy: poly | |
I0404 23:42:13.433935 26022 solver.cpp:229] Iteration 0, loss = 4.304 | |
I0404 23:42:13.433985 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0404 23:42:13.434006 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0404 23:42:13.434020 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0404 23:42:13.434031 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0404 23:42:13.434043 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0 | |
I0404 23:42:13.434056 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0 | |
I0404 23:42:13.434067 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0 | |
I0404 23:42:13.434079 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0 | |
I0404 23:42:13.434092 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0 | |
I0404 23:42:13.434103 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0 | |
I0404 23:42:13.434115 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 0 | |
I0404 23:42:13.434126 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 0 | |
I0404 23:42:13.434139 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 0 | |
I0404 23:42:13.434150 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 0 | |
I0404 23:42:13.434162 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 0 | |
I0404 23:42:13.434175 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 0 | |
I0404 23:42:13.434186 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 0 | |
I0404 23:42:13.434198 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 0 | |
I0404 23:42:13.434209 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 0 | |
I0404 23:42:13.434221 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 0 | |
I0404 23:42:13.434233 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 0.3125 | |
I0404 23:42:13.434245 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 0 | |
I0404 23:42:13.434262 26022 solver.cpp:245] Train net output #22: loss/loss01 = 4.30402 (* 0.0454545 = 0.195637 loss) | |
I0404 23:42:13.434276 26022 solver.cpp:245] Train net output #23: loss/loss02 = 4.30405 (* 0.0454545 = 0.195639 loss) | |
I0404 23:42:13.434290 26022 solver.cpp:245] Train net output #24: loss/loss03 = 4.30406 (* 0.0454545 = 0.195639 loss) | |
I0404 23:42:13.434305 26022 solver.cpp:245] Train net output #25: loss/loss04 = 4.30405 (* 0.0454545 = 0.195639 loss) | |
I0404 23:42:13.434319 26022 solver.cpp:245] Train net output #26: loss/loss05 = 4.30405 (* 0.0454545 = 0.195639 loss) | |
I0404 23:42:13.434334 26022 solver.cpp:245] Train net output #27: loss/loss06 = 4.304 (* 0.0454545 = 0.195636 loss) | |
I0404 23:42:13.434350 26022 solver.cpp:245] Train net output #28: loss/loss07 = 4.30391 (* 0.0454545 = 0.195632 loss) | |
I0404 23:42:13.434391 26022 solver.cpp:245] Train net output #29: loss/loss08 = 4.30403 (* 0.0454545 = 0.195638 loss) | |
I0404 23:42:13.434406 26022 solver.cpp:245] Train net output #30: loss/loss09 = 4.30395 (* 0.0454545 = 0.195634 loss) | |
I0404 23:42:13.434420 26022 solver.cpp:245] Train net output #31: loss/loss10 = 4.30411 (* 0.0454545 = 0.195641 loss) | |
I0404 23:42:13.434435 26022 solver.cpp:245] Train net output #32: loss/loss11 = 4.30406 (* 0.0454545 = 0.195639 loss) | |
I0404 23:42:13.434449 26022 solver.cpp:245] Train net output #33: loss/loss12 = 4.30401 (* 0.0454545 = 0.195637 loss) | |
I0404 23:42:13.434463 26022 solver.cpp:245] Train net output #34: loss/loss13 = 4.30414 (* 0.0454545 = 0.195643 loss) | |
I0404 23:42:13.434478 26022 solver.cpp:245] Train net output #35: loss/loss14 = 4.30407 (* 0.0454545 = 0.195639 loss) | |
I0404 23:42:13.434492 26022 solver.cpp:245] Train net output #36: loss/loss15 = 4.30405 (* 0.0454545 = 0.195639 loss) | |
I0404 23:42:13.434507 26022 solver.cpp:245] Train net output #37: loss/loss16 = 4.30409 (* 0.0454545 = 0.195641 loss) | |
I0404 23:42:13.434521 26022 solver.cpp:245] Train net output #38: loss/loss17 = 4.30373 (* 0.0454545 = 0.195624 loss) | |
I0404 23:42:13.434536 26022 solver.cpp:245] Train net output #39: loss/loss18 = 4.30389 (* 0.0454545 = 0.195632 loss) | |
I0404 23:42:13.434551 26022 solver.cpp:245] Train net output #40: loss/loss19 = 4.30397 (* 0.0454545 = 0.195635 loss) | |
I0404 23:42:13.434564 26022 solver.cpp:245] Train net output #41: loss/loss20 = 4.30389 (* 0.0454545 = 0.195631 loss) | |
I0404 23:42:13.434578 26022 solver.cpp:245] Train net output #42: loss/loss21 = 4.30371 (* 0.0454545 = 0.195623 loss) | |
I0404 23:42:13.434592 26022 solver.cpp:245] Train net output #43: loss/loss22 = 4.30406 (* 0.0454545 = 0.195639 loss) | |
I0404 23:42:13.434605 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0404 23:42:13.434617 26022 solver.cpp:245] Train net output #45: total_confidence = 7.61045e-42 | |
I0404 23:42:13.434643 26022 sgd_solver.cpp:106] Iteration 0, lr = 0.04 | |
I0404 23:49:09.543875 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 56.3543 > 30) by scale factor 0.532346 | |
I0404 23:49:20.420500 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 101.693 > 30) by scale factor 0.295007 | |
I0404 23:49:31.279211 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 55.8417 > 30) by scale factor 0.537233 | |
I0404 23:49:42.136785 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 196.495 > 30) by scale factor 0.152675 | |
I0404 23:49:53.043862 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 165.578 > 30) by scale factor 0.181184 | |
I0404 23:50:03.964578 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 150.38 > 30) by scale factor 0.199495 | |
I0404 23:50:14.862637 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 78.1494 > 30) by scale factor 0.38388 | |
I0404 23:50:25.711493 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 39.4703 > 30) by scale factor 0.760065 | |
I0404 23:51:19.566433 26022 solver.cpp:229] Iteration 50, loss = 3.38569 | |
I0404 23:51:19.566547 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0404 23:51:19.566567 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0404 23:51:19.566581 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0404 23:51:19.566594 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0404 23:51:19.566607 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0 | |
I0404 23:51:19.566619 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.03125 | |
I0404 23:51:19.566632 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0404 23:51:19.566645 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0404 23:51:19.566658 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0404 23:51:19.566671 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0404 23:51:19.566684 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0404 23:51:19.566696 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0404 23:51:19.566709 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0404 23:51:19.566720 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0404 23:51:19.566731 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0404 23:51:19.566743 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0404 23:51:19.566756 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0404 23:51:19.566767 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0404 23:51:19.566779 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0404 23:51:19.566794 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0404 23:51:19.566807 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0404 23:51:19.566818 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0404 23:51:19.566834 26022 solver.cpp:245] Train net output #22: loss/loss01 = 4.11541 (* 0.0454545 = 0.187064 loss) | |
I0404 23:51:19.566849 26022 solver.cpp:245] Train net output #23: loss/loss02 = 4.20302 (* 0.0454545 = 0.191047 loss) | |
I0404 23:51:19.566864 26022 solver.cpp:245] Train net output #24: loss/loss03 = 4.21355 (* 0.0454545 = 0.191525 loss) | |
I0404 23:51:19.566879 26022 solver.cpp:245] Train net output #25: loss/loss04 = 4.1936 (* 0.0454545 = 0.190618 loss) | |
I0404 23:51:19.566893 26022 solver.cpp:245] Train net output #26: loss/loss05 = 4.25647 (* 0.0454545 = 0.193476 loss) | |
I0404 23:51:19.566908 26022 solver.cpp:245] Train net output #27: loss/loss06 = 4.21738 (* 0.0454545 = 0.191699 loss) | |
I0404 23:51:19.566922 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.55866 (* 0.0454545 = 0.070848 loss) | |
I0404 23:51:19.566937 26022 solver.cpp:245] Train net output #29: loss/loss08 = 1.40903 (* 0.0454545 = 0.0640468 loss) | |
I0404 23:51:19.566951 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.491821 (* 0.0454545 = 0.0223555 loss) | |
I0404 23:51:19.566967 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.277854 (* 0.0454545 = 0.0126297 loss) | |
I0404 23:51:19.566982 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.00364972 (* 0.0454545 = 0.000165896 loss) | |
I0404 23:51:19.567003 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.00311343 (* 0.0454545 = 0.00014152 loss) | |
I0404 23:51:19.567018 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.00431902 (* 0.0454545 = 0.000196319 loss) | |
I0404 23:51:19.567034 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.00340891 (* 0.0454545 = 0.00015495 loss) | |
I0404 23:51:19.567049 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.00353399 (* 0.0454545 = 0.000160636 loss) | |
I0404 23:51:19.567065 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.00344168 (* 0.0454545 = 0.00015644 loss) | |
I0404 23:51:19.567080 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.00272917 (* 0.0454545 = 0.000124053 loss) | |
I0404 23:51:19.567111 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.00305568 (* 0.0454545 = 0.000138895 loss) | |
I0404 23:51:19.567127 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.00348132 (* 0.0454545 = 0.000158242 loss) | |
I0404 23:51:19.567142 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.00342272 (* 0.0454545 = 0.000155578 loss) | |
I0404 23:51:19.567157 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.00288049 (* 0.0454545 = 0.000130931 loss) | |
I0404 23:51:19.567173 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.00366961 (* 0.0454545 = 0.0001668 loss) | |
I0404 23:51:19.567185 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0404 23:51:19.567198 26022 solver.cpp:245] Train net output #45: total_confidence = 1.23406e-10 | |
I0404 23:51:19.567214 26022 sgd_solver.cpp:106] Iteration 50, lr = 0.039998 | |
I0405 00:00:22.380501 26022 solver.cpp:229] Iteration 100, loss = 1.25884 | |
I0405 00:00:22.380619 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 00:00:22.380645 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 00:00:22.380659 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 00:00:22.380673 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 00:00:22.380686 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.03125 | |
I0405 00:00:22.380698 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.03125 | |
I0405 00:00:22.380712 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 00:00:22.380724 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 00:00:22.380736 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 00:00:22.380749 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.90625 | |
I0405 00:00:22.380761 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 00:00:22.380774 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 00:00:22.380786 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 00:00:22.380798 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 00:00:22.380810 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 00:00:22.380821 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 00:00:22.380833 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 00:00:22.380846 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 00:00:22.380858 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 00:00:22.380870 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 00:00:22.380882 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 00:00:22.380894 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 00:00:22.380910 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.97759 (* 0.0454545 = 0.1808 loss) | |
I0405 00:00:22.380925 26022 solver.cpp:245] Train net output #23: loss/loss02 = 4.01867 (* 0.0454545 = 0.182667 loss) | |
I0405 00:00:22.380939 26022 solver.cpp:245] Train net output #24: loss/loss03 = 4.04347 (* 0.0454545 = 0.183794 loss) | |
I0405 00:00:22.380954 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.93673 (* 0.0454545 = 0.178942 loss) | |
I0405 00:00:22.380969 26022 solver.cpp:245] Train net output #26: loss/loss05 = 4.13129 (* 0.0454545 = 0.187786 loss) | |
I0405 00:00:22.380983 26022 solver.cpp:245] Train net output #27: loss/loss06 = 4.21934 (* 0.0454545 = 0.191788 loss) | |
I0405 00:00:22.380998 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.89246 (* 0.0454545 = 0.086021 loss) | |
I0405 00:00:22.381012 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.922598 (* 0.0454545 = 0.0419363 loss) | |
I0405 00:00:22.381027 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.722389 (* 0.0454545 = 0.0328359 loss) | |
I0405 00:00:22.381042 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.833156 (* 0.0454545 = 0.0378707 loss) | |
I0405 00:00:22.381057 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000507901 (* 0.0454545 = 2.30864e-05 loss) | |
I0405 00:00:22.381072 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000485268 (* 0.0454545 = 2.20576e-05 loss) | |
I0405 00:00:22.381088 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000547472 (* 0.0454545 = 2.48851e-05 loss) | |
I0405 00:00:22.381103 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000502838 (* 0.0454545 = 2.28563e-05 loss) | |
I0405 00:00:22.381117 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000508602 (* 0.0454545 = 2.31183e-05 loss) | |
I0405 00:00:22.381132 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000503386 (* 0.0454545 = 2.28812e-05 loss) | |
I0405 00:00:22.381147 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000472033 (* 0.0454545 = 2.14561e-05 loss) | |
I0405 00:00:22.381181 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000503801 (* 0.0454545 = 2.29001e-05 loss) | |
I0405 00:00:22.381196 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000510518 (* 0.0454545 = 2.32054e-05 loss) | |
I0405 00:00:22.381211 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000499319 (* 0.0454545 = 2.26963e-05 loss) | |
I0405 00:00:22.381227 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000487538 (* 0.0454545 = 2.21608e-05 loss) | |
I0405 00:00:22.381242 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000516871 (* 0.0454545 = 2.34941e-05 loss) | |
I0405 00:00:22.381254 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 00:00:22.381266 26022 solver.cpp:245] Train net output #45: total_confidence = 3.97162e-09 | |
I0405 00:00:22.381281 26022 sgd_solver.cpp:106] Iteration 100, lr = 0.039996 | |
I0405 00:09:24.807351 26022 solver.cpp:229] Iteration 150, loss = 1.2254 | |
I0405 00:09:24.807485 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0405 00:09:24.807507 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 00:09:24.807520 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 00:09:24.807533 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0405 00:09:24.807545 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0405 00:09:24.807557 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.03125 | |
I0405 00:09:24.807570 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0405 00:09:24.807582 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 00:09:24.807595 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 00:09:24.807607 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 00:09:24.807620 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 00:09:24.807631 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 00:09:24.807643 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 00:09:24.807656 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 00:09:24.807667 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 00:09:24.807678 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 00:09:24.807693 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 00:09:24.807704 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 00:09:24.807716 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 00:09:24.807729 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 00:09:24.807739 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 00:09:24.807751 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 00:09:24.807766 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.80308 (* 0.0454545 = 0.172867 loss) | |
I0405 00:09:24.807781 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.79913 (* 0.0454545 = 0.172688 loss) | |
I0405 00:09:24.807796 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.71088 (* 0.0454545 = 0.168676 loss) | |
I0405 00:09:24.807811 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.77479 (* 0.0454545 = 0.171581 loss) | |
I0405 00:09:24.807826 26022 solver.cpp:245] Train net output #26: loss/loss05 = 4.05454 (* 0.0454545 = 0.184297 loss) | |
I0405 00:09:24.807839 26022 solver.cpp:245] Train net output #27: loss/loss06 = 4.16416 (* 0.0454545 = 0.18928 loss) | |
I0405 00:09:24.807853 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.35372 (* 0.0454545 = 0.0615329 loss) | |
I0405 00:09:24.807868 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.991306 (* 0.0454545 = 0.0450594 loss) | |
I0405 00:09:24.807883 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.262823 (* 0.0454545 = 0.0119465 loss) | |
I0405 00:09:24.807900 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0170909 (* 0.0454545 = 0.000776858 loss) | |
I0405 00:09:24.807916 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000153686 (* 0.0454545 = 6.98572e-06 loss) | |
I0405 00:09:24.807931 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000147521 (* 0.0454545 = 6.70552e-06 loss) | |
I0405 00:09:24.807946 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000164077 (* 0.0454545 = 7.45806e-06 loss) | |
I0405 00:09:24.807961 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000152622 (* 0.0454545 = 6.93737e-06 loss) | |
I0405 00:09:24.807976 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000155618 (* 0.0454545 = 7.07353e-06 loss) | |
I0405 00:09:24.807991 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000154165 (* 0.0454545 = 7.00749e-06 loss) | |
I0405 00:09:24.808007 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000144202 (* 0.0454545 = 6.55462e-06 loss) | |
I0405 00:09:24.808037 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000153678 (* 0.0454545 = 6.98538e-06 loss) | |
I0405 00:09:24.808053 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000153842 (* 0.0454545 = 6.99284e-06 loss) | |
I0405 00:09:24.808089 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000151504 (* 0.0454545 = 6.88656e-06 loss) | |
I0405 00:09:24.808109 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000148455 (* 0.0454545 = 6.74795e-06 loss) | |
I0405 00:09:24.808123 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000155815 (* 0.0454545 = 7.08251e-06 loss) | |
I0405 00:09:24.808136 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 00:09:24.808148 26022 solver.cpp:245] Train net output #45: total_confidence = 3.35536e-09 | |
I0405 00:09:24.808163 26022 sgd_solver.cpp:106] Iteration 150, lr = 0.039994 | |
I0405 00:18:27.087574 26022 solver.cpp:229] Iteration 200, loss = 1.21771 | |
I0405 00:18:27.087697 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 00:18:27.087718 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 00:18:27.087731 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 00:18:27.087743 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 00:18:27.087755 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0405 00:18:27.087769 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.0625 | |
I0405 00:18:27.087781 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0405 00:18:27.087793 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 00:18:27.087806 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 00:18:27.087818 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 00:18:27.087831 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 00:18:27.087842 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 00:18:27.087857 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 00:18:27.087872 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 00:18:27.087883 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 00:18:27.087894 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 00:18:27.087906 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 00:18:27.087918 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 00:18:27.087929 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 00:18:27.087941 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 00:18:27.087954 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 00:18:27.087966 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 00:18:27.087981 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.65819 (* 0.0454545 = 0.166282 loss) | |
I0405 00:18:27.087996 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.72011 (* 0.0454545 = 0.169096 loss) | |
I0405 00:18:27.088011 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.77717 (* 0.0454545 = 0.17169 loss) | |
I0405 00:18:27.088026 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.91118 (* 0.0454545 = 0.177781 loss) | |
I0405 00:18:27.088039 26022 solver.cpp:245] Train net output #26: loss/loss05 = 4.04271 (* 0.0454545 = 0.18376 loss) | |
I0405 00:18:27.088053 26022 solver.cpp:245] Train net output #27: loss/loss06 = 4.07657 (* 0.0454545 = 0.185299 loss) | |
I0405 00:18:27.088083 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.32247 (* 0.0454545 = 0.0601121 loss) | |
I0405 00:18:27.088101 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.716166 (* 0.0454545 = 0.032553 loss) | |
I0405 00:18:27.088115 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.256884 (* 0.0454545 = 0.0116766 loss) | |
I0405 00:18:27.088129 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.290546 (* 0.0454545 = 0.0132067 loss) | |
I0405 00:18:27.088145 26022 solver.cpp:245] Train net output #32: loss/loss11 = 6.57313e-05 (* 0.0454545 = 2.98778e-06 loss) | |
I0405 00:18:27.088160 26022 solver.cpp:245] Train net output #33: loss/loss12 = 6.28738e-05 (* 0.0454545 = 2.8579e-06 loss) | |
I0405 00:18:27.088174 26022 solver.cpp:245] Train net output #34: loss/loss13 = 7.01647e-05 (* 0.0454545 = 3.1893e-06 loss) | |
I0405 00:18:27.088191 26022 solver.cpp:245] Train net output #35: loss/loss14 = 6.47403e-05 (* 0.0454545 = 2.94274e-06 loss) | |
I0405 00:18:27.088204 26022 solver.cpp:245] Train net output #36: loss/loss15 = 6.57201e-05 (* 0.0454545 = 2.98728e-06 loss) | |
I0405 00:18:27.088219 26022 solver.cpp:245] Train net output #37: loss/loss16 = 6.59771e-05 (* 0.0454545 = 2.99896e-06 loss) | |
I0405 00:18:27.088234 26022 solver.cpp:245] Train net output #38: loss/loss17 = 6.14506e-05 (* 0.0454545 = 2.79321e-06 loss) | |
I0405 00:18:27.088265 26022 solver.cpp:245] Train net output #39: loss/loss18 = 6.57685e-05 (* 0.0454545 = 2.98948e-06 loss) | |
I0405 00:18:27.088281 26022 solver.cpp:245] Train net output #40: loss/loss19 = 6.58654e-05 (* 0.0454545 = 2.99388e-06 loss) | |
I0405 00:18:27.088296 26022 solver.cpp:245] Train net output #41: loss/loss20 = 6.4215e-05 (* 0.0454545 = 2.91886e-06 loss) | |
I0405 00:18:27.088311 26022 solver.cpp:245] Train net output #42: loss/loss21 = 6.23857e-05 (* 0.0454545 = 2.83571e-06 loss) | |
I0405 00:18:27.088326 26022 solver.cpp:245] Train net output #43: loss/loss22 = 6.57573e-05 (* 0.0454545 = 2.98897e-06 loss) | |
I0405 00:18:27.088338 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 00:18:27.088351 26022 solver.cpp:245] Train net output #45: total_confidence = 4.65969e-09 | |
I0405 00:18:27.088366 26022 sgd_solver.cpp:106] Iteration 200, lr = 0.039992 | |
I0405 00:27:29.311956 26022 solver.cpp:229] Iteration 250, loss = 1.21699 | |
I0405 00:27:29.312165 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 00:27:29.312186 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 00:27:29.312199 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 00:27:29.312211 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 00:27:29.312223 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.03125 | |
I0405 00:27:29.312235 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.03125 | |
I0405 00:27:29.312248 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0405 00:27:29.312260 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 00:27:29.312273 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 00:27:29.312283 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 00:27:29.312295 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 00:27:29.312306 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 00:27:29.312317 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 00:27:29.312330 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 00:27:29.312340 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 00:27:29.312352 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 00:27:29.312363 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 00:27:29.312374 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 00:27:29.312386 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 00:27:29.312397 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 00:27:29.312408 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 00:27:29.312420 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 00:27:29.312435 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.62696 (* 0.0454545 = 0.164862 loss) | |
I0405 00:27:29.312450 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.76131 (* 0.0454545 = 0.170968 loss) | |
I0405 00:27:29.312464 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.81545 (* 0.0454545 = 0.17343 loss) | |
I0405 00:27:29.312479 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.91503 (* 0.0454545 = 0.177956 loss) | |
I0405 00:27:29.312496 26022 solver.cpp:245] Train net output #26: loss/loss05 = 4.07815 (* 0.0454545 = 0.185371 loss) | |
I0405 00:27:29.312510 26022 solver.cpp:245] Train net output #27: loss/loss06 = 4.12747 (* 0.0454545 = 0.187612 loss) | |
I0405 00:27:29.312525 26022 solver.cpp:245] Train net output #28: loss/loss07 = 2.00379 (* 0.0454545 = 0.0910813 loss) | |
I0405 00:27:29.312538 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.423143 (* 0.0454545 = 0.0192338 loss) | |
I0405 00:27:29.312553 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.0391133 (* 0.0454545 = 0.00177788 loss) | |
I0405 00:27:29.312572 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0166231 (* 0.0454545 = 0.000755594 loss) | |
I0405 00:27:29.312608 26022 solver.cpp:245] Train net output #32: loss/loss11 = 5.48453e-05 (* 0.0454545 = 2.49297e-06 loss) | |
I0405 00:27:29.312624 26022 solver.cpp:245] Train net output #33: loss/loss12 = 5.36904e-05 (* 0.0454545 = 2.44047e-06 loss) | |
I0405 00:27:29.312639 26022 solver.cpp:245] Train net output #34: loss/loss13 = 6.02733e-05 (* 0.0454545 = 2.7397e-06 loss) | |
I0405 00:27:29.312654 26022 solver.cpp:245] Train net output #35: loss/loss14 = 5.55121e-05 (* 0.0454545 = 2.52328e-06 loss) | |
I0405 00:27:29.312669 26022 solver.cpp:245] Train net output #36: loss/loss15 = 5.55457e-05 (* 0.0454545 = 2.5248e-06 loss) | |
I0405 00:27:29.312683 26022 solver.cpp:245] Train net output #37: loss/loss16 = 5.5881e-05 (* 0.0454545 = 2.54004e-06 loss) | |
I0405 00:27:29.312698 26022 solver.cpp:245] Train net output #38: loss/loss17 = 5.27143e-05 (* 0.0454545 = 2.3961e-06 loss) | |
I0405 00:27:29.312727 26022 solver.cpp:245] Train net output #39: loss/loss18 = 5.51955e-05 (* 0.0454545 = 2.50888e-06 loss) | |
I0405 00:27:29.312746 26022 solver.cpp:245] Train net output #40: loss/loss19 = 5.58437e-05 (* 0.0454545 = 2.53835e-06 loss) | |
I0405 00:27:29.312760 26022 solver.cpp:245] Train net output #41: loss/loss20 = 5.45584e-05 (* 0.0454545 = 2.47993e-06 loss) | |
I0405 00:27:29.312775 26022 solver.cpp:245] Train net output #42: loss/loss21 = 5.33476e-05 (* 0.0454545 = 2.42489e-06 loss) | |
I0405 00:27:29.312790 26022 solver.cpp:245] Train net output #43: loss/loss22 = 5.65553e-05 (* 0.0454545 = 2.57069e-06 loss) | |
I0405 00:27:29.312803 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 00:27:29.312814 26022 solver.cpp:245] Train net output #45: total_confidence = 4.14555e-09 | |
I0405 00:27:29.312829 26022 sgd_solver.cpp:106] Iteration 250, lr = 0.03999 | |
I0405 00:36:31.516175 26022 solver.cpp:229] Iteration 300, loss = 1.21257 | |
I0405 00:36:31.516315 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0405 00:36:31.516346 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 00:36:31.516372 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 00:36:31.516396 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 00:36:31.516418 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0 | |
I0405 00:36:31.516443 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.03125 | |
I0405 00:36:31.516469 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 00:36:31.516492 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 00:36:31.516515 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 00:36:31.516537 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 00:36:31.516559 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 00:36:31.516582 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 00:36:31.516602 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 00:36:31.516624 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 00:36:31.516645 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 00:36:31.516667 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 00:36:31.516688 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 00:36:31.516710 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 00:36:31.516732 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 00:36:31.516753 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 00:36:31.516775 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 00:36:31.516798 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 00:36:31.516829 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.69181 (* 0.0454545 = 0.16781 loss) | |
I0405 00:36:31.516860 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.94683 (* 0.0454545 = 0.179401 loss) | |
I0405 00:36:31.516886 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.99374 (* 0.0454545 = 0.181534 loss) | |
I0405 00:36:31.516913 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.97806 (* 0.0454545 = 0.180821 loss) | |
I0405 00:36:31.516942 26022 solver.cpp:245] Train net output #26: loss/loss05 = 4.13163 (* 0.0454545 = 0.187801 loss) | |
I0405 00:36:31.516968 26022 solver.cpp:245] Train net output #27: loss/loss06 = 4.09403 (* 0.0454545 = 0.186092 loss) | |
I0405 00:36:31.516994 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.86977 (* 0.0454545 = 0.0849897 loss) | |
I0405 00:36:31.517021 26022 solver.cpp:245] Train net output #29: loss/loss08 = 1.07859 (* 0.0454545 = 0.0490269 loss) | |
I0405 00:36:31.517047 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.455684 (* 0.0454545 = 0.0207129 loss) | |
I0405 00:36:31.517074 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0152058 (* 0.0454545 = 0.000691174 loss) | |
I0405 00:36:31.517102 26022 solver.cpp:245] Train net output #32: loss/loss11 = 5.08366e-05 (* 0.0454545 = 2.31076e-06 loss) | |
I0405 00:36:31.517134 26022 solver.cpp:245] Train net output #33: loss/loss12 = 5.02741e-05 (* 0.0454545 = 2.28519e-06 loss) | |
I0405 00:36:31.517163 26022 solver.cpp:245] Train net output #34: loss/loss13 = 5.56872e-05 (* 0.0454545 = 2.53124e-06 loss) | |
I0405 00:36:31.517190 26022 solver.cpp:245] Train net output #35: loss/loss14 = 5.14513e-05 (* 0.0454545 = 2.3387e-06 loss) | |
I0405 00:36:31.517217 26022 solver.cpp:245] Train net output #36: loss/loss15 = 5.16115e-05 (* 0.0454545 = 2.34598e-06 loss) | |
I0405 00:36:31.517244 26022 solver.cpp:245] Train net output #37: loss/loss16 = 5.19505e-05 (* 0.0454545 = 2.36139e-06 loss) | |
I0405 00:36:31.517271 26022 solver.cpp:245] Train net output #38: loss/loss17 = 4.82623e-05 (* 0.0454545 = 2.19374e-06 loss) | |
I0405 00:36:31.517323 26022 solver.cpp:245] Train net output #39: loss/loss18 = 5.03151e-05 (* 0.0454545 = 2.28705e-06 loss) | |
I0405 00:36:31.517354 26022 solver.cpp:245] Train net output #40: loss/loss19 = 5.07733e-05 (* 0.0454545 = 2.30788e-06 loss) | |
I0405 00:36:31.517382 26022 solver.cpp:245] Train net output #41: loss/loss20 = 4.89366e-05 (* 0.0454545 = 2.22439e-06 loss) | |
I0405 00:36:31.517410 26022 solver.cpp:245] Train net output #42: loss/loss21 = 4.8687e-05 (* 0.0454545 = 2.21305e-06 loss) | |
I0405 00:36:31.517437 26022 solver.cpp:245] Train net output #43: loss/loss22 = 5.0967e-05 (* 0.0454545 = 2.31668e-06 loss) | |
I0405 00:36:31.517459 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 00:36:31.517482 26022 solver.cpp:245] Train net output #45: total_confidence = 4.1362e-09 | |
I0405 00:36:31.517505 26022 sgd_solver.cpp:106] Iteration 300, lr = 0.039988 | |
I0405 00:45:33.696166 26022 solver.cpp:229] Iteration 350, loss = 1.21175 | |
I0405 00:45:33.696311 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 00:45:33.696332 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0405 00:45:33.696346 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 00:45:33.696357 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0405 00:45:33.696369 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.03125 | |
I0405 00:45:33.696382 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0 | |
I0405 00:45:33.696393 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 00:45:33.696405 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 00:45:33.696419 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 00:45:33.696429 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 00:45:33.696444 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 00:45:33.696457 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 00:45:33.696468 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 00:45:33.696480 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 00:45:33.696491 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 00:45:33.696503 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 00:45:33.696514 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 00:45:33.696527 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 00:45:33.696538 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 00:45:33.696549 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 00:45:33.696562 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 00:45:33.696576 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 00:45:33.696593 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.74156 (* 0.0454545 = 0.170071 loss) | |
I0405 00:45:33.696607 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.68681 (* 0.0454545 = 0.167582 loss) | |
I0405 00:45:33.696621 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.85817 (* 0.0454545 = 0.175371 loss) | |
I0405 00:45:33.696636 26022 solver.cpp:245] Train net output #25: loss/loss04 = 4.04357 (* 0.0454545 = 0.183799 loss) | |
I0405 00:45:33.696650 26022 solver.cpp:245] Train net output #26: loss/loss05 = 4.19907 (* 0.0454545 = 0.190867 loss) | |
I0405 00:45:33.696665 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.98907 (* 0.0454545 = 0.181322 loss) | |
I0405 00:45:33.696678 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.48096 (* 0.0454545 = 0.0673165 loss) | |
I0405 00:45:33.696693 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.648692 (* 0.0454545 = 0.029486 loss) | |
I0405 00:45:33.696707 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.699356 (* 0.0454545 = 0.0317889 loss) | |
I0405 00:45:33.696722 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.282322 (* 0.0454545 = 0.0128328 loss) | |
I0405 00:45:33.696737 26022 solver.cpp:245] Train net output #32: loss/loss11 = 4.74576e-05 (* 0.0454545 = 2.15716e-06 loss) | |
I0405 00:45:33.696751 26022 solver.cpp:245] Train net output #33: loss/loss12 = 4.62767e-05 (* 0.0454545 = 2.10348e-06 loss) | |
I0405 00:45:33.696766 26022 solver.cpp:245] Train net output #34: loss/loss13 = 5.09968e-05 (* 0.0454545 = 2.31804e-06 loss) | |
I0405 00:45:33.696780 26022 solver.cpp:245] Train net output #35: loss/loss14 = 4.74353e-05 (* 0.0454545 = 2.15615e-06 loss) | |
I0405 00:45:33.696795 26022 solver.cpp:245] Train net output #36: loss/loss15 = 4.78451e-05 (* 0.0454545 = 2.17478e-06 loss) | |
I0405 00:45:33.696810 26022 solver.cpp:245] Train net output #37: loss/loss16 = 4.73757e-05 (* 0.0454545 = 2.15344e-06 loss) | |
I0405 00:45:33.696825 26022 solver.cpp:245] Train net output #38: loss/loss17 = 4.46225e-05 (* 0.0454545 = 2.0283e-06 loss) | |
I0405 00:45:33.696856 26022 solver.cpp:245] Train net output #39: loss/loss18 = 4.70963e-05 (* 0.0454545 = 2.14074e-06 loss) | |
I0405 00:45:33.696873 26022 solver.cpp:245] Train net output #40: loss/loss19 = 4.73533e-05 (* 0.0454545 = 2.15242e-06 loss) | |
I0405 00:45:33.696887 26022 solver.cpp:245] Train net output #41: loss/loss20 = 4.53825e-05 (* 0.0454545 = 2.06284e-06 loss) | |
I0405 00:45:33.696902 26022 solver.cpp:245] Train net output #42: loss/loss21 = 4.4779e-05 (* 0.0454545 = 2.03541e-06 loss) | |
I0405 00:45:33.696918 26022 solver.cpp:245] Train net output #43: loss/loss22 = 4.71931e-05 (* 0.0454545 = 2.14514e-06 loss) | |
I0405 00:45:33.696929 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 00:45:33.696941 26022 solver.cpp:245] Train net output #45: total_confidence = 3.40231e-09 | |
I0405 00:45:33.696956 26022 sgd_solver.cpp:106] Iteration 350, lr = 0.039986 | |
I0405 00:54:36.178771 26022 solver.cpp:229] Iteration 400, loss = 1.2071 | |
I0405 00:54:36.178887 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0405 00:54:36.178908 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 00:54:36.178921 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 00:54:36.178935 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 00:54:36.178946 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0 | |
I0405 00:54:36.178959 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0 | |
I0405 00:54:36.178972 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0405 00:54:36.178983 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0405 00:54:36.178995 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 00:54:36.179008 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 00:54:36.179020 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 00:54:36.179033 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 00:54:36.179044 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 00:54:36.179055 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 00:54:36.179067 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 00:54:36.179080 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 00:54:36.179091 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 00:54:36.179103 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 00:54:36.179116 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 00:54:36.179127 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 00:54:36.179138 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 00:54:36.179162 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 00:54:36.179179 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.74155 (* 0.0454545 = 0.17007 loss) | |
I0405 00:54:36.179194 26022 solver.cpp:245] Train net output #23: loss/loss02 = 4.01111 (* 0.0454545 = 0.182323 loss) | |
I0405 00:54:36.179209 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.96256 (* 0.0454545 = 0.180116 loss) | |
I0405 00:54:36.179224 26022 solver.cpp:245] Train net output #25: loss/loss04 = 4.00344 (* 0.0454545 = 0.181975 loss) | |
I0405 00:54:36.179237 26022 solver.cpp:245] Train net output #26: loss/loss05 = 4.11675 (* 0.0454545 = 0.187125 loss) | |
I0405 00:54:36.179252 26022 solver.cpp:245] Train net output #27: loss/loss06 = 4.01699 (* 0.0454545 = 0.182591 loss) | |
I0405 00:54:36.179266 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.37247 (* 0.0454545 = 0.0623849 loss) | |
I0405 00:54:36.179280 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.280451 (* 0.0454545 = 0.0127478 loss) | |
I0405 00:54:36.179296 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.245318 (* 0.0454545 = 0.0111508 loss) | |
I0405 00:54:36.179311 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.017813 (* 0.0454545 = 0.000809682 loss) | |
I0405 00:54:36.179325 26022 solver.cpp:245] Train net output #32: loss/loss11 = 4.23463e-05 (* 0.0454545 = 1.92483e-06 loss) | |
I0405 00:54:36.179340 26022 solver.cpp:245] Train net output #33: loss/loss12 = 4.14373e-05 (* 0.0454545 = 1.88351e-06 loss) | |
I0405 00:54:36.179358 26022 solver.cpp:245] Train net output #34: loss/loss13 = 4.54459e-05 (* 0.0454545 = 2.06572e-06 loss) | |
I0405 00:54:36.179374 26022 solver.cpp:245] Train net output #35: loss/loss14 = 4.24543e-05 (* 0.0454545 = 1.92974e-06 loss) | |
I0405 00:54:36.179389 26022 solver.cpp:245] Train net output #36: loss/loss15 = 4.28939e-05 (* 0.0454545 = 1.94972e-06 loss) | |
I0405 00:54:36.179404 26022 solver.cpp:245] Train net output #37: loss/loss16 = 4.27412e-05 (* 0.0454545 = 1.94278e-06 loss) | |
I0405 00:54:36.179419 26022 solver.cpp:245] Train net output #38: loss/loss17 = 3.88555e-05 (* 0.0454545 = 1.76616e-06 loss) | |
I0405 00:54:36.179450 26022 solver.cpp:245] Train net output #39: loss/loss18 = 4.05059e-05 (* 0.0454545 = 1.84118e-06 loss) | |
I0405 00:54:36.179466 26022 solver.cpp:245] Train net output #40: loss/loss19 = 4.15118e-05 (* 0.0454545 = 1.8869e-06 loss) | |
I0405 00:54:36.179481 26022 solver.cpp:245] Train net output #41: loss/loss20 = 3.95336e-05 (* 0.0454545 = 1.79698e-06 loss) | |
I0405 00:54:36.179497 26022 solver.cpp:245] Train net output #42: loss/loss21 = 4.0111e-05 (* 0.0454545 = 1.82323e-06 loss) | |
I0405 00:54:36.179512 26022 solver.cpp:245] Train net output #43: loss/loss22 = 4.13143e-05 (* 0.0454545 = 1.87792e-06 loss) | |
I0405 00:54:36.179524 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 00:54:36.179536 26022 solver.cpp:245] Train net output #45: total_confidence = 2.736e-09 | |
I0405 00:54:36.179553 26022 sgd_solver.cpp:106] Iteration 400, lr = 0.039984 | |
I0405 01:03:38.388528 26022 solver.cpp:229] Iteration 450, loss = 1.20338 | |
I0405 01:03:38.388721 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 01:03:38.388742 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0405 01:03:38.388756 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 01:03:38.388769 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 01:03:38.388782 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0405 01:03:38.388795 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 01:03:38.388808 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 01:03:38.388821 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0405 01:03:38.388833 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 01:03:38.388846 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 01:03:38.388859 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 01:03:38.388870 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 01:03:38.388882 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 01:03:38.388895 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 01:03:38.388906 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 01:03:38.388917 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 01:03:38.388929 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 01:03:38.388941 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 01:03:38.388952 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 01:03:38.388964 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 01:03:38.388977 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 01:03:38.388988 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 01:03:38.389003 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.63701 (* 0.0454545 = 0.165319 loss) | |
I0405 01:03:38.389019 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.57354 (* 0.0454545 = 0.162434 loss) | |
I0405 01:03:38.389034 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.89127 (* 0.0454545 = 0.176876 loss) | |
I0405 01:03:38.389048 26022 solver.cpp:245] Train net output #25: loss/loss04 = 4.11844 (* 0.0454545 = 0.187202 loss) | |
I0405 01:03:38.389063 26022 solver.cpp:245] Train net output #26: loss/loss05 = 4.07295 (* 0.0454545 = 0.185134 loss) | |
I0405 01:03:38.389077 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.98479 (* 0.0454545 = 0.181127 loss) | |
I0405 01:03:38.389092 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.79609 (* 0.0454545 = 0.0816405 loss) | |
I0405 01:03:38.389106 26022 solver.cpp:245] Train net output #29: loss/loss08 = 1.14981 (* 0.0454545 = 0.0522642 loss) | |
I0405 01:03:38.389120 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.68047 (* 0.0454545 = 0.0309305 loss) | |
I0405 01:03:38.389134 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.540566 (* 0.0454545 = 0.0245712 loss) | |
I0405 01:03:38.389149 26022 solver.cpp:245] Train net output #32: loss/loss11 = 5.16451e-05 (* 0.0454545 = 2.3475e-06 loss) | |
I0405 01:03:38.389165 26022 solver.cpp:245] Train net output #33: loss/loss12 = 5.05423e-05 (* 0.0454545 = 2.29738e-06 loss) | |
I0405 01:03:38.389180 26022 solver.cpp:245] Train net output #34: loss/loss13 = 5.44615e-05 (* 0.0454545 = 2.47552e-06 loss) | |
I0405 01:03:38.389194 26022 solver.cpp:245] Train net output #35: loss/loss14 = 5.15855e-05 (* 0.0454545 = 2.34479e-06 loss) | |
I0405 01:03:38.389209 26022 solver.cpp:245] Train net output #36: loss/loss15 = 5.17568e-05 (* 0.0454545 = 2.35258e-06 loss) | |
I0405 01:03:38.389225 26022 solver.cpp:245] Train net output #37: loss/loss16 = 5.18164e-05 (* 0.0454545 = 2.35529e-06 loss) | |
I0405 01:03:38.389240 26022 solver.cpp:245] Train net output #38: loss/loss17 = 4.78861e-05 (* 0.0454545 = 2.17664e-06 loss) | |
I0405 01:03:38.389267 26022 solver.cpp:245] Train net output #39: loss/loss18 = 4.87653e-05 (* 0.0454545 = 2.2166e-06 loss) | |
I0405 01:03:38.389283 26022 solver.cpp:245] Train net output #40: loss/loss19 = 4.9678e-05 (* 0.0454545 = 2.25809e-06 loss) | |
I0405 01:03:38.389298 26022 solver.cpp:245] Train net output #41: loss/loss20 = 4.81655e-05 (* 0.0454545 = 2.18934e-06 loss) | |
I0405 01:03:38.389313 26022 solver.cpp:245] Train net output #42: loss/loss21 = 4.85492e-05 (* 0.0454545 = 2.20678e-06 loss) | |
I0405 01:03:38.389328 26022 solver.cpp:245] Train net output #43: loss/loss22 = 4.98941e-05 (* 0.0454545 = 2.26791e-06 loss) | |
I0405 01:03:38.389341 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 01:03:38.389353 26022 solver.cpp:245] Train net output #45: total_confidence = 2.98228e-09 | |
I0405 01:03:38.389369 26022 sgd_solver.cpp:106] Iteration 450, lr = 0.039982 | |
I0405 01:12:40.545673 26022 solver.cpp:229] Iteration 500, loss = 1.20326 | |
I0405 01:12:40.545821 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0405 01:12:40.545850 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 01:12:40.545873 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 01:12:40.545897 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0405 01:12:40.545918 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.03125 | |
I0405 01:12:40.545941 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.0625 | |
I0405 01:12:40.545966 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 01:12:40.545989 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 01:12:40.546011 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 01:12:40.546036 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 01:12:40.546062 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 01:12:40.546087 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 01:12:40.546108 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 01:12:40.546131 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 01:12:40.546154 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 01:12:40.546175 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 01:12:40.546197 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 01:12:40.546219 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 01:12:40.546241 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 01:12:40.546263 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 01:12:40.546283 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 01:12:40.546305 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 01:12:40.546334 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.82883 (* 0.0454545 = 0.174038 loss) | |
I0405 01:12:40.546362 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.68237 (* 0.0454545 = 0.167381 loss) | |
I0405 01:12:40.546391 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.76116 (* 0.0454545 = 0.170962 loss) | |
I0405 01:12:40.546416 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.81041 (* 0.0454545 = 0.1732 loss) | |
I0405 01:12:40.546443 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.9482 (* 0.0454545 = 0.179464 loss) | |
I0405 01:12:40.546470 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.90104 (* 0.0454545 = 0.17732 loss) | |
I0405 01:12:40.546497 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.73042 (* 0.0454545 = 0.0786555 loss) | |
I0405 01:12:40.546525 26022 solver.cpp:245] Train net output #29: loss/loss08 = 1.06146 (* 0.0454545 = 0.0482482 loss) | |
I0405 01:12:40.546552 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.725997 (* 0.0454545 = 0.0329999 loss) | |
I0405 01:12:40.546579 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.284488 (* 0.0454545 = 0.0129313 loss) | |
I0405 01:12:40.546607 26022 solver.cpp:245] Train net output #32: loss/loss11 = 3.50444e-05 (* 0.0454545 = 1.59293e-06 loss) | |
I0405 01:12:40.546638 26022 solver.cpp:245] Train net output #33: loss/loss12 = 3.43254e-05 (* 0.0454545 = 1.56025e-06 loss) | |
I0405 01:12:40.546669 26022 solver.cpp:245] Train net output #34: loss/loss13 = 3.74138e-05 (* 0.0454545 = 1.70063e-06 loss) | |
I0405 01:12:40.546697 26022 solver.cpp:245] Train net output #35: loss/loss14 = 3.50295e-05 (* 0.0454545 = 1.59225e-06 loss) | |
I0405 01:12:40.546725 26022 solver.cpp:245] Train net output #36: loss/loss15 = 3.54691e-05 (* 0.0454545 = 1.61223e-06 loss) | |
I0405 01:12:40.546752 26022 solver.cpp:245] Train net output #37: loss/loss16 = 3.54878e-05 (* 0.0454545 = 1.61308e-06 loss) | |
I0405 01:12:40.546778 26022 solver.cpp:245] Train net output #38: loss/loss17 = 3.28837e-05 (* 0.0454545 = 1.49471e-06 loss) | |
I0405 01:12:40.546833 26022 solver.cpp:245] Train net output #39: loss/loss18 = 3.34276e-05 (* 0.0454545 = 1.51944e-06 loss) | |
I0405 01:12:40.546862 26022 solver.cpp:245] Train net output #40: loss/loss19 = 3.39641e-05 (* 0.0454545 = 1.54382e-06 loss) | |
I0405 01:12:40.546891 26022 solver.cpp:245] Train net output #41: loss/loss20 = 3.29433e-05 (* 0.0454545 = 1.49742e-06 loss) | |
I0405 01:12:40.546919 26022 solver.cpp:245] Train net output #42: loss/loss21 = 3.34313e-05 (* 0.0454545 = 1.51961e-06 loss) | |
I0405 01:12:40.546947 26022 solver.cpp:245] Train net output #43: loss/loss22 = 3.43701e-05 (* 0.0454545 = 1.56228e-06 loss) | |
I0405 01:12:40.546970 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 01:12:40.546993 26022 solver.cpp:245] Train net output #45: total_confidence = 4.06655e-09 | |
I0405 01:12:40.547018 26022 sgd_solver.cpp:106] Iteration 500, lr = 0.03998 | |
I0405 01:21:42.751653 26022 solver.cpp:229] Iteration 550, loss = 1.19917 | |
I0405 01:21:42.751802 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 01:21:42.751833 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 01:21:42.751848 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 01:21:42.751863 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 01:21:42.751875 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0 | |
I0405 01:21:42.751888 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.09375 | |
I0405 01:21:42.751900 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 01:21:42.751912 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0405 01:21:42.751925 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 01:21:42.751937 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 01:21:42.751950 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 01:21:42.751961 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 01:21:42.751973 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 01:21:42.751986 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 01:21:42.751997 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 01:21:42.752008 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 01:21:42.752020 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 01:21:42.752032 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 01:21:42.752043 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 01:21:42.752056 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 01:21:42.752082 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 01:21:42.752099 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 01:21:42.752115 26022 solver.cpp:245] Train net output #22: loss/loss01 = 4.13842 (* 0.0454545 = 0.18811 loss) | |
I0405 01:21:42.752130 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.8249 (* 0.0454545 = 0.173859 loss) | |
I0405 01:21:42.752143 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.91765 (* 0.0454545 = 0.178075 loss) | |
I0405 01:21:42.752158 26022 solver.cpp:245] Train net output #25: loss/loss04 = 4.01818 (* 0.0454545 = 0.182645 loss) | |
I0405 01:21:42.752172 26022 solver.cpp:245] Train net output #26: loss/loss05 = 4.09537 (* 0.0454545 = 0.186153 loss) | |
I0405 01:21:42.752187 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.89882 (* 0.0454545 = 0.177219 loss) | |
I0405 01:21:42.752202 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.56936 (* 0.0454545 = 0.0713348 loss) | |
I0405 01:21:42.752216 26022 solver.cpp:245] Train net output #29: loss/loss08 = 1.11834 (* 0.0454545 = 0.0508335 loss) | |
I0405 01:21:42.752234 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.47592 (* 0.0454545 = 0.0216327 loss) | |
I0405 01:21:42.752249 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.245379 (* 0.0454545 = 0.0111536 loss) | |
I0405 01:21:42.752264 26022 solver.cpp:245] Train net output #32: loss/loss11 = 4.12547e-05 (* 0.0454545 = 1.87522e-06 loss) | |
I0405 01:21:42.752280 26022 solver.cpp:245] Train net output #33: loss/loss12 = 4.03606e-05 (* 0.0454545 = 1.83457e-06 loss) | |
I0405 01:21:42.752295 26022 solver.cpp:245] Train net output #34: loss/loss13 = 4.37471e-05 (* 0.0454545 = 1.9885e-06 loss) | |
I0405 01:21:42.752310 26022 solver.cpp:245] Train net output #35: loss/loss14 = 4.08002e-05 (* 0.0454545 = 1.85456e-06 loss) | |
I0405 01:21:42.752324 26022 solver.cpp:245] Train net output #36: loss/loss15 = 4.14112e-05 (* 0.0454545 = 1.88233e-06 loss) | |
I0405 01:21:42.752339 26022 solver.cpp:245] Train net output #37: loss/loss16 = 4.18732e-05 (* 0.0454545 = 1.90333e-06 loss) | |
I0405 01:21:42.752354 26022 solver.cpp:245] Train net output #38: loss/loss17 = 3.82073e-05 (* 0.0454545 = 1.7367e-06 loss) | |
I0405 01:21:42.752387 26022 solver.cpp:245] Train net output #39: loss/loss18 = 3.94032e-05 (* 0.0454545 = 1.79105e-06 loss) | |
I0405 01:21:42.752403 26022 solver.cpp:245] Train net output #40: loss/loss19 = 3.99285e-05 (* 0.0454545 = 1.81493e-06 loss) | |
I0405 01:21:42.752418 26022 solver.cpp:245] Train net output #41: loss/loss20 = 3.87438e-05 (* 0.0454545 = 1.76108e-06 loss) | |
I0405 01:21:42.752431 26022 solver.cpp:245] Train net output #42: loss/loss21 = 3.86544e-05 (* 0.0454545 = 1.75702e-06 loss) | |
I0405 01:21:42.752446 26022 solver.cpp:245] Train net output #43: loss/loss22 = 4.007e-05 (* 0.0454545 = 1.82137e-06 loss) | |
I0405 01:21:42.752460 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 01:21:42.752471 26022 solver.cpp:245] Train net output #45: total_confidence = 3.80854e-09 | |
I0405 01:21:42.752486 26022 sgd_solver.cpp:106] Iteration 550, lr = 0.039978 | |
I0405 01:30:45.345886 26022 solver.cpp:229] Iteration 600, loss = 1.19695 | |
I0405 01:30:45.346031 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 01:30:45.346051 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 01:30:45.346065 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 01:30:45.346079 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 01:30:45.346092 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.03125 | |
I0405 01:30:45.346104 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125 | |
I0405 01:30:45.346117 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 01:30:45.346130 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 01:30:45.346143 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 01:30:45.346155 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 01:30:45.346168 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 01:30:45.346180 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 01:30:45.346192 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 01:30:45.346204 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 01:30:45.346215 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 01:30:45.346228 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 01:30:45.346240 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 01:30:45.346252 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 01:30:45.346264 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 01:30:45.346276 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 01:30:45.346288 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 01:30:45.346299 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 01:30:45.346315 26022 solver.cpp:245] Train net output #22: loss/loss01 = 4.09366 (* 0.0454545 = 0.186076 loss) | |
I0405 01:30:45.346330 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.87665 (* 0.0454545 = 0.176211 loss) | |
I0405 01:30:45.346348 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.94917 (* 0.0454545 = 0.179508 loss) | |
I0405 01:30:45.346364 26022 solver.cpp:245] Train net output #25: loss/loss04 = 4.21312 (* 0.0454545 = 0.191506 loss) | |
I0405 01:30:45.346379 26022 solver.cpp:245] Train net output #26: loss/loss05 = 4.10543 (* 0.0454545 = 0.18661 loss) | |
I0405 01:30:45.346393 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.92069 (* 0.0454545 = 0.178213 loss) | |
I0405 01:30:45.346408 26022 solver.cpp:245] Train net output #28: loss/loss07 = 2.18667 (* 0.0454545 = 0.0993939 loss) | |
I0405 01:30:45.346423 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.942238 (* 0.0454545 = 0.042829 loss) | |
I0405 01:30:45.346438 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.433421 (* 0.0454545 = 0.019701 loss) | |
I0405 01:30:45.346453 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.293195 (* 0.0454545 = 0.0133271 loss) | |
I0405 01:30:45.346468 26022 solver.cpp:245] Train net output #32: loss/loss11 = 4.56061e-05 (* 0.0454545 = 2.073e-06 loss) | |
I0405 01:30:45.346483 26022 solver.cpp:245] Train net output #33: loss/loss12 = 4.53788e-05 (* 0.0454545 = 2.06267e-06 loss) | |
I0405 01:30:45.346498 26022 solver.cpp:245] Train net output #34: loss/loss13 = 4.87802e-05 (* 0.0454545 = 2.21728e-06 loss) | |
I0405 01:30:45.346513 26022 solver.cpp:245] Train net output #35: loss/loss14 = 4.61835e-05 (* 0.0454545 = 2.09925e-06 loss) | |
I0405 01:30:45.346529 26022 solver.cpp:245] Train net output #36: loss/loss15 = 4.63698e-05 (* 0.0454545 = 2.10772e-06 loss) | |
I0405 01:30:45.346544 26022 solver.cpp:245] Train net output #37: loss/loss16 = 4.66455e-05 (* 0.0454545 = 2.12025e-06 loss) | |
I0405 01:30:45.346559 26022 solver.cpp:245] Train net output #38: loss/loss17 = 4.29126e-05 (* 0.0454545 = 1.95057e-06 loss) | |
I0405 01:30:45.346592 26022 solver.cpp:245] Train net output #39: loss/loss18 = 4.37992e-05 (* 0.0454545 = 1.99087e-06 loss) | |
I0405 01:30:45.346609 26022 solver.cpp:245] Train net output #40: loss/loss19 = 4.41979e-05 (* 0.0454545 = 2.00899e-06 loss) | |
I0405 01:30:45.346624 26022 solver.cpp:245] Train net output #41: loss/loss20 = 4.32553e-05 (* 0.0454545 = 1.96615e-06 loss) | |
I0405 01:30:45.346639 26022 solver.cpp:245] Train net output #42: loss/loss21 = 4.30653e-05 (* 0.0454545 = 1.95751e-06 loss) | |
I0405 01:30:45.346654 26022 solver.cpp:245] Train net output #43: loss/loss22 = 4.50994e-05 (* 0.0454545 = 2.04997e-06 loss) | |
I0405 01:30:45.346668 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 01:30:45.346680 26022 solver.cpp:245] Train net output #45: total_confidence = 3.31689e-09 | |
I0405 01:30:45.346695 26022 sgd_solver.cpp:106] Iteration 600, lr = 0.039976 | |
I0405 01:39:47.418421 26022 solver.cpp:229] Iteration 650, loss = 1.19264 | |
I0405 01:39:47.418647 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 01:39:47.418668 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 01:39:47.418683 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 01:39:47.418695 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0405 01:39:47.418707 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.03125 | |
I0405 01:39:47.418720 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 01:39:47.418732 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 01:39:47.418745 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 01:39:47.418758 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 01:39:47.418771 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 01:39:47.418783 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 01:39:47.418795 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 01:39:47.418807 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 01:39:47.418819 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 01:39:47.418831 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 01:39:47.418843 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 01:39:47.418855 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 01:39:47.418867 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 01:39:47.418879 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 01:39:47.418891 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 01:39:47.418903 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 01:39:47.418915 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 01:39:47.418931 26022 solver.cpp:245] Train net output #22: loss/loss01 = 4.08955 (* 0.0454545 = 0.185889 loss) | |
I0405 01:39:47.418947 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.78136 (* 0.0454545 = 0.17188 loss) | |
I0405 01:39:47.418962 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.82794 (* 0.0454545 = 0.173997 loss) | |
I0405 01:39:47.418977 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.96804 (* 0.0454545 = 0.180365 loss) | |
I0405 01:39:47.418990 26022 solver.cpp:245] Train net output #26: loss/loss05 = 4.00449 (* 0.0454545 = 0.182022 loss) | |
I0405 01:39:47.419008 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.85389 (* 0.0454545 = 0.175177 loss) | |
I0405 01:39:47.419023 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.84292 (* 0.0454545 = 0.0837689 loss) | |
I0405 01:39:47.419036 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.892869 (* 0.0454545 = 0.0405849 loss) | |
I0405 01:39:47.419051 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.728063 (* 0.0454545 = 0.0330938 loss) | |
I0405 01:39:47.419065 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.516918 (* 0.0454545 = 0.0234963 loss) | |
I0405 01:39:47.419080 26022 solver.cpp:245] Train net output #32: loss/loss11 = 4.20147e-05 (* 0.0454545 = 1.90976e-06 loss) | |
I0405 01:39:47.419095 26022 solver.cpp:245] Train net output #33: loss/loss12 = 4.17838e-05 (* 0.0454545 = 1.89926e-06 loss) | |
I0405 01:39:47.419111 26022 solver.cpp:245] Train net output #34: loss/loss13 = 4.50175e-05 (* 0.0454545 = 2.04625e-06 loss) | |
I0405 01:39:47.419126 26022 solver.cpp:245] Train net output #35: loss/loss14 = 4.21936e-05 (* 0.0454545 = 1.91789e-06 loss) | |
I0405 01:39:47.419140 26022 solver.cpp:245] Train net output #36: loss/loss15 = 4.28492e-05 (* 0.0454545 = 1.94769e-06 loss) | |
I0405 01:39:47.419155 26022 solver.cpp:245] Train net output #37: loss/loss16 = 4.24357e-05 (* 0.0454545 = 1.9289e-06 loss) | |
I0405 01:39:47.419173 26022 solver.cpp:245] Train net output #38: loss/loss17 = 3.91014e-05 (* 0.0454545 = 1.77734e-06 loss) | |
I0405 01:39:47.419201 26022 solver.cpp:245] Train net output #39: loss/loss18 = 3.97832e-05 (* 0.0454545 = 1.80833e-06 loss) | |
I0405 01:39:47.419219 26022 solver.cpp:245] Train net output #40: loss/loss19 = 4.00961e-05 (* 0.0454545 = 1.82255e-06 loss) | |
I0405 01:39:47.419232 26022 solver.cpp:245] Train net output #41: loss/loss20 = 3.91536e-05 (* 0.0454545 = 1.77971e-06 loss) | |
I0405 01:39:47.419247 26022 solver.cpp:245] Train net output #42: loss/loss21 = 3.94293e-05 (* 0.0454545 = 1.79224e-06 loss) | |
I0405 01:39:47.419261 26022 solver.cpp:245] Train net output #43: loss/loss22 = 4.0491e-05 (* 0.0454545 = 1.8405e-06 loss) | |
I0405 01:39:47.419275 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 01:39:47.419287 26022 solver.cpp:245] Train net output #45: total_confidence = 3.97012e-09 | |
I0405 01:39:47.419302 26022 sgd_solver.cpp:106] Iteration 650, lr = 0.039974 | |
I0405 01:48:49.629164 26022 solver.cpp:229] Iteration 700, loss = 1.19176 | |
I0405 01:48:49.629295 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 01:48:49.629317 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 01:48:49.629329 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 01:48:49.629343 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 01:48:49.629355 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0405 01:48:49.629367 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0405 01:48:49.629380 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0405 01:48:49.629392 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 01:48:49.629405 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 01:48:49.629417 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 01:48:49.629431 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 01:48:49.629441 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 01:48:49.629453 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 01:48:49.629465 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 01:48:49.629477 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 01:48:49.629488 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 01:48:49.629500 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 01:48:49.629511 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 01:48:49.629523 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 01:48:49.629534 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 01:48:49.629546 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 01:48:49.629559 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 01:48:49.629573 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.89847 (* 0.0454545 = 0.177203 loss) | |
I0405 01:48:49.629588 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.73435 (* 0.0454545 = 0.169743 loss) | |
I0405 01:48:49.629602 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.8765 (* 0.0454545 = 0.176205 loss) | |
I0405 01:48:49.629617 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.83797 (* 0.0454545 = 0.174453 loss) | |
I0405 01:48:49.629631 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.99441 (* 0.0454545 = 0.181564 loss) | |
I0405 01:48:49.629645 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.8418 (* 0.0454545 = 0.174627 loss) | |
I0405 01:48:49.629660 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.99011 (* 0.0454545 = 0.0904595 loss) | |
I0405 01:48:49.629675 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.971691 (* 0.0454545 = 0.0441678 loss) | |
I0405 01:48:49.629689 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.24031 (* 0.0454545 = 0.0109232 loss) | |
I0405 01:48:49.629704 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0187645 (* 0.0454545 = 0.00085293 loss) | |
I0405 01:48:49.629719 26022 solver.cpp:245] Train net output #32: loss/loss11 = 3.60652e-05 (* 0.0454545 = 1.63933e-06 loss) | |
I0405 01:48:49.629734 26022 solver.cpp:245] Train net output #33: loss/loss12 = 3.54207e-05 (* 0.0454545 = 1.61003e-06 loss) | |
I0405 01:48:49.629750 26022 solver.cpp:245] Train net output #34: loss/loss13 = 3.8498e-05 (* 0.0454545 = 1.74991e-06 loss) | |
I0405 01:48:49.629765 26022 solver.cpp:245] Train net output #35: loss/loss14 = 3.61509e-05 (* 0.0454545 = 1.64322e-06 loss) | |
I0405 01:48:49.629781 26022 solver.cpp:245] Train net output #36: loss/loss15 = 3.63856e-05 (* 0.0454545 = 1.65389e-06 loss) | |
I0405 01:48:49.629796 26022 solver.cpp:245] Train net output #37: loss/loss16 = 3.60988e-05 (* 0.0454545 = 1.64085e-06 loss) | |
I0405 01:48:49.629811 26022 solver.cpp:245] Train net output #38: loss/loss17 = 3.33159e-05 (* 0.0454545 = 1.51436e-06 loss) | |
I0405 01:48:49.629842 26022 solver.cpp:245] Train net output #39: loss/loss18 = 3.40908e-05 (* 0.0454545 = 1.54958e-06 loss) | |
I0405 01:48:49.629858 26022 solver.cpp:245] Train net output #40: loss/loss19 = 3.46347e-05 (* 0.0454545 = 1.5743e-06 loss) | |
I0405 01:48:49.629873 26022 solver.cpp:245] Train net output #41: loss/loss20 = 3.34537e-05 (* 0.0454545 = 1.52062e-06 loss) | |
I0405 01:48:49.629889 26022 solver.cpp:245] Train net output #42: loss/loss21 = 3.35655e-05 (* 0.0454545 = 1.5257e-06 loss) | |
I0405 01:48:49.629904 26022 solver.cpp:245] Train net output #43: loss/loss22 = 3.42919e-05 (* 0.0454545 = 1.55872e-06 loss) | |
I0405 01:48:49.629916 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 01:48:49.629928 26022 solver.cpp:245] Train net output #45: total_confidence = 4.42252e-09 | |
I0405 01:48:49.629942 26022 sgd_solver.cpp:106] Iteration 700, lr = 0.039972 | |
I0405 01:57:51.837373 26022 solver.cpp:229] Iteration 750, loss = 1.19013 | |
I0405 01:57:51.837510 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 01:57:51.837534 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0405 01:57:51.837549 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 01:57:51.837561 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 01:57:51.837574 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0405 01:57:51.837586 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 01:57:51.837599 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 01:57:51.837611 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0405 01:57:51.837623 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 01:57:51.837636 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 01:57:51.837647 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 01:57:51.837659 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 01:57:51.837671 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 01:57:51.837683 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 01:57:51.837694 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 01:57:51.837707 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 01:57:51.837718 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 01:57:51.837730 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 01:57:51.837743 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 01:57:51.837754 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 01:57:51.837765 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 01:57:51.837777 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 01:57:51.837795 26022 solver.cpp:245] Train net output #22: loss/loss01 = 4.09375 (* 0.0454545 = 0.18608 loss) | |
I0405 01:57:51.837811 26022 solver.cpp:245] Train net output #23: loss/loss02 = 4.17536 (* 0.0454545 = 0.189789 loss) | |
I0405 01:57:51.837829 26022 solver.cpp:245] Train net output #24: loss/loss03 = 4.17791 (* 0.0454545 = 0.189905 loss) | |
I0405 01:57:51.837844 26022 solver.cpp:245] Train net output #25: loss/loss04 = 4.21709 (* 0.0454545 = 0.191686 loss) | |
I0405 01:57:51.837859 26022 solver.cpp:245] Train net output #26: loss/loss05 = 4.17427 (* 0.0454545 = 0.18974 loss) | |
I0405 01:57:51.837873 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.7357 (* 0.0454545 = 0.169805 loss) | |
I0405 01:57:51.837888 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.1876 (* 0.0454545 = 0.0539818 loss) | |
I0405 01:57:51.837903 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.265084 (* 0.0454545 = 0.0120493 loss) | |
I0405 01:57:51.837918 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.245304 (* 0.0454545 = 0.0111502 loss) | |
I0405 01:57:51.837932 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0162712 (* 0.0454545 = 0.000739599 loss) | |
I0405 01:57:51.837947 26022 solver.cpp:245] Train net output #32: loss/loss11 = 3.54695e-05 (* 0.0454545 = 1.61225e-06 loss) | |
I0405 01:57:51.837962 26022 solver.cpp:245] Train net output #33: loss/loss12 = 3.50075e-05 (* 0.0454545 = 1.59125e-06 loss) | |
I0405 01:57:51.837977 26022 solver.cpp:245] Train net output #34: loss/loss13 = 3.77383e-05 (* 0.0454545 = 1.71538e-06 loss) | |
I0405 01:57:51.837992 26022 solver.cpp:245] Train net output #35: loss/loss14 = 3.56446e-05 (* 0.0454545 = 1.62021e-06 loss) | |
I0405 01:57:51.838007 26022 solver.cpp:245] Train net output #36: loss/loss15 = 3.57266e-05 (* 0.0454545 = 1.62393e-06 loss) | |
I0405 01:57:51.838022 26022 solver.cpp:245] Train net output #37: loss/loss16 = 3.61326e-05 (* 0.0454545 = 1.64239e-06 loss) | |
I0405 01:57:51.838037 26022 solver.cpp:245] Train net output #38: loss/loss17 = 3.27126e-05 (* 0.0454545 = 1.48694e-06 loss) | |
I0405 01:57:51.838068 26022 solver.cpp:245] Train net output #39: loss/loss18 = 3.34018e-05 (* 0.0454545 = 1.51827e-06 loss) | |
I0405 01:57:51.838084 26022 solver.cpp:245] Train net output #40: loss/loss19 = 3.40091e-05 (* 0.0454545 = 1.54587e-06 loss) | |
I0405 01:57:51.838099 26022 solver.cpp:245] Train net output #41: loss/loss20 = 3.28207e-05 (* 0.0454545 = 1.49185e-06 loss) | |
I0405 01:57:51.838114 26022 solver.cpp:245] Train net output #42: loss/loss21 = 3.30218e-05 (* 0.0454545 = 1.50099e-06 loss) | |
I0405 01:57:51.838129 26022 solver.cpp:245] Train net output #43: loss/loss22 = 3.41879e-05 (* 0.0454545 = 1.554e-06 loss) | |
I0405 01:57:51.838141 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 01:57:51.838153 26022 solver.cpp:245] Train net output #45: total_confidence = 7.64973e-09 | |
I0405 01:57:51.838168 26022 sgd_solver.cpp:106] Iteration 750, lr = 0.03997 | |
I0405 02:06:54.083160 26022 solver.cpp:229] Iteration 800, loss = 1.18456 | |
I0405 02:06:54.083279 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 02:06:54.083299 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0405 02:06:54.083313 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 02:06:54.083325 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 02:06:54.083338 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0 | |
I0405 02:06:54.083350 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125 | |
I0405 02:06:54.083364 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 02:06:54.083376 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 02:06:54.083389 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 02:06:54.083400 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 02:06:54.083412 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 02:06:54.083425 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 02:06:54.083436 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 02:06:54.083448 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 02:06:54.083459 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 02:06:54.083472 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 02:06:54.083483 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 02:06:54.083495 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 02:06:54.083508 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 02:06:54.083519 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 02:06:54.083531 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 02:06:54.083544 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 02:06:54.083559 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.794 (* 0.0454545 = 0.172455 loss) | |
I0405 02:06:54.083575 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.68009 (* 0.0454545 = 0.167277 loss) | |
I0405 02:06:54.083588 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.86346 (* 0.0454545 = 0.175612 loss) | |
I0405 02:06:54.083606 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.917 (* 0.0454545 = 0.178045 loss) | |
I0405 02:06:54.083621 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.99748 (* 0.0454545 = 0.181704 loss) | |
I0405 02:06:54.083636 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.78248 (* 0.0454545 = 0.171931 loss) | |
I0405 02:06:54.083650 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.84701 (* 0.0454545 = 0.083955 loss) | |
I0405 02:06:54.083664 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.956132 (* 0.0454545 = 0.0434605 loss) | |
I0405 02:06:54.083679 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.639284 (* 0.0454545 = 0.0290584 loss) | |
I0405 02:06:54.083696 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.478019 (* 0.0454545 = 0.0217282 loss) | |
I0405 02:06:54.083714 26022 solver.cpp:245] Train net output #32: loss/loss11 = 6.72008e-05 (* 0.0454545 = 3.05458e-06 loss) | |
I0405 02:06:54.083729 26022 solver.cpp:245] Train net output #33: loss/loss12 = 6.60942e-05 (* 0.0454545 = 3.00428e-06 loss) | |
I0405 02:06:54.083744 26022 solver.cpp:245] Train net output #34: loss/loss13 = 7.11075e-05 (* 0.0454545 = 3.23216e-06 loss) | |
I0405 02:06:54.083758 26022 solver.cpp:245] Train net output #35: loss/loss14 = 6.81939e-05 (* 0.0454545 = 3.09972e-06 loss) | |
I0405 02:06:54.083773 26022 solver.cpp:245] Train net output #36: loss/loss15 = 6.8369e-05 (* 0.0454545 = 3.10768e-06 loss) | |
I0405 02:06:54.083788 26022 solver.cpp:245] Train net output #37: loss/loss16 = 6.83112e-05 (* 0.0454545 = 3.10506e-06 loss) | |
I0405 02:06:54.083803 26022 solver.cpp:245] Train net output #38: loss/loss17 = 6.2549e-05 (* 0.0454545 = 2.84314e-06 loss) | |
I0405 02:06:54.083837 26022 solver.cpp:245] Train net output #39: loss/loss18 = 6.51498e-05 (* 0.0454545 = 2.96135e-06 loss) | |
I0405 02:06:54.083854 26022 solver.cpp:245] Train net output #40: loss/loss19 = 6.47176e-05 (* 0.0454545 = 2.94171e-06 loss) | |
I0405 02:06:54.083869 26022 solver.cpp:245] Train net output #41: loss/loss20 = 6.27931e-05 (* 0.0454545 = 2.85423e-06 loss) | |
I0405 02:06:54.083884 26022 solver.cpp:245] Train net output #42: loss/loss21 = 6.42034e-05 (* 0.0454545 = 2.91833e-06 loss) | |
I0405 02:06:54.083899 26022 solver.cpp:245] Train net output #43: loss/loss22 = 6.52727e-05 (* 0.0454545 = 2.96694e-06 loss) | |
I0405 02:06:54.083912 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 02:06:54.083925 26022 solver.cpp:245] Train net output #45: total_confidence = 8.20168e-09 | |
I0405 02:06:54.083940 26022 sgd_solver.cpp:106] Iteration 800, lr = 0.039968 | |
I0405 02:15:56.182812 26022 solver.cpp:229] Iteration 850, loss = 1.17905 | |
I0405 02:15:56.183007 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0405 02:15:56.183028 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 02:15:56.183043 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 02:15:56.183054 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 02:15:56.183068 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0405 02:15:56.183079 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 02:15:56.183092 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 02:15:56.183104 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 02:15:56.183117 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 02:15:56.183130 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 02:15:56.183141 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 02:15:56.183153 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 02:15:56.183164 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 02:15:56.183176 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 02:15:56.183188 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 02:15:56.183200 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 02:15:56.183212 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 02:15:56.183224 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 02:15:56.183236 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 02:15:56.183248 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 02:15:56.183259 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 02:15:56.183270 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 02:15:56.183285 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.55068 (* 0.0454545 = 0.161394 loss) | |
I0405 02:15:56.183301 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.79589 (* 0.0454545 = 0.172541 loss) | |
I0405 02:15:56.183316 26022 solver.cpp:245] Train net output #24: loss/loss03 = 4.05486 (* 0.0454545 = 0.184312 loss) | |
I0405 02:15:56.183331 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.90259 (* 0.0454545 = 0.17739 loss) | |
I0405 02:15:56.183346 26022 solver.cpp:245] Train net output #26: loss/loss05 = 4.03407 (* 0.0454545 = 0.183367 loss) | |
I0405 02:15:56.183360 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.67407 (* 0.0454545 = 0.167003 loss) | |
I0405 02:15:56.183375 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.5217 (* 0.0454545 = 0.0691683 loss) | |
I0405 02:15:56.183389 26022 solver.cpp:245] Train net output #29: loss/loss08 = 1.00957 (* 0.0454545 = 0.0458898 loss) | |
I0405 02:15:56.183404 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.649077 (* 0.0454545 = 0.0295035 loss) | |
I0405 02:15:56.183420 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0186128 (* 0.0454545 = 0.000846034 loss) | |
I0405 02:15:56.183454 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.00012097 (* 0.0454545 = 5.49863e-06 loss) | |
I0405 02:15:56.183471 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000118609 (* 0.0454545 = 5.39132e-06 loss) | |
I0405 02:15:56.183487 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000126176 (* 0.0454545 = 5.73527e-06 loss) | |
I0405 02:15:56.183502 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000119694 (* 0.0454545 = 5.44062e-06 loss) | |
I0405 02:15:56.183517 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000121087 (* 0.0454545 = 5.50396e-06 loss) | |
I0405 02:15:56.183534 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000119675 (* 0.0454545 = 5.43976e-06 loss) | |
I0405 02:15:56.183560 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000111752 (* 0.0454545 = 5.07965e-06 loss) | |
I0405 02:15:56.183591 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000114234 (* 0.0454545 = 5.19247e-06 loss) | |
I0405 02:15:56.183611 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.00011587 (* 0.0454545 = 5.26682e-06 loss) | |
I0405 02:15:56.183626 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000111324 (* 0.0454545 = 5.06017e-06 loss) | |
I0405 02:15:56.183641 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000113571 (* 0.0454545 = 5.16231e-06 loss) | |
I0405 02:15:56.183656 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000114558 (* 0.0454545 = 5.2072e-06 loss) | |
I0405 02:15:56.183670 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 02:15:56.183682 26022 solver.cpp:245] Train net output #45: total_confidence = 5.62544e-09 | |
I0405 02:15:56.183697 26022 sgd_solver.cpp:106] Iteration 850, lr = 0.039966 | |
I0405 02:24:58.318820 26022 solver.cpp:229] Iteration 900, loss = 1.17929 | |
I0405 02:24:58.318936 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 02:24:58.318956 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 02:24:58.318970 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 02:24:58.318982 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 02:24:58.318995 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0 | |
I0405 02:24:58.319007 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 02:24:58.319020 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 02:24:58.319032 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 02:24:58.319046 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 02:24:58.319057 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 02:24:58.319069 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 02:24:58.319082 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 02:24:58.319092 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 02:24:58.319104 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 02:24:58.319116 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 02:24:58.319128 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 02:24:58.319139 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 02:24:58.319151 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 02:24:58.319162 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 02:24:58.319175 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 02:24:58.319185 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 02:24:58.319197 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 02:24:58.319212 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.87605 (* 0.0454545 = 0.176184 loss) | |
I0405 02:24:58.319227 26022 solver.cpp:245] Train net output #23: loss/loss02 = 4.07787 (* 0.0454545 = 0.185358 loss) | |
I0405 02:24:58.319242 26022 solver.cpp:245] Train net output #24: loss/loss03 = 4.00669 (* 0.0454545 = 0.182122 loss) | |
I0405 02:24:58.319257 26022 solver.cpp:245] Train net output #25: loss/loss04 = 4.06781 (* 0.0454545 = 0.184901 loss) | |
I0405 02:24:58.319272 26022 solver.cpp:245] Train net output #26: loss/loss05 = 4.09216 (* 0.0454545 = 0.186007 loss) | |
I0405 02:24:58.319285 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.78551 (* 0.0454545 = 0.172069 loss) | |
I0405 02:24:58.319300 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.89327 (* 0.0454545 = 0.0860579 loss) | |
I0405 02:24:58.319314 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.972107 (* 0.0454545 = 0.0441867 loss) | |
I0405 02:24:58.319329 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.407752 (* 0.0454545 = 0.0185342 loss) | |
I0405 02:24:58.319344 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0135476 (* 0.0454545 = 0.000615802 loss) | |
I0405 02:24:58.319358 26022 solver.cpp:245] Train net output #32: loss/loss11 = 7.89697e-05 (* 0.0454545 = 3.58953e-06 loss) | |
I0405 02:24:58.319375 26022 solver.cpp:245] Train net output #33: loss/loss12 = 7.81389e-05 (* 0.0454545 = 3.55177e-06 loss) | |
I0405 02:24:58.319389 26022 solver.cpp:245] Train net output #34: loss/loss13 = 8.24464e-05 (* 0.0454545 = 3.74756e-06 loss) | |
I0405 02:24:58.319403 26022 solver.cpp:245] Train net output #35: loss/loss14 = 7.96518e-05 (* 0.0454545 = 3.62054e-06 loss) | |
I0405 02:24:58.319418 26022 solver.cpp:245] Train net output #36: loss/loss15 = 7.95325e-05 (* 0.0454545 = 3.61511e-06 loss) | |
I0405 02:24:58.319432 26022 solver.cpp:245] Train net output #37: loss/loss16 = 8.10342e-05 (* 0.0454545 = 3.68337e-06 loss) | |
I0405 02:24:58.319447 26022 solver.cpp:245] Train net output #38: loss/loss17 = 7.43306e-05 (* 0.0454545 = 3.37866e-06 loss) | |
I0405 02:24:58.319476 26022 solver.cpp:245] Train net output #39: loss/loss18 = 7.59404e-05 (* 0.0454545 = 3.45183e-06 loss) | |
I0405 02:24:58.319494 26022 solver.cpp:245] Train net output #40: loss/loss19 = 7.60074e-05 (* 0.0454545 = 3.45488e-06 loss) | |
I0405 02:24:58.319507 26022 solver.cpp:245] Train net output #41: loss/loss20 = 7.43642e-05 (* 0.0454545 = 3.38019e-06 loss) | |
I0405 02:24:58.319522 26022 solver.cpp:245] Train net output #42: loss/loss21 = 7.50703e-05 (* 0.0454545 = 3.41229e-06 loss) | |
I0405 02:24:58.319537 26022 solver.cpp:245] Train net output #43: loss/loss22 = 7.68496e-05 (* 0.0454545 = 3.49316e-06 loss) | |
I0405 02:24:58.319550 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 02:24:58.319563 26022 solver.cpp:245] Train net output #45: total_confidence = 1.46849e-08 | |
I0405 02:24:58.319578 26022 sgd_solver.cpp:106] Iteration 900, lr = 0.039964 | |
I0405 02:34:00.609575 26022 solver.cpp:229] Iteration 950, loss = 1.17626 | |
I0405 02:34:00.609750 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0405 02:34:00.609782 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 02:34:00.609808 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 02:34:00.609833 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 02:34:00.609859 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.03125 | |
I0405 02:34:00.609882 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 02:34:00.609906 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.59375 | |
I0405 02:34:00.609930 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 02:34:00.609946 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 02:34:00.609957 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 02:34:00.609969 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 02:34:00.609982 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 02:34:00.609992 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 02:34:00.610004 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 02:34:00.610016 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 02:34:00.610028 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 02:34:00.610040 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 02:34:00.610051 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 02:34:00.610064 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 02:34:00.610074 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 02:34:00.610086 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 02:34:00.610097 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 02:34:00.610113 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.83618 (* 0.0454545 = 0.174372 loss) | |
I0405 02:34:00.610128 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.79912 (* 0.0454545 = 0.172687 loss) | |
I0405 02:34:00.610142 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.74721 (* 0.0454545 = 0.170328 loss) | |
I0405 02:34:00.610157 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.85507 (* 0.0454545 = 0.175231 loss) | |
I0405 02:34:00.610172 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.99369 (* 0.0454545 = 0.181531 loss) | |
I0405 02:34:00.610185 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.77534 (* 0.0454545 = 0.171606 loss) | |
I0405 02:34:00.610199 26022 solver.cpp:245] Train net output #28: loss/loss07 = 2.23163 (* 0.0454545 = 0.101438 loss) | |
I0405 02:34:00.610213 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.496714 (* 0.0454545 = 0.0225779 loss) | |
I0405 02:34:00.610229 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.0443468 (* 0.0454545 = 0.00201576 loss) | |
I0405 02:34:00.610244 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0173282 (* 0.0454545 = 0.000787644 loss) | |
I0405 02:34:00.610258 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000149539 (* 0.0454545 = 6.79724e-06 loss) | |
I0405 02:34:00.610272 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000147124 (* 0.0454545 = 6.68745e-06 loss) | |
I0405 02:34:00.610287 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000154465 (* 0.0454545 = 7.02114e-06 loss) | |
I0405 02:34:00.610302 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000152737 (* 0.0454545 = 6.94261e-06 loss) | |
I0405 02:34:00.610317 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000150288 (* 0.0454545 = 6.83129e-06 loss) | |
I0405 02:34:00.610332 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000152029 (* 0.0454545 = 6.91041e-06 loss) | |
I0405 02:34:00.610347 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000142097 (* 0.0454545 = 6.45897e-06 loss) | |
I0405 02:34:00.610379 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000143046 (* 0.0454545 = 6.5021e-06 loss) | |
I0405 02:34:00.610395 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000146541 (* 0.0454545 = 6.66095e-06 loss) | |
I0405 02:34:00.610410 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000141129 (* 0.0454545 = 6.41494e-06 loss) | |
I0405 02:34:00.610425 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000142819 (* 0.0454545 = 6.49175e-06 loss) | |
I0405 02:34:00.610440 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000146446 (* 0.0454545 = 6.65661e-06 loss) | |
I0405 02:34:00.610452 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 02:34:00.610465 26022 solver.cpp:245] Train net output #45: total_confidence = 2.00246e-08 | |
I0405 02:34:00.610479 26022 sgd_solver.cpp:106] Iteration 950, lr = 0.039962 | |
I0405 02:42:52.367350 26022 solver.cpp:338] Iteration 1000, Testing net (#0) | |
I0405 02:43:09.018882 26022 solver.cpp:393] Test loss: 1.0976 | |
I0405 02:43:09.018930 26022 solver.cpp:406] Test net output #0: loss/accuracy01 = 0 | |
I0405 02:43:09.018947 26022 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.066 | |
I0405 02:43:09.018961 26022 solver.cpp:406] Test net output #2: loss/accuracy03 = 0 | |
I0405 02:43:09.018973 26022 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.002 | |
I0405 02:43:09.018986 26022 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.007 | |
I0405 02:43:09.018998 26022 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.501 | |
I0405 02:43:09.019011 26022 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0405 02:43:09.019022 26022 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0405 02:43:09.019034 26022 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0405 02:43:09.019045 26022 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0405 02:43:09.019057 26022 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0405 02:43:09.019068 26022 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0405 02:43:09.019080 26022 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0405 02:43:09.019093 26022 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0405 02:43:09.019104 26022 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0405 02:43:09.019117 26022 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0405 02:43:09.019130 26022 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0405 02:43:09.019141 26022 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0405 02:43:09.019153 26022 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0405 02:43:09.019167 26022 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0405 02:43:09.019179 26022 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0405 02:43:09.019191 26022 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0405 02:43:09.019207 26022 solver.cpp:406] Test net output #22: loss/loss01 = 3.47848 (* 0.0454545 = 0.158113 loss) | |
I0405 02:43:09.019222 26022 solver.cpp:406] Test net output #23: loss/loss02 = 3.72914 (* 0.0454545 = 0.169506 loss) | |
I0405 02:43:09.019235 26022 solver.cpp:406] Test net output #24: loss/loss03 = 3.99079 (* 0.0454545 = 0.181399 loss) | |
I0405 02:43:09.019249 26022 solver.cpp:406] Test net output #25: loss/loss04 = 3.99051 (* 0.0454545 = 0.181387 loss) | |
I0405 02:43:09.019263 26022 solver.cpp:406] Test net output #26: loss/loss05 = 4.01313 (* 0.0454545 = 0.182415 loss) | |
I0405 02:43:09.019276 26022 solver.cpp:406] Test net output #27: loss/loss06 = 3.53388 (* 0.0454545 = 0.160631 loss) | |
I0405 02:43:09.019290 26022 solver.cpp:406] Test net output #28: loss/loss07 = 0.956657 (* 0.0454545 = 0.0434844 loss) | |
I0405 02:43:09.019305 26022 solver.cpp:406] Test net output #29: loss/loss08 = 0.334567 (* 0.0454545 = 0.0152076 loss) | |
I0405 02:43:09.019320 26022 solver.cpp:406] Test net output #30: loss/loss09 = 0.0821666 (* 0.0454545 = 0.00373485 loss) | |
I0405 02:43:09.019335 26022 solver.cpp:406] Test net output #31: loss/loss10 = 0.0353198 (* 0.0454545 = 0.00160545 loss) | |
I0405 02:43:09.019348 26022 solver.cpp:406] Test net output #32: loss/loss11 = 0.000223803 (* 0.0454545 = 1.01729e-05 loss) | |
I0405 02:43:09.019363 26022 solver.cpp:406] Test net output #33: loss/loss12 = 0.000219568 (* 0.0454545 = 9.98036e-06 loss) | |
I0405 02:43:09.019378 26022 solver.cpp:406] Test net output #34: loss/loss13 = 0.000230953 (* 0.0454545 = 1.04979e-05 loss) | |
I0405 02:43:09.019393 26022 solver.cpp:406] Test net output #35: loss/loss14 = 0.000224668 (* 0.0454545 = 1.02122e-05 loss) | |
I0405 02:43:09.019407 26022 solver.cpp:406] Test net output #36: loss/loss15 = 0.000224206 (* 0.0454545 = 1.01912e-05 loss) | |
I0405 02:43:09.019423 26022 solver.cpp:406] Test net output #37: loss/loss16 = 0.00022409 (* 0.0454545 = 1.01859e-05 loss) | |
I0405 02:43:09.019436 26022 solver.cpp:406] Test net output #38: loss/loss17 = 0.000211603 (* 0.0454545 = 9.61834e-06 loss) | |
I0405 02:43:09.019480 26022 solver.cpp:406] Test net output #39: loss/loss18 = 0.000213975 (* 0.0454545 = 9.72614e-06 loss) | |
I0405 02:43:09.019496 26022 solver.cpp:406] Test net output #40: loss/loss19 = 0.000215922 (* 0.0454545 = 9.81466e-06 loss) | |
I0405 02:43:09.019511 26022 solver.cpp:406] Test net output #41: loss/loss20 = 0.000210648 (* 0.0454545 = 9.57489e-06 loss) | |
I0405 02:43:09.019526 26022 solver.cpp:406] Test net output #42: loss/loss21 = 0.000212573 (* 0.0454545 = 9.66243e-06 loss) | |
I0405 02:43:09.019541 26022 solver.cpp:406] Test net output #43: loss/loss22 = 0.000218494 (* 0.0454545 = 9.93153e-06 loss) | |
I0405 02:43:09.019552 26022 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0405 02:43:09.019564 26022 solver.cpp:406] Test net output #45: total_confidence = 6.39859e-09 | |
I0405 02:43:19.335474 26022 solver.cpp:229] Iteration 1000, loss = 1.1725 | |
I0405 02:43:19.335530 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0405 02:43:19.335549 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 02:43:19.335563 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 02:43:19.335575 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 02:43:19.335588 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.03125 | |
I0405 02:43:19.335602 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0405 02:43:19.335616 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 02:43:19.335629 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 02:43:19.335641 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 02:43:19.335654 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 02:43:19.335665 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 02:43:19.335677 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 02:43:19.335690 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 02:43:19.335701 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 02:43:19.335713 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 02:43:19.335726 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 02:43:19.335737 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 02:43:19.335748 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 02:43:19.335760 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 02:43:19.335772 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 02:43:19.335783 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 02:43:19.335795 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 02:43:19.335810 26022 solver.cpp:245] Train net output #22: loss/loss01 = 4.05236 (* 0.0454545 = 0.184198 loss) | |
I0405 02:43:19.335825 26022 solver.cpp:245] Train net output #23: loss/loss02 = 4.144 (* 0.0454545 = 0.188364 loss) | |
I0405 02:43:19.335840 26022 solver.cpp:245] Train net output #24: loss/loss03 = 4.01089 (* 0.0454545 = 0.182313 loss) | |
I0405 02:43:19.335855 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.97703 (* 0.0454545 = 0.180774 loss) | |
I0405 02:43:19.335870 26022 solver.cpp:245] Train net output #26: loss/loss05 = 4.06477 (* 0.0454545 = 0.184762 loss) | |
I0405 02:43:19.335885 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.73746 (* 0.0454545 = 0.169884 loss) | |
I0405 02:43:19.335898 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.70262 (* 0.0454545 = 0.0773917 loss) | |
I0405 02:43:19.335912 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.582836 (* 0.0454545 = 0.0264926 loss) | |
I0405 02:43:19.335927 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.0427708 (* 0.0454545 = 0.00194413 loss) | |
I0405 02:43:19.335947 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0184913 (* 0.0454545 = 0.000840514 loss) | |
I0405 02:43:19.335991 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000237069 (* 0.0454545 = 1.07759e-05 loss) | |
I0405 02:43:19.336009 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000233027 (* 0.0454545 = 1.05921e-05 loss) | |
I0405 02:43:19.336024 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000243927 (* 0.0454545 = 1.10876e-05 loss) | |
I0405 02:43:19.336040 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.0002364 (* 0.0454545 = 1.07454e-05 loss) | |
I0405 02:43:19.336055 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000238737 (* 0.0454545 = 1.08517e-05 loss) | |
I0405 02:43:19.336082 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000237071 (* 0.0454545 = 1.0776e-05 loss) | |
I0405 02:43:19.336100 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000224487 (* 0.0454545 = 1.0204e-05 loss) | |
I0405 02:43:19.336115 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000226802 (* 0.0454545 = 1.03092e-05 loss) | |
I0405 02:43:19.336130 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000226482 (* 0.0454545 = 1.02946e-05 loss) | |
I0405 02:43:19.336145 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000224365 (* 0.0454545 = 1.01984e-05 loss) | |
I0405 02:43:19.336159 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000226528 (* 0.0454545 = 1.02967e-05 loss) | |
I0405 02:43:19.336174 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000233715 (* 0.0454545 = 1.06234e-05 loss) | |
I0405 02:43:19.336187 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 02:43:19.336199 26022 solver.cpp:245] Train net output #45: total_confidence = 7.46125e-09 | |
I0405 02:43:19.336215 26022 sgd_solver.cpp:106] Iteration 1000, lr = 0.03996 | |
I0405 02:52:21.431280 26022 solver.cpp:229] Iteration 1050, loss = 1.1733 | |
I0405 02:52:21.431480 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 02:52:21.431505 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 02:52:21.431519 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 02:52:21.431531 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 02:52:21.431545 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.03125 | |
I0405 02:52:21.431557 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 02:52:21.431571 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 02:52:21.431582 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0405 02:52:21.431594 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0405 02:52:21.431607 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 02:52:21.431620 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 02:52:21.431632 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 02:52:21.431644 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 02:52:21.431656 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 02:52:21.431668 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 02:52:21.431679 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 02:52:21.431691 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 02:52:21.431704 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 02:52:21.431715 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 02:52:21.431727 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 02:52:21.431740 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 02:52:21.431753 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 02:52:21.431769 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.63954 (* 0.0454545 = 0.165434 loss) | |
I0405 02:52:21.431784 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.86525 (* 0.0454545 = 0.175693 loss) | |
I0405 02:52:21.431799 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.79662 (* 0.0454545 = 0.172574 loss) | |
I0405 02:52:21.431814 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.96958 (* 0.0454545 = 0.180435 loss) | |
I0405 02:52:21.431828 26022 solver.cpp:245] Train net output #26: loss/loss05 = 4.03395 (* 0.0454545 = 0.183361 loss) | |
I0405 02:52:21.431843 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.61449 (* 0.0454545 = 0.164295 loss) | |
I0405 02:52:21.431857 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.67549 (* 0.0454545 = 0.0761585 loss) | |
I0405 02:52:21.431871 26022 solver.cpp:245] Train net output #29: loss/loss08 = 1.24515 (* 0.0454545 = 0.0565975 loss) | |
I0405 02:52:21.431885 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.969847 (* 0.0454545 = 0.044084 loss) | |
I0405 02:52:21.431900 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.562512 (* 0.0454545 = 0.0255687 loss) | |
I0405 02:52:21.431915 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000133148 (* 0.0454545 = 6.05217e-06 loss) | |
I0405 02:52:21.431931 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.00013128 (* 0.0454545 = 5.96728e-06 loss) | |
I0405 02:52:21.431946 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000137 (* 0.0454545 = 6.22728e-06 loss) | |
I0405 02:52:21.431964 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000132684 (* 0.0454545 = 6.03107e-06 loss) | |
I0405 02:52:21.431979 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000134203 (* 0.0454545 = 6.10013e-06 loss) | |
I0405 02:52:21.431994 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000131878 (* 0.0454545 = 5.99448e-06 loss) | |
I0405 02:52:21.432009 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.00012726 (* 0.0454545 = 5.78456e-06 loss) | |
I0405 02:52:21.432041 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000127987 (* 0.0454545 = 5.8176e-06 loss) | |
I0405 02:52:21.432057 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000129294 (* 0.0454545 = 5.87698e-06 loss) | |
I0405 02:52:21.432088 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.00012535 (* 0.0454545 = 5.69772e-06 loss) | |
I0405 02:52:21.432106 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000126901 (* 0.0454545 = 5.76822e-06 loss) | |
I0405 02:52:21.432121 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000129448 (* 0.0454545 = 5.88402e-06 loss) | |
I0405 02:52:21.432133 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 02:52:21.432145 26022 solver.cpp:245] Train net output #45: total_confidence = 2.33633e-08 | |
I0405 02:52:21.432160 26022 sgd_solver.cpp:106] Iteration 1050, lr = 0.039958 | |
I0405 03:01:23.483218 26022 solver.cpp:229] Iteration 1100, loss = 1.16672 | |
I0405 03:01:23.483366 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 03:01:23.483389 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625 | |
I0405 03:01:23.483404 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 03:01:23.483417 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 03:01:23.483430 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0405 03:01:23.483443 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0405 03:01:23.483455 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 03:01:23.483469 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 03:01:23.483480 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 03:01:23.483494 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 03:01:23.483505 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 03:01:23.483517 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 03:01:23.483530 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 03:01:23.483541 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 03:01:23.483553 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 03:01:23.483566 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 03:01:23.483577 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 03:01:23.483589 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 03:01:23.483602 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 03:01:23.483613 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 03:01:23.483625 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 03:01:23.483636 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 03:01:23.483652 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.64008 (* 0.0454545 = 0.165458 loss) | |
I0405 03:01:23.483669 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.6677 (* 0.0454545 = 0.166714 loss) | |
I0405 03:01:23.483682 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.78213 (* 0.0454545 = 0.171915 loss) | |
I0405 03:01:23.483696 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.7499 (* 0.0454545 = 0.17045 loss) | |
I0405 03:01:23.483711 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.8809 (* 0.0454545 = 0.176405 loss) | |
I0405 03:01:23.483726 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.71625 (* 0.0454545 = 0.168921 loss) | |
I0405 03:01:23.483739 26022 solver.cpp:245] Train net output #28: loss/loss07 = 2.00426 (* 0.0454545 = 0.0911029 loss) | |
I0405 03:01:23.483754 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.565093 (* 0.0454545 = 0.025686 loss) | |
I0405 03:01:23.483768 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.575229 (* 0.0454545 = 0.0261468 loss) | |
I0405 03:01:23.483783 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.395119 (* 0.0454545 = 0.01796 loss) | |
I0405 03:01:23.483798 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000361151 (* 0.0454545 = 1.6416e-05 loss) | |
I0405 03:01:23.483817 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000351951 (* 0.0454545 = 1.59978e-05 loss) | |
I0405 03:01:23.483832 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000371088 (* 0.0454545 = 1.68676e-05 loss) | |
I0405 03:01:23.483847 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.0003604 (* 0.0454545 = 1.63818e-05 loss) | |
I0405 03:01:23.483862 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000361026 (* 0.0454545 = 1.64103e-05 loss) | |
I0405 03:01:23.483877 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000358865 (* 0.0454545 = 1.63121e-05 loss) | |
I0405 03:01:23.483892 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000339598 (* 0.0454545 = 1.54363e-05 loss) | |
I0405 03:01:23.483924 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000342388 (* 0.0454545 = 1.55631e-05 loss) | |
I0405 03:01:23.483940 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000349614 (* 0.0454545 = 1.58916e-05 loss) | |
I0405 03:01:23.483955 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000340666 (* 0.0454545 = 1.54848e-05 loss) | |
I0405 03:01:23.483973 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000343324 (* 0.0454545 = 1.56056e-05 loss) | |
I0405 03:01:23.483989 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000350932 (* 0.0454545 = 1.59514e-05 loss) | |
I0405 03:01:23.484001 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 03:01:23.484014 26022 solver.cpp:245] Train net output #45: total_confidence = 1.14692e-08 | |
I0405 03:01:23.484030 26022 sgd_solver.cpp:106] Iteration 1100, lr = 0.039956 | |
I0405 03:10:25.616874 26022 solver.cpp:229] Iteration 1150, loss = 1.16862 | |
I0405 03:10:25.617025 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 03:10:25.617048 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 03:10:25.617061 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 03:10:25.617074 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0405 03:10:25.617085 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0 | |
I0405 03:10:25.617097 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0405 03:10:25.617110 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 03:10:25.617122 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 03:10:25.617136 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 03:10:25.617147 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 03:10:25.617159 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 03:10:25.617172 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 03:10:25.617182 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 03:10:25.617194 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 03:10:25.617207 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 03:10:25.617218 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 03:10:25.617229 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 03:10:25.617241 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 03:10:25.617252 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 03:10:25.617264 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 03:10:25.617276 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 03:10:25.617288 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 03:10:25.617305 26022 solver.cpp:245] Train net output #22: loss/loss01 = 4.13078 (* 0.0454545 = 0.187763 loss) | |
I0405 03:10:25.617319 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.72054 (* 0.0454545 = 0.169115 loss) | |
I0405 03:10:25.617334 26022 solver.cpp:245] Train net output #24: loss/loss03 = 4.0911 (* 0.0454545 = 0.185959 loss) | |
I0405 03:10:25.617348 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.9875 (* 0.0454545 = 0.18125 loss) | |
I0405 03:10:25.617363 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.92422 (* 0.0454545 = 0.178374 loss) | |
I0405 03:10:25.617377 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.49351 (* 0.0454545 = 0.158796 loss) | |
I0405 03:10:25.617393 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.12282 (* 0.0454545 = 0.0510372 loss) | |
I0405 03:10:25.617406 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.557153 (* 0.0454545 = 0.0253252 loss) | |
I0405 03:10:25.617421 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.423012 (* 0.0454545 = 0.0192278 loss) | |
I0405 03:10:25.617439 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.43682 (* 0.0454545 = 0.0198554 loss) | |
I0405 03:10:25.617455 26022 solver.cpp:245] Train net output #32: loss/loss11 = 8.06846e-05 (* 0.0454545 = 3.66748e-06 loss) | |
I0405 03:10:25.617470 26022 solver.cpp:245] Train net output #33: loss/loss12 = 7.81224e-05 (* 0.0454545 = 3.55102e-06 loss) | |
I0405 03:10:25.617485 26022 solver.cpp:245] Train net output #34: loss/loss13 = 8.08744e-05 (* 0.0454545 = 3.67611e-06 loss) | |
I0405 03:10:25.617499 26022 solver.cpp:245] Train net output #35: loss/loss14 = 8.06844e-05 (* 0.0454545 = 3.66747e-06 loss) | |
I0405 03:10:25.617513 26022 solver.cpp:245] Train net output #36: loss/loss15 = 7.92608e-05 (* 0.0454545 = 3.60277e-06 loss) | |
I0405 03:10:25.617528 26022 solver.cpp:245] Train net output #37: loss/loss16 = 8.10889e-05 (* 0.0454545 = 3.68586e-06 loss) | |
I0405 03:10:25.617543 26022 solver.cpp:245] Train net output #38: loss/loss17 = 7.51355e-05 (* 0.0454545 = 3.41525e-06 loss) | |
I0405 03:10:25.617574 26022 solver.cpp:245] Train net output #39: loss/loss18 = 7.67865e-05 (* 0.0454545 = 3.4903e-06 loss) | |
I0405 03:10:25.617590 26022 solver.cpp:245] Train net output #40: loss/loss19 = 7.65888e-05 (* 0.0454545 = 3.48131e-06 loss) | |
I0405 03:10:25.617605 26022 solver.cpp:245] Train net output #41: loss/loss20 = 7.63598e-05 (* 0.0454545 = 3.4709e-06 loss) | |
I0405 03:10:25.617620 26022 solver.cpp:245] Train net output #42: loss/loss21 = 7.68723e-05 (* 0.0454545 = 3.49419e-06 loss) | |
I0405 03:10:25.617635 26022 solver.cpp:245] Train net output #43: loss/loss22 = 7.94232e-05 (* 0.0454545 = 3.61014e-06 loss) | |
I0405 03:10:25.617647 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 03:10:25.617660 26022 solver.cpp:245] Train net output #45: total_confidence = 1.71604e-08 | |
I0405 03:10:25.617674 26022 sgd_solver.cpp:106] Iteration 1150, lr = 0.039954 | |
I0405 03:19:27.962780 26022 solver.cpp:229] Iteration 1200, loss = 1.1609 | |
I0405 03:19:27.962961 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 03:19:27.962982 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0405 03:19:27.962996 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 03:19:27.963008 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 03:19:27.963021 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0405 03:19:27.963032 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 03:19:27.963045 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 03:19:27.963057 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0405 03:19:27.963070 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 03:19:27.963083 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 03:19:27.963094 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 03:19:27.963106 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 03:19:27.963119 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 03:19:27.963129 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 03:19:27.963141 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 03:19:27.963153 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 03:19:27.963165 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 03:19:27.963176 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 03:19:27.963187 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 03:19:27.963199 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 03:19:27.963212 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 03:19:27.963224 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 03:19:27.963240 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.55007 (* 0.0454545 = 0.161367 loss) | |
I0405 03:19:27.963254 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.75748 (* 0.0454545 = 0.170794 loss) | |
I0405 03:19:27.963269 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.78453 (* 0.0454545 = 0.172024 loss) | |
I0405 03:19:27.963284 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.81877 (* 0.0454545 = 0.17358 loss) | |
I0405 03:19:27.963299 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.77564 (* 0.0454545 = 0.17162 loss) | |
I0405 03:19:27.963313 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.48725 (* 0.0454545 = 0.158511 loss) | |
I0405 03:19:27.963327 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.85898 (* 0.0454545 = 0.0844989 loss) | |
I0405 03:19:27.963342 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.224943 (* 0.0454545 = 0.0102247 loss) | |
I0405 03:19:27.963356 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.0295486 (* 0.0454545 = 0.00134312 loss) | |
I0405 03:19:27.963372 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0109242 (* 0.0454545 = 0.000496554 loss) | |
I0405 03:19:27.963388 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000145794 (* 0.0454545 = 6.627e-06 loss) | |
I0405 03:19:27.963404 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000142488 (* 0.0454545 = 6.47675e-06 loss) | |
I0405 03:19:27.963433 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000146855 (* 0.0454545 = 6.67523e-06 loss) | |
I0405 03:19:27.963449 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000144862 (* 0.0454545 = 6.58464e-06 loss) | |
I0405 03:19:27.963464 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000144791 (* 0.0454545 = 6.5814e-06 loss) | |
I0405 03:19:27.963481 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000142254 (* 0.0454545 = 6.46609e-06 loss) | |
I0405 03:19:27.963497 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000138881 (* 0.0454545 = 6.31278e-06 loss) | |
I0405 03:19:27.963526 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000138891 (* 0.0454545 = 6.31325e-06 loss) | |
I0405 03:19:27.963541 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000140559 (* 0.0454545 = 6.38905e-06 loss) | |
I0405 03:19:27.963557 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000135657 (* 0.0454545 = 6.16624e-06 loss) | |
I0405 03:19:27.963572 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000140024 (* 0.0454545 = 6.36472e-06 loss) | |
I0405 03:19:27.963587 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000141032 (* 0.0454545 = 6.41056e-06 loss) | |
I0405 03:19:27.963599 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 03:19:27.963611 26022 solver.cpp:245] Train net output #45: total_confidence = 1.6985e-07 | |
I0405 03:19:27.963626 26022 sgd_solver.cpp:106] Iteration 1200, lr = 0.039952 | |
I0405 03:28:30.218416 26022 solver.cpp:229] Iteration 1250, loss = 1.1381 | |
I0405 03:28:30.218570 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0405 03:28:30.218590 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 03:28:30.218605 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 03:28:30.218616 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0405 03:28:30.218628 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 03:28:30.218641 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 03:28:30.218653 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 03:28:30.218665 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 03:28:30.218677 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 03:28:30.218689 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 03:28:30.218701 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 03:28:30.218713 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 03:28:30.218725 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 03:28:30.218736 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 03:28:30.218749 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 03:28:30.218760 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 03:28:30.218771 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 03:28:30.218782 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 03:28:30.218794 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 03:28:30.218807 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 03:28:30.218828 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 03:28:30.218852 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 03:28:30.218871 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.62494 (* 0.0454545 = 0.16477 loss) | |
I0405 03:28:30.218886 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.73217 (* 0.0454545 = 0.169644 loss) | |
I0405 03:28:30.218900 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.73145 (* 0.0454545 = 0.169611 loss) | |
I0405 03:28:30.218915 26022 solver.cpp:245] Train net output #25: loss/loss04 = 4.23568 (* 0.0454545 = 0.192531 loss) | |
I0405 03:28:30.218930 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.34047 (* 0.0454545 = 0.15184 loss) | |
I0405 03:28:30.218945 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.90087 (* 0.0454545 = 0.131858 loss) | |
I0405 03:28:30.218958 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.90291 (* 0.0454545 = 0.086496 loss) | |
I0405 03:28:30.218977 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.770584 (* 0.0454545 = 0.0350266 loss) | |
I0405 03:28:30.218991 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.252814 (* 0.0454545 = 0.0114916 loss) | |
I0405 03:28:30.219007 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.00851682 (* 0.0454545 = 0.000387128 loss) | |
I0405 03:28:30.219022 26022 solver.cpp:245] Train net output #32: loss/loss11 = 7.61399e-05 (* 0.0454545 = 3.46091e-06 loss) | |
I0405 03:28:30.219036 26022 solver.cpp:245] Train net output #33: loss/loss12 = 7.56815e-05 (* 0.0454545 = 3.44007e-06 loss) | |
I0405 03:28:30.219051 26022 solver.cpp:245] Train net output #34: loss/loss13 = 7.88528e-05 (* 0.0454545 = 3.58422e-06 loss) | |
I0405 03:28:30.219066 26022 solver.cpp:245] Train net output #35: loss/loss14 = 7.72614e-05 (* 0.0454545 = 3.51188e-06 loss) | |
I0405 03:28:30.219080 26022 solver.cpp:245] Train net output #36: loss/loss15 = 7.6926e-05 (* 0.0454545 = 3.49664e-06 loss) | |
I0405 03:28:30.219095 26022 solver.cpp:245] Train net output #37: loss/loss16 = 7.7459e-05 (* 0.0454545 = 3.52086e-06 loss) | |
I0405 03:28:30.219110 26022 solver.cpp:245] Train net output #38: loss/loss17 = 7.37063e-05 (* 0.0454545 = 3.35029e-06 loss) | |
I0405 03:28:30.219143 26022 solver.cpp:245] Train net output #39: loss/loss18 = 7.43324e-05 (* 0.0454545 = 3.37875e-06 loss) | |
I0405 03:28:30.219158 26022 solver.cpp:245] Train net output #40: loss/loss19 = 7.43476e-05 (* 0.0454545 = 3.37943e-06 loss) | |
I0405 03:28:30.219173 26022 solver.cpp:245] Train net output #41: loss/loss20 = 7.27897e-05 (* 0.0454545 = 3.30862e-06 loss) | |
I0405 03:28:30.219187 26022 solver.cpp:245] Train net output #42: loss/loss21 = 7.36319e-05 (* 0.0454545 = 3.3469e-06 loss) | |
I0405 03:28:30.219202 26022 solver.cpp:245] Train net output #43: loss/loss22 = 7.49622e-05 (* 0.0454545 = 3.40738e-06 loss) | |
I0405 03:28:30.219214 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 03:28:30.219226 26022 solver.cpp:245] Train net output #45: total_confidence = 4.60822e-07 | |
I0405 03:28:30.219241 26022 sgd_solver.cpp:106] Iteration 1250, lr = 0.03995 | |
I0405 03:37:32.297591 26022 solver.cpp:229] Iteration 1300, loss = 1.12825 | |
I0405 03:37:32.297755 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 03:37:32.297777 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 03:37:32.297791 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 03:37:32.297804 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0405 03:37:32.297816 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 03:37:32.297829 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 03:37:32.297842 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 03:37:32.297854 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 03:37:32.297866 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 03:37:32.297878 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 03:37:32.297890 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 03:37:32.297902 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 03:37:32.297914 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 03:37:32.297925 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 03:37:32.297937 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 03:37:32.297948 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 03:37:32.297960 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 03:37:32.297972 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 03:37:32.297984 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 03:37:32.297996 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 03:37:32.298007 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 03:37:32.298019 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 03:37:32.298034 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.89656 (* 0.0454545 = 0.177116 loss) | |
I0405 03:37:32.298049 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.85652 (* 0.0454545 = 0.175296 loss) | |
I0405 03:37:32.298063 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.78311 (* 0.0454545 = 0.17196 loss) | |
I0405 03:37:32.298079 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.87697 (* 0.0454545 = 0.176226 loss) | |
I0405 03:37:32.298092 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.48238 (* 0.0454545 = 0.15829 loss) | |
I0405 03:37:32.298107 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.22216 (* 0.0454545 = 0.146462 loss) | |
I0405 03:37:32.298121 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.56118 (* 0.0454545 = 0.0709628 loss) | |
I0405 03:37:32.298136 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.41919 (* 0.0454545 = 0.0190541 loss) | |
I0405 03:37:32.298151 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.0428736 (* 0.0454545 = 0.0019488 loss) | |
I0405 03:37:32.298166 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0220191 (* 0.0454545 = 0.00100087 loss) | |
I0405 03:37:32.298182 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.00040926 (* 0.0454545 = 1.86027e-05 loss) | |
I0405 03:37:32.298197 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000413913 (* 0.0454545 = 1.88142e-05 loss) | |
I0405 03:37:32.298212 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000419584 (* 0.0454545 = 1.9072e-05 loss) | |
I0405 03:37:32.298226 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000413896 (* 0.0454545 = 1.88135e-05 loss) | |
I0405 03:37:32.298241 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000417166 (* 0.0454545 = 1.89621e-05 loss) | |
I0405 03:37:32.298256 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000412759 (* 0.0454545 = 1.87618e-05 loss) | |
I0405 03:37:32.298271 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000401908 (* 0.0454545 = 1.82685e-05 loss) | |
I0405 03:37:32.298303 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000410834 (* 0.0454545 = 1.86743e-05 loss) | |
I0405 03:37:32.298321 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.00039866 (* 0.0454545 = 1.81209e-05 loss) | |
I0405 03:37:32.298336 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000400482 (* 0.0454545 = 1.82037e-05 loss) | |
I0405 03:37:32.298351 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000397744 (* 0.0454545 = 1.80793e-05 loss) | |
I0405 03:37:32.298365 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000404162 (* 0.0454545 = 1.8371e-05 loss) | |
I0405 03:37:32.298382 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 03:37:32.298394 26022 solver.cpp:245] Train net output #45: total_confidence = 4.50374e-07 | |
I0405 03:37:32.298410 26022 sgd_solver.cpp:106] Iteration 1300, lr = 0.039948 | |
I0405 03:46:34.349927 26022 solver.cpp:229] Iteration 1350, loss = 1.12643 | |
I0405 03:46:34.350078 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 03:46:34.350100 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0405 03:46:34.350114 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 03:46:34.350127 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0405 03:46:34.350139 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.09375 | |
I0405 03:46:34.350152 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 03:46:34.350164 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 03:46:34.350178 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 03:46:34.350189 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 03:46:34.350201 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 03:46:34.350214 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 03:46:34.350225 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 03:46:34.350240 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 03:46:34.350253 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 03:46:34.350265 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 03:46:34.350276 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 03:46:34.350288 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 03:46:34.350301 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 03:46:34.350312 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 03:46:34.350323 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 03:46:34.350335 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 03:46:34.350347 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 03:46:34.350363 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.75357 (* 0.0454545 = 0.170617 loss) | |
I0405 03:46:34.350380 26022 solver.cpp:245] Train net output #23: loss/loss02 = 4.01441 (* 0.0454545 = 0.182473 loss) | |
I0405 03:46:34.350395 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.85568 (* 0.0454545 = 0.175258 loss) | |
I0405 03:46:34.350409 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.99214 (* 0.0454545 = 0.181461 loss) | |
I0405 03:46:34.350425 26022 solver.cpp:245] Train net output #26: loss/loss05 = 4.26844 (* 0.0454545 = 0.19402 loss) | |
I0405 03:46:34.350438 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.24766 (* 0.0454545 = 0.147621 loss) | |
I0405 03:46:34.350452 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.73778 (* 0.0454545 = 0.0789898 loss) | |
I0405 03:46:34.350467 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.437903 (* 0.0454545 = 0.0199047 loss) | |
I0405 03:46:34.350482 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.487206 (* 0.0454545 = 0.0221457 loss) | |
I0405 03:46:34.350497 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.00725108 (* 0.0454545 = 0.000329595 loss) | |
I0405 03:46:34.350512 26022 solver.cpp:245] Train net output #32: loss/loss11 = 3.41011e-05 (* 0.0454545 = 1.55005e-06 loss) | |
I0405 03:46:34.350528 26022 solver.cpp:245] Train net output #33: loss/loss12 = 3.27503e-05 (* 0.0454545 = 1.48865e-06 loss) | |
I0405 03:46:34.350543 26022 solver.cpp:245] Train net output #34: loss/loss13 = 3.41625e-05 (* 0.0454545 = 1.55284e-06 loss) | |
I0405 03:46:34.350558 26022 solver.cpp:245] Train net output #35: loss/loss14 = 3.35552e-05 (* 0.0454545 = 1.52523e-06 loss) | |
I0405 03:46:34.350572 26022 solver.cpp:245] Train net output #36: loss/loss15 = 3.42091e-05 (* 0.0454545 = 1.55496e-06 loss) | |
I0405 03:46:34.350587 26022 solver.cpp:245] Train net output #37: loss/loss16 = 3.42277e-05 (* 0.0454545 = 1.55581e-06 loss) | |
I0405 03:46:34.350602 26022 solver.cpp:245] Train net output #38: loss/loss17 = 3.17667e-05 (* 0.0454545 = 1.44394e-06 loss) | |
I0405 03:46:34.350632 26022 solver.cpp:245] Train net output #39: loss/loss18 = 3.35217e-05 (* 0.0454545 = 1.52371e-06 loss) | |
I0405 03:46:34.350649 26022 solver.cpp:245] Train net output #40: loss/loss19 = 3.28249e-05 (* 0.0454545 = 1.49204e-06 loss) | |
I0405 03:46:34.350664 26022 solver.cpp:245] Train net output #41: loss/loss20 = 3.27057e-05 (* 0.0454545 = 1.48662e-06 loss) | |
I0405 03:46:34.350679 26022 solver.cpp:245] Train net output #42: loss/loss21 = 3.18412e-05 (* 0.0454545 = 1.44733e-06 loss) | |
I0405 03:46:34.350693 26022 solver.cpp:245] Train net output #43: loss/loss22 = 3.31341e-05 (* 0.0454545 = 1.5061e-06 loss) | |
I0405 03:46:34.350706 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 03:46:34.350719 26022 solver.cpp:245] Train net output #45: total_confidence = 5.00655e-07 | |
I0405 03:46:34.350735 26022 sgd_solver.cpp:106] Iteration 1350, lr = 0.039946 | |
I0405 03:55:36.418175 26022 solver.cpp:229] Iteration 1400, loss = 1.1228 | |
I0405 03:55:36.418367 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 03:55:36.418387 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 03:55:36.418401 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 03:55:36.418414 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0405 03:55:36.418426 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.09375 | |
I0405 03:55:36.418439 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0405 03:55:36.418452 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 03:55:36.418463 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 03:55:36.418478 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 03:55:36.418491 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 03:55:36.418506 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 03:55:36.418519 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 03:55:36.418531 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 03:55:36.418543 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 03:55:36.418555 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 03:55:36.418566 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 03:55:36.418578 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 03:55:36.418591 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 03:55:36.418601 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 03:55:36.418613 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 03:55:36.418625 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 03:55:36.418637 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 03:55:36.418653 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.49327 (* 0.0454545 = 0.158785 loss) | |
I0405 03:55:36.418668 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.73294 (* 0.0454545 = 0.169679 loss) | |
I0405 03:55:36.418683 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.80687 (* 0.0454545 = 0.173039 loss) | |
I0405 03:55:36.418696 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.92497 (* 0.0454545 = 0.178408 loss) | |
I0405 03:55:36.418710 26022 solver.cpp:245] Train net output #26: loss/loss05 = 4.04877 (* 0.0454545 = 0.184035 loss) | |
I0405 03:55:36.418725 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.231 (* 0.0454545 = 0.146864 loss) | |
I0405 03:55:36.418740 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.84302 (* 0.0454545 = 0.0837737 loss) | |
I0405 03:55:36.418753 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.696209 (* 0.0454545 = 0.0316459 loss) | |
I0405 03:55:36.418767 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.22786 (* 0.0454545 = 0.0103573 loss) | |
I0405 03:55:36.418781 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.271998 (* 0.0454545 = 0.0123635 loss) | |
I0405 03:55:36.418797 26022 solver.cpp:245] Train net output #32: loss/loss11 = 6.45932e-05 (* 0.0454545 = 2.93605e-06 loss) | |
I0405 03:55:36.418812 26022 solver.cpp:245] Train net output #33: loss/loss12 = 6.22548e-05 (* 0.0454545 = 2.82977e-06 loss) | |
I0405 03:55:36.418826 26022 solver.cpp:245] Train net output #34: loss/loss13 = 6.48916e-05 (* 0.0454545 = 2.94962e-06 loss) | |
I0405 03:55:36.418841 26022 solver.cpp:245] Train net output #35: loss/loss14 = 6.39859e-05 (* 0.0454545 = 2.90845e-06 loss) | |
I0405 03:55:36.418856 26022 solver.cpp:245] Train net output #36: loss/loss15 = 6.46716e-05 (* 0.0454545 = 2.93962e-06 loss) | |
I0405 03:55:36.418870 26022 solver.cpp:245] Train net output #37: loss/loss16 = 6.34992e-05 (* 0.0454545 = 2.88633e-06 loss) | |
I0405 03:55:36.418885 26022 solver.cpp:245] Train net output #38: loss/loss17 = 6.13678e-05 (* 0.0454545 = 2.78944e-06 loss) | |
I0405 03:55:36.418913 26022 solver.cpp:245] Train net output #39: loss/loss18 = 6.29033e-05 (* 0.0454545 = 2.85924e-06 loss) | |
I0405 03:55:36.418929 26022 solver.cpp:245] Train net output #40: loss/loss19 = 6.18112e-05 (* 0.0454545 = 2.8096e-06 loss) | |
I0405 03:55:36.418944 26022 solver.cpp:245] Train net output #41: loss/loss20 = 6.05575e-05 (* 0.0454545 = 2.75261e-06 loss) | |
I0405 03:55:36.418959 26022 solver.cpp:245] Train net output #42: loss/loss21 = 6.13807e-05 (* 0.0454545 = 2.79003e-06 loss) | |
I0405 03:55:36.418974 26022 solver.cpp:245] Train net output #43: loss/loss22 = 6.24078e-05 (* 0.0454545 = 2.83672e-06 loss) | |
I0405 03:55:36.418987 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 03:55:36.418999 26022 solver.cpp:245] Train net output #45: total_confidence = 2.89047e-07 | |
I0405 03:55:36.419014 26022 sgd_solver.cpp:106] Iteration 1400, lr = 0.039944 | |
I0405 04:04:38.533105 26022 solver.cpp:229] Iteration 1450, loss = 1.12391 | |
I0405 04:04:38.533213 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 04:04:38.533233 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 04:04:38.533246 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 04:04:38.533259 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0405 04:04:38.533272 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 04:04:38.533283 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 04:04:38.533295 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 04:04:38.533308 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 04:04:38.533319 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 04:04:38.533331 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 04:04:38.533344 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 04:04:38.533355 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 04:04:38.533367 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 04:04:38.533380 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 04:04:38.533390 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 04:04:38.533402 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 04:04:38.533414 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 04:04:38.533427 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 04:04:38.533437 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 04:04:38.533449 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 04:04:38.533460 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 04:04:38.533471 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 04:04:38.533486 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.6995 (* 0.0454545 = 0.168159 loss) | |
I0405 04:04:38.533501 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.94351 (* 0.0454545 = 0.17925 loss) | |
I0405 04:04:38.533515 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.83284 (* 0.0454545 = 0.17422 loss) | |
I0405 04:04:38.533530 26022 solver.cpp:245] Train net output #25: loss/loss04 = 4.04877 (* 0.0454545 = 0.184035 loss) | |
I0405 04:04:38.533545 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.76955 (* 0.0454545 = 0.171343 loss) | |
I0405 04:04:38.533560 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.25242 (* 0.0454545 = 0.147837 loss) | |
I0405 04:04:38.533573 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.75625 (* 0.0454545 = 0.0798294 loss) | |
I0405 04:04:38.533587 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.952103 (* 0.0454545 = 0.0432774 loss) | |
I0405 04:04:38.533602 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.404014 (* 0.0454545 = 0.0183643 loss) | |
I0405 04:04:38.533617 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0188919 (* 0.0454545 = 0.000858721 loss) | |
I0405 04:04:38.533632 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000189323 (* 0.0454545 = 8.60559e-06 loss) | |
I0405 04:04:38.533646 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000183443 (* 0.0454545 = 8.3383e-06 loss) | |
I0405 04:04:38.533661 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000189442 (* 0.0454545 = 8.61101e-06 loss) | |
I0405 04:04:38.533676 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000185785 (* 0.0454545 = 8.44476e-06 loss) | |
I0405 04:04:38.533691 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000188017 (* 0.0454545 = 8.54621e-06 loss) | |
I0405 04:04:38.533706 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000187082 (* 0.0454545 = 8.50374e-06 loss) | |
I0405 04:04:38.533720 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000182423 (* 0.0454545 = 8.29194e-06 loss) | |
I0405 04:04:38.533752 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000181944 (* 0.0454545 = 8.27017e-06 loss) | |
I0405 04:04:38.533768 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000182844 (* 0.0454545 = 8.31107e-06 loss) | |
I0405 04:04:38.533782 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000179215 (* 0.0454545 = 8.14612e-06 loss) | |
I0405 04:04:38.533797 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000182276 (* 0.0454545 = 8.28525e-06 loss) | |
I0405 04:04:38.533812 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000184968 (* 0.0454545 = 8.40763e-06 loss) | |
I0405 04:04:38.533824 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 04:04:38.533838 26022 solver.cpp:245] Train net output #45: total_confidence = 2.20314e-07 | |
I0405 04:04:38.533851 26022 sgd_solver.cpp:106] Iteration 1450, lr = 0.039942 | |
I0405 04:13:40.631392 26022 solver.cpp:229] Iteration 1500, loss = 1.12137 | |
I0405 04:13:40.631564 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0405 04:13:40.631587 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 04:13:40.631600 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 04:13:40.631613 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 04:13:40.631625 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0405 04:13:40.631638 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0405 04:13:40.631649 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875 | |
I0405 04:13:40.631661 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0405 04:13:40.631674 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 04:13:40.631685 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 04:13:40.631697 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 04:13:40.631710 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 04:13:40.631721 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 04:13:40.631732 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 04:13:40.631744 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 04:13:40.631757 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 04:13:40.631769 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 04:13:40.631780 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 04:13:40.631793 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 04:13:40.631804 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 04:13:40.631815 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 04:13:40.631826 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 04:13:40.631846 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.65038 (* 0.0454545 = 0.165927 loss) | |
I0405 04:13:40.631863 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.61049 (* 0.0454545 = 0.164113 loss) | |
I0405 04:13:40.631877 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.6769 (* 0.0454545 = 0.167132 loss) | |
I0405 04:13:40.631891 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.9023 (* 0.0454545 = 0.177377 loss) | |
I0405 04:13:40.631906 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.51507 (* 0.0454545 = 0.159776 loss) | |
I0405 04:13:40.631921 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.82968 (* 0.0454545 = 0.128622 loss) | |
I0405 04:13:40.631934 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.04746 (* 0.0454545 = 0.0476118 loss) | |
I0405 04:13:40.631949 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.258801 (* 0.0454545 = 0.0117637 loss) | |
I0405 04:13:40.631963 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.0294044 (* 0.0454545 = 0.00133656 loss) | |
I0405 04:13:40.631978 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0130509 (* 0.0454545 = 0.000593224 loss) | |
I0405 04:13:40.631994 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000107699 (* 0.0454545 = 4.89541e-06 loss) | |
I0405 04:13:40.632009 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000105751 (* 0.0454545 = 4.80685e-06 loss) | |
I0405 04:13:40.632024 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000107114 (* 0.0454545 = 4.86883e-06 loss) | |
I0405 04:13:40.632038 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000106963 (* 0.0454545 = 4.86198e-06 loss) | |
I0405 04:13:40.632053 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000106561 (* 0.0454545 = 4.84367e-06 loss) | |
I0405 04:13:40.632083 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000105647 (* 0.0454545 = 4.80213e-06 loss) | |
I0405 04:13:40.632102 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000105495 (* 0.0454545 = 4.79523e-06 loss) | |
I0405 04:13:40.632135 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000106619 (* 0.0454545 = 4.8463e-06 loss) | |
I0405 04:13:40.632153 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000103603 (* 0.0454545 = 4.70923e-06 loss) | |
I0405 04:13:40.632166 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.00010419 (* 0.0454545 = 4.7359e-06 loss) | |
I0405 04:13:40.632181 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000102492 (* 0.0454545 = 4.65871e-06 loss) | |
I0405 04:13:40.632196 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000104346 (* 0.0454545 = 4.74299e-06 loss) | |
I0405 04:13:40.632208 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 04:13:40.632220 26022 solver.cpp:245] Train net output #45: total_confidence = 3.9828e-07 | |
I0405 04:13:40.632236 26022 sgd_solver.cpp:106] Iteration 1500, lr = 0.03994 | |
I0405 04:22:42.707343 26022 solver.cpp:229] Iteration 1550, loss = 1.11948 | |
I0405 04:22:42.707502 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0405 04:22:42.707525 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 04:22:42.707537 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 04:22:42.707551 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 04:22:42.707563 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 04:22:42.707576 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 04:22:42.707588 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 04:22:42.707600 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 04:22:42.707613 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 04:22:42.707625 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 04:22:42.707638 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 04:22:42.707649 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 04:22:42.707661 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 04:22:42.707674 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 04:22:42.707684 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 04:22:42.707695 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 04:22:42.707708 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 04:22:42.707720 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 04:22:42.707731 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 04:22:42.707743 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 04:22:42.707756 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 04:22:42.707767 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 04:22:42.707782 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.7368 (* 0.0454545 = 0.169854 loss) | |
I0405 04:22:42.707798 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.65482 (* 0.0454545 = 0.166128 loss) | |
I0405 04:22:42.707811 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.61159 (* 0.0454545 = 0.164163 loss) | |
I0405 04:22:42.707826 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.89921 (* 0.0454545 = 0.177237 loss) | |
I0405 04:22:42.707840 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.36574 (* 0.0454545 = 0.152988 loss) | |
I0405 04:22:42.707855 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.28189 (* 0.0454545 = 0.149177 loss) | |
I0405 04:22:42.707870 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.23491 (* 0.0454545 = 0.0561321 loss) | |
I0405 04:22:42.707885 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.625242 (* 0.0454545 = 0.0284201 loss) | |
I0405 04:22:42.707898 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.220204 (* 0.0454545 = 0.0100093 loss) | |
I0405 04:22:42.707912 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.268099 (* 0.0454545 = 0.0121863 loss) | |
I0405 04:22:42.707927 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000141006 (* 0.0454545 = 6.40937e-06 loss) | |
I0405 04:22:42.707943 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000136625 (* 0.0454545 = 6.21023e-06 loss) | |
I0405 04:22:42.707958 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000136766 (* 0.0454545 = 6.21663e-06 loss) | |
I0405 04:22:42.707973 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000137565 (* 0.0454545 = 6.25293e-06 loss) | |
I0405 04:22:42.707988 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.00013913 (* 0.0454545 = 6.32407e-06 loss) | |
I0405 04:22:42.708003 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000138566 (* 0.0454545 = 6.29844e-06 loss) | |
I0405 04:22:42.708019 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000133657 (* 0.0454545 = 6.0753e-06 loss) | |
I0405 04:22:42.708051 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000136642 (* 0.0454545 = 6.21099e-06 loss) | |
I0405 04:22:42.708086 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000136234 (* 0.0454545 = 6.19247e-06 loss) | |
I0405 04:22:42.708106 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000129774 (* 0.0454545 = 5.8988e-06 loss) | |
I0405 04:22:42.708120 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000133112 (* 0.0454545 = 6.05056e-06 loss) | |
I0405 04:22:42.708135 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000134918 (* 0.0454545 = 6.13263e-06 loss) | |
I0405 04:22:42.708148 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 04:22:42.708160 26022 solver.cpp:245] Train net output #45: total_confidence = 3.10238e-07 | |
I0405 04:22:42.708175 26022 sgd_solver.cpp:106] Iteration 1550, lr = 0.039938 | |
I0405 04:31:44.849534 26022 solver.cpp:229] Iteration 1600, loss = 1.12035 | |
I0405 04:31:44.849730 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 04:31:44.849750 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 04:31:44.849764 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 04:31:44.849777 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 04:31:44.849789 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0405 04:31:44.849802 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0405 04:31:44.849814 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.59375 | |
I0405 04:31:44.849825 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.75 | |
I0405 04:31:44.849838 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 04:31:44.849850 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 04:31:44.849863 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 04:31:44.849874 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 04:31:44.849886 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 04:31:44.849898 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 04:31:44.849910 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 04:31:44.849921 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 04:31:44.849933 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 04:31:44.849944 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 04:31:44.849956 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 04:31:44.849967 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 04:31:44.849979 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 04:31:44.849990 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 04:31:44.850006 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.92378 (* 0.0454545 = 0.178354 loss) | |
I0405 04:31:44.850021 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.86668 (* 0.0454545 = 0.175758 loss) | |
I0405 04:31:44.850035 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.74211 (* 0.0454545 = 0.170096 loss) | |
I0405 04:31:44.850049 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.79458 (* 0.0454545 = 0.172481 loss) | |
I0405 04:31:44.850064 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.77885 (* 0.0454545 = 0.171766 loss) | |
I0405 04:31:44.850078 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.66865 (* 0.0454545 = 0.166757 loss) | |
I0405 04:31:44.850093 26022 solver.cpp:245] Train net output #28: loss/loss07 = 2.1614 (* 0.0454545 = 0.0982453 loss) | |
I0405 04:31:44.850107 26022 solver.cpp:245] Train net output #29: loss/loss08 = 1.32715 (* 0.0454545 = 0.0603249 loss) | |
I0405 04:31:44.850122 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.605397 (* 0.0454545 = 0.0275181 loss) | |
I0405 04:31:44.850137 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.205891 (* 0.0454545 = 0.00935868 loss) | |
I0405 04:31:44.850152 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000295737 (* 0.0454545 = 1.34426e-05 loss) | |
I0405 04:31:44.850167 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000301722 (* 0.0454545 = 1.37146e-05 loss) | |
I0405 04:31:44.850181 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000307488 (* 0.0454545 = 1.39767e-05 loss) | |
I0405 04:31:44.850196 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000303907 (* 0.0454545 = 1.3814e-05 loss) | |
I0405 04:31:44.850211 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000309246 (* 0.0454545 = 1.40566e-05 loss) | |
I0405 04:31:44.850226 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000300088 (* 0.0454545 = 1.36404e-05 loss) | |
I0405 04:31:44.850244 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.00028915 (* 0.0454545 = 1.31432e-05 loss) | |
I0405 04:31:44.850273 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000298417 (* 0.0454545 = 1.35644e-05 loss) | |
I0405 04:31:44.850289 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000302208 (* 0.0454545 = 1.37367e-05 loss) | |
I0405 04:31:44.850306 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000286137 (* 0.0454545 = 1.30062e-05 loss) | |
I0405 04:31:44.850322 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000295425 (* 0.0454545 = 1.34284e-05 loss) | |
I0405 04:31:44.850337 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.00029914 (* 0.0454545 = 1.35973e-05 loss) | |
I0405 04:31:44.850350 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 04:31:44.850363 26022 solver.cpp:245] Train net output #45: total_confidence = 3.50095e-07 | |
I0405 04:31:44.850378 26022 sgd_solver.cpp:106] Iteration 1600, lr = 0.039936 | |
I0405 04:40:46.862489 26022 solver.cpp:229] Iteration 1650, loss = 1.10699 | |
I0405 04:40:46.862624 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 04:40:46.862646 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 04:40:46.862660 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 04:40:46.862673 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 04:40:46.862686 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0405 04:40:46.862699 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 04:40:46.862711 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 04:40:46.862723 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 04:40:46.862735 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 04:40:46.862747 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 04:40:46.862759 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 04:40:46.862771 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 04:40:46.862785 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 04:40:46.862797 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 04:40:46.862809 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 04:40:46.862821 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 04:40:46.862833 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 04:40:46.862844 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 04:40:46.862856 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 04:40:46.862870 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 04:40:46.862884 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 04:40:46.862895 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 04:40:46.862910 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.77215 (* 0.0454545 = 0.171461 loss) | |
I0405 04:40:46.862925 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.75691 (* 0.0454545 = 0.170769 loss) | |
I0405 04:40:46.862939 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.63627 (* 0.0454545 = 0.165285 loss) | |
I0405 04:40:46.862953 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.8985 (* 0.0454545 = 0.177205 loss) | |
I0405 04:40:46.862968 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.74775 (* 0.0454545 = 0.170352 loss) | |
I0405 04:40:46.862982 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.93792 (* 0.0454545 = 0.133542 loss) | |
I0405 04:40:46.862996 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.45836 (* 0.0454545 = 0.0662892 loss) | |
I0405 04:40:46.863010 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.456041 (* 0.0454545 = 0.0207292 loss) | |
I0405 04:40:46.863025 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.279212 (* 0.0454545 = 0.0126914 loss) | |
I0405 04:40:46.863040 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0154636 (* 0.0454545 = 0.000702889 loss) | |
I0405 04:40:46.863055 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000301855 (* 0.0454545 = 1.37207e-05 loss) | |
I0405 04:40:46.863070 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000352835 (* 0.0454545 = 1.60379e-05 loss) | |
I0405 04:40:46.863085 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000348977 (* 0.0454545 = 1.58626e-05 loss) | |
I0405 04:40:46.863100 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000336347 (* 0.0454545 = 1.52885e-05 loss) | |
I0405 04:40:46.863113 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000351044 (* 0.0454545 = 1.59565e-05 loss) | |
I0405 04:40:46.863128 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000321046 (* 0.0454545 = 1.4593e-05 loss) | |
I0405 04:40:46.863143 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000323894 (* 0.0454545 = 1.47224e-05 loss) | |
I0405 04:40:46.863175 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000339334 (* 0.0454545 = 1.54243e-05 loss) | |
I0405 04:40:46.863191 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000329075 (* 0.0454545 = 1.4958e-05 loss) | |
I0405 04:40:46.863206 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000325912 (* 0.0454545 = 1.48142e-05 loss) | |
I0405 04:40:46.863220 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000329801 (* 0.0454545 = 1.4991e-05 loss) | |
I0405 04:40:46.863235 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000346268 (* 0.0454545 = 1.57395e-05 loss) | |
I0405 04:40:46.863247 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 04:40:46.863260 26022 solver.cpp:245] Train net output #45: total_confidence = 1.28413e-06 | |
I0405 04:40:46.863276 26022 sgd_solver.cpp:106] Iteration 1650, lr = 0.039934 | |
I0405 04:49:48.875283 26022 solver.cpp:229] Iteration 1700, loss = 1.09533 | |
I0405 04:49:48.875432 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0405 04:49:48.875452 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 04:49:48.875465 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 04:49:48.875479 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 04:49:48.875491 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0405 04:49:48.875504 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 04:49:48.875516 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 04:49:48.875529 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 04:49:48.875540 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 04:49:48.875552 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 04:49:48.875565 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 04:49:48.875576 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 04:49:48.875587 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 04:49:48.875599 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 04:49:48.875612 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 04:49:48.875622 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 04:49:48.875634 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 04:49:48.875645 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 04:49:48.875658 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 04:49:48.875669 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 04:49:48.875679 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 04:49:48.875691 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 04:49:48.875706 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.61083 (* 0.0454545 = 0.164128 loss) | |
I0405 04:49:48.875722 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.96377 (* 0.0454545 = 0.180171 loss) | |
I0405 04:49:48.875736 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.90553 (* 0.0454545 = 0.177524 loss) | |
I0405 04:49:48.875751 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.87717 (* 0.0454545 = 0.176235 loss) | |
I0405 04:49:48.875764 26022 solver.cpp:245] Train net output #26: loss/loss05 = 4.08364 (* 0.0454545 = 0.18562 loss) | |
I0405 04:49:48.875779 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.14117 (* 0.0454545 = 0.14278 loss) | |
I0405 04:49:48.875793 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.41758 (* 0.0454545 = 0.0644356 loss) | |
I0405 04:49:48.875808 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.670318 (* 0.0454545 = 0.030469 loss) | |
I0405 04:49:48.875821 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.218472 (* 0.0454545 = 0.00993053 loss) | |
I0405 04:49:48.875836 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.032196 (* 0.0454545 = 0.00146345 loss) | |
I0405 04:49:48.875851 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000342488 (* 0.0454545 = 1.55676e-05 loss) | |
I0405 04:49:48.875867 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000432211 (* 0.0454545 = 1.9646e-05 loss) | |
I0405 04:49:48.875882 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000430321 (* 0.0454545 = 1.956e-05 loss) | |
I0405 04:49:48.875897 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000405939 (* 0.0454545 = 1.84518e-05 loss) | |
I0405 04:49:48.875912 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.00043219 (* 0.0454545 = 1.9645e-05 loss) | |
I0405 04:49:48.875926 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000372476 (* 0.0454545 = 1.69307e-05 loss) | |
I0405 04:49:48.875941 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000391327 (* 0.0454545 = 1.77876e-05 loss) | |
I0405 04:49:48.875972 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000412334 (* 0.0454545 = 1.87424e-05 loss) | |
I0405 04:49:48.875988 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000392499 (* 0.0454545 = 1.78409e-05 loss) | |
I0405 04:49:48.876003 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000391067 (* 0.0454545 = 1.77758e-05 loss) | |
I0405 04:49:48.876019 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000397539 (* 0.0454545 = 1.807e-05 loss) | |
I0405 04:49:48.876032 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.00042274 (* 0.0454545 = 1.92154e-05 loss) | |
I0405 04:49:48.876045 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 04:49:48.876057 26022 solver.cpp:245] Train net output #45: total_confidence = 7.44678e-07 | |
I0405 04:49:48.876093 26022 sgd_solver.cpp:106] Iteration 1700, lr = 0.039932 | |
I0405 04:58:50.914773 26022 solver.cpp:229] Iteration 1750, loss = 1.08695 | |
I0405 04:58:50.914924 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0405 04:58:50.914945 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 04:58:50.914958 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 04:58:50.914973 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875 | |
I0405 04:58:50.914985 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 04:58:50.914997 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0405 04:58:50.915009 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 04:58:50.915021 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 04:58:50.915035 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 04:58:50.915046 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 04:58:50.915058 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 04:58:50.915071 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 04:58:50.915081 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 04:58:50.915093 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 04:58:50.915105 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 04:58:50.915117 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 04:58:50.915128 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 04:58:50.915140 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 04:58:50.915153 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 04:58:50.915164 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 04:58:50.915176 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 04:58:50.915187 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 04:58:50.915204 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.608 (* 0.0454545 = 0.164 loss) | |
I0405 04:58:50.915220 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.74516 (* 0.0454545 = 0.170235 loss) | |
I0405 04:58:50.915233 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.9471 (* 0.0454545 = 0.179414 loss) | |
I0405 04:58:50.915247 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.33867 (* 0.0454545 = 0.151758 loss) | |
I0405 04:58:50.915262 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.28752 (* 0.0454545 = 0.149433 loss) | |
I0405 04:58:50.915277 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.72643 (* 0.0454545 = 0.123929 loss) | |
I0405 04:58:50.915290 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.0919 (* 0.0454545 = 0.0496316 loss) | |
I0405 04:58:50.915304 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.63007 (* 0.0454545 = 0.0286396 loss) | |
I0405 04:58:50.915319 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.243341 (* 0.0454545 = 0.011061 loss) | |
I0405 04:58:50.915334 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0223476 (* 0.0454545 = 0.0010158 loss) | |
I0405 04:58:50.915349 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000125371 (* 0.0454545 = 5.69868e-06 loss) | |
I0405 04:58:50.915364 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000170279 (* 0.0454545 = 7.73995e-06 loss) | |
I0405 04:58:50.915379 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000167372 (* 0.0454545 = 7.60781e-06 loss) | |
I0405 04:58:50.915393 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000156062 (* 0.0454545 = 7.09372e-06 loss) | |
I0405 04:58:50.915408 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000170134 (* 0.0454545 = 7.73336e-06 loss) | |
I0405 04:58:50.915423 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000137632 (* 0.0454545 = 6.25602e-06 loss) | |
I0405 04:58:50.915437 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000151974 (* 0.0454545 = 6.9079e-06 loss) | |
I0405 04:58:50.915469 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000158972 (* 0.0454545 = 7.22599e-06 loss) | |
I0405 04:58:50.915485 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000150366 (* 0.0454545 = 6.83483e-06 loss) | |
I0405 04:58:50.915500 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000151645 (* 0.0454545 = 6.89295e-06 loss) | |
I0405 04:58:50.915514 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000153619 (* 0.0454545 = 6.98269e-06 loss) | |
I0405 04:58:50.915529 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000165581 (* 0.0454545 = 7.5264e-06 loss) | |
I0405 04:58:50.915541 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 04:58:50.915554 26022 solver.cpp:245] Train net output #45: total_confidence = 9.40163e-07 | |
I0405 04:58:50.915568 26022 sgd_solver.cpp:106] Iteration 1750, lr = 0.03993 | |
I0405 05:07:52.987673 26022 solver.cpp:229] Iteration 1800, loss = 1.08421 | |
I0405 05:07:52.987887 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 05:07:52.987920 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 05:07:52.987942 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0405 05:07:52.987967 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 05:07:52.987990 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0405 05:07:52.988013 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125 | |
I0405 05:07:52.988034 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 05:07:52.988056 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 05:07:52.988108 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 05:07:52.988136 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 05:07:52.988158 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 05:07:52.988183 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 05:07:52.988204 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 05:07:52.988225 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 05:07:52.988246 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 05:07:52.988266 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 05:07:52.988288 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 05:07:52.988312 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 05:07:52.988333 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 05:07:52.988354 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 05:07:52.988390 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 05:07:52.988415 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 05:07:52.988441 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.40658 (* 0.0454545 = 0.154845 loss) | |
I0405 05:07:52.988468 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.56145 (* 0.0454545 = 0.161884 loss) | |
I0405 05:07:52.988494 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.63802 (* 0.0454545 = 0.165364 loss) | |
I0405 05:07:52.988523 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.59114 (* 0.0454545 = 0.163234 loss) | |
I0405 05:07:52.988550 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.52469 (* 0.0454545 = 0.160213 loss) | |
I0405 05:07:52.988577 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.42737 (* 0.0454545 = 0.15579 loss) | |
I0405 05:07:52.988602 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.51929 (* 0.0454545 = 0.0690587 loss) | |
I0405 05:07:52.988628 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.974019 (* 0.0454545 = 0.0442736 loss) | |
I0405 05:07:52.988654 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.447813 (* 0.0454545 = 0.0203551 loss) | |
I0405 05:07:52.988682 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.473413 (* 0.0454545 = 0.0215188 loss) | |
I0405 05:07:52.988708 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000102096 (* 0.0454545 = 4.64075e-06 loss) | |
I0405 05:07:52.988734 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000138019 (* 0.0454545 = 6.27359e-06 loss) | |
I0405 05:07:52.988762 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000135999 (* 0.0454545 = 6.18176e-06 loss) | |
I0405 05:07:52.988788 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.00012364 (* 0.0454545 = 5.61999e-06 loss) | |
I0405 05:07:52.988814 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000134096 (* 0.0454545 = 6.09529e-06 loss) | |
I0405 05:07:52.988840 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000112692 (* 0.0454545 = 5.12237e-06 loss) | |
I0405 05:07:52.988867 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000122226 (* 0.0454545 = 5.55573e-06 loss) | |
I0405 05:07:52.988915 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000129187 (* 0.0454545 = 5.87215e-06 loss) | |
I0405 05:07:52.988945 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000120222 (* 0.0454545 = 5.46462e-06 loss) | |
I0405 05:07:52.988971 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000123209 (* 0.0454545 = 5.6004e-06 loss) | |
I0405 05:07:52.988997 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000121235 (* 0.0454545 = 5.51067e-06 loss) | |
I0405 05:07:52.989024 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.00013379 (* 0.0454545 = 6.08138e-06 loss) | |
I0405 05:07:52.989048 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 05:07:52.989070 26022 solver.cpp:245] Train net output #45: total_confidence = 1.08386e-06 | |
I0405 05:07:52.989094 26022 sgd_solver.cpp:106] Iteration 1800, lr = 0.039928 | |
I0405 05:16:55.073053 26022 solver.cpp:229] Iteration 1850, loss = 1.07775 | |
I0405 05:16:55.073222 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0405 05:16:55.073242 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 05:16:55.073256 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 05:16:55.073269 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 05:16:55.073282 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 05:16:55.073294 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 05:16:55.073307 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375 | |
I0405 05:16:55.073318 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0405 05:16:55.073330 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 05:16:55.073343 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 05:16:55.073354 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 05:16:55.073366 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 05:16:55.073379 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 05:16:55.073390 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 05:16:55.073401 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 05:16:55.073412 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 05:16:55.073424 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 05:16:55.073436 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 05:16:55.073448 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 05:16:55.073460 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 05:16:55.073472 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 05:16:55.073483 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 05:16:55.073499 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.22815 (* 0.0454545 = 0.146734 loss) | |
I0405 05:16:55.073514 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.63088 (* 0.0454545 = 0.16504 loss) | |
I0405 05:16:55.073529 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.66731 (* 0.0454545 = 0.166696 loss) | |
I0405 05:16:55.073544 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.60324 (* 0.0454545 = 0.163784 loss) | |
I0405 05:16:55.073557 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.22995 (* 0.0454545 = 0.146816 loss) | |
I0405 05:16:55.073571 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.12951 (* 0.0454545 = 0.14225 loss) | |
I0405 05:16:55.073585 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.02389 (* 0.0454545 = 0.0465406 loss) | |
I0405 05:16:55.073599 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.294799 (* 0.0454545 = 0.0133999 loss) | |
I0405 05:16:55.073616 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.0350087 (* 0.0454545 = 0.00159131 loss) | |
I0405 05:16:55.073631 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0125076 (* 0.0454545 = 0.000568527 loss) | |
I0405 05:16:55.073645 26022 solver.cpp:245] Train net output #32: loss/loss11 = 4.67043e-05 (* 0.0454545 = 2.12292e-06 loss) | |
I0405 05:16:55.073660 26022 solver.cpp:245] Train net output #33: loss/loss12 = 6.51602e-05 (* 0.0454545 = 2.96183e-06 loss) | |
I0405 05:16:55.073675 26022 solver.cpp:245] Train net output #34: loss/loss13 = 6.18653e-05 (* 0.0454545 = 2.81206e-06 loss) | |
I0405 05:16:55.073693 26022 solver.cpp:245] Train net output #35: loss/loss14 = 5.67219e-05 (* 0.0454545 = 2.57827e-06 loss) | |
I0405 05:16:55.073709 26022 solver.cpp:245] Train net output #36: loss/loss15 = 6.29047e-05 (* 0.0454545 = 2.8593e-06 loss) | |
I0405 05:16:55.073724 26022 solver.cpp:245] Train net output #37: loss/loss16 = 5.04438e-05 (* 0.0454545 = 2.2929e-06 loss) | |
I0405 05:16:55.073740 26022 solver.cpp:245] Train net output #38: loss/loss17 = 5.78126e-05 (* 0.0454545 = 2.62785e-06 loss) | |
I0405 05:16:55.073771 26022 solver.cpp:245] Train net output #39: loss/loss18 = 5.77132e-05 (* 0.0454545 = 2.62333e-06 loss) | |
I0405 05:16:55.073787 26022 solver.cpp:245] Train net output #40: loss/loss19 = 5.47151e-05 (* 0.0454545 = 2.48705e-06 loss) | |
I0405 05:16:55.073802 26022 solver.cpp:245] Train net output #41: loss/loss20 = 5.53669e-05 (* 0.0454545 = 2.51668e-06 loss) | |
I0405 05:16:55.073817 26022 solver.cpp:245] Train net output #42: loss/loss21 = 5.67034e-05 (* 0.0454545 = 2.57743e-06 loss) | |
I0405 05:16:55.073832 26022 solver.cpp:245] Train net output #43: loss/loss22 = 6.14962e-05 (* 0.0454545 = 2.79528e-06 loss) | |
I0405 05:16:55.073844 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 05:16:55.073856 26022 solver.cpp:245] Train net output #45: total_confidence = 7.55418e-07 | |
I0405 05:16:55.073871 26022 sgd_solver.cpp:106] Iteration 1850, lr = 0.039926 | |
I0405 05:25:57.123227 26022 solver.cpp:229] Iteration 1900, loss = 1.07608 | |
I0405 05:25:57.123370 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0405 05:25:57.123390 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 05:25:57.123404 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 05:25:57.123417 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 05:25:57.123430 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0405 05:25:57.123441 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125 | |
I0405 05:25:57.123455 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 05:25:57.123466 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 05:25:57.123478 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 05:25:57.123491 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 05:25:57.123502 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 05:25:57.123514 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 05:25:57.123525 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 05:25:57.123538 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 05:25:57.123550 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 05:25:57.123563 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 05:25:57.123574 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 05:25:57.123585 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 05:25:57.123596 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 05:25:57.123608 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 05:25:57.123620 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 05:25:57.123631 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 05:25:57.123647 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.16138 (* 0.0454545 = 0.143699 loss) | |
I0405 05:25:57.123662 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.54021 (* 0.0454545 = 0.160919 loss) | |
I0405 05:25:57.123677 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.44852 (* 0.0454545 = 0.156751 loss) | |
I0405 05:25:57.123692 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.46473 (* 0.0454545 = 0.157488 loss) | |
I0405 05:25:57.123705 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.45744 (* 0.0454545 = 0.157156 loss) | |
I0405 05:25:57.123719 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.43915 (* 0.0454545 = 0.156325 loss) | |
I0405 05:25:57.123733 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.75418 (* 0.0454545 = 0.0797356 loss) | |
I0405 05:25:57.123747 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.798965 (* 0.0454545 = 0.0363166 loss) | |
I0405 05:25:57.123762 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.370926 (* 0.0454545 = 0.0168603 loss) | |
I0405 05:25:57.123776 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.463308 (* 0.0454545 = 0.0210594 loss) | |
I0405 05:25:57.123792 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000139444 (* 0.0454545 = 6.33835e-06 loss) | |
I0405 05:25:57.123806 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000192836 (* 0.0454545 = 8.76528e-06 loss) | |
I0405 05:25:57.123821 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000189002 (* 0.0454545 = 8.591e-06 loss) | |
I0405 05:25:57.123837 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000165056 (* 0.0454545 = 7.50257e-06 loss) | |
I0405 05:25:57.123852 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.00018078 (* 0.0454545 = 8.21727e-06 loss) | |
I0405 05:25:57.123867 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000150456 (* 0.0454545 = 6.83891e-06 loss) | |
I0405 05:25:57.123881 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000173001 (* 0.0454545 = 7.86368e-06 loss) | |
I0405 05:25:57.123913 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.00017825 (* 0.0454545 = 8.10226e-06 loss) | |
I0405 05:25:57.123929 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000161776 (* 0.0454545 = 7.35346e-06 loss) | |
I0405 05:25:57.123944 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000170194 (* 0.0454545 = 7.73608e-06 loss) | |
I0405 05:25:57.123958 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000165563 (* 0.0454545 = 7.5256e-06 loss) | |
I0405 05:25:57.123972 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000186544 (* 0.0454545 = 8.47928e-06 loss) | |
I0405 05:25:57.123986 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 05:25:57.123998 26022 solver.cpp:245] Train net output #45: total_confidence = 1.79919e-06 | |
I0405 05:25:57.124012 26022 sgd_solver.cpp:106] Iteration 1900, lr = 0.039924 | |
I0405 05:34:59.136031 26022 solver.cpp:229] Iteration 1950, loss = 1.06555 | |
I0405 05:34:59.136237 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0405 05:34:59.136260 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 05:34:59.136273 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 05:34:59.136286 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 05:34:59.136299 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 05:34:59.136312 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 05:34:59.136323 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875 | |
I0405 05:34:59.136337 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0405 05:34:59.136349 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 05:34:59.136361 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 05:34:59.136373 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 05:34:59.136384 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 05:34:59.136395 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 05:34:59.136407 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 05:34:59.136420 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 05:34:59.136430 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 05:34:59.136442 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 05:34:59.136454 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 05:34:59.136466 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 05:34:59.136477 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 05:34:59.136489 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 05:34:59.136500 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 05:34:59.136517 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.38565 (* 0.0454545 = 0.153893 loss) | |
I0405 05:34:59.136531 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.64951 (* 0.0454545 = 0.165887 loss) | |
I0405 05:34:59.136545 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.7439 (* 0.0454545 = 0.170177 loss) | |
I0405 05:34:59.136560 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.64981 (* 0.0454545 = 0.1659 loss) | |
I0405 05:34:59.136574 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.23874 (* 0.0454545 = 0.147215 loss) | |
I0405 05:34:59.136590 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.88875 (* 0.0454545 = 0.131307 loss) | |
I0405 05:34:59.136603 26022 solver.cpp:245] Train net output #28: loss/loss07 = 0.787059 (* 0.0454545 = 0.0357754 loss) | |
I0405 05:34:59.136617 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.300835 (* 0.0454545 = 0.0136743 loss) | |
I0405 05:34:59.136632 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.0409181 (* 0.0454545 = 0.00185991 loss) | |
I0405 05:34:59.136647 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0120105 (* 0.0454545 = 0.00054593 loss) | |
I0405 05:34:59.136662 26022 solver.cpp:245] Train net output #32: loss/loss11 = 7.38063e-05 (* 0.0454545 = 3.35483e-06 loss) | |
I0405 05:34:59.136677 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000107621 (* 0.0454545 = 4.89188e-06 loss) | |
I0405 05:34:59.136693 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000105466 (* 0.0454545 = 4.79389e-06 loss) | |
I0405 05:34:59.136708 26022 solver.cpp:245] Train net output #35: loss/loss14 = 8.71873e-05 (* 0.0454545 = 3.96306e-06 loss) | |
I0405 05:34:59.136721 26022 solver.cpp:245] Train net output #36: loss/loss15 = 9.15702e-05 (* 0.0454545 = 4.16228e-06 loss) | |
I0405 05:34:59.136736 26022 solver.cpp:245] Train net output #37: loss/loss16 = 7.98792e-05 (* 0.0454545 = 3.63087e-06 loss) | |
I0405 05:34:59.136751 26022 solver.cpp:245] Train net output #38: loss/loss17 = 9.56017e-05 (* 0.0454545 = 4.34553e-06 loss) | |
I0405 05:34:59.136783 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000100443 (* 0.0454545 = 4.56561e-06 loss) | |
I0405 05:34:59.136800 26022 solver.cpp:245] Train net output #40: loss/loss19 = 9.02716e-05 (* 0.0454545 = 4.10326e-06 loss) | |
I0405 05:34:59.136814 26022 solver.cpp:245] Train net output #41: loss/loss20 = 8.8643e-05 (* 0.0454545 = 4.02923e-06 loss) | |
I0405 05:34:59.136831 26022 solver.cpp:245] Train net output #42: loss/loss21 = 8.78489e-05 (* 0.0454545 = 3.99313e-06 loss) | |
I0405 05:34:59.136847 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000101777 (* 0.0454545 = 4.62624e-06 loss) | |
I0405 05:34:59.136859 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 05:34:59.136872 26022 solver.cpp:245] Train net output #45: total_confidence = 5.71124e-06 | |
I0405 05:34:59.136886 26022 sgd_solver.cpp:106] Iteration 1950, lr = 0.039922 | |
I0405 05:38:58.151005 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.4473 > 30) by scale factor 0.953978 | |
I0405 05:39:30.672099 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 38.8336 > 30) by scale factor 0.772526 | |
I0405 05:43:50.842366 26022 solver.cpp:338] Iteration 2000, Testing net (#0) | |
I0405 05:44:04.500149 26022 solver.cpp:393] Test loss: 0.976496 | |
I0405 05:44:04.500206 26022 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.259 | |
I0405 05:44:04.500223 26022 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.067 | |
I0405 05:44:04.500236 26022 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.083 | |
I0405 05:44:04.500248 26022 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.088 | |
I0405 05:44:04.500260 26022 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.213 | |
I0405 05:44:04.500272 26022 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.502 | |
I0405 05:44:04.500284 26022 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0405 05:44:04.500296 26022 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0405 05:44:04.500308 26022 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0405 05:44:04.500319 26022 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0405 05:44:04.500330 26022 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0405 05:44:04.500342 26022 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0405 05:44:04.500355 26022 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0405 05:44:04.500366 26022 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0405 05:44:04.500377 26022 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0405 05:44:04.500390 26022 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0405 05:44:04.500401 26022 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0405 05:44:04.500411 26022 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0405 05:44:04.500422 26022 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0405 05:44:04.500434 26022 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0405 05:44:04.500445 26022 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0405 05:44:04.500457 26022 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0405 05:44:04.500473 26022 solver.cpp:406] Test net output #22: loss/loss01 = 3.30976 (* 0.0454545 = 0.150444 loss) | |
I0405 05:44:04.500488 26022 solver.cpp:406] Test net output #23: loss/loss02 = 3.61106 (* 0.0454545 = 0.164139 loss) | |
I0405 05:44:04.500501 26022 solver.cpp:406] Test net output #24: loss/loss03 = 3.52363 (* 0.0454545 = 0.160165 loss) | |
I0405 05:44:04.500515 26022 solver.cpp:406] Test net output #25: loss/loss04 = 3.52764 (* 0.0454545 = 0.160347 loss) | |
I0405 05:44:04.500530 26022 solver.cpp:406] Test net output #26: loss/loss05 = 3.61129 (* 0.0454545 = 0.16415 loss) | |
I0405 05:44:04.500543 26022 solver.cpp:406] Test net output #27: loss/loss06 = 2.63173 (* 0.0454545 = 0.119624 loss) | |
I0405 05:44:04.500557 26022 solver.cpp:406] Test net output #28: loss/loss07 = 0.895689 (* 0.0454545 = 0.0407132 loss) | |
I0405 05:44:04.500571 26022 solver.cpp:406] Test net output #29: loss/loss08 = 0.278613 (* 0.0454545 = 0.0126642 loss) | |
I0405 05:44:04.500586 26022 solver.cpp:406] Test net output #30: loss/loss09 = 0.0661727 (* 0.0454545 = 0.00300785 loss) | |
I0405 05:44:04.500599 26022 solver.cpp:406] Test net output #31: loss/loss10 = 0.0269832 (* 0.0454545 = 0.00122651 loss) | |
I0405 05:44:04.500614 26022 solver.cpp:406] Test net output #32: loss/loss11 = 2.29458e-05 (* 0.0454545 = 1.04299e-06 loss) | |
I0405 05:44:04.500629 26022 solver.cpp:406] Test net output #33: loss/loss12 = 3.2726e-05 (* 0.0454545 = 1.48755e-06 loss) | |
I0405 05:44:04.500644 26022 solver.cpp:406] Test net output #34: loss/loss13 = 3.15673e-05 (* 0.0454545 = 1.43488e-06 loss) | |
I0405 05:44:04.500659 26022 solver.cpp:406] Test net output #35: loss/loss14 = 2.6249e-05 (* 0.0454545 = 1.19314e-06 loss) | |
I0405 05:44:04.500674 26022 solver.cpp:406] Test net output #36: loss/loss15 = 2.66096e-05 (* 0.0454545 = 1.20953e-06 loss) | |
I0405 05:44:04.500689 26022 solver.cpp:406] Test net output #37: loss/loss16 = 2.44362e-05 (* 0.0454545 = 1.11074e-06 loss) | |
I0405 05:44:04.500704 26022 solver.cpp:406] Test net output #38: loss/loss17 = 2.90888e-05 (* 0.0454545 = 1.32222e-06 loss) | |
I0405 05:44:04.500751 26022 solver.cpp:406] Test net output #39: loss/loss18 = 3.05173e-05 (* 0.0454545 = 1.38715e-06 loss) | |
I0405 05:44:04.500767 26022 solver.cpp:406] Test net output #40: loss/loss19 = 2.91623e-05 (* 0.0454545 = 1.32556e-06 loss) | |
I0405 05:44:04.500782 26022 solver.cpp:406] Test net output #41: loss/loss20 = 2.64048e-05 (* 0.0454545 = 1.20022e-06 loss) | |
I0405 05:44:04.500797 26022 solver.cpp:406] Test net output #42: loss/loss21 = 2.61203e-05 (* 0.0454545 = 1.18729e-06 loss) | |
I0405 05:44:04.500810 26022 solver.cpp:406] Test net output #43: loss/loss22 = 3.10265e-05 (* 0.0454545 = 1.41029e-06 loss) | |
I0405 05:44:04.500823 26022 solver.cpp:406] Test net output #44: total_accuracy = 0.001 | |
I0405 05:44:04.500835 26022 solver.cpp:406] Test net output #45: total_confidence = 4.78457e-05 | |
I0405 05:44:14.812119 26022 solver.cpp:229] Iteration 2000, loss = 1.06042 | |
I0405 05:44:14.812167 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0405 05:44:14.812186 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 05:44:14.812199 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625 | |
I0405 05:44:14.812212 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 05:44:14.812224 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0405 05:44:14.812237 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0405 05:44:14.812249 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 05:44:14.812261 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 05:44:14.812273 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 05:44:14.812286 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 05:44:14.812299 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 05:44:14.812310 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 05:44:14.812322 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 05:44:14.812333 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 05:44:14.812345 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 05:44:14.812357 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 05:44:14.812368 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 05:44:14.812381 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 05:44:14.812392 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 05:44:14.812403 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 05:44:14.812415 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 05:44:14.812427 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 05:44:14.812443 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.16283 (* 0.0454545 = 0.143765 loss) | |
I0405 05:44:14.812458 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.39338 (* 0.0454545 = 0.154244 loss) | |
I0405 05:44:14.812471 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.39031 (* 0.0454545 = 0.154105 loss) | |
I0405 05:44:14.812486 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.42935 (* 0.0454545 = 0.15588 loss) | |
I0405 05:44:14.812500 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.11024 (* 0.0454545 = 0.141375 loss) | |
I0405 05:44:14.812515 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.48534 (* 0.0454545 = 0.11297 loss) | |
I0405 05:44:14.812530 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.4104 (* 0.0454545 = 0.0641089 loss) | |
I0405 05:44:14.812543 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.526895 (* 0.0454545 = 0.0239498 loss) | |
I0405 05:44:14.812558 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.205056 (* 0.0454545 = 0.00932073 loss) | |
I0405 05:44:14.812602 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.00657359 (* 0.0454545 = 0.000298799 loss) | |
I0405 05:44:14.812619 26022 solver.cpp:245] Train net output #32: loss/loss11 = 2.14763e-05 (* 0.0454545 = 9.76197e-07 loss) | |
I0405 05:44:14.812634 26022 solver.cpp:245] Train net output #33: loss/loss12 = 3.02028e-05 (* 0.0454545 = 1.37285e-06 loss) | |
I0405 05:44:14.812649 26022 solver.cpp:245] Train net output #34: loss/loss13 = 2.97483e-05 (* 0.0454545 = 1.3522e-06 loss) | |
I0405 05:44:14.812664 26022 solver.cpp:245] Train net output #35: loss/loss14 = 2.41981e-05 (* 0.0454545 = 1.09991e-06 loss) | |
I0405 05:44:14.812680 26022 solver.cpp:245] Train net output #36: loss/loss15 = 2.51222e-05 (* 0.0454545 = 1.14192e-06 loss) | |
I0405 05:44:14.812695 26022 solver.cpp:245] Train net output #37: loss/loss16 = 2.30953e-05 (* 0.0454545 = 1.04979e-06 loss) | |
I0405 05:44:14.812708 26022 solver.cpp:245] Train net output #38: loss/loss17 = 2.7112e-05 (* 0.0454545 = 1.23236e-06 loss) | |
I0405 05:44:14.812723 26022 solver.cpp:245] Train net output #39: loss/loss18 = 2.92229e-05 (* 0.0454545 = 1.32831e-06 loss) | |
I0405 05:44:14.812738 26022 solver.cpp:245] Train net output #40: loss/loss19 = 2.77977e-05 (* 0.0454545 = 1.26353e-06 loss) | |
I0405 05:44:14.812753 26022 solver.cpp:245] Train net output #41: loss/loss20 = 2.44627e-05 (* 0.0454545 = 1.11194e-06 loss) | |
I0405 05:44:14.812772 26022 solver.cpp:245] Train net output #42: loss/loss21 = 2.48167e-05 (* 0.0454545 = 1.12803e-06 loss) | |
I0405 05:44:14.812786 26022 solver.cpp:245] Train net output #43: loss/loss22 = 2.90086e-05 (* 0.0454545 = 1.31857e-06 loss) | |
I0405 05:44:14.812799 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 05:44:14.812811 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000117295 | |
I0405 05:44:14.812826 26022 sgd_solver.cpp:106] Iteration 2000, lr = 0.03992 | |
I0405 05:53:16.875116 26022 solver.cpp:229] Iteration 2050, loss = 1.04963 | |
I0405 05:53:16.875254 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0405 05:53:16.875273 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 05:53:16.875288 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 05:53:16.875300 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0405 05:53:16.875313 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 05:53:16.875325 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0405 05:53:16.875339 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 05:53:16.875350 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 05:53:16.875363 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 05:53:16.875375 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 05:53:16.875387 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 05:53:16.875399 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 05:53:16.875411 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 05:53:16.875422 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 05:53:16.875434 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 05:53:16.875447 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 05:53:16.875458 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 05:53:16.875469 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 05:53:16.875481 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 05:53:16.875494 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 05:53:16.875504 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 05:53:16.875516 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 05:53:16.875531 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.10413 (* 0.0454545 = 0.141097 loss) | |
I0405 05:53:16.875546 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.63586 (* 0.0454545 = 0.165266 loss) | |
I0405 05:53:16.875560 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.59294 (* 0.0454545 = 0.163315 loss) | |
I0405 05:53:16.875576 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.5076 (* 0.0454545 = 0.159437 loss) | |
I0405 05:53:16.875591 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.25507 (* 0.0454545 = 0.147958 loss) | |
I0405 05:53:16.875604 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.9397 (* 0.0454545 = 0.133623 loss) | |
I0405 05:53:16.875618 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.73763 (* 0.0454545 = 0.0789834 loss) | |
I0405 05:53:16.875633 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.823319 (* 0.0454545 = 0.0374236 loss) | |
I0405 05:53:16.875648 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.427028 (* 0.0454545 = 0.0194103 loss) | |
I0405 05:53:16.875663 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.206037 (* 0.0454545 = 0.00936532 loss) | |
I0405 05:53:16.875677 26022 solver.cpp:245] Train net output #32: loss/loss11 = 4.35394e-05 (* 0.0454545 = 1.97907e-06 loss) | |
I0405 05:53:16.875692 26022 solver.cpp:245] Train net output #33: loss/loss12 = 6.12159e-05 (* 0.0454545 = 2.78254e-06 loss) | |
I0405 05:53:16.875707 26022 solver.cpp:245] Train net output #34: loss/loss13 = 6.09273e-05 (* 0.0454545 = 2.76942e-06 loss) | |
I0405 05:53:16.875722 26022 solver.cpp:245] Train net output #35: loss/loss14 = 4.76398e-05 (* 0.0454545 = 2.16544e-06 loss) | |
I0405 05:53:16.875737 26022 solver.cpp:245] Train net output #36: loss/loss15 = 4.75466e-05 (* 0.0454545 = 2.16121e-06 loss) | |
I0405 05:53:16.875751 26022 solver.cpp:245] Train net output #37: loss/loss16 = 4.62352e-05 (* 0.0454545 = 2.1016e-06 loss) | |
I0405 05:53:16.875766 26022 solver.cpp:245] Train net output #38: loss/loss17 = 5.44511e-05 (* 0.0454545 = 2.47505e-06 loss) | |
I0405 05:53:16.875798 26022 solver.cpp:245] Train net output #39: loss/loss18 = 5.78978e-05 (* 0.0454545 = 2.63172e-06 loss) | |
I0405 05:53:16.875814 26022 solver.cpp:245] Train net output #40: loss/loss19 = 5.71322e-05 (* 0.0454545 = 2.59692e-06 loss) | |
I0405 05:53:16.875829 26022 solver.cpp:245] Train net output #41: loss/loss20 = 4.84036e-05 (* 0.0454545 = 2.20017e-06 loss) | |
I0405 05:53:16.875847 26022 solver.cpp:245] Train net output #42: loss/loss21 = 4.97283e-05 (* 0.0454545 = 2.26038e-06 loss) | |
I0405 05:53:16.875864 26022 solver.cpp:245] Train net output #43: loss/loss22 = 5.74058e-05 (* 0.0454545 = 2.60935e-06 loss) | |
I0405 05:53:16.875875 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 05:53:16.875887 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000105631 | |
I0405 05:53:16.875902 26022 sgd_solver.cpp:106] Iteration 2050, lr = 0.039918 | |
I0405 06:02:18.943953 26022 solver.cpp:229] Iteration 2100, loss = 1.05269 | |
I0405 06:02:18.944134 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0405 06:02:18.944155 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0405 06:02:18.944169 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 06:02:18.944181 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 06:02:18.944195 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.09375 | |
I0405 06:02:18.944207 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0405 06:02:18.944221 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0405 06:02:18.944232 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0405 06:02:18.944244 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 06:02:18.944255 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 06:02:18.944268 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 06:02:18.944280 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 06:02:18.944291 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 06:02:18.944303 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 06:02:18.944315 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 06:02:18.944326 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 06:02:18.944339 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 06:02:18.944350 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 06:02:18.944361 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 06:02:18.944373 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 06:02:18.944385 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 06:02:18.944396 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 06:02:18.944411 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.15477 (* 0.0454545 = 0.143399 loss) | |
I0405 06:02:18.944427 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.7016 (* 0.0454545 = 0.168255 loss) | |
I0405 06:02:18.944442 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.54766 (* 0.0454545 = 0.161257 loss) | |
I0405 06:02:18.944456 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.59132 (* 0.0454545 = 0.163242 loss) | |
I0405 06:02:18.944471 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.74816 (* 0.0454545 = 0.170371 loss) | |
I0405 06:02:18.944485 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.17241 (* 0.0454545 = 0.1442 loss) | |
I0405 06:02:18.944500 26022 solver.cpp:245] Train net output #28: loss/loss07 = 2.0926 (* 0.0454545 = 0.0951182 loss) | |
I0405 06:02:18.944515 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.275549 (* 0.0454545 = 0.0125249 loss) | |
I0405 06:02:18.944532 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.0378832 (* 0.0454545 = 0.00172196 loss) | |
I0405 06:02:18.944548 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0164502 (* 0.0454545 = 0.000747738 loss) | |
I0405 06:02:18.944563 26022 solver.cpp:245] Train net output #32: loss/loss11 = 5.02812e-05 (* 0.0454545 = 2.28551e-06 loss) | |
I0405 06:02:18.944578 26022 solver.cpp:245] Train net output #33: loss/loss12 = 6.95598e-05 (* 0.0454545 = 3.16181e-06 loss) | |
I0405 06:02:18.944592 26022 solver.cpp:245] Train net output #34: loss/loss13 = 6.68455e-05 (* 0.0454545 = 3.03843e-06 loss) | |
I0405 06:02:18.944608 26022 solver.cpp:245] Train net output #35: loss/loss14 = 5.3476e-05 (* 0.0454545 = 2.43073e-06 loss) | |
I0405 06:02:18.944623 26022 solver.cpp:245] Train net output #36: loss/loss15 = 5.26041e-05 (* 0.0454545 = 2.3911e-06 loss) | |
I0405 06:02:18.944638 26022 solver.cpp:245] Train net output #37: loss/loss16 = 5.21012e-05 (* 0.0454545 = 2.36824e-06 loss) | |
I0405 06:02:18.944656 26022 solver.cpp:245] Train net output #38: loss/loss17 = 6.11948e-05 (* 0.0454545 = 2.78158e-06 loss) | |
I0405 06:02:18.944689 26022 solver.cpp:245] Train net output #39: loss/loss18 = 6.70299e-05 (* 0.0454545 = 3.04681e-06 loss) | |
I0405 06:02:18.944705 26022 solver.cpp:245] Train net output #40: loss/loss19 = 6.51837e-05 (* 0.0454545 = 2.96289e-06 loss) | |
I0405 06:02:18.944720 26022 solver.cpp:245] Train net output #41: loss/loss20 = 5.56894e-05 (* 0.0454545 = 2.53134e-06 loss) | |
I0405 06:02:18.944735 26022 solver.cpp:245] Train net output #42: loss/loss21 = 5.61701e-05 (* 0.0454545 = 2.55319e-06 loss) | |
I0405 06:02:18.944749 26022 solver.cpp:245] Train net output #43: loss/loss22 = 6.5968e-05 (* 0.0454545 = 2.99855e-06 loss) | |
I0405 06:02:18.944762 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 06:02:18.944774 26022 solver.cpp:245] Train net output #45: total_confidence = 5.37273e-05 | |
I0405 06:02:18.944789 26022 sgd_solver.cpp:106] Iteration 2100, lr = 0.039916 | |
I0405 06:11:21.063184 26022 solver.cpp:229] Iteration 2150, loss = 1.04902 | |
I0405 06:11:21.063406 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 06:11:21.063428 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 06:11:21.063442 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 06:11:21.063455 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 06:11:21.063468 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0405 06:11:21.063480 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 06:11:21.063493 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 06:11:21.063504 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 06:11:21.063516 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 06:11:21.063529 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 06:11:21.063540 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 06:11:21.063555 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 06:11:21.063567 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 06:11:21.063580 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 06:11:21.063591 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 06:11:21.063603 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 06:11:21.063614 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 06:11:21.063627 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 06:11:21.063638 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 06:11:21.063649 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 06:11:21.063662 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 06:11:21.063673 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 06:11:21.063688 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.17069 (* 0.0454545 = 0.144122 loss) | |
I0405 06:11:21.063704 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.44571 (* 0.0454545 = 0.156623 loss) | |
I0405 06:11:21.063719 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.49802 (* 0.0454545 = 0.159001 loss) | |
I0405 06:11:21.063735 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.38808 (* 0.0454545 = 0.154004 loss) | |
I0405 06:11:21.063750 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.25272 (* 0.0454545 = 0.147851 loss) | |
I0405 06:11:21.063765 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.90225 (* 0.0454545 = 0.131921 loss) | |
I0405 06:11:21.063779 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.76221 (* 0.0454545 = 0.0801004 loss) | |
I0405 06:11:21.063793 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.738473 (* 0.0454545 = 0.033567 loss) | |
I0405 06:11:21.063807 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.221624 (* 0.0454545 = 0.0100738 loss) | |
I0405 06:11:21.063823 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0102922 (* 0.0454545 = 0.000467827 loss) | |
I0405 06:11:21.063838 26022 solver.cpp:245] Train net output #32: loss/loss11 = 3.4005e-05 (* 0.0454545 = 1.54568e-06 loss) | |
I0405 06:11:21.063859 26022 solver.cpp:245] Train net output #33: loss/loss12 = 4.75975e-05 (* 0.0454545 = 2.16352e-06 loss) | |
I0405 06:11:21.063889 26022 solver.cpp:245] Train net output #34: loss/loss13 = 4.51692e-05 (* 0.0454545 = 2.05314e-06 loss) | |
I0405 06:11:21.063920 26022 solver.cpp:245] Train net output #35: loss/loss14 = 3.55176e-05 (* 0.0454545 = 1.61444e-06 loss) | |
I0405 06:11:21.063963 26022 solver.cpp:245] Train net output #36: loss/loss15 = 3.48582e-05 (* 0.0454545 = 1.58446e-06 loss) | |
I0405 06:11:21.063984 26022 solver.cpp:245] Train net output #37: loss/loss16 = 3.61721e-05 (* 0.0454545 = 1.64419e-06 loss) | |
I0405 06:11:21.063999 26022 solver.cpp:245] Train net output #38: loss/loss17 = 4.01357e-05 (* 0.0454545 = 1.82435e-06 loss) | |
I0405 06:11:21.064029 26022 solver.cpp:245] Train net output #39: loss/loss18 = 4.32775e-05 (* 0.0454545 = 1.96716e-06 loss) | |
I0405 06:11:21.064045 26022 solver.cpp:245] Train net output #40: loss/loss19 = 4.38369e-05 (* 0.0454545 = 1.99259e-06 loss) | |
I0405 06:11:21.064060 26022 solver.cpp:245] Train net output #41: loss/loss20 = 3.69806e-05 (* 0.0454545 = 1.68094e-06 loss) | |
I0405 06:11:21.064095 26022 solver.cpp:245] Train net output #42: loss/loss21 = 3.76031e-05 (* 0.0454545 = 1.70923e-06 loss) | |
I0405 06:11:21.064111 26022 solver.cpp:245] Train net output #43: loss/loss22 = 4.41086e-05 (* 0.0454545 = 2.00493e-06 loss) | |
I0405 06:11:21.064123 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 06:11:21.064136 26022 solver.cpp:245] Train net output #45: total_confidence = 8.99676e-05 | |
I0405 06:11:21.064151 26022 sgd_solver.cpp:106] Iteration 2150, lr = 0.039914 | |
I0405 06:20:23.211572 26022 solver.cpp:229] Iteration 2200, loss = 1.04157 | |
I0405 06:20:23.211741 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0405 06:20:23.211762 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0405 06:20:23.211776 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 06:20:23.211788 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 06:20:23.211802 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0405 06:20:23.211813 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0405 06:20:23.211827 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 06:20:23.211838 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 06:20:23.211850 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 06:20:23.211863 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 06:20:23.211875 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 06:20:23.211887 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 06:20:23.211899 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 06:20:23.211911 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 06:20:23.211922 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 06:20:23.211935 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 06:20:23.211946 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 06:20:23.211957 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 06:20:23.211969 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 06:20:23.211980 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 06:20:23.211992 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 06:20:23.212004 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 06:20:23.212020 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.1739 (* 0.0454545 = 0.144268 loss) | |
I0405 06:20:23.212035 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.56057 (* 0.0454545 = 0.161844 loss) | |
I0405 06:20:23.212049 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.55262 (* 0.0454545 = 0.161483 loss) | |
I0405 06:20:23.212064 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.60216 (* 0.0454545 = 0.163735 loss) | |
I0405 06:20:23.212100 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.03437 (* 0.0454545 = 0.137926 loss) | |
I0405 06:20:23.212117 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.28901 (* 0.0454545 = 0.104046 loss) | |
I0405 06:20:23.212131 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.51273 (* 0.0454545 = 0.0687606 loss) | |
I0405 06:20:23.212146 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.442683 (* 0.0454545 = 0.0201219 loss) | |
I0405 06:20:23.212160 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.21846 (* 0.0454545 = 0.00993002 loss) | |
I0405 06:20:23.212175 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.200569 (* 0.0454545 = 0.00911678 loss) | |
I0405 06:20:23.212190 26022 solver.cpp:245] Train net output #32: loss/loss11 = 3.81832e-05 (* 0.0454545 = 1.7356e-06 loss) | |
I0405 06:20:23.212205 26022 solver.cpp:245] Train net output #33: loss/loss12 = 5.22439e-05 (* 0.0454545 = 2.37472e-06 loss) | |
I0405 06:20:23.212220 26022 solver.cpp:245] Train net output #34: loss/loss13 = 5.20132e-05 (* 0.0454545 = 2.36424e-06 loss) | |
I0405 06:20:23.212235 26022 solver.cpp:245] Train net output #35: loss/loss14 = 4.02997e-05 (* 0.0454545 = 1.8318e-06 loss) | |
I0405 06:20:23.212255 26022 solver.cpp:245] Train net output #36: loss/loss15 = 3.8235e-05 (* 0.0454545 = 1.73796e-06 loss) | |
I0405 06:20:23.212270 26022 solver.cpp:245] Train net output #37: loss/loss16 = 3.99367e-05 (* 0.0454545 = 1.81531e-06 loss) | |
I0405 06:20:23.212285 26022 solver.cpp:245] Train net output #38: loss/loss17 = 4.5356e-05 (* 0.0454545 = 2.06164e-06 loss) | |
I0405 06:20:23.212316 26022 solver.cpp:245] Train net output #39: loss/loss18 = 4.91352e-05 (* 0.0454545 = 2.23342e-06 loss) | |
I0405 06:20:23.212332 26022 solver.cpp:245] Train net output #40: loss/loss19 = 5.01571e-05 (* 0.0454545 = 2.27987e-06 loss) | |
I0405 06:20:23.212347 26022 solver.cpp:245] Train net output #41: loss/loss20 = 4.05662e-05 (* 0.0454545 = 1.84392e-06 loss) | |
I0405 06:20:23.212363 26022 solver.cpp:245] Train net output #42: loss/loss21 = 4.09056e-05 (* 0.0454545 = 1.85935e-06 loss) | |
I0405 06:20:23.212378 26022 solver.cpp:245] Train net output #43: loss/loss22 = 4.89187e-05 (* 0.0454545 = 2.22358e-06 loss) | |
I0405 06:20:23.212390 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 06:20:23.212404 26022 solver.cpp:245] Train net output #45: total_confidence = 8.03094e-05 | |
I0405 06:20:23.212421 26022 sgd_solver.cpp:106] Iteration 2200, lr = 0.039912 | |
I0405 06:23:17.099337 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 47.8066 > 30) by scale factor 0.627528 | |
I0405 06:29:25.259403 26022 solver.cpp:229] Iteration 2250, loss = 1.0418 | |
I0405 06:29:25.259558 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 06:29:25.259579 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 06:29:25.259593 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 06:29:25.259605 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 06:29:25.259618 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 06:29:25.259630 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0405 06:29:25.259644 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375 | |
I0405 06:29:25.259655 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 06:29:25.259667 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 06:29:25.259680 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 06:29:25.259695 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 06:29:25.259706 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 06:29:25.259718 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 06:29:25.259730 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 06:29:25.259742 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 06:29:25.259753 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 06:29:25.259764 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 06:29:25.259776 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 06:29:25.259788 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 06:29:25.259799 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 06:29:25.259810 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 06:29:25.259822 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 06:29:25.259837 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.56038 (* 0.0454545 = 0.161835 loss) | |
I0405 06:29:25.259852 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.76496 (* 0.0454545 = 0.171135 loss) | |
I0405 06:29:25.259866 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.74323 (* 0.0454545 = 0.170147 loss) | |
I0405 06:29:25.259881 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.7351 (* 0.0454545 = 0.169777 loss) | |
I0405 06:29:25.259896 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.32177 (* 0.0454545 = 0.150989 loss) | |
I0405 06:29:25.259909 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.50765 (* 0.0454545 = 0.113984 loss) | |
I0405 06:29:25.259923 26022 solver.cpp:245] Train net output #28: loss/loss07 = 0.973847 (* 0.0454545 = 0.0442658 loss) | |
I0405 06:29:25.259938 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.424503 (* 0.0454545 = 0.0192956 loss) | |
I0405 06:29:25.259953 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.0435743 (* 0.0454545 = 0.00198065 loss) | |
I0405 06:29:25.259966 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0188889 (* 0.0454545 = 0.000858585 loss) | |
I0405 06:29:25.259981 26022 solver.cpp:245] Train net output #32: loss/loss11 = 6.82887e-05 (* 0.0454545 = 3.10403e-06 loss) | |
I0405 06:29:25.259996 26022 solver.cpp:245] Train net output #33: loss/loss12 = 9.41924e-05 (* 0.0454545 = 4.28147e-06 loss) | |
I0405 06:29:25.260011 26022 solver.cpp:245] Train net output #34: loss/loss13 = 9.22585e-05 (* 0.0454545 = 4.19357e-06 loss) | |
I0405 06:29:25.260025 26022 solver.cpp:245] Train net output #35: loss/loss14 = 7.40565e-05 (* 0.0454545 = 3.3662e-06 loss) | |
I0405 06:29:25.260040 26022 solver.cpp:245] Train net output #36: loss/loss15 = 7.10813e-05 (* 0.0454545 = 3.23097e-06 loss) | |
I0405 06:29:25.260054 26022 solver.cpp:245] Train net output #37: loss/loss16 = 7.27711e-05 (* 0.0454545 = 3.30778e-06 loss) | |
I0405 06:29:25.260087 26022 solver.cpp:245] Train net output #38: loss/loss17 = 8.18552e-05 (* 0.0454545 = 3.72069e-06 loss) | |
I0405 06:29:25.260121 26022 solver.cpp:245] Train net output #39: loss/loss18 = 8.949e-05 (* 0.0454545 = 4.06773e-06 loss) | |
I0405 06:29:25.260138 26022 solver.cpp:245] Train net output #40: loss/loss19 = 8.96559e-05 (* 0.0454545 = 4.07527e-06 loss) | |
I0405 06:29:25.260155 26022 solver.cpp:245] Train net output #41: loss/loss20 = 7.57053e-05 (* 0.0454545 = 3.44115e-06 loss) | |
I0405 06:29:25.260170 26022 solver.cpp:245] Train net output #42: loss/loss21 = 7.59661e-05 (* 0.0454545 = 3.45301e-06 loss) | |
I0405 06:29:25.260185 26022 solver.cpp:245] Train net output #43: loss/loss22 = 9.04998e-05 (* 0.0454545 = 4.11363e-06 loss) | |
I0405 06:29:25.260197 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 06:29:25.260210 26022 solver.cpp:245] Train net output #45: total_confidence = 4.39823e-05 | |
I0405 06:29:25.260224 26022 sgd_solver.cpp:106] Iteration 2250, lr = 0.03991 | |
I0405 06:34:51.221547 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 37.1166 > 30) by scale factor 0.808264 | |
I0405 06:37:01.356776 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 51.7218 > 30) by scale factor 0.580026 | |
I0405 06:38:27.603896 26022 solver.cpp:229] Iteration 2300, loss = 1.04061 | |
I0405 06:38:27.603999 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 06:38:27.604020 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 06:38:27.604034 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 06:38:27.604046 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.25 | |
I0405 06:38:27.604058 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0405 06:38:27.604095 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 06:38:27.604120 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 06:38:27.604135 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 06:38:27.604146 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 06:38:27.604161 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 06:38:27.604174 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 06:38:27.604187 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 06:38:27.604199 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 06:38:27.604210 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 06:38:27.604224 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 06:38:27.604236 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 06:38:27.604249 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 06:38:27.604259 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 06:38:27.604271 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 06:38:27.604284 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 06:38:27.604295 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 06:38:27.604307 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 06:38:27.604322 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.28621 (* 0.0454545 = 0.149373 loss) | |
I0405 06:38:27.604337 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.88135 (* 0.0454545 = 0.176425 loss) | |
I0405 06:38:27.604351 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.55859 (* 0.0454545 = 0.161754 loss) | |
I0405 06:38:27.604365 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.35195 (* 0.0454545 = 0.152361 loss) | |
I0405 06:38:27.604380 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.18797 (* 0.0454545 = 0.144908 loss) | |
I0405 06:38:27.604394 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.87953 (* 0.0454545 = 0.130888 loss) | |
I0405 06:38:27.604408 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.40215 (* 0.0454545 = 0.0637339 loss) | |
I0405 06:38:27.604423 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.564786 (* 0.0454545 = 0.0256721 loss) | |
I0405 06:38:27.604437 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.446556 (* 0.0454545 = 0.020298 loss) | |
I0405 06:38:27.604451 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.21338 (* 0.0454545 = 0.00969911 loss) | |
I0405 06:38:27.604466 26022 solver.cpp:245] Train net output #32: loss/loss11 = 5.33235e-05 (* 0.0454545 = 2.4238e-06 loss) | |
I0405 06:38:27.604481 26022 solver.cpp:245] Train net output #33: loss/loss12 = 7.05476e-05 (* 0.0454545 = 3.20671e-06 loss) | |
I0405 06:38:27.604496 26022 solver.cpp:245] Train net output #34: loss/loss13 = 6.91986e-05 (* 0.0454545 = 3.14539e-06 loss) | |
I0405 06:38:27.604511 26022 solver.cpp:245] Train net output #35: loss/loss14 = 5.59148e-05 (* 0.0454545 = 2.54158e-06 loss) | |
I0405 06:38:27.604524 26022 solver.cpp:245] Train net output #36: loss/loss15 = 5.18609e-05 (* 0.0454545 = 2.35731e-06 loss) | |
I0405 06:38:27.604538 26022 solver.cpp:245] Train net output #37: loss/loss16 = 5.61385e-05 (* 0.0454545 = 2.55175e-06 loss) | |
I0405 06:38:27.604553 26022 solver.cpp:245] Train net output #38: loss/loss17 = 6.09098e-05 (* 0.0454545 = 2.76863e-06 loss) | |
I0405 06:38:27.604588 26022 solver.cpp:245] Train net output #39: loss/loss18 = 6.73766e-05 (* 0.0454545 = 3.06257e-06 loss) | |
I0405 06:38:27.604604 26022 solver.cpp:245] Train net output #40: loss/loss19 = 6.93069e-05 (* 0.0454545 = 3.15031e-06 loss) | |
I0405 06:38:27.604619 26022 solver.cpp:245] Train net output #41: loss/loss20 = 5.76065e-05 (* 0.0454545 = 2.61848e-06 loss) | |
I0405 06:38:27.604632 26022 solver.cpp:245] Train net output #42: loss/loss21 = 5.85306e-05 (* 0.0454545 = 2.66048e-06 loss) | |
I0405 06:38:27.604647 26022 solver.cpp:245] Train net output #43: loss/loss22 = 6.71901e-05 (* 0.0454545 = 3.0541e-06 loss) | |
I0405 06:38:27.604660 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 06:38:27.604672 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000166972 | |
I0405 06:38:27.604686 26022 sgd_solver.cpp:106] Iteration 2300, lr = 0.039908 | |
I0405 06:41:43.230902 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 41.3741 > 30) by scale factor 0.725091 | |
I0405 06:44:47.528802 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.4197 > 30) by scale factor 0.954816 | |
I0405 06:47:29.735996 26022 solver.cpp:229] Iteration 2350, loss = 1.04194 | |
I0405 06:47:29.736186 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0405 06:47:29.736217 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 06:47:29.736239 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 06:47:29.736263 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 06:47:29.736286 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 06:47:29.736309 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 06:47:29.736330 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 06:47:29.736351 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 06:47:29.736374 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 06:47:29.736397 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 06:47:29.736420 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 06:47:29.736441 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 06:47:29.736462 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 06:47:29.736484 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 06:47:29.736516 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 06:47:29.736551 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 06:47:29.736572 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 06:47:29.736594 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 06:47:29.736615 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 06:47:29.736637 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 06:47:29.736659 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 06:47:29.736678 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 06:47:29.736706 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.65373 (* 0.0454545 = 0.166078 loss) | |
I0405 06:47:29.736735 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.77806 (* 0.0454545 = 0.17173 loss) | |
I0405 06:47:29.736763 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.71551 (* 0.0454545 = 0.168887 loss) | |
I0405 06:47:29.736788 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.74906 (* 0.0454545 = 0.170412 loss) | |
I0405 06:47:29.736814 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.54179 (* 0.0454545 = 0.16099 loss) | |
I0405 06:47:29.736845 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.08887 (* 0.0454545 = 0.140403 loss) | |
I0405 06:47:29.736871 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.70116 (* 0.0454545 = 0.0773253 loss) | |
I0405 06:47:29.736896 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.977217 (* 0.0454545 = 0.044419 loss) | |
I0405 06:47:29.736922 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.60226 (* 0.0454545 = 0.0273755 loss) | |
I0405 06:47:29.736949 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.207637 (* 0.0454545 = 0.00943806 loss) | |
I0405 06:47:29.736976 26022 solver.cpp:245] Train net output #32: loss/loss11 = 3.54259e-05 (* 0.0454545 = 1.61027e-06 loss) | |
I0405 06:47:29.737006 26022 solver.cpp:245] Train net output #33: loss/loss12 = 4.58247e-05 (* 0.0454545 = 2.08294e-06 loss) | |
I0405 06:47:29.737032 26022 solver.cpp:245] Train net output #34: loss/loss13 = 4.52118e-05 (* 0.0454545 = 2.05508e-06 loss) | |
I0405 06:47:29.737059 26022 solver.cpp:245] Train net output #35: loss/loss14 = 3.74302e-05 (* 0.0454545 = 1.70137e-06 loss) | |
I0405 06:47:29.737084 26022 solver.cpp:245] Train net output #36: loss/loss15 = 3.41609e-05 (* 0.0454545 = 1.55277e-06 loss) | |
I0405 06:47:29.737112 26022 solver.cpp:245] Train net output #37: loss/loss16 = 3.74714e-05 (* 0.0454545 = 1.70324e-06 loss) | |
I0405 06:47:29.737136 26022 solver.cpp:245] Train net output #38: loss/loss17 = 3.95542e-05 (* 0.0454545 = 1.79792e-06 loss) | |
I0405 06:47:29.737185 26022 solver.cpp:245] Train net output #39: loss/loss18 = 4.26988e-05 (* 0.0454545 = 1.94085e-06 loss) | |
I0405 06:47:29.737212 26022 solver.cpp:245] Train net output #40: loss/loss19 = 4.43084e-05 (* 0.0454545 = 2.01402e-06 loss) | |
I0405 06:47:29.737239 26022 solver.cpp:245] Train net output #41: loss/loss20 = 3.75943e-05 (* 0.0454545 = 1.70883e-06 loss) | |
I0405 06:47:29.737267 26022 solver.cpp:245] Train net output #42: loss/loss21 = 3.77657e-05 (* 0.0454545 = 1.71662e-06 loss) | |
I0405 06:47:29.737293 26022 solver.cpp:245] Train net output #43: loss/loss22 = 4.35295e-05 (* 0.0454545 = 1.97861e-06 loss) | |
I0405 06:47:29.737315 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 06:47:29.737339 26022 solver.cpp:245] Train net output #45: total_confidence = 8.79651e-05 | |
I0405 06:47:29.737362 26022 sgd_solver.cpp:106] Iteration 2350, lr = 0.039906 | |
I0405 06:51:17.853572 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 34.1101 > 30) by scale factor 0.879505 | |
I0405 06:51:50.367398 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 46.2169 > 30) by scale factor 0.649113 | |
I0405 06:56:31.788909 26022 solver.cpp:229] Iteration 2400, loss = 1.04916 | |
I0405 06:56:31.789065 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0405 06:56:31.789096 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 06:56:31.789121 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 06:56:31.789146 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 06:56:31.789168 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0405 06:56:31.789191 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 06:56:31.789216 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 06:56:31.789239 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.78125 | |
I0405 06:56:31.789261 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0405 06:56:31.789283 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 06:56:31.789305 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 06:56:31.789330 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 06:56:31.789351 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 06:56:31.789372 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 06:56:31.789393 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 06:56:31.789417 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 06:56:31.789440 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 06:56:31.789463 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 06:56:31.789485 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 06:56:31.789507 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 06:56:31.789530 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 06:56:31.789551 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 06:56:31.789577 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.5361 (* 0.0454545 = 0.160732 loss) | |
I0405 06:56:31.789604 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.59461 (* 0.0454545 = 0.163391 loss) | |
I0405 06:56:31.789631 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.67854 (* 0.0454545 = 0.167206 loss) | |
I0405 06:56:31.789659 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.57854 (* 0.0454545 = 0.162661 loss) | |
I0405 06:56:31.789686 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.58126 (* 0.0454545 = 0.162784 loss) | |
I0405 06:56:31.789712 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.80024 (* 0.0454545 = 0.127284 loss) | |
I0405 06:56:31.789738 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.68087 (* 0.0454545 = 0.0764031 loss) | |
I0405 06:56:31.789764 26022 solver.cpp:245] Train net output #29: loss/loss08 = 1.18533 (* 0.0454545 = 0.0538786 loss) | |
I0405 06:56:31.789790 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.75491 (* 0.0454545 = 0.0343141 loss) | |
I0405 06:56:31.789816 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.439005 (* 0.0454545 = 0.0199548 loss) | |
I0405 06:56:31.789842 26022 solver.cpp:245] Train net output #32: loss/loss11 = 4.12527e-05 (* 0.0454545 = 1.87512e-06 loss) | |
I0405 06:56:31.789868 26022 solver.cpp:245] Train net output #33: loss/loss12 = 5.41292e-05 (* 0.0454545 = 2.46042e-06 loss) | |
I0405 06:56:31.789896 26022 solver.cpp:245] Train net output #34: loss/loss13 = 5.40492e-05 (* 0.0454545 = 2.45678e-06 loss) | |
I0405 06:56:31.789924 26022 solver.cpp:245] Train net output #35: loss/loss14 = 4.35197e-05 (* 0.0454545 = 1.97817e-06 loss) | |
I0405 06:56:31.789950 26022 solver.cpp:245] Train net output #36: loss/loss15 = 4.14593e-05 (* 0.0454545 = 1.88452e-06 loss) | |
I0405 06:56:31.789976 26022 solver.cpp:245] Train net output #37: loss/loss16 = 4.34397e-05 (* 0.0454545 = 1.97453e-06 loss) | |
I0405 06:56:31.790002 26022 solver.cpp:245] Train net output #38: loss/loss17 = 4.74469e-05 (* 0.0454545 = 2.15668e-06 loss) | |
I0405 06:56:31.790055 26022 solver.cpp:245] Train net output #39: loss/loss18 = 5.11634e-05 (* 0.0454545 = 2.32561e-06 loss) | |
I0405 06:56:31.790082 26022 solver.cpp:245] Train net output #40: loss/loss19 = 5.20075e-05 (* 0.0454545 = 2.36398e-06 loss) | |
I0405 06:56:31.790108 26022 solver.cpp:245] Train net output #41: loss/loss20 = 4.54702e-05 (* 0.0454545 = 2.06683e-06 loss) | |
I0405 06:56:31.790135 26022 solver.cpp:245] Train net output #42: loss/loss21 = 4.60627e-05 (* 0.0454545 = 2.09376e-06 loss) | |
I0405 06:56:31.790163 26022 solver.cpp:245] Train net output #43: loss/loss22 = 5.13719e-05 (* 0.0454545 = 2.33509e-06 loss) | |
I0405 06:56:31.790184 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 06:56:31.790205 26022 solver.cpp:245] Train net output #45: total_confidence = 5.50714e-05 | |
I0405 06:56:31.790231 26022 sgd_solver.cpp:106] Iteration 2400, lr = 0.039904 | |
I0405 07:00:52.514952 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.5976 > 30) by scale factor 0.949439 | |
I0405 07:05:12.669852 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 34.6915 > 30) by scale factor 0.864764 | |
I0405 07:05:33.865030 26022 solver.cpp:229] Iteration 2450, loss = 1.03176 | |
I0405 07:05:33.865094 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 07:05:33.865113 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 07:05:33.865126 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 07:05:33.865139 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 07:05:33.865151 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0405 07:05:33.865164 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 07:05:33.865176 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 07:05:33.865188 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 07:05:33.865200 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 07:05:33.865212 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 07:05:33.865227 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 07:05:33.865241 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 07:05:33.865252 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 07:05:33.865263 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 07:05:33.865275 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 07:05:33.865288 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 07:05:33.865298 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 07:05:33.865310 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 07:05:33.865321 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 07:05:33.865334 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 07:05:33.865345 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 07:05:33.865356 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 07:05:33.865371 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.12395 (* 0.0454545 = 0.141998 loss) | |
I0405 07:05:33.865386 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.58241 (* 0.0454545 = 0.162837 loss) | |
I0405 07:05:33.865401 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.54781 (* 0.0454545 = 0.161264 loss) | |
I0405 07:05:33.865416 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.31614 (* 0.0454545 = 0.150734 loss) | |
I0405 07:05:33.865429 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.48788 (* 0.0454545 = 0.15854 loss) | |
I0405 07:05:33.865444 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.67842 (* 0.0454545 = 0.121746 loss) | |
I0405 07:05:33.865458 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.64442 (* 0.0454545 = 0.0747465 loss) | |
I0405 07:05:33.865473 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.563585 (* 0.0454545 = 0.0256175 loss) | |
I0405 07:05:33.865490 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.240202 (* 0.0454545 = 0.0109183 loss) | |
I0405 07:05:33.865505 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.193557 (* 0.0454545 = 0.00879802 loss) | |
I0405 07:05:33.865520 26022 solver.cpp:245] Train net output #32: loss/loss11 = 8.40053e-05 (* 0.0454545 = 3.81842e-06 loss) | |
I0405 07:05:33.865535 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000104934 (* 0.0454545 = 4.76971e-06 loss) | |
I0405 07:05:33.865550 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000105681 (* 0.0454545 = 4.80368e-06 loss) | |
I0405 07:05:33.865564 26022 solver.cpp:245] Train net output #35: loss/loss14 = 8.44336e-05 (* 0.0454545 = 3.83789e-06 loss) | |
I0405 07:05:33.865579 26022 solver.cpp:245] Train net output #36: loss/loss15 = 7.82222e-05 (* 0.0454545 = 3.55555e-06 loss) | |
I0405 07:05:33.865594 26022 solver.cpp:245] Train net output #37: loss/loss16 = 8.7109e-05 (* 0.0454545 = 3.9595e-06 loss) | |
I0405 07:05:33.865638 26022 solver.cpp:245] Train net output #38: loss/loss17 = 9.20333e-05 (* 0.0454545 = 4.18333e-06 loss) | |
I0405 07:05:33.865654 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000103825 (* 0.0454545 = 4.71933e-06 loss) | |
I0405 07:05:33.865669 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.00010964 (* 0.0454545 = 4.98365e-06 loss) | |
I0405 07:05:33.865684 26022 solver.cpp:245] Train net output #41: loss/loss20 = 8.72468e-05 (* 0.0454545 = 3.96576e-06 loss) | |
I0405 07:05:33.865699 26022 solver.cpp:245] Train net output #42: loss/loss21 = 8.93672e-05 (* 0.0454545 = 4.06215e-06 loss) | |
I0405 07:05:33.865712 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000103385 (* 0.0454545 = 4.69932e-06 loss) | |
I0405 07:05:33.865725 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 07:05:33.865737 26022 solver.cpp:245] Train net output #45: total_confidence = 6.49686e-05 | |
I0405 07:05:33.865751 26022 sgd_solver.cpp:106] Iteration 2450, lr = 0.039902 | |
I0405 07:07:55.322444 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.2216 > 30) by scale factor 0.992668 | |
I0405 07:08:27.856645 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 44.5959 > 30) by scale factor 0.672707 | |
I0405 07:14:36.046927 26022 solver.cpp:229] Iteration 2500, loss = 1.03 | |
I0405 07:14:36.047045 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 07:14:36.047065 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 07:14:36.047080 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 07:14:36.047092 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 07:14:36.047104 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 07:14:36.047117 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 07:14:36.047130 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 07:14:36.047142 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 07:14:36.047155 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 07:14:36.047168 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 07:14:36.047179 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 07:14:36.047191 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 07:14:36.047204 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 07:14:36.047215 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 07:14:36.047227 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 07:14:36.047240 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 07:14:36.047252 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 07:14:36.047265 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 07:14:36.047276 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 07:14:36.047288 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 07:14:36.047299 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 07:14:36.047312 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 07:14:36.047327 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.40011 (* 0.0454545 = 0.15455 loss) | |
I0405 07:14:36.047343 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.75881 (* 0.0454545 = 0.170855 loss) | |
I0405 07:14:36.047358 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.74831 (* 0.0454545 = 0.170378 loss) | |
I0405 07:14:36.047371 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.74678 (* 0.0454545 = 0.170308 loss) | |
I0405 07:14:36.047386 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.57872 (* 0.0454545 = 0.162669 loss) | |
I0405 07:14:36.047400 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.09007 (* 0.0454545 = 0.140458 loss) | |
I0405 07:14:36.047415 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.62409 (* 0.0454545 = 0.0738222 loss) | |
I0405 07:14:36.047430 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.718967 (* 0.0454545 = 0.0326803 loss) | |
I0405 07:14:36.047444 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.417162 (* 0.0454545 = 0.0189619 loss) | |
I0405 07:14:36.047459 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0207939 (* 0.0454545 = 0.000945177 loss) | |
I0405 07:14:36.047474 26022 solver.cpp:245] Train net output #32: loss/loss11 = 3.28359e-05 (* 0.0454545 = 1.49254e-06 loss) | |
I0405 07:14:36.047489 26022 solver.cpp:245] Train net output #33: loss/loss12 = 4.07025e-05 (* 0.0454545 = 1.85012e-06 loss) | |
I0405 07:14:36.047504 26022 solver.cpp:245] Train net output #34: loss/loss13 = 4.1824e-05 (* 0.0454545 = 1.90109e-06 loss) | |
I0405 07:14:36.047519 26022 solver.cpp:245] Train net output #35: loss/loss14 = 3.47024e-05 (* 0.0454545 = 1.57738e-06 loss) | |
I0405 07:14:36.047534 26022 solver.cpp:245] Train net output #36: loss/loss15 = 3.20908e-05 (* 0.0454545 = 1.45867e-06 loss) | |
I0405 07:14:36.047549 26022 solver.cpp:245] Train net output #37: loss/loss16 = 3.49912e-05 (* 0.0454545 = 1.59051e-06 loss) | |
I0405 07:14:36.047564 26022 solver.cpp:245] Train net output #38: loss/loss17 = 3.51812e-05 (* 0.0454545 = 1.59915e-06 loss) | |
I0405 07:14:36.047596 26022 solver.cpp:245] Train net output #39: loss/loss18 = 3.99239e-05 (* 0.0454545 = 1.81472e-06 loss) | |
I0405 07:14:36.047612 26022 solver.cpp:245] Train net output #40: loss/loss19 = 4.20774e-05 (* 0.0454545 = 1.91261e-06 loss) | |
I0405 07:14:36.047627 26022 solver.cpp:245] Train net output #41: loss/loss20 = 3.51029e-05 (* 0.0454545 = 1.59559e-06 loss) | |
I0405 07:14:36.047642 26022 solver.cpp:245] Train net output #42: loss/loss21 = 3.54028e-05 (* 0.0454545 = 1.60922e-06 loss) | |
I0405 07:14:36.047657 26022 solver.cpp:245] Train net output #43: loss/loss22 = 4.09708e-05 (* 0.0454545 = 1.86231e-06 loss) | |
I0405 07:14:36.047670 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 07:14:36.047683 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000111447 | |
I0405 07:14:36.047698 26022 sgd_solver.cpp:106] Iteration 2500, lr = 0.0399 | |
I0405 07:19:29.258702 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 60.9616 > 30) by scale factor 0.492113 | |
I0405 07:20:12.605080 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 34.7894 > 30) by scale factor 0.862331 | |
I0405 07:23:38.102818 26022 solver.cpp:229] Iteration 2550, loss = 1.02848 | |
I0405 07:23:38.102924 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0405 07:23:38.102944 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 07:23:38.102958 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875 | |
I0405 07:23:38.102972 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 07:23:38.102984 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 07:23:38.102996 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 07:23:38.103009 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 07:23:38.103021 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 07:23:38.103034 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 07:23:38.103049 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 07:23:38.103062 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 07:23:38.103075 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 07:23:38.103086 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 07:23:38.103098 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 07:23:38.103111 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 07:23:38.103121 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 07:23:38.103133 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 07:23:38.103145 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 07:23:38.103157 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 07:23:38.103168 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 07:23:38.103180 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 07:23:38.103193 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 07:23:38.103209 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.22879 (* 0.0454545 = 0.146763 loss) | |
I0405 07:23:38.103222 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.77785 (* 0.0454545 = 0.17172 loss) | |
I0405 07:23:38.103237 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.50215 (* 0.0454545 = 0.159189 loss) | |
I0405 07:23:38.103251 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.46668 (* 0.0454545 = 0.157576 loss) | |
I0405 07:23:38.103266 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.55308 (* 0.0454545 = 0.161504 loss) | |
I0405 07:23:38.103281 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.62177 (* 0.0454545 = 0.119171 loss) | |
I0405 07:23:38.103294 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.37211 (* 0.0454545 = 0.0623689 loss) | |
I0405 07:23:38.103308 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.477724 (* 0.0454545 = 0.0217147 loss) | |
I0405 07:23:38.103322 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.552396 (* 0.0454545 = 0.0251089 loss) | |
I0405 07:23:38.103338 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.00720419 (* 0.0454545 = 0.000327463 loss) | |
I0405 07:23:38.103353 26022 solver.cpp:245] Train net output #32: loss/loss11 = 3.56242e-05 (* 0.0454545 = 1.61928e-06 loss) | |
I0405 07:23:38.103368 26022 solver.cpp:245] Train net output #33: loss/loss12 = 4.37934e-05 (* 0.0454545 = 1.99061e-06 loss) | |
I0405 07:23:38.103382 26022 solver.cpp:245] Train net output #34: loss/loss13 = 4.43972e-05 (* 0.0454545 = 2.01805e-06 loss) | |
I0405 07:23:38.103397 26022 solver.cpp:245] Train net output #35: loss/loss14 = 3.91298e-05 (* 0.0454545 = 1.77863e-06 loss) | |
I0405 07:23:38.103411 26022 solver.cpp:245] Train net output #36: loss/loss15 = 3.67752e-05 (* 0.0454545 = 1.6716e-06 loss) | |
I0405 07:23:38.103426 26022 solver.cpp:245] Train net output #37: loss/loss16 = 3.71555e-05 (* 0.0454545 = 1.68889e-06 loss) | |
I0405 07:23:38.103441 26022 solver.cpp:245] Train net output #38: loss/loss17 = 3.98047e-05 (* 0.0454545 = 1.80931e-06 loss) | |
I0405 07:23:38.103474 26022 solver.cpp:245] Train net output #39: loss/loss18 = 4.39947e-05 (* 0.0454545 = 1.99976e-06 loss) | |
I0405 07:23:38.103492 26022 solver.cpp:245] Train net output #40: loss/loss19 = 4.41737e-05 (* 0.0454545 = 2.0079e-06 loss) | |
I0405 07:23:38.103507 26022 solver.cpp:245] Train net output #41: loss/loss20 = 3.85265e-05 (* 0.0454545 = 1.7512e-06 loss) | |
I0405 07:23:38.103521 26022 solver.cpp:245] Train net output #42: loss/loss21 = 3.89849e-05 (* 0.0454545 = 1.77204e-06 loss) | |
I0405 07:23:38.103536 26022 solver.cpp:245] Train net output #43: loss/loss22 = 4.46893e-05 (* 0.0454545 = 2.03133e-06 loss) | |
I0405 07:23:38.103549 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 07:23:38.103560 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000579929 | |
I0405 07:23:38.103575 26022 sgd_solver.cpp:106] Iteration 2550, lr = 0.039898 | |
I0405 07:32:29.971864 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 34.4484 > 30) by scale factor 0.870868 | |
I0405 07:32:40.353359 26022 solver.cpp:229] Iteration 2600, loss = 1.01697 | |
I0405 07:32:40.353407 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 07:32:40.353425 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 07:32:40.353438 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 07:32:40.353451 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 07:32:40.353464 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 07:32:40.353477 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 07:32:40.353489 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 07:32:40.353502 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 07:32:40.353516 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 07:32:40.353530 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 07:32:40.353545 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 07:32:40.353557 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 07:32:40.353569 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 07:32:40.353581 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 07:32:40.353593 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 07:32:40.353605 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 07:32:40.353617 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 07:32:40.353628 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 07:32:40.353641 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 07:32:40.353652 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 07:32:40.353663 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 07:32:40.353675 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 07:32:40.353691 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.22794 (* 0.0454545 = 0.146725 loss) | |
I0405 07:32:40.353708 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.40361 (* 0.0454545 = 0.15471 loss) | |
I0405 07:32:40.353723 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.53299 (* 0.0454545 = 0.160591 loss) | |
I0405 07:32:40.353737 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.35214 (* 0.0454545 = 0.15237 loss) | |
I0405 07:32:40.353751 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.02552 (* 0.0454545 = 0.137524 loss) | |
I0405 07:32:40.353766 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.56857 (* 0.0454545 = 0.116753 loss) | |
I0405 07:32:40.353780 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.49965 (* 0.0454545 = 0.0681659 loss) | |
I0405 07:32:40.353795 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.424517 (* 0.0454545 = 0.0192962 loss) | |
I0405 07:32:40.353809 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.233856 (* 0.0454545 = 0.0106298 loss) | |
I0405 07:32:40.353823 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0250415 (* 0.0454545 = 0.00113825 loss) | |
I0405 07:32:40.353839 26022 solver.cpp:245] Train net output #32: loss/loss11 = 2.66886e-05 (* 0.0454545 = 1.21312e-06 loss) | |
I0405 07:32:40.353854 26022 solver.cpp:245] Train net output #33: loss/loss12 = 3.33088e-05 (* 0.0454545 = 1.51404e-06 loss) | |
I0405 07:32:40.353869 26022 solver.cpp:245] Train net output #34: loss/loss13 = 3.46984e-05 (* 0.0454545 = 1.5772e-06 loss) | |
I0405 07:32:40.353884 26022 solver.cpp:245] Train net output #35: loss/loss14 = 2.9818e-05 (* 0.0454545 = 1.35536e-06 loss) | |
I0405 07:32:40.353899 26022 solver.cpp:245] Train net output #36: loss/loss15 = 2.70425e-05 (* 0.0454545 = 1.22921e-06 loss) | |
I0405 07:32:40.353914 26022 solver.cpp:245] Train net output #37: loss/loss16 = 2.95982e-05 (* 0.0454545 = 1.34537e-06 loss) | |
I0405 07:32:40.353929 26022 solver.cpp:245] Train net output #38: loss/loss17 = 3.00639e-05 (* 0.0454545 = 1.36654e-06 loss) | |
I0405 07:32:40.353974 26022 solver.cpp:245] Train net output #39: loss/loss18 = 3.37261e-05 (* 0.0454545 = 1.533e-06 loss) | |
I0405 07:32:40.353991 26022 solver.cpp:245] Train net output #40: loss/loss19 = 3.59166e-05 (* 0.0454545 = 1.63257e-06 loss) | |
I0405 07:32:40.354007 26022 solver.cpp:245] Train net output #41: loss/loss20 = 2.91325e-05 (* 0.0454545 = 1.32421e-06 loss) | |
I0405 07:32:40.354022 26022 solver.cpp:245] Train net output #42: loss/loss21 = 2.9818e-05 (* 0.0454545 = 1.35536e-06 loss) | |
I0405 07:32:40.354037 26022 solver.cpp:245] Train net output #43: loss/loss22 = 3.48474e-05 (* 0.0454545 = 1.58397e-06 loss) | |
I0405 07:32:40.354048 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 07:32:40.354060 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000275161 | |
I0405 07:32:40.354075 26022 sgd_solver.cpp:106] Iteration 2600, lr = 0.039896 | |
I0405 07:39:54.510187 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 38.5796 > 30) by scale factor 0.777614 | |
I0405 07:41:42.439062 26022 solver.cpp:229] Iteration 2650, loss = 1.02116 | |
I0405 07:41:42.439160 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0405 07:41:42.439179 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 07:41:42.439193 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 07:41:42.439206 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 07:41:42.439219 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0405 07:41:42.439232 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 07:41:42.439245 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 07:41:42.439259 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 07:41:42.439270 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 07:41:42.439285 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 07:41:42.439296 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 07:41:42.439308 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 07:41:42.439321 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 07:41:42.439332 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 07:41:42.439344 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 07:41:42.439355 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 07:41:42.439368 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 07:41:42.439379 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 07:41:42.439393 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 07:41:42.439404 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 07:41:42.439416 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 07:41:42.439429 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 07:41:42.439443 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.02099 (* 0.0454545 = 0.137318 loss) | |
I0405 07:41:42.439460 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.5508 (* 0.0454545 = 0.1614 loss) | |
I0405 07:41:42.439474 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.60096 (* 0.0454545 = 0.16368 loss) | |
I0405 07:41:42.439488 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.4535 (* 0.0454545 = 0.156977 loss) | |
I0405 07:41:42.439507 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.50477 (* 0.0454545 = 0.159308 loss) | |
I0405 07:41:42.439522 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.45924 (* 0.0454545 = 0.111784 loss) | |
I0405 07:41:42.439537 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.6309 (* 0.0454545 = 0.0741316 loss) | |
I0405 07:41:42.439550 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.514668 (* 0.0454545 = 0.023394 loss) | |
I0405 07:41:42.439565 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.301843 (* 0.0454545 = 0.0137201 loss) | |
I0405 07:41:42.439580 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0298712 (* 0.0454545 = 0.00135778 loss) | |
I0405 07:41:42.439595 26022 solver.cpp:245] Train net output #32: loss/loss11 = 4.0716e-05 (* 0.0454545 = 1.85073e-06 loss) | |
I0405 07:41:42.439611 26022 solver.cpp:245] Train net output #33: loss/loss12 = 4.93299e-05 (* 0.0454545 = 2.24227e-06 loss) | |
I0405 07:41:42.439626 26022 solver.cpp:245] Train net output #34: loss/loss13 = 5.19008e-05 (* 0.0454545 = 2.35913e-06 loss) | |
I0405 07:41:42.439641 26022 solver.cpp:245] Train net output #35: loss/loss14 = 4.57309e-05 (* 0.0454545 = 2.07868e-06 loss) | |
I0405 07:41:42.439656 26022 solver.cpp:245] Train net output #36: loss/loss15 = 4.13085e-05 (* 0.0454545 = 1.87766e-06 loss) | |
I0405 07:41:42.439671 26022 solver.cpp:245] Train net output #37: loss/loss16 = 4.33389e-05 (* 0.0454545 = 1.96995e-06 loss) | |
I0405 07:41:42.439685 26022 solver.cpp:245] Train net output #38: loss/loss17 = 4.63047e-05 (* 0.0454545 = 2.10476e-06 loss) | |
I0405 07:41:42.439719 26022 solver.cpp:245] Train net output #39: loss/loss18 = 5.05335e-05 (* 0.0454545 = 2.29698e-06 loss) | |
I0405 07:41:42.439735 26022 solver.cpp:245] Train net output #40: loss/loss19 = 5.44529e-05 (* 0.0454545 = 2.47513e-06 loss) | |
I0405 07:41:42.439752 26022 solver.cpp:245] Train net output #41: loss/loss20 = 4.33836e-05 (* 0.0454545 = 1.97198e-06 loss) | |
I0405 07:41:42.439769 26022 solver.cpp:245] Train net output #42: loss/loss21 = 4.54142e-05 (* 0.0454545 = 2.06428e-06 loss) | |
I0405 07:41:42.439784 26022 solver.cpp:245] Train net output #43: loss/loss22 = 5.23554e-05 (* 0.0454545 = 2.37979e-06 loss) | |
I0405 07:41:42.439796 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 07:41:42.439808 26022 solver.cpp:245] Train net output #45: total_confidence = 9.90312e-05 | |
I0405 07:41:42.439823 26022 sgd_solver.cpp:106] Iteration 2650, lr = 0.039894 | |
I0405 07:50:44.602888 26022 solver.cpp:229] Iteration 2700, loss = 1.01635 | |
I0405 07:50:44.603058 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 07:50:44.603080 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 07:50:44.603092 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 07:50:44.603104 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 07:50:44.603117 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 07:50:44.603130 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0405 07:50:44.603142 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 07:50:44.603153 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 07:50:44.603165 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 07:50:44.603178 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 07:50:44.603189 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 07:50:44.603201 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 07:50:44.603212 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 07:50:44.603224 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 07:50:44.603236 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 07:50:44.603247 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 07:50:44.603260 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 07:50:44.603271 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 07:50:44.603282 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 07:50:44.603298 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 07:50:44.603310 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 07:50:44.603322 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 07:50:44.603338 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.4866 (* 0.0454545 = 0.158482 loss) | |
I0405 07:50:44.603351 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.8075 (* 0.0454545 = 0.173068 loss) | |
I0405 07:50:44.603366 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.76698 (* 0.0454545 = 0.171226 loss) | |
I0405 07:50:44.603380 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.62488 (* 0.0454545 = 0.164767 loss) | |
I0405 07:50:44.603394 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.22734 (* 0.0454545 = 0.146697 loss) | |
I0405 07:50:44.603409 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.56155 (* 0.0454545 = 0.116434 loss) | |
I0405 07:50:44.603423 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.48513 (* 0.0454545 = 0.067506 loss) | |
I0405 07:50:44.603437 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.412215 (* 0.0454545 = 0.0187371 loss) | |
I0405 07:50:44.603451 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.0238762 (* 0.0454545 = 0.00108528 loss) | |
I0405 07:50:44.603466 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.013874 (* 0.0454545 = 0.000630635 loss) | |
I0405 07:50:44.603482 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000116789 (* 0.0454545 = 5.3086e-06 loss) | |
I0405 07:50:44.603497 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000143373 (* 0.0454545 = 6.51697e-06 loss) | |
I0405 07:50:44.603512 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000144423 (* 0.0454545 = 6.5647e-06 loss) | |
I0405 07:50:44.603526 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000159214 (* 0.0454545 = 7.23701e-06 loss) | |
I0405 07:50:44.603540 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000146414 (* 0.0454545 = 6.65516e-06 loss) | |
I0405 07:50:44.603555 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000131189 (* 0.0454545 = 5.96315e-06 loss) | |
I0405 07:50:44.603570 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.00013745 (* 0.0454545 = 6.24775e-06 loss) | |
I0405 07:50:44.603602 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000141829 (* 0.0454545 = 6.44678e-06 loss) | |
I0405 07:50:44.603618 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000142325 (* 0.0454545 = 6.46932e-06 loss) | |
I0405 07:50:44.603633 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000140897 (* 0.0454545 = 6.40443e-06 loss) | |
I0405 07:50:44.603648 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000141105 (* 0.0454545 = 6.41388e-06 loss) | |
I0405 07:50:44.603662 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000160749 (* 0.0454545 = 7.30676e-06 loss) | |
I0405 07:50:44.603675 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 07:50:44.603688 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000171319 | |
I0405 07:50:44.603701 26022 sgd_solver.cpp:106] Iteration 2700, lr = 0.039892 | |
I0405 07:59:46.679805 26022 solver.cpp:229] Iteration 2750, loss = 1.00627 | |
I0405 07:59:46.679966 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0405 07:59:46.679987 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 07:59:46.680001 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 07:59:46.680014 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 07:59:46.680027 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 07:59:46.680039 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 07:59:46.680052 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0405 07:59:46.680063 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 07:59:46.680096 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 07:59:46.680111 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 07:59:46.680124 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 07:59:46.680135 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 07:59:46.680147 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 07:59:46.680160 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 07:59:46.680171 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 07:59:46.680182 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 07:59:46.680193 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 07:59:46.680207 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 07:59:46.680217 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 07:59:46.680229 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 07:59:46.680240 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 07:59:46.680253 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 07:59:46.680268 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.19843 (* 0.0454545 = 0.145383 loss) | |
I0405 07:59:46.680282 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.49072 (* 0.0454545 = 0.158669 loss) | |
I0405 07:59:46.680296 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.56795 (* 0.0454545 = 0.16218 loss) | |
I0405 07:59:46.680311 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.56764 (* 0.0454545 = 0.162165 loss) | |
I0405 07:59:46.680325 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.19156 (* 0.0454545 = 0.145071 loss) | |
I0405 07:59:46.680340 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.81714 (* 0.0454545 = 0.128052 loss) | |
I0405 07:59:46.680353 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.65766 (* 0.0454545 = 0.0753483 loss) | |
I0405 07:59:46.680371 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.738623 (* 0.0454545 = 0.0335738 loss) | |
I0405 07:59:46.680387 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.404443 (* 0.0454545 = 0.0183838 loss) | |
I0405 07:59:46.680402 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.022895 (* 0.0454545 = 0.00104068 loss) | |
I0405 07:59:46.680416 26022 solver.cpp:245] Train net output #32: loss/loss11 = 9.2357e-05 (* 0.0454545 = 4.19804e-06 loss) | |
I0405 07:59:46.680434 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000111608 (* 0.0454545 = 5.0731e-06 loss) | |
I0405 07:59:46.680449 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000109847 (* 0.0454545 = 4.99304e-06 loss) | |
I0405 07:59:46.680464 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.00012808 (* 0.0454545 = 5.82181e-06 loss) | |
I0405 07:59:46.680480 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000118705 (* 0.0454545 = 5.3957e-06 loss) | |
I0405 07:59:46.680493 26022 solver.cpp:245] Train net output #37: loss/loss16 = 9.97206e-05 (* 0.0454545 = 4.53275e-06 loss) | |
I0405 07:59:46.680508 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.00010762 (* 0.0454545 = 4.89183e-06 loss) | |
I0405 07:59:46.680541 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.00011135 (* 0.0454545 = 5.06137e-06 loss) | |
I0405 07:59:46.680557 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000113639 (* 0.0454545 = 5.16543e-06 loss) | |
I0405 07:59:46.680572 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000108691 (* 0.0454545 = 4.94048e-06 loss) | |
I0405 07:59:46.680586 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000110392 (* 0.0454545 = 5.01783e-06 loss) | |
I0405 07:59:46.680600 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000130658 (* 0.0454545 = 5.939e-06 loss) | |
I0405 07:59:46.680614 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 07:59:46.680626 26022 solver.cpp:245] Train net output #45: total_confidence = 5.90404e-05 | |
I0405 07:59:46.680641 26022 sgd_solver.cpp:106] Iteration 2750, lr = 0.03989 | |
I0405 08:02:51.460438 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.4721 > 30) by scale factor 0.984507 | |
I0405 08:03:13.136863 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 43.6104 > 30) by scale factor 0.68791 | |
I0405 08:08:48.736587 26022 solver.cpp:229] Iteration 2800, loss = 1.01006 | |
I0405 08:08:48.736773 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 08:08:48.736802 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 08:08:48.736827 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 08:08:48.736851 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 08:08:48.736874 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 08:08:48.736896 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0405 08:08:48.736918 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 08:08:48.736939 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 08:08:48.736963 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0405 08:08:48.736986 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.90625 | |
I0405 08:08:48.737009 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 08:08:48.737030 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 08:08:48.737051 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 08:08:48.737071 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 08:08:48.737092 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 08:08:48.737112 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 08:08:48.737135 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 08:08:48.737159 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 08:08:48.737179 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 08:08:48.737205 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 08:08:48.737226 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 08:08:48.737246 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 08:08:48.737275 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.0103 (* 0.0454545 = 0.136832 loss) | |
I0405 08:08:48.737303 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.46945 (* 0.0454545 = 0.157702 loss) | |
I0405 08:08:48.737329 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.38179 (* 0.0454545 = 0.153718 loss) | |
I0405 08:08:48.737355 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.41237 (* 0.0454545 = 0.155108 loss) | |
I0405 08:08:48.737383 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.01667 (* 0.0454545 = 0.137121 loss) | |
I0405 08:08:48.737411 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.36758 (* 0.0454545 = 0.107617 loss) | |
I0405 08:08:48.737437 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.8134 (* 0.0454545 = 0.0824273 loss) | |
I0405 08:08:48.737463 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.743737 (* 0.0454545 = 0.0338062 loss) | |
I0405 08:08:48.737489 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.622293 (* 0.0454545 = 0.028286 loss) | |
I0405 08:08:48.737516 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.563441 (* 0.0454545 = 0.0256109 loss) | |
I0405 08:08:48.737546 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000123897 (* 0.0454545 = 5.63166e-06 loss) | |
I0405 08:08:48.737573 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.00015342 (* 0.0454545 = 6.97364e-06 loss) | |
I0405 08:08:48.737601 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.00015174 (* 0.0454545 = 6.89727e-06 loss) | |
I0405 08:08:48.737627 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000177286 (* 0.0454545 = 8.05847e-06 loss) | |
I0405 08:08:48.737655 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000167621 (* 0.0454545 = 7.61913e-06 loss) | |
I0405 08:08:48.737682 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.00014175 (* 0.0454545 = 6.4432e-06 loss) | |
I0405 08:08:48.737709 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000153989 (* 0.0454545 = 6.99951e-06 loss) | |
I0405 08:08:48.737756 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000157589 (* 0.0454545 = 7.16313e-06 loss) | |
I0405 08:08:48.737784 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000157715 (* 0.0454545 = 7.16886e-06 loss) | |
I0405 08:08:48.737810 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000155644 (* 0.0454545 = 7.07471e-06 loss) | |
I0405 08:08:48.737838 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.0001574 (* 0.0454545 = 7.15455e-06 loss) | |
I0405 08:08:48.737864 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000181505 (* 0.0454545 = 8.25023e-06 loss) | |
I0405 08:08:48.737886 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 08:08:48.737908 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000219318 | |
I0405 08:08:48.737932 26022 sgd_solver.cpp:106] Iteration 2800, lr = 0.039888 | |
I0405 08:17:50.866094 26022 solver.cpp:229] Iteration 2850, loss = 0.999861 | |
I0405 08:17:50.866274 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0405 08:17:50.866296 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0405 08:17:50.866308 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 08:17:50.866322 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0405 08:17:50.866335 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 08:17:50.866348 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0405 08:17:50.866361 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 08:17:50.866374 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 08:17:50.866385 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 08:17:50.866397 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 08:17:50.866410 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 08:17:50.866421 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 08:17:50.866432 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 08:17:50.866444 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 08:17:50.866456 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 08:17:50.866467 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 08:17:50.866478 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 08:17:50.866490 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 08:17:50.866502 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 08:17:50.866513 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 08:17:50.866523 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 08:17:50.866534 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 08:17:50.866550 26022 solver.cpp:245] Train net output #22: loss/loss01 = 2.9859 (* 0.0454545 = 0.135723 loss) | |
I0405 08:17:50.866565 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.33505 (* 0.0454545 = 0.151593 loss) | |
I0405 08:17:50.866580 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.29851 (* 0.0454545 = 0.149932 loss) | |
I0405 08:17:50.866592 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.14018 (* 0.0454545 = 0.142735 loss) | |
I0405 08:17:50.866606 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.09943 (* 0.0454545 = 0.140883 loss) | |
I0405 08:17:50.866621 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.42721 (* 0.0454545 = 0.110328 loss) | |
I0405 08:17:50.866636 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.21982 (* 0.0454545 = 0.0554464 loss) | |
I0405 08:17:50.866649 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.650299 (* 0.0454545 = 0.0295591 loss) | |
I0405 08:17:50.866663 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.221143 (* 0.0454545 = 0.010052 loss) | |
I0405 08:17:50.866678 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0141841 (* 0.0454545 = 0.000644734 loss) | |
I0405 08:17:50.866693 26022 solver.cpp:245] Train net output #32: loss/loss11 = 4.8817e-05 (* 0.0454545 = 2.21896e-06 loss) | |
I0405 08:17:50.866708 26022 solver.cpp:245] Train net output #33: loss/loss12 = 5.9227e-05 (* 0.0454545 = 2.69214e-06 loss) | |
I0405 08:17:50.866722 26022 solver.cpp:245] Train net output #34: loss/loss13 = 5.59884e-05 (* 0.0454545 = 2.54493e-06 loss) | |
I0405 08:17:50.866736 26022 solver.cpp:245] Train net output #35: loss/loss14 = 6.89509e-05 (* 0.0454545 = 3.13413e-06 loss) | |
I0405 08:17:50.866750 26022 solver.cpp:245] Train net output #36: loss/loss15 = 6.47773e-05 (* 0.0454545 = 2.94442e-06 loss) | |
I0405 08:17:50.866765 26022 solver.cpp:245] Train net output #37: loss/loss16 = 5.24497e-05 (* 0.0454545 = 2.38408e-06 loss) | |
I0405 08:17:50.866780 26022 solver.cpp:245] Train net output #38: loss/loss17 = 5.64644e-05 (* 0.0454545 = 2.56656e-06 loss) | |
I0405 08:17:50.866812 26022 solver.cpp:245] Train net output #39: loss/loss18 = 5.7343e-05 (* 0.0454545 = 2.6065e-06 loss) | |
I0405 08:17:50.866828 26022 solver.cpp:245] Train net output #40: loss/loss19 = 5.8494e-05 (* 0.0454545 = 2.65882e-06 loss) | |
I0405 08:17:50.866842 26022 solver.cpp:245] Train net output #41: loss/loss20 = 5.59152e-05 (* 0.0454545 = 2.5416e-06 loss) | |
I0405 08:17:50.866860 26022 solver.cpp:245] Train net output #42: loss/loss21 = 5.74581e-05 (* 0.0454545 = 2.61173e-06 loss) | |
I0405 08:17:50.866875 26022 solver.cpp:245] Train net output #43: loss/loss22 = 6.99565e-05 (* 0.0454545 = 3.17984e-06 loss) | |
I0405 08:17:50.866888 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 08:17:50.866899 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000591066 | |
I0405 08:17:50.866914 26022 sgd_solver.cpp:106] Iteration 2850, lr = 0.039886 | |
I0405 08:26:52.900837 26022 solver.cpp:229] Iteration 2900, loss = 0.989039 | |
I0405 08:26:52.901012 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0405 08:26:52.901033 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0405 08:26:52.901046 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 08:26:52.901059 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0405 08:26:52.901072 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375 | |
I0405 08:26:52.901083 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 08:26:52.901096 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 08:26:52.901108 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 08:26:52.901120 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 08:26:52.901132 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 08:26:52.901144 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 08:26:52.901156 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 08:26:52.901168 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 08:26:52.901180 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 08:26:52.901191 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 08:26:52.901203 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 08:26:52.901216 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 08:26:52.901227 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 08:26:52.901238 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 08:26:52.901250 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 08:26:52.901262 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 08:26:52.901273 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 08:26:52.901289 26022 solver.cpp:245] Train net output #22: loss/loss01 = 2.95186 (* 0.0454545 = 0.134176 loss) | |
I0405 08:26:52.901304 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.1987 (* 0.0454545 = 0.145395 loss) | |
I0405 08:26:52.901319 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.23369 (* 0.0454545 = 0.146986 loss) | |
I0405 08:26:52.901334 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.12794 (* 0.0454545 = 0.142179 loss) | |
I0405 08:26:52.901350 26022 solver.cpp:245] Train net output #26: loss/loss05 = 2.60461 (* 0.0454545 = 0.118391 loss) | |
I0405 08:26:52.901365 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.38423 (* 0.0454545 = 0.108374 loss) | |
I0405 08:26:52.901381 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.13068 (* 0.0454545 = 0.0513948 loss) | |
I0405 08:26:52.901394 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.436172 (* 0.0454545 = 0.019826 loss) | |
I0405 08:26:52.901409 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.215405 (* 0.0454545 = 0.00979113 loss) | |
I0405 08:26:52.901424 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.176911 (* 0.0454545 = 0.0080414 loss) | |
I0405 08:26:52.901438 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000109099 (* 0.0454545 = 4.95903e-06 loss) | |
I0405 08:26:52.901453 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000131678 (* 0.0454545 = 5.98536e-06 loss) | |
I0405 08:26:52.901468 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000127641 (* 0.0454545 = 5.80188e-06 loss) | |
I0405 08:26:52.901485 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000154166 (* 0.0454545 = 7.00754e-06 loss) | |
I0405 08:26:52.901500 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000151433 (* 0.0454545 = 6.8833e-06 loss) | |
I0405 08:26:52.901515 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000124601 (* 0.0454545 = 5.66369e-06 loss) | |
I0405 08:26:52.901530 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000129564 (* 0.0454545 = 5.88929e-06 loss) | |
I0405 08:26:52.901561 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000137466 (* 0.0454545 = 6.24845e-06 loss) | |
I0405 08:26:52.901577 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000138558 (* 0.0454545 = 6.29807e-06 loss) | |
I0405 08:26:52.901592 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000132428 (* 0.0454545 = 6.01944e-06 loss) | |
I0405 08:26:52.901607 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.00013685 (* 0.0454545 = 6.22044e-06 loss) | |
I0405 08:26:52.901621 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000164147 (* 0.0454545 = 7.46123e-06 loss) | |
I0405 08:26:52.901633 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 08:26:52.901645 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000193541 | |
I0405 08:26:52.901660 26022 sgd_solver.cpp:106] Iteration 2900, lr = 0.039884 | |
I0405 08:29:14.283166 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.5152 > 30) by scale factor 0.951922 | |
I0405 08:35:54.988898 26022 solver.cpp:229] Iteration 2950, loss = 0.988215 | |
I0405 08:35:54.989084 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 08:35:54.989106 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 08:35:54.989120 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 08:35:54.989132 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 08:35:54.989145 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0405 08:35:54.989157 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 08:35:54.989169 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 08:35:54.989181 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 08:35:54.989193 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 08:35:54.989205 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 08:35:54.989217 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 08:35:54.989229 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 08:35:54.989240 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 08:35:54.989256 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 08:35:54.989269 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 08:35:54.989279 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 08:35:54.989291 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 08:35:54.989305 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 08:35:54.989318 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 08:35:54.989329 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 08:35:54.989341 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 08:35:54.989352 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 08:35:54.989368 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.02343 (* 0.0454545 = 0.137429 loss) | |
I0405 08:35:54.989387 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.32558 (* 0.0454545 = 0.151163 loss) | |
I0405 08:35:54.989401 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.30755 (* 0.0454545 = 0.150343 loss) | |
I0405 08:35:54.989415 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.41307 (* 0.0454545 = 0.15514 loss) | |
I0405 08:35:54.989429 26022 solver.cpp:245] Train net output #26: loss/loss05 = 2.98157 (* 0.0454545 = 0.135526 loss) | |
I0405 08:35:54.989444 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.83393 (* 0.0454545 = 0.128815 loss) | |
I0405 08:35:54.989459 26022 solver.cpp:245] Train net output #28: loss/loss07 = 0.941952 (* 0.0454545 = 0.042816 loss) | |
I0405 08:35:54.989473 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.33843 (* 0.0454545 = 0.0153832 loss) | |
I0405 08:35:54.989487 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.162089 (* 0.0454545 = 0.00736768 loss) | |
I0405 08:35:54.989502 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.00987351 (* 0.0454545 = 0.000448796 loss) | |
I0405 08:35:54.989518 26022 solver.cpp:245] Train net output #32: loss/loss11 = 1.72058e-05 (* 0.0454545 = 7.82083e-07 loss) | |
I0405 08:35:54.989533 26022 solver.cpp:245] Train net output #33: loss/loss12 = 2.19534e-05 (* 0.0454545 = 9.97883e-07 loss) | |
I0405 08:35:54.989548 26022 solver.cpp:245] Train net output #34: loss/loss13 = 2.00249e-05 (* 0.0454545 = 9.10224e-07 loss) | |
I0405 08:35:54.989562 26022 solver.cpp:245] Train net output #35: loss/loss14 = 2.55962e-05 (* 0.0454545 = 1.16347e-06 loss) | |
I0405 08:35:54.989578 26022 solver.cpp:245] Train net output #36: loss/loss15 = 2.67799e-05 (* 0.0454545 = 1.21727e-06 loss) | |
I0405 08:35:54.989593 26022 solver.cpp:245] Train net output #37: loss/loss16 = 1.88696e-05 (* 0.0454545 = 8.57709e-07 loss) | |
I0405 08:35:54.989608 26022 solver.cpp:245] Train net output #38: loss/loss17 = 2.0595e-05 (* 0.0454545 = 9.36135e-07 loss) | |
I0405 08:35:54.989641 26022 solver.cpp:245] Train net output #39: loss/loss18 = 2.13907e-05 (* 0.0454545 = 9.72302e-07 loss) | |
I0405 08:35:54.989657 26022 solver.cpp:245] Train net output #40: loss/loss19 = 2.09023e-05 (* 0.0454545 = 9.50106e-07 loss) | |
I0405 08:35:54.989671 26022 solver.cpp:245] Train net output #41: loss/loss20 = 2.09659e-05 (* 0.0454545 = 9.52998e-07 loss) | |
I0405 08:35:54.989686 26022 solver.cpp:245] Train net output #42: loss/loss21 = 2.23336e-05 (* 0.0454545 = 1.01516e-06 loss) | |
I0405 08:35:54.989701 26022 solver.cpp:245] Train net output #43: loss/loss22 = 2.74153e-05 (* 0.0454545 = 1.24615e-06 loss) | |
I0405 08:35:54.989713 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 08:35:54.989725 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000176443 | |
I0405 08:35:54.989740 26022 sgd_solver.cpp:106] Iteration 2950, lr = 0.039882 | |
I0405 08:37:54.875483 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.3554 > 30) by scale factor 0.956773 | |
I0405 08:38:59.938989 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.6858 > 30) by scale factor 0.977651 | |
I0405 08:44:46.853643 26022 solver.cpp:338] Iteration 3000, Testing net (#0) | |
I0405 08:45:00.555656 26022 solver.cpp:393] Test loss: 0.871374 | |
I0405 08:45:00.555708 26022 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.298 | |
I0405 08:45:00.555726 26022 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.087 | |
I0405 08:45:00.555738 26022 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.07 | |
I0405 08:45:00.555752 26022 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.089 | |
I0405 08:45:00.555766 26022 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.211 | |
I0405 08:45:00.555778 26022 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.501 | |
I0405 08:45:00.555790 26022 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0405 08:45:00.555802 26022 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0405 08:45:00.555814 26022 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0405 08:45:00.555825 26022 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0405 08:45:00.555837 26022 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0405 08:45:00.555848 26022 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0405 08:45:00.555860 26022 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0405 08:45:00.555873 26022 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0405 08:45:00.555884 26022 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0405 08:45:00.555896 26022 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0405 08:45:00.555908 26022 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0405 08:45:00.555919 26022 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0405 08:45:00.555930 26022 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0405 08:45:00.555943 26022 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0405 08:45:00.555953 26022 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0405 08:45:00.555964 26022 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0405 08:45:00.555980 26022 solver.cpp:406] Test net output #22: loss/loss01 = 2.98547 (* 0.0454545 = 0.135703 loss) | |
I0405 08:45:00.555994 26022 solver.cpp:406] Test net output #23: loss/loss02 = 3.13533 (* 0.0454545 = 0.142515 loss) | |
I0405 08:45:00.556008 26022 solver.cpp:406] Test net output #24: loss/loss03 = 3.25033 (* 0.0454545 = 0.147742 loss) | |
I0405 08:45:00.556022 26022 solver.cpp:406] Test net output #25: loss/loss04 = 3.22198 (* 0.0454545 = 0.146453 loss) | |
I0405 08:45:00.556036 26022 solver.cpp:406] Test net output #26: loss/loss05 = 3.1364 (* 0.0454545 = 0.142563 loss) | |
I0405 08:45:00.556051 26022 solver.cpp:406] Test net output #27: loss/loss06 = 2.37802 (* 0.0454545 = 0.108092 loss) | |
I0405 08:45:00.556064 26022 solver.cpp:406] Test net output #28: loss/loss07 = 0.746467 (* 0.0454545 = 0.0339303 loss) | |
I0405 08:45:00.556097 26022 solver.cpp:406] Test net output #29: loss/loss08 = 0.237323 (* 0.0454545 = 0.0107874 loss) | |
I0405 08:45:00.556113 26022 solver.cpp:406] Test net output #30: loss/loss09 = 0.0515998 (* 0.0454545 = 0.00234545 loss) | |
I0405 08:45:00.556128 26022 solver.cpp:406] Test net output #31: loss/loss10 = 0.0226643 (* 0.0454545 = 0.00103019 loss) | |
I0405 08:45:00.556143 26022 solver.cpp:406] Test net output #32: loss/loss11 = 0.000309187 (* 0.0454545 = 1.4054e-05 loss) | |
I0405 08:45:00.556157 26022 solver.cpp:406] Test net output #33: loss/loss12 = 0.000384221 (* 0.0454545 = 1.74646e-05 loss) | |
I0405 08:45:00.556172 26022 solver.cpp:406] Test net output #34: loss/loss13 = 0.00035597 (* 0.0454545 = 1.61804e-05 loss) | |
I0405 08:45:00.556186 26022 solver.cpp:406] Test net output #35: loss/loss14 = 0.000436772 (* 0.0454545 = 1.98533e-05 loss) | |
I0405 08:45:00.556201 26022 solver.cpp:406] Test net output #36: loss/loss15 = 0.000453498 (* 0.0454545 = 2.06135e-05 loss) | |
I0405 08:45:00.556216 26022 solver.cpp:406] Test net output #37: loss/loss16 = 0.000366789 (* 0.0454545 = 1.66722e-05 loss) | |
I0405 08:45:00.556231 26022 solver.cpp:406] Test net output #38: loss/loss17 = 0.000372945 (* 0.0454545 = 1.6952e-05 loss) | |
I0405 08:45:00.556277 26022 solver.cpp:406] Test net output #39: loss/loss18 = 0.00036605 (* 0.0454545 = 1.66386e-05 loss) | |
I0405 08:45:00.556293 26022 solver.cpp:406] Test net output #40: loss/loss19 = 0.000363002 (* 0.0454545 = 1.65001e-05 loss) | |
I0405 08:45:00.556308 26022 solver.cpp:406] Test net output #41: loss/loss20 = 0.000381216 (* 0.0454545 = 1.7328e-05 loss) | |
I0405 08:45:00.556324 26022 solver.cpp:406] Test net output #42: loss/loss21 = 0.000386985 (* 0.0454545 = 1.75902e-05 loss) | |
I0405 08:45:00.556337 26022 solver.cpp:406] Test net output #43: loss/loss22 = 0.000458737 (* 0.0454545 = 2.08517e-05 loss) | |
I0405 08:45:00.556349 26022 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0405 08:45:00.556362 26022 solver.cpp:406] Test net output #45: total_confidence = 0.000243673 | |
I0405 08:45:10.869858 26022 solver.cpp:229] Iteration 3000, loss = 0.986703 | |
I0405 08:45:10.869904 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 08:45:10.869921 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 08:45:10.869935 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 08:45:10.869947 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875 | |
I0405 08:45:10.869959 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 08:45:10.869972 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 08:45:10.869984 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 08:45:10.869997 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0405 08:45:10.870008 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 08:45:10.870020 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 08:45:10.870033 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 08:45:10.870043 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 08:45:10.870055 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 08:45:10.870067 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 08:45:10.870079 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 08:45:10.870090 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 08:45:10.870102 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 08:45:10.870113 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 08:45:10.870126 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 08:45:10.870136 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 08:45:10.870151 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 08:45:10.870163 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 08:45:10.870178 26022 solver.cpp:245] Train net output #22: loss/loss01 = 2.98562 (* 0.0454545 = 0.13571 loss) | |
I0405 08:45:10.870193 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.31053 (* 0.0454545 = 0.150479 loss) | |
I0405 08:45:10.870208 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.12625 (* 0.0454545 = 0.142102 loss) | |
I0405 08:45:10.870221 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.1603 (* 0.0454545 = 0.14365 loss) | |
I0405 08:45:10.870235 26022 solver.cpp:245] Train net output #26: loss/loss05 = 2.90014 (* 0.0454545 = 0.131825 loss) | |
I0405 08:45:10.870249 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.24806 (* 0.0454545 = 0.102184 loss) | |
I0405 08:45:10.870263 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.1097 (* 0.0454545 = 0.0504408 loss) | |
I0405 08:45:10.870278 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.21263 (* 0.0454545 = 0.00966502 loss) | |
I0405 08:45:10.870292 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.194163 (* 0.0454545 = 0.0088256 loss) | |
I0405 08:45:10.870307 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0070138 (* 0.0454545 = 0.000318809 loss) | |
I0405 08:45:10.870352 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000198522 (* 0.0454545 = 9.02371e-06 loss) | |
I0405 08:45:10.870371 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000255639 (* 0.0454545 = 1.162e-05 loss) | |
I0405 08:45:10.870388 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000227167 (* 0.0454545 = 1.03258e-05 loss) | |
I0405 08:45:10.870403 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000287001 (* 0.0454545 = 1.30455e-05 loss) | |
I0405 08:45:10.870416 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000294629 (* 0.0454545 = 1.33922e-05 loss) | |
I0405 08:45:10.870430 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000243 (* 0.0454545 = 1.10455e-05 loss) | |
I0405 08:45:10.870445 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000242795 (* 0.0454545 = 1.10361e-05 loss) | |
I0405 08:45:10.870460 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.00024611 (* 0.0454545 = 1.11868e-05 loss) | |
I0405 08:45:10.870474 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000234736 (* 0.0454545 = 1.06698e-05 loss) | |
I0405 08:45:10.870489 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000248723 (* 0.0454545 = 1.13056e-05 loss) | |
I0405 08:45:10.870504 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000253455 (* 0.0454545 = 1.15207e-05 loss) | |
I0405 08:45:10.870519 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000303101 (* 0.0454545 = 1.37773e-05 loss) | |
I0405 08:45:10.870532 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 08:45:10.870544 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000779544 | |
I0405 08:45:10.870558 26022 sgd_solver.cpp:106] Iteration 3000, lr = 0.03988 | |
I0405 08:54:13.055459 26022 solver.cpp:229] Iteration 3050, loss = 0.984372 | |
I0405 08:54:13.055620 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0405 08:54:13.055640 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 08:54:13.055655 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 08:54:13.055667 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 08:54:13.055680 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 08:54:13.055692 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 08:54:13.055706 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 08:54:13.055718 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 08:54:13.055730 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 08:54:13.055742 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 08:54:13.055754 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 08:54:13.055768 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 08:54:13.055779 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 08:54:13.055791 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 08:54:13.055804 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 08:54:13.055815 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 08:54:13.055827 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 08:54:13.055838 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 08:54:13.055850 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 08:54:13.055861 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 08:54:13.055873 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 08:54:13.055886 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 08:54:13.055903 26022 solver.cpp:245] Train net output #22: loss/loss01 = 2.84871 (* 0.0454545 = 0.129487 loss) | |
I0405 08:54:13.055919 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.19996 (* 0.0454545 = 0.145453 loss) | |
I0405 08:54:13.055933 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.4137 (* 0.0454545 = 0.155168 loss) | |
I0405 08:54:13.055948 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.22837 (* 0.0454545 = 0.146744 loss) | |
I0405 08:54:13.055963 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.09561 (* 0.0454545 = 0.14071 loss) | |
I0405 08:54:13.055976 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.73 (* 0.0454545 = 0.124091 loss) | |
I0405 08:54:13.055991 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.48504 (* 0.0454545 = 0.0675019 loss) | |
I0405 08:54:13.056006 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.471762 (* 0.0454545 = 0.0214437 loss) | |
I0405 08:54:13.056021 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.205822 (* 0.0454545 = 0.00935555 loss) | |
I0405 08:54:13.056036 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.024952 (* 0.0454545 = 0.00113418 loss) | |
I0405 08:54:13.056051 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000278946 (* 0.0454545 = 1.26794e-05 loss) | |
I0405 08:54:13.056079 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000360127 (* 0.0454545 = 1.63694e-05 loss) | |
I0405 08:54:13.056099 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.0003368 (* 0.0454545 = 1.53091e-05 loss) | |
I0405 08:54:13.056114 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000381416 (* 0.0454545 = 1.73371e-05 loss) | |
I0405 08:54:13.056129 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000397707 (* 0.0454545 = 1.80776e-05 loss) | |
I0405 08:54:13.056144 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000335743 (* 0.0454545 = 1.5261e-05 loss) | |
I0405 08:54:13.056159 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000350513 (* 0.0454545 = 1.59324e-05 loss) | |
I0405 08:54:13.056191 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000349383 (* 0.0454545 = 1.5881e-05 loss) | |
I0405 08:54:13.056207 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000341423 (* 0.0454545 = 1.55192e-05 loss) | |
I0405 08:54:13.056222 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000345654 (* 0.0454545 = 1.57115e-05 loss) | |
I0405 08:54:13.056237 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000371899 (* 0.0454545 = 1.69045e-05 loss) | |
I0405 08:54:13.056252 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000421919 (* 0.0454545 = 1.91781e-05 loss) | |
I0405 08:54:13.056265 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 08:54:13.056278 26022 solver.cpp:245] Train net output #45: total_confidence = 4.93339e-05 | |
I0405 08:54:13.056293 26022 sgd_solver.cpp:106] Iteration 3050, lr = 0.039878 | |
I0405 09:02:10.643656 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.7631 > 30) by scale factor 0.975194 | |
I0405 09:02:21.500195 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 32.0588 > 30) by scale factor 0.935781 | |
I0405 09:03:15.220595 26022 solver.cpp:229] Iteration 3100, loss = 0.985082 | |
I0405 09:03:15.220718 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0405 09:03:15.220738 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 09:03:15.220752 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 09:03:15.220767 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 09:03:15.220780 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0405 09:03:15.220793 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 09:03:15.220805 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0405 09:03:15.220818 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 09:03:15.220830 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 09:03:15.220842 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 09:03:15.220854 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 09:03:15.220866 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 09:03:15.220877 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 09:03:15.220890 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 09:03:15.220901 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 09:03:15.220912 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 09:03:15.220924 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 09:03:15.220935 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 09:03:15.220947 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 09:03:15.220959 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 09:03:15.220970 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 09:03:15.220983 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 09:03:15.220998 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.30195 (* 0.0454545 = 0.150089 loss) | |
I0405 09:03:15.221012 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.59886 (* 0.0454545 = 0.163584 loss) | |
I0405 09:03:15.221026 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.43358 (* 0.0454545 = 0.156072 loss) | |
I0405 09:03:15.221041 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.34051 (* 0.0454545 = 0.151841 loss) | |
I0405 09:03:15.221055 26022 solver.cpp:245] Train net output #26: loss/loss05 = 2.86087 (* 0.0454545 = 0.130039 loss) | |
I0405 09:03:15.221070 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.82439 (* 0.0454545 = 0.128381 loss) | |
I0405 09:03:15.221084 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.28216 (* 0.0454545 = 0.0582799 loss) | |
I0405 09:03:15.221098 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.678106 (* 0.0454545 = 0.030823 loss) | |
I0405 09:03:15.221113 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.153552 (* 0.0454545 = 0.00697962 loss) | |
I0405 09:03:15.221128 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0113403 (* 0.0454545 = 0.000515469 loss) | |
I0405 09:03:15.221143 26022 solver.cpp:245] Train net output #32: loss/loss11 = 2.96821e-05 (* 0.0454545 = 1.34919e-06 loss) | |
I0405 09:03:15.221158 26022 solver.cpp:245] Train net output #33: loss/loss12 = 3.16514e-05 (* 0.0454545 = 1.4387e-06 loss) | |
I0405 09:03:15.221174 26022 solver.cpp:245] Train net output #34: loss/loss13 = 3.11634e-05 (* 0.0454545 = 1.41652e-06 loss) | |
I0405 09:03:15.221187 26022 solver.cpp:245] Train net output #35: loss/loss14 = 3.57538e-05 (* 0.0454545 = 1.62517e-06 loss) | |
I0405 09:03:15.221202 26022 solver.cpp:245] Train net output #36: loss/loss15 = 3.40714e-05 (* 0.0454545 = 1.5487e-06 loss) | |
I0405 09:03:15.221217 26022 solver.cpp:245] Train net output #37: loss/loss16 = 3.48243e-05 (* 0.0454545 = 1.58292e-06 loss) | |
I0405 09:03:15.221231 26022 solver.cpp:245] Train net output #38: loss/loss17 = 3.21172e-05 (* 0.0454545 = 1.45987e-06 loss) | |
I0405 09:03:15.221263 26022 solver.cpp:245] Train net output #39: loss/loss18 = 3.41649e-05 (* 0.0454545 = 1.55295e-06 loss) | |
I0405 09:03:15.221279 26022 solver.cpp:245] Train net output #40: loss/loss19 = 3.34623e-05 (* 0.0454545 = 1.52101e-06 loss) | |
I0405 09:03:15.221294 26022 solver.cpp:245] Train net output #41: loss/loss20 = 3.10292e-05 (* 0.0454545 = 1.41042e-06 loss) | |
I0405 09:03:15.221308 26022 solver.cpp:245] Train net output #42: loss/loss21 = 3.12341e-05 (* 0.0454545 = 1.41973e-06 loss) | |
I0405 09:03:15.221323 26022 solver.cpp:245] Train net output #43: loss/loss22 = 3.65122e-05 (* 0.0454545 = 1.65964e-06 loss) | |
I0405 09:03:15.221335 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 09:03:15.221348 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000899288 | |
I0405 09:03:15.221364 26022 sgd_solver.cpp:106] Iteration 3100, lr = 0.039876 | |
I0405 09:03:15.700597 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.4188 > 30) by scale factor 0.954842 | |
I0405 09:11:23.591235 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.1826 > 30) by scale factor 0.962074 | |
I0405 09:12:17.307250 26022 solver.cpp:229] Iteration 3150, loss = 0.981546 | |
I0405 09:12:17.307353 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 09:12:17.307373 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 09:12:17.307386 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 09:12:17.307399 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 09:12:17.307411 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0405 09:12:17.307423 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 09:12:17.307435 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 09:12:17.307448 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 09:12:17.307461 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 09:12:17.307472 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 09:12:17.307484 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 09:12:17.307497 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 09:12:17.307507 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 09:12:17.307519 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 09:12:17.307531 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 09:12:17.307543 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 09:12:17.307554 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 09:12:17.307565 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 09:12:17.307577 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 09:12:17.307590 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 09:12:17.307600 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 09:12:17.307612 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 09:12:17.307627 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.23649 (* 0.0454545 = 0.147113 loss) | |
I0405 09:12:17.307642 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.50091 (* 0.0454545 = 0.159132 loss) | |
I0405 09:12:17.307657 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.51866 (* 0.0454545 = 0.159939 loss) | |
I0405 09:12:17.307670 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.42208 (* 0.0454545 = 0.155549 loss) | |
I0405 09:12:17.307685 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.47634 (* 0.0454545 = 0.158016 loss) | |
I0405 09:12:17.307699 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.71815 (* 0.0454545 = 0.123552 loss) | |
I0405 09:12:17.307713 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.21243 (* 0.0454545 = 0.0551105 loss) | |
I0405 09:12:17.307728 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.528366 (* 0.0454545 = 0.0240166 loss) | |
I0405 09:12:17.307741 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.32387 (* 0.0454545 = 0.0147214 loss) | |
I0405 09:12:17.307756 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.363193 (* 0.0454545 = 0.0165088 loss) | |
I0405 09:12:17.307771 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000290013 (* 0.0454545 = 1.31824e-05 loss) | |
I0405 09:12:17.307785 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000370774 (* 0.0454545 = 1.68533e-05 loss) | |
I0405 09:12:17.307801 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.00033943 (* 0.0454545 = 1.54286e-05 loss) | |
I0405 09:12:17.307816 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.00038756 (* 0.0454545 = 1.76164e-05 loss) | |
I0405 09:12:17.307831 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000411054 (* 0.0454545 = 1.86843e-05 loss) | |
I0405 09:12:17.307844 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000355065 (* 0.0454545 = 1.61393e-05 loss) | |
I0405 09:12:17.307859 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000355835 (* 0.0454545 = 1.61743e-05 loss) | |
I0405 09:12:17.307891 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000341589 (* 0.0454545 = 1.55268e-05 loss) | |
I0405 09:12:17.307907 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000328214 (* 0.0454545 = 1.49188e-05 loss) | |
I0405 09:12:17.307924 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000359869 (* 0.0454545 = 1.63577e-05 loss) | |
I0405 09:12:17.307940 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000353721 (* 0.0454545 = 1.60782e-05 loss) | |
I0405 09:12:17.307955 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000418953 (* 0.0454545 = 1.90433e-05 loss) | |
I0405 09:12:17.307966 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 09:12:17.307978 26022 solver.cpp:245] Train net output #45: total_confidence = 2.17224e-05 | |
I0405 09:12:17.307993 26022 sgd_solver.cpp:106] Iteration 3150, lr = 0.039874 | |
I0405 09:21:19.348706 26022 solver.cpp:229] Iteration 3200, loss = 0.978408 | |
I0405 09:21:19.348887 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 09:21:19.348907 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.21875 | |
I0405 09:21:19.348922 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 09:21:19.348934 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 09:21:19.348948 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 09:21:19.348960 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125 | |
I0405 09:21:19.348974 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 09:21:19.348987 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 09:21:19.349000 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 09:21:19.349012 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 09:21:19.349025 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 09:21:19.349038 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 09:21:19.349050 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 09:21:19.349061 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 09:21:19.349073 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 09:21:19.349084 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 09:21:19.349097 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 09:21:19.349107 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 09:21:19.349119 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 09:21:19.349130 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 09:21:19.349143 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 09:21:19.349154 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 09:21:19.349170 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.07475 (* 0.0454545 = 0.139761 loss) | |
I0405 09:21:19.349185 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.34893 (* 0.0454545 = 0.152224 loss) | |
I0405 09:21:19.349200 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.55113 (* 0.0454545 = 0.161415 loss) | |
I0405 09:21:19.349215 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.46061 (* 0.0454545 = 0.1573 loss) | |
I0405 09:21:19.349228 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.33657 (* 0.0454545 = 0.151662 loss) | |
I0405 09:21:19.349242 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.90089 (* 0.0454545 = 0.131858 loss) | |
I0405 09:21:19.349261 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.22445 (* 0.0454545 = 0.0556568 loss) | |
I0405 09:21:19.349275 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.351622 (* 0.0454545 = 0.0159828 loss) | |
I0405 09:21:19.349290 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.213094 (* 0.0454545 = 0.0096861 loss) | |
I0405 09:21:19.349305 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0254252 (* 0.0454545 = 0.00115569 loss) | |
I0405 09:21:19.349320 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000736469 (* 0.0454545 = 3.34759e-05 loss) | |
I0405 09:21:19.349335 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000932625 (* 0.0454545 = 4.23921e-05 loss) | |
I0405 09:21:19.349349 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000868579 (* 0.0454545 = 3.94809e-05 loss) | |
I0405 09:21:19.349364 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000959955 (* 0.0454545 = 4.36343e-05 loss) | |
I0405 09:21:19.349380 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000958705 (* 0.0454545 = 4.35775e-05 loss) | |
I0405 09:21:19.349395 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000961819 (* 0.0454545 = 4.3719e-05 loss) | |
I0405 09:21:19.349409 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000918232 (* 0.0454545 = 4.17378e-05 loss) | |
I0405 09:21:19.349442 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000964681 (* 0.0454545 = 4.38491e-05 loss) | |
I0405 09:21:19.349457 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000864468 (* 0.0454545 = 3.9294e-05 loss) | |
I0405 09:21:19.349475 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000911892 (* 0.0454545 = 4.14496e-05 loss) | |
I0405 09:21:19.349491 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000889877 (* 0.0454545 = 4.0449e-05 loss) | |
I0405 09:21:19.349505 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.00109956 (* 0.0454545 = 4.99802e-05 loss) | |
I0405 09:21:19.349519 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 09:21:19.349530 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000145647 | |
I0405 09:21:19.349545 26022 sgd_solver.cpp:106] Iteration 3200, lr = 0.039872 | |
I0405 09:30:21.481858 26022 solver.cpp:229] Iteration 3250, loss = 0.978292 | |
I0405 09:30:21.482017 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 09:30:21.482038 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0405 09:30:21.482051 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 09:30:21.482064 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 09:30:21.482076 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0405 09:30:21.482089 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0405 09:30:21.482100 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 09:30:21.482113 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 09:30:21.482125 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 09:30:21.482137 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 09:30:21.482149 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 09:30:21.482161 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 09:30:21.482172 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 09:30:21.482184 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 09:30:21.482199 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 09:30:21.482211 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 09:30:21.482223 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 09:30:21.482234 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 09:30:21.482246 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 09:30:21.482259 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 09:30:21.482270 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 09:30:21.482281 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 09:30:21.482296 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.23139 (* 0.0454545 = 0.146881 loss) | |
I0405 09:30:21.482311 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.48278 (* 0.0454545 = 0.158308 loss) | |
I0405 09:30:21.482326 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.38683 (* 0.0454545 = 0.153947 loss) | |
I0405 09:30:21.482339 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.39529 (* 0.0454545 = 0.154331 loss) | |
I0405 09:30:21.482353 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.26988 (* 0.0454545 = 0.148631 loss) | |
I0405 09:30:21.482367 26022 solver.cpp:245] Train net output #27: loss/loss06 = 3.05633 (* 0.0454545 = 0.138924 loss) | |
I0405 09:30:21.482381 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.39495 (* 0.0454545 = 0.0634067 loss) | |
I0405 09:30:21.482395 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.715182 (* 0.0454545 = 0.0325083 loss) | |
I0405 09:30:21.482409 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.410011 (* 0.0454545 = 0.0186369 loss) | |
I0405 09:30:21.482424 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.171701 (* 0.0454545 = 0.00780461 loss) | |
I0405 09:30:21.482439 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000161249 (* 0.0454545 = 7.32951e-06 loss) | |
I0405 09:30:21.482453 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000191182 (* 0.0454545 = 8.69008e-06 loss) | |
I0405 09:30:21.482468 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000173372 (* 0.0454545 = 7.88054e-06 loss) | |
I0405 09:30:21.482483 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000202963 (* 0.0454545 = 9.22561e-06 loss) | |
I0405 09:30:21.482498 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000205958 (* 0.0454545 = 9.36174e-06 loss) | |
I0405 09:30:21.482512 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000203809 (* 0.0454545 = 9.26404e-06 loss) | |
I0405 09:30:21.482527 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000190012 (* 0.0454545 = 8.63689e-06 loss) | |
I0405 09:30:21.482558 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000197348 (* 0.0454545 = 8.97037e-06 loss) | |
I0405 09:30:21.482573 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000177954 (* 0.0454545 = 8.08881e-06 loss) | |
I0405 09:30:21.482589 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000184052 (* 0.0454545 = 8.36599e-06 loss) | |
I0405 09:30:21.482604 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000187379 (* 0.0454545 = 8.51724e-06 loss) | |
I0405 09:30:21.482621 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000237846 (* 0.0454545 = 1.08112e-05 loss) | |
I0405 09:30:21.482635 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 09:30:21.482646 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000312623 | |
I0405 09:30:21.482661 26022 sgd_solver.cpp:106] Iteration 3250, lr = 0.03987 | |
I0405 09:36:52.285923 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 45.2247 > 30) by scale factor 0.663354 | |
I0405 09:39:23.638155 26022 solver.cpp:229] Iteration 3300, loss = 0.972041 | |
I0405 09:39:23.638258 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875 | |
I0405 09:39:23.638279 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0405 09:39:23.638293 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0405 09:39:23.638305 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 09:39:23.638319 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 09:39:23.638330 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 09:39:23.638344 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 09:39:23.638355 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 09:39:23.638367 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 09:39:23.638380 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 09:39:23.638391 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 09:39:23.638402 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 09:39:23.638416 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 09:39:23.638427 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 09:39:23.638438 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 09:39:23.638449 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 09:39:23.638461 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 09:39:23.638473 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 09:39:23.638486 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 09:39:23.638499 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 09:39:23.638510 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 09:39:23.638522 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 09:39:23.638537 26022 solver.cpp:245] Train net output #22: loss/loss01 = 2.96345 (* 0.0454545 = 0.134702 loss) | |
I0405 09:39:23.638552 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.33228 (* 0.0454545 = 0.151467 loss) | |
I0405 09:39:23.638566 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.558 (* 0.0454545 = 0.161727 loss) | |
I0405 09:39:23.638581 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.34071 (* 0.0454545 = 0.15185 loss) | |
I0405 09:39:23.638594 26022 solver.cpp:245] Train net output #26: loss/loss05 = 2.92313 (* 0.0454545 = 0.13287 loss) | |
I0405 09:39:23.638608 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.67501 (* 0.0454545 = 0.121592 loss) | |
I0405 09:39:23.638622 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.40884 (* 0.0454545 = 0.0640383 loss) | |
I0405 09:39:23.638636 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.567185 (* 0.0454545 = 0.0257811 loss) | |
I0405 09:39:23.638650 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.180387 (* 0.0454545 = 0.0081994 loss) | |
I0405 09:39:23.638665 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0128076 (* 0.0454545 = 0.000582164 loss) | |
I0405 09:39:23.638680 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000328412 (* 0.0454545 = 1.49278e-05 loss) | |
I0405 09:39:23.638696 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.00041396 (* 0.0454545 = 1.88163e-05 loss) | |
I0405 09:39:23.638711 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000384415 (* 0.0454545 = 1.74734e-05 loss) | |
I0405 09:39:23.638725 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000407411 (* 0.0454545 = 1.85187e-05 loss) | |
I0405 09:39:23.638741 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000443831 (* 0.0454545 = 2.01741e-05 loss) | |
I0405 09:39:23.638754 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000460907 (* 0.0454545 = 2.09503e-05 loss) | |
I0405 09:39:23.638769 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000387089 (* 0.0454545 = 1.7595e-05 loss) | |
I0405 09:39:23.638804 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000430807 (* 0.0454545 = 1.95821e-05 loss) | |
I0405 09:39:23.638821 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000374216 (* 0.0454545 = 1.70098e-05 loss) | |
I0405 09:39:23.638835 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000399846 (* 0.0454545 = 1.81748e-05 loss) | |
I0405 09:39:23.638849 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000379526 (* 0.0454545 = 1.72512e-05 loss) | |
I0405 09:39:23.638864 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000512007 (* 0.0454545 = 2.3273e-05 loss) | |
I0405 09:39:23.638876 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 09:39:23.638888 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000235594 | |
I0405 09:39:23.638903 26022 sgd_solver.cpp:106] Iteration 3300, lr = 0.039868 | |
I0405 09:42:28.402530 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 42.2207 > 30) by scale factor 0.710552 | |
I0405 09:48:25.733757 26022 solver.cpp:229] Iteration 3350, loss = 0.97706 | |
I0405 09:48:25.733902 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 09:48:25.733922 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 09:48:25.733935 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 09:48:25.733948 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 09:48:25.733960 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.09375 | |
I0405 09:48:25.733973 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 09:48:25.733984 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 09:48:25.733997 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 09:48:25.734009 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 09:48:25.734021 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 09:48:25.734033 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 09:48:25.734045 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 09:48:25.734056 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 09:48:25.734068 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 09:48:25.734081 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 09:48:25.734092 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 09:48:25.734104 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 09:48:25.734117 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 09:48:25.734127 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 09:48:25.734139 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 09:48:25.734151 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 09:48:25.734163 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 09:48:25.734179 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.28152 (* 0.0454545 = 0.14916 loss) | |
I0405 09:48:25.734194 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.56566 (* 0.0454545 = 0.162076 loss) | |
I0405 09:48:25.734208 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.68787 (* 0.0454545 = 0.167631 loss) | |
I0405 09:48:25.734222 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.57901 (* 0.0454545 = 0.162682 loss) | |
I0405 09:48:25.734237 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.53068 (* 0.0454545 = 0.160485 loss) | |
I0405 09:48:25.734251 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.76644 (* 0.0454545 = 0.125747 loss) | |
I0405 09:48:25.734266 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.56951 (* 0.0454545 = 0.0713412 loss) | |
I0405 09:48:25.734279 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.620139 (* 0.0454545 = 0.0281881 loss) | |
I0405 09:48:25.734294 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.0410177 (* 0.0454545 = 0.00186444 loss) | |
I0405 09:48:25.734309 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0154256 (* 0.0454545 = 0.000701163 loss) | |
I0405 09:48:25.734323 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000245895 (* 0.0454545 = 1.1177e-05 loss) | |
I0405 09:48:25.734338 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000287044 (* 0.0454545 = 1.30474e-05 loss) | |
I0405 09:48:25.734354 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000256177 (* 0.0454545 = 1.16444e-05 loss) | |
I0405 09:48:25.734369 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000286516 (* 0.0454545 = 1.30234e-05 loss) | |
I0405 09:48:25.734383 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000282452 (* 0.0454545 = 1.28387e-05 loss) | |
I0405 09:48:25.734398 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000299689 (* 0.0454545 = 1.36222e-05 loss) | |
I0405 09:48:25.734412 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000278652 (* 0.0454545 = 1.2666e-05 loss) | |
I0405 09:48:25.734443 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000279352 (* 0.0454545 = 1.26978e-05 loss) | |
I0405 09:48:25.734460 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000257678 (* 0.0454545 = 1.17127e-05 loss) | |
I0405 09:48:25.734474 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000262799 (* 0.0454545 = 1.19454e-05 loss) | |
I0405 09:48:25.734489 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000263471 (* 0.0454545 = 1.1976e-05 loss) | |
I0405 09:48:25.734503 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000303065 (* 0.0454545 = 1.37757e-05 loss) | |
I0405 09:48:25.734516 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 09:48:25.734529 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000124314 | |
I0405 09:48:25.734544 26022 sgd_solver.cpp:106] Iteration 3350, lr = 0.039866 | |
I0405 09:57:27.810667 26022 solver.cpp:229] Iteration 3400, loss = 0.962915 | |
I0405 09:57:27.810847 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 09:57:27.810868 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 09:57:27.810881 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0405 09:57:27.810894 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 09:57:27.810906 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 09:57:27.810919 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 09:57:27.810931 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375 | |
I0405 09:57:27.810945 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 09:57:27.810956 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 09:57:27.810968 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 09:57:27.810981 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 09:57:27.810992 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 09:57:27.811004 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 09:57:27.811015 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 09:57:27.811028 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 09:57:27.811039 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 09:57:27.811051 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 09:57:27.811063 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 09:57:27.811074 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 09:57:27.811085 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 09:57:27.811097 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 09:57:27.811108 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 09:57:27.811125 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.2856 (* 0.0454545 = 0.149346 loss) | |
I0405 09:57:27.811139 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.4416 (* 0.0454545 = 0.156436 loss) | |
I0405 09:57:27.811156 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.49471 (* 0.0454545 = 0.158851 loss) | |
I0405 09:57:27.811170 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.31009 (* 0.0454545 = 0.150459 loss) | |
I0405 09:57:27.811185 26022 solver.cpp:245] Train net output #26: loss/loss05 = 2.97538 (* 0.0454545 = 0.135245 loss) | |
I0405 09:57:27.811199 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.52638 (* 0.0454545 = 0.114835 loss) | |
I0405 09:57:27.811213 26022 solver.cpp:245] Train net output #28: loss/loss07 = 0.798847 (* 0.0454545 = 0.0363112 loss) | |
I0405 09:57:27.811228 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.429839 (* 0.0454545 = 0.0195382 loss) | |
I0405 09:57:27.811242 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.28851 (* 0.0454545 = 0.0131141 loss) | |
I0405 09:57:27.811256 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.310038 (* 0.0454545 = 0.0140926 loss) | |
I0405 09:57:27.811271 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000200715 (* 0.0454545 = 9.12341e-06 loss) | |
I0405 09:57:27.811290 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000222354 (* 0.0454545 = 1.0107e-05 loss) | |
I0405 09:57:27.811305 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000211346 (* 0.0454545 = 9.60665e-06 loss) | |
I0405 09:57:27.811321 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000226846 (* 0.0454545 = 1.03112e-05 loss) | |
I0405 09:57:27.811334 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000219472 (* 0.0454545 = 9.97601e-06 loss) | |
I0405 09:57:27.811350 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000245371 (* 0.0454545 = 1.11532e-05 loss) | |
I0405 09:57:27.811365 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.00022398 (* 0.0454545 = 1.01809e-05 loss) | |
I0405 09:57:27.811398 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000244454 (* 0.0454545 = 1.11115e-05 loss) | |
I0405 09:57:27.811414 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000202651 (* 0.0454545 = 9.21139e-06 loss) | |
I0405 09:57:27.811427 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000209962 (* 0.0454545 = 9.54373e-06 loss) | |
I0405 09:57:27.811442 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000204096 (* 0.0454545 = 9.27707e-06 loss) | |
I0405 09:57:27.811457 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000233759 (* 0.0454545 = 1.06254e-05 loss) | |
I0405 09:57:27.811470 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 09:57:27.811482 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000290527 | |
I0405 09:57:27.811496 26022 sgd_solver.cpp:106] Iteration 3400, lr = 0.039864 | |
I0405 09:58:33.325523 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.1422 > 30) by scale factor 0.963324 | |
I0405 10:06:29.848544 26022 solver.cpp:229] Iteration 3450, loss = 0.964977 | |
I0405 10:06:29.848727 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0405 10:06:29.848748 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 10:06:29.848762 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0405 10:06:29.848775 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 10:06:29.848788 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 10:06:29.848799 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 10:06:29.848812 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.53125 | |
I0405 10:06:29.848824 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 10:06:29.848836 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 10:06:29.848848 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 10:06:29.848860 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 10:06:29.848872 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 10:06:29.848883 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 10:06:29.848896 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 10:06:29.848907 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 10:06:29.848918 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 10:06:29.848932 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 10:06:29.848944 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 10:06:29.848956 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 10:06:29.848968 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 10:06:29.848979 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 10:06:29.848991 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 10:06:29.849007 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.04289 (* 0.0454545 = 0.138313 loss) | |
I0405 10:06:29.849022 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.38953 (* 0.0454545 = 0.154069 loss) | |
I0405 10:06:29.849037 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.46353 (* 0.0454545 = 0.157433 loss) | |
I0405 10:06:29.849051 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.3634 (* 0.0454545 = 0.152882 loss) | |
I0405 10:06:29.849066 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.32611 (* 0.0454545 = 0.151187 loss) | |
I0405 10:06:29.849079 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.83281 (* 0.0454545 = 0.128764 loss) | |
I0405 10:06:29.849094 26022 solver.cpp:245] Train net output #28: loss/loss07 = 2.26083 (* 0.0454545 = 0.102765 loss) | |
I0405 10:06:29.849107 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.542907 (* 0.0454545 = 0.0246776 loss) | |
I0405 10:06:29.849123 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.18267 (* 0.0454545 = 0.00830319 loss) | |
I0405 10:06:29.849138 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0118268 (* 0.0454545 = 0.000537582 loss) | |
I0405 10:06:29.849153 26022 solver.cpp:245] Train net output #32: loss/loss11 = 7.74375e-05 (* 0.0454545 = 3.51989e-06 loss) | |
I0405 10:06:29.849167 26022 solver.cpp:245] Train net output #33: loss/loss12 = 8.95121e-05 (* 0.0454545 = 4.06873e-06 loss) | |
I0405 10:06:29.849182 26022 solver.cpp:245] Train net output #34: loss/loss13 = 8.54101e-05 (* 0.0454545 = 3.88228e-06 loss) | |
I0405 10:06:29.849196 26022 solver.cpp:245] Train net output #35: loss/loss14 = 9.20401e-05 (* 0.0454545 = 4.18364e-06 loss) | |
I0405 10:06:29.849211 26022 solver.cpp:245] Train net output #36: loss/loss15 = 8.56335e-05 (* 0.0454545 = 3.89243e-06 loss) | |
I0405 10:06:29.849225 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000106226 (* 0.0454545 = 4.82847e-06 loss) | |
I0405 10:06:29.849239 26022 solver.cpp:245] Train net output #38: loss/loss17 = 9.14082e-05 (* 0.0454545 = 4.15492e-06 loss) | |
I0405 10:06:29.849272 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000103344 (* 0.0454545 = 4.69746e-06 loss) | |
I0405 10:06:29.849288 26022 solver.cpp:245] Train net output #40: loss/loss19 = 7.60455e-05 (* 0.0454545 = 3.45661e-06 loss) | |
I0405 10:06:29.849303 26022 solver.cpp:245] Train net output #41: loss/loss20 = 8.67713e-05 (* 0.0454545 = 3.94415e-06 loss) | |
I0405 10:06:29.849318 26022 solver.cpp:245] Train net output #42: loss/loss21 = 7.9785e-05 (* 0.0454545 = 3.62659e-06 loss) | |
I0405 10:06:29.849331 26022 solver.cpp:245] Train net output #43: loss/loss22 = 9.88945e-05 (* 0.0454545 = 4.49521e-06 loss) | |
I0405 10:06:29.849344 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 10:06:29.849356 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000250568 | |
I0405 10:06:29.849370 26022 sgd_solver.cpp:106] Iteration 3450, lr = 0.039862 | |
I0405 10:08:18.756674 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.8216 > 30) by scale factor 0.942756 | |
I0405 10:15:32.225406 26022 solver.cpp:229] Iteration 3500, loss = 0.960145 | |
I0405 10:15:32.225582 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 10:15:32.225603 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 10:15:32.225617 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 10:15:32.225630 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 10:15:32.225642 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0405 10:15:32.225654 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 10:15:32.225667 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 10:15:32.225679 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0405 10:15:32.225692 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 10:15:32.225703 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 10:15:32.225716 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 10:15:32.225728 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 10:15:32.225739 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 10:15:32.225751 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 10:15:32.225762 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 10:15:32.225775 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 10:15:32.225785 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 10:15:32.225797 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 10:15:32.225812 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 10:15:32.225824 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 10:15:32.225836 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 10:15:32.225847 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 10:15:32.225863 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.26918 (* 0.0454545 = 0.148599 loss) | |
I0405 10:15:32.225878 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.56498 (* 0.0454545 = 0.162045 loss) | |
I0405 10:15:32.225891 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.64576 (* 0.0454545 = 0.165716 loss) | |
I0405 10:15:32.225906 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.64105 (* 0.0454545 = 0.165502 loss) | |
I0405 10:15:32.225920 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.61317 (* 0.0454545 = 0.164235 loss) | |
I0405 10:15:32.225934 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.80155 (* 0.0454545 = 0.127343 loss) | |
I0405 10:15:32.225949 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.78027 (* 0.0454545 = 0.0809216 loss) | |
I0405 10:15:32.225963 26022 solver.cpp:245] Train net output #29: loss/loss08 = 1.16882 (* 0.0454545 = 0.0531283 loss) | |
I0405 10:15:32.225977 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.539189 (* 0.0454545 = 0.0245086 loss) | |
I0405 10:15:32.225992 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0051598 (* 0.0454545 = 0.000234536 loss) | |
I0405 10:15:32.226008 26022 solver.cpp:245] Train net output #32: loss/loss11 = 4.35188e-05 (* 0.0454545 = 1.97813e-06 loss) | |
I0405 10:15:32.226027 26022 solver.cpp:245] Train net output #33: loss/loss12 = 5.02274e-05 (* 0.0454545 = 2.28306e-06 loss) | |
I0405 10:15:32.226042 26022 solver.cpp:245] Train net output #34: loss/loss13 = 4.23005e-05 (* 0.0454545 = 1.92275e-06 loss) | |
I0405 10:15:32.226058 26022 solver.cpp:245] Train net output #35: loss/loss14 = 4.95791e-05 (* 0.0454545 = 2.25359e-06 loss) | |
I0405 10:15:32.226071 26022 solver.cpp:245] Train net output #36: loss/loss15 = 4.87868e-05 (* 0.0454545 = 2.21758e-06 loss) | |
I0405 10:15:32.226086 26022 solver.cpp:245] Train net output #37: loss/loss16 = 5.5929e-05 (* 0.0454545 = 2.54223e-06 loss) | |
I0405 10:15:32.226101 26022 solver.cpp:245] Train net output #38: loss/loss17 = 4.75629e-05 (* 0.0454545 = 2.16195e-06 loss) | |
I0405 10:15:32.226133 26022 solver.cpp:245] Train net output #39: loss/loss18 = 5.08531e-05 (* 0.0454545 = 2.31151e-06 loss) | |
I0405 10:15:32.226150 26022 solver.cpp:245] Train net output #40: loss/loss19 = 3.98599e-05 (* 0.0454545 = 1.81181e-06 loss) | |
I0405 10:15:32.226164 26022 solver.cpp:245] Train net output #41: loss/loss20 = 4.41862e-05 (* 0.0454545 = 2.00846e-06 loss) | |
I0405 10:15:32.226179 26022 solver.cpp:245] Train net output #42: loss/loss21 = 4.28833e-05 (* 0.0454545 = 1.94924e-06 loss) | |
I0405 10:15:32.226194 26022 solver.cpp:245] Train net output #43: loss/loss22 = 5.39407e-05 (* 0.0454545 = 2.45185e-06 loss) | |
I0405 10:15:32.226207 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 10:15:32.226218 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000391016 | |
I0405 10:15:32.226233 26022 sgd_solver.cpp:106] Iteration 3500, lr = 0.03986 | |
I0405 10:24:34.391579 26022 solver.cpp:229] Iteration 3550, loss = 0.956689 | |
I0405 10:24:34.391685 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 10:24:34.391707 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0405 10:24:34.391721 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0405 10:24:34.391734 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0405 10:24:34.391746 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0405 10:24:34.391758 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 10:24:34.391772 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.59375 | |
I0405 10:24:34.391783 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 10:24:34.391795 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 10:24:34.391808 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 10:24:34.391819 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 10:24:34.391830 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 10:24:34.391842 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 10:24:34.391855 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 10:24:34.391865 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 10:24:34.391876 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 10:24:34.391888 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 10:24:34.391899 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 10:24:34.391911 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 10:24:34.391923 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 10:24:34.391934 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 10:24:34.391947 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 10:24:34.391962 26022 solver.cpp:245] Train net output #22: loss/loss01 = 2.9535 (* 0.0454545 = 0.13425 loss) | |
I0405 10:24:34.391976 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.22622 (* 0.0454545 = 0.146646 loss) | |
I0405 10:24:34.391990 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.10281 (* 0.0454545 = 0.141037 loss) | |
I0405 10:24:34.392005 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.01671 (* 0.0454545 = 0.137123 loss) | |
I0405 10:24:34.392019 26022 solver.cpp:245] Train net output #26: loss/loss05 = 2.89914 (* 0.0454545 = 0.131779 loss) | |
I0405 10:24:34.392033 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.28026 (* 0.0454545 = 0.103648 loss) | |
I0405 10:24:34.392048 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.70556 (* 0.0454545 = 0.0775256 loss) | |
I0405 10:24:34.392062 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.732195 (* 0.0454545 = 0.0332816 loss) | |
I0405 10:24:34.392099 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.416373 (* 0.0454545 = 0.018926 loss) | |
I0405 10:24:34.392117 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0308643 (* 0.0454545 = 0.00140292 loss) | |
I0405 10:24:34.392132 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000121772 (* 0.0454545 = 5.5351e-06 loss) | |
I0405 10:24:34.392146 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000154533 (* 0.0454545 = 7.02424e-06 loss) | |
I0405 10:24:34.392161 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000130354 (* 0.0454545 = 5.92516e-06 loss) | |
I0405 10:24:34.392176 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000141099 (* 0.0454545 = 6.41361e-06 loss) | |
I0405 10:24:34.392191 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000140398 (* 0.0454545 = 6.38175e-06 loss) | |
I0405 10:24:34.392206 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.0001816 (* 0.0454545 = 8.25457e-06 loss) | |
I0405 10:24:34.392220 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000140684 (* 0.0454545 = 6.39475e-06 loss) | |
I0405 10:24:34.392253 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.00015918 (* 0.0454545 = 7.23545e-06 loss) | |
I0405 10:24:34.392269 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000101717 (* 0.0454545 = 4.62352e-06 loss) | |
I0405 10:24:34.392283 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.0001279 (* 0.0454545 = 5.81364e-06 loss) | |
I0405 10:24:34.392298 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.00012026 (* 0.0454545 = 5.46638e-06 loss) | |
I0405 10:24:34.392313 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000163878 (* 0.0454545 = 7.44901e-06 loss) | |
I0405 10:24:34.392325 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 10:24:34.392338 26022 solver.cpp:245] Train net output #45: total_confidence = 2.8416e-05 | |
I0405 10:24:34.392351 26022 sgd_solver.cpp:106] Iteration 3550, lr = 0.039858 | |
I0405 10:33:36.593175 26022 solver.cpp:229] Iteration 3600, loss = 0.956311 | |
I0405 10:33:36.593323 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 10:33:36.593345 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 10:33:36.593359 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 10:33:36.593372 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 10:33:36.593384 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 10:33:36.593396 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 10:33:36.593410 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 10:33:36.593421 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 10:33:36.593433 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 10:33:36.593446 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 10:33:36.593457 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 10:33:36.593471 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 10:33:36.593482 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 10:33:36.593493 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 10:33:36.593505 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 10:33:36.593518 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 10:33:36.593529 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 10:33:36.593540 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 10:33:36.593552 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 10:33:36.593564 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 10:33:36.593575 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 10:33:36.593587 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 10:33:36.593602 26022 solver.cpp:245] Train net output #22: loss/loss01 = 2.97521 (* 0.0454545 = 0.135237 loss) | |
I0405 10:33:36.593617 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.35736 (* 0.0454545 = 0.152607 loss) | |
I0405 10:33:36.593631 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.44287 (* 0.0454545 = 0.156494 loss) | |
I0405 10:33:36.593648 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.36845 (* 0.0454545 = 0.153111 loss) | |
I0405 10:33:36.593664 26022 solver.cpp:245] Train net output #26: loss/loss05 = 2.96784 (* 0.0454545 = 0.134902 loss) | |
I0405 10:33:36.593678 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.47211 (* 0.0454545 = 0.112368 loss) | |
I0405 10:33:36.593693 26022 solver.cpp:245] Train net output #28: loss/loss07 = 0.932904 (* 0.0454545 = 0.0424047 loss) | |
I0405 10:33:36.593708 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.522573 (* 0.0454545 = 0.0237533 loss) | |
I0405 10:33:36.593721 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.203749 (* 0.0454545 = 0.00926132 loss) | |
I0405 10:33:36.593736 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.23829 (* 0.0454545 = 0.0108314 loss) | |
I0405 10:33:36.593751 26022 solver.cpp:245] Train net output #32: loss/loss11 = 6.97651e-05 (* 0.0454545 = 3.17114e-06 loss) | |
I0405 10:33:36.593770 26022 solver.cpp:245] Train net output #33: loss/loss12 = 7.61813e-05 (* 0.0454545 = 3.46279e-06 loss) | |
I0405 10:33:36.593786 26022 solver.cpp:245] Train net output #34: loss/loss13 = 6.58681e-05 (* 0.0454545 = 2.994e-06 loss) | |
I0405 10:33:36.593801 26022 solver.cpp:245] Train net output #35: loss/loss14 = 8.09627e-05 (* 0.0454545 = 3.68012e-06 loss) | |
I0405 10:33:36.593814 26022 solver.cpp:245] Train net output #36: loss/loss15 = 7.73011e-05 (* 0.0454545 = 3.51369e-06 loss) | |
I0405 10:33:36.593829 26022 solver.cpp:245] Train net output #37: loss/loss16 = 8.44783e-05 (* 0.0454545 = 3.83992e-06 loss) | |
I0405 10:33:36.593844 26022 solver.cpp:245] Train net output #38: loss/loss17 = 7.21171e-05 (* 0.0454545 = 3.27805e-06 loss) | |
I0405 10:33:36.593876 26022 solver.cpp:245] Train net output #39: loss/loss18 = 6.92594e-05 (* 0.0454545 = 3.14816e-06 loss) | |
I0405 10:33:36.593891 26022 solver.cpp:245] Train net output #40: loss/loss19 = 5.75105e-05 (* 0.0454545 = 2.61411e-06 loss) | |
I0405 10:33:36.593906 26022 solver.cpp:245] Train net output #41: loss/loss20 = 6.54083e-05 (* 0.0454545 = 2.97311e-06 loss) | |
I0405 10:33:36.593921 26022 solver.cpp:245] Train net output #42: loss/loss21 = 6.45245e-05 (* 0.0454545 = 2.93293e-06 loss) | |
I0405 10:33:36.593935 26022 solver.cpp:245] Train net output #43: loss/loss22 = 7.44308e-05 (* 0.0454545 = 3.38322e-06 loss) | |
I0405 10:33:36.593947 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 10:33:36.593961 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000477502 | |
I0405 10:33:36.593976 26022 sgd_solver.cpp:106] Iteration 3600, lr = 0.039856 | |
I0405 10:35:25.451781 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 33.8717 > 30) by scale factor 0.885695 | |
I0405 10:37:03.185272 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.287 > 30) by scale factor 0.990525 | |
I0405 10:42:38.760766 26022 solver.cpp:229] Iteration 3650, loss = 0.955846 | |
I0405 10:42:38.760866 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 10:42:38.760886 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 10:42:38.760900 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 10:42:38.760916 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.375 | |
I0405 10:42:38.760928 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.40625 | |
I0405 10:42:38.760941 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.65625 | |
I0405 10:42:38.760953 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 10:42:38.760965 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0405 10:42:38.760977 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 10:42:38.760989 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 10:42:38.761001 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 10:42:38.761013 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 10:42:38.761024 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 10:42:38.761035 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 10:42:38.761047 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 10:42:38.761059 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 10:42:38.761071 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 10:42:38.761082 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 10:42:38.761095 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 10:42:38.761106 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 10:42:38.761117 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 10:42:38.761129 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 10:42:38.761145 26022 solver.cpp:245] Train net output #22: loss/loss01 = 2.84774 (* 0.0454545 = 0.129443 loss) | |
I0405 10:42:38.761159 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.13071 (* 0.0454545 = 0.142305 loss) | |
I0405 10:42:38.761173 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.14281 (* 0.0454545 = 0.142855 loss) | |
I0405 10:42:38.761188 26022 solver.cpp:245] Train net output #25: loss/loss04 = 2.80359 (* 0.0454545 = 0.127436 loss) | |
I0405 10:42:38.761203 26022 solver.cpp:245] Train net output #26: loss/loss05 = 2.4667 (* 0.0454545 = 0.112123 loss) | |
I0405 10:42:38.761216 26022 solver.cpp:245] Train net output #27: loss/loss06 = 1.59202 (* 0.0454545 = 0.0723645 loss) | |
I0405 10:42:38.761230 26022 solver.cpp:245] Train net output #28: loss/loss07 = 0.716062 (* 0.0454545 = 0.0325483 loss) | |
I0405 10:42:38.761245 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.233258 (* 0.0454545 = 0.0106026 loss) | |
I0405 10:42:38.761260 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.214975 (* 0.0454545 = 0.00977159 loss) | |
I0405 10:42:38.761275 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0238485 (* 0.0454545 = 0.00108402 loss) | |
I0405 10:42:38.761289 26022 solver.cpp:245] Train net output #32: loss/loss11 = 1.10745e-05 (* 0.0454545 = 5.03388e-07 loss) | |
I0405 10:42:38.761304 26022 solver.cpp:245] Train net output #33: loss/loss12 = 9.74436e-06 (* 0.0454545 = 4.42926e-07 loss) | |
I0405 10:42:38.761319 26022 solver.cpp:245] Train net output #34: loss/loss13 = 9.31592e-06 (* 0.0454545 = 4.23451e-07 loss) | |
I0405 10:42:38.761334 26022 solver.cpp:245] Train net output #35: loss/loss14 = 1.10298e-05 (* 0.0454545 = 5.01354e-07 loss) | |
I0405 10:42:38.761348 26022 solver.cpp:245] Train net output #36: loss/loss15 = 9.8263e-06 (* 0.0454545 = 4.4665e-07 loss) | |
I0405 10:42:38.761363 26022 solver.cpp:245] Train net output #37: loss/loss16 = 1.03182e-05 (* 0.0454545 = 4.69009e-07 loss) | |
I0405 10:42:38.761379 26022 solver.cpp:245] Train net output #38: loss/loss17 = 1.04374e-05 (* 0.0454545 = 4.74428e-07 loss) | |
I0405 10:42:38.761410 26022 solver.cpp:245] Train net output #39: loss/loss18 = 1.05343e-05 (* 0.0454545 = 4.78833e-07 loss) | |
I0405 10:42:38.761428 26022 solver.cpp:245] Train net output #40: loss/loss19 = 9.02156e-06 (* 0.0454545 = 4.10071e-07 loss) | |
I0405 10:42:38.761445 26022 solver.cpp:245] Train net output #41: loss/loss20 = 8.9731e-06 (* 0.0454545 = 4.07868e-07 loss) | |
I0405 10:42:38.761461 26022 solver.cpp:245] Train net output #42: loss/loss21 = 8.82778e-06 (* 0.0454545 = 4.01263e-07 loss) | |
I0405 10:42:38.761474 26022 solver.cpp:245] Train net output #43: loss/loss22 = 9.37552e-06 (* 0.0454545 = 4.2616e-07 loss) | |
I0405 10:42:38.761487 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 10:42:38.761499 26022 solver.cpp:245] Train net output #45: total_confidence = 0.00110054 | |
I0405 10:42:38.761513 26022 sgd_solver.cpp:106] Iteration 3650, lr = 0.039854 | |
I0405 10:51:40.780134 26022 solver.cpp:229] Iteration 3700, loss = 0.949458 | |
I0405 10:51:40.780318 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 10:51:40.780336 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 10:51:40.780350 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 10:51:40.780364 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 10:51:40.780376 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 10:51:40.780388 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 10:51:40.780401 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 10:51:40.780413 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0405 10:51:40.780426 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0405 10:51:40.780438 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 10:51:40.780452 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 10:51:40.780463 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 10:51:40.780475 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 10:51:40.780488 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 10:51:40.780498 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 10:51:40.780510 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 10:51:40.780524 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 10:51:40.780536 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 10:51:40.780549 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 10:51:40.780560 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 10:51:40.780572 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 10:51:40.780585 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 10:51:40.780601 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.30095 (* 0.0454545 = 0.150043 loss) | |
I0405 10:51:40.780616 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.50092 (* 0.0454545 = 0.159133 loss) | |
I0405 10:51:40.780629 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.45271 (* 0.0454545 = 0.156941 loss) | |
I0405 10:51:40.780643 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.35062 (* 0.0454545 = 0.152301 loss) | |
I0405 10:51:40.780658 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.37354 (* 0.0454545 = 0.153343 loss) | |
I0405 10:51:40.780673 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.25438 (* 0.0454545 = 0.102472 loss) | |
I0405 10:51:40.780688 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.53811 (* 0.0454545 = 0.0699143 loss) | |
I0405 10:51:40.780702 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.851261 (* 0.0454545 = 0.0386937 loss) | |
I0405 10:51:40.780717 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.772077 (* 0.0454545 = 0.0350944 loss) | |
I0405 10:51:40.780732 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.24835 (* 0.0454545 = 0.0112887 loss) | |
I0405 10:51:40.780752 26022 solver.cpp:245] Train net output #32: loss/loss11 = 1.81264e-05 (* 0.0454545 = 8.23928e-07 loss) | |
I0405 10:51:40.780767 26022 solver.cpp:245] Train net output #33: loss/loss12 = 2.03341e-05 (* 0.0454545 = 9.24278e-07 loss) | |
I0405 10:51:40.780782 26022 solver.cpp:245] Train net output #34: loss/loss13 = 1.71914e-05 (* 0.0454545 = 7.81428e-07 loss) | |
I0405 10:51:40.780797 26022 solver.cpp:245] Train net output #35: loss/loss14 = 2.01664e-05 (* 0.0454545 = 9.16655e-07 loss) | |
I0405 10:51:40.780812 26022 solver.cpp:245] Train net output #36: loss/loss15 = 1.98163e-05 (* 0.0454545 = 9.0074e-07 loss) | |
I0405 10:51:40.780827 26022 solver.cpp:245] Train net output #37: loss/loss16 = 2.3218e-05 (* 0.0454545 = 1.05536e-06 loss) | |
I0405 10:51:40.780843 26022 solver.cpp:245] Train net output #38: loss/loss17 = 1.91362e-05 (* 0.0454545 = 8.69829e-07 loss) | |
I0405 10:51:40.780874 26022 solver.cpp:245] Train net output #39: loss/loss18 = 1.93375e-05 (* 0.0454545 = 8.78976e-07 loss) | |
I0405 10:51:40.780890 26022 solver.cpp:245] Train net output #40: loss/loss19 = 1.4846e-05 (* 0.0454545 = 6.74816e-07 loss) | |
I0405 10:51:40.780905 26022 solver.cpp:245] Train net output #41: loss/loss20 = 1.72025e-05 (* 0.0454545 = 7.81934e-07 loss) | |
I0405 10:51:40.780920 26022 solver.cpp:245] Train net output #42: loss/loss21 = 1.74075e-05 (* 0.0454545 = 7.91251e-07 loss) | |
I0405 10:51:40.780935 26022 solver.cpp:245] Train net output #43: loss/loss22 = 1.98499e-05 (* 0.0454545 = 9.02268e-07 loss) | |
I0405 10:51:40.780947 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 10:51:40.780959 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000203318 | |
I0405 10:51:40.780974 26022 sgd_solver.cpp:106] Iteration 3700, lr = 0.039852 | |
I0405 10:56:12.325989 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 37.4144 > 30) by scale factor 0.80183 | |
I0405 10:56:55.700337 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.0872 > 30) by scale factor 0.965029 | |
I0405 11:00:42.867581 26022 solver.cpp:229] Iteration 3750, loss = 0.95633 | |
I0405 11:00:42.867707 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 11:00:42.867727 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0405 11:00:42.867740 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 11:00:42.867754 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 11:00:42.867768 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 11:00:42.867779 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 11:00:42.867791 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 11:00:42.867805 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 11:00:42.867816 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 11:00:42.867828 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 11:00:42.867841 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 11:00:42.867851 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 11:00:42.867863 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 11:00:42.867876 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 11:00:42.867887 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 11:00:42.867898 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 11:00:42.867910 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 11:00:42.867923 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 11:00:42.867934 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 11:00:42.867945 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 11:00:42.867957 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 11:00:42.867969 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 11:00:42.867985 26022 solver.cpp:245] Train net output #22: loss/loss01 = 2.89251 (* 0.0454545 = 0.131478 loss) | |
I0405 11:00:42.868000 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.24245 (* 0.0454545 = 0.147384 loss) | |
I0405 11:00:42.868013 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.30358 (* 0.0454545 = 0.150163 loss) | |
I0405 11:00:42.868028 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.25144 (* 0.0454545 = 0.147793 loss) | |
I0405 11:00:42.868042 26022 solver.cpp:245] Train net output #26: loss/loss05 = 2.96651 (* 0.0454545 = 0.134841 loss) | |
I0405 11:00:42.868057 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.04976 (* 0.0454545 = 0.0931707 loss) | |
I0405 11:00:42.868085 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.30575 (* 0.0454545 = 0.0593521 loss) | |
I0405 11:00:42.868103 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.39669 (* 0.0454545 = 0.0180314 loss) | |
I0405 11:00:42.868118 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.255106 (* 0.0454545 = 0.0115957 loss) | |
I0405 11:00:42.868132 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.00417592 (* 0.0454545 = 0.000189814 loss) | |
I0405 11:00:42.868149 26022 solver.cpp:245] Train net output #32: loss/loss11 = 4.71108e-05 (* 0.0454545 = 2.1414e-06 loss) | |
I0405 11:00:42.868165 26022 solver.cpp:245] Train net output #33: loss/loss12 = 6.27118e-05 (* 0.0454545 = 2.85053e-06 loss) | |
I0405 11:00:42.868180 26022 solver.cpp:245] Train net output #34: loss/loss13 = 5.03374e-05 (* 0.0454545 = 2.28806e-06 loss) | |
I0405 11:00:42.868194 26022 solver.cpp:245] Train net output #35: loss/loss14 = 5.69425e-05 (* 0.0454545 = 2.58829e-06 loss) | |
I0405 11:00:42.868208 26022 solver.cpp:245] Train net output #36: loss/loss15 = 5.47043e-05 (* 0.0454545 = 2.48656e-06 loss) | |
I0405 11:00:42.868223 26022 solver.cpp:245] Train net output #37: loss/loss16 = 8.15314e-05 (* 0.0454545 = 3.70597e-06 loss) | |
I0405 11:00:42.868237 26022 solver.cpp:245] Train net output #38: loss/loss17 = 5.32187e-05 (* 0.0454545 = 2.41903e-06 loss) | |
I0405 11:00:42.868271 26022 solver.cpp:245] Train net output #39: loss/loss18 = 6.40544e-05 (* 0.0454545 = 2.91157e-06 loss) | |
I0405 11:00:42.868288 26022 solver.cpp:245] Train net output #40: loss/loss19 = 3.62224e-05 (* 0.0454545 = 1.64647e-06 loss) | |
I0405 11:00:42.868301 26022 solver.cpp:245] Train net output #41: loss/loss20 = 5.12376e-05 (* 0.0454545 = 2.32898e-06 loss) | |
I0405 11:00:42.868316 26022 solver.cpp:245] Train net output #42: loss/loss21 = 4.76591e-05 (* 0.0454545 = 2.16632e-06 loss) | |
I0405 11:00:42.868330 26022 solver.cpp:245] Train net output #43: loss/loss22 = 6.32027e-05 (* 0.0454545 = 2.87285e-06 loss) | |
I0405 11:00:42.868343 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 11:00:42.868355 26022 solver.cpp:245] Train net output #45: total_confidence = 9.14751e-05 | |
I0405 11:00:42.868369 26022 sgd_solver.cpp:106] Iteration 3750, lr = 0.03985 | |
I0405 11:04:31.010694 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 38.1985 > 30) by scale factor 0.785372 | |
I0405 11:09:44.953629 26022 solver.cpp:229] Iteration 3800, loss = 0.944967 | |
I0405 11:09:44.953794 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 11:09:44.953824 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 11:09:44.953850 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0405 11:09:44.953876 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 11:09:44.953897 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0405 11:09:44.953919 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0405 11:09:44.953943 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 11:09:44.953966 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 11:09:44.953987 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 11:09:44.954010 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 11:09:44.954032 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 11:09:44.954056 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 11:09:44.954077 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 11:09:44.954103 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 11:09:44.954125 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 11:09:44.954147 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 11:09:44.954170 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 11:09:44.954195 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 11:09:44.954216 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 11:09:44.954237 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 11:09:44.954262 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 11:09:44.954284 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 11:09:44.954313 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.08297 (* 0.0454545 = 0.140135 loss) | |
I0405 11:09:44.954339 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.29308 (* 0.0454545 = 0.149685 loss) | |
I0405 11:09:44.954367 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.34999 (* 0.0454545 = 0.152272 loss) | |
I0405 11:09:44.954393 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.45689 (* 0.0454545 = 0.157131 loss) | |
I0405 11:09:44.954421 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.22818 (* 0.0454545 = 0.146735 loss) | |
I0405 11:09:44.954447 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.48101 (* 0.0454545 = 0.112773 loss) | |
I0405 11:09:44.954471 26022 solver.cpp:245] Train net output #28: loss/loss07 = 0.88543 (* 0.0454545 = 0.0402468 loss) | |
I0405 11:09:44.954498 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.457628 (* 0.0454545 = 0.0208013 loss) | |
I0405 11:09:44.954522 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.143984 (* 0.0454545 = 0.00654473 loss) | |
I0405 11:09:44.954550 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.151717 (* 0.0454545 = 0.00689625 loss) | |
I0405 11:09:44.954577 26022 solver.cpp:245] Train net output #32: loss/loss11 = 5.33473e-06 (* 0.0454545 = 2.42488e-07 loss) | |
I0405 11:09:44.954604 26022 solver.cpp:245] Train net output #33: loss/loss12 = 4.0122e-06 (* 0.0454545 = 1.82373e-07 loss) | |
I0405 11:09:44.954630 26022 solver.cpp:245] Train net output #34: loss/loss13 = 3.30811e-06 (* 0.0454545 = 1.50368e-07 loss) | |
I0405 11:09:44.954658 26022 solver.cpp:245] Train net output #35: loss/loss14 = 3.87437e-06 (* 0.0454545 = 1.76108e-07 loss) | |
I0405 11:09:44.954682 26022 solver.cpp:245] Train net output #36: loss/loss15 = 3.74025e-06 (* 0.0454545 = 1.70011e-07 loss) | |
I0405 11:09:44.954710 26022 solver.cpp:245] Train net output #37: loss/loss16 = 4.60455e-06 (* 0.0454545 = 2.09298e-07 loss) | |
I0405 11:09:44.954735 26022 solver.cpp:245] Train net output #38: loss/loss17 = 4.23201e-06 (* 0.0454545 = 1.92364e-07 loss) | |
I0405 11:09:44.954782 26022 solver.cpp:245] Train net output #39: loss/loss18 = 3.69182e-06 (* 0.0454545 = 1.6781e-07 loss) | |
I0405 11:09:44.954810 26022 solver.cpp:245] Train net output #40: loss/loss19 = 4.9175e-06 (* 0.0454545 = 2.23523e-07 loss) | |
I0405 11:09:44.954838 26022 solver.cpp:245] Train net output #41: loss/loss20 = 3.58378e-06 (* 0.0454545 = 1.62899e-07 loss) | |
I0405 11:09:44.954865 26022 solver.cpp:245] Train net output #42: loss/loss21 = 3.90044e-06 (* 0.0454545 = 1.77293e-07 loss) | |
I0405 11:09:44.954891 26022 solver.cpp:245] Train net output #43: loss/loss22 = 3.56516e-06 (* 0.0454545 = 1.62053e-07 loss) | |
I0405 11:09:44.954913 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 11:09:44.954934 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000174833 | |
I0405 11:09:44.954957 26022 sgd_solver.cpp:106] Iteration 3800, lr = 0.039848 | |
I0405 11:18:47.272553 26022 solver.cpp:229] Iteration 3850, loss = 0.937853 | |
I0405 11:18:47.272794 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875 | |
I0405 11:18:47.272815 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 11:18:47.272828 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 11:18:47.272841 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 11:18:47.272855 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 11:18:47.272866 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 11:18:47.272878 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 11:18:47.272891 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 11:18:47.272902 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 11:18:47.272914 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 11:18:47.272927 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 11:18:47.272938 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 11:18:47.272950 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 11:18:47.272961 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 11:18:47.272974 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 11:18:47.272985 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 11:18:47.272996 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 11:18:47.273010 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 11:18:47.273022 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 11:18:47.273035 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 11:18:47.273046 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 11:18:47.273057 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 11:18:47.273073 26022 solver.cpp:245] Train net output #22: loss/loss01 = 2.99016 (* 0.0454545 = 0.135917 loss) | |
I0405 11:18:47.273088 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.27905 (* 0.0454545 = 0.149048 loss) | |
I0405 11:18:47.273102 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.34622 (* 0.0454545 = 0.152101 loss) | |
I0405 11:18:47.273116 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.29326 (* 0.0454545 = 0.149694 loss) | |
I0405 11:18:47.273130 26022 solver.cpp:245] Train net output #26: loss/loss05 = 2.96725 (* 0.0454545 = 0.134875 loss) | |
I0405 11:18:47.273144 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.3763 (* 0.0454545 = 0.108014 loss) | |
I0405 11:18:47.273159 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.28541 (* 0.0454545 = 0.0584279 loss) | |
I0405 11:18:47.273174 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.72519 (* 0.0454545 = 0.0329632 loss) | |
I0405 11:18:47.273187 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.546886 (* 0.0454545 = 0.0248584 loss) | |
I0405 11:18:47.273201 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.261067 (* 0.0454545 = 0.0118667 loss) | |
I0405 11:18:47.273217 26022 solver.cpp:245] Train net output #32: loss/loss11 = 2.66706e-05 (* 0.0454545 = 1.2123e-06 loss) | |
I0405 11:18:47.273232 26022 solver.cpp:245] Train net output #33: loss/loss12 = 2.38971e-05 (* 0.0454545 = 1.08623e-06 loss) | |
I0405 11:18:47.273247 26022 solver.cpp:245] Train net output #34: loss/loss13 = 2.24346e-05 (* 0.0454545 = 1.01975e-06 loss) | |
I0405 11:18:47.273262 26022 solver.cpp:245] Train net output #35: loss/loss14 = 2.46274e-05 (* 0.0454545 = 1.11943e-06 loss) | |
I0405 11:18:47.273277 26022 solver.cpp:245] Train net output #36: loss/loss15 = 2.36661e-05 (* 0.0454545 = 1.07573e-06 loss) | |
I0405 11:18:47.273290 26022 solver.cpp:245] Train net output #37: loss/loss16 = 2.37663e-05 (* 0.0454545 = 1.08029e-06 loss) | |
I0405 11:18:47.273316 26022 solver.cpp:245] Train net output #38: loss/loss17 = 2.14581e-05 (* 0.0454545 = 9.75367e-07 loss) | |
I0405 11:18:47.273346 26022 solver.cpp:245] Train net output #39: loss/loss18 = 2.05323e-05 (* 0.0454545 = 9.33285e-07 loss) | |
I0405 11:18:47.273362 26022 solver.cpp:245] Train net output #40: loss/loss19 = 2.12491e-05 (* 0.0454545 = 9.65867e-07 loss) | |
I0405 11:18:47.273377 26022 solver.cpp:245] Train net output #41: loss/loss20 = 2.04651e-05 (* 0.0454545 = 9.3023e-07 loss) | |
I0405 11:18:47.273391 26022 solver.cpp:245] Train net output #42: loss/loss21 = 2.11581e-05 (* 0.0454545 = 9.61732e-07 loss) | |
I0405 11:18:47.273407 26022 solver.cpp:245] Train net output #43: loss/loss22 = 2.2064e-05 (* 0.0454545 = 1.00291e-06 loss) | |
I0405 11:18:47.273421 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 11:18:47.273432 26022 solver.cpp:245] Train net output #45: total_confidence = 9.24704e-05 | |
I0405 11:18:47.273447 26022 sgd_solver.cpp:106] Iteration 3850, lr = 0.039846 | |
I0405 11:27:28.127835 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 53.0881 > 30) by scale factor 0.565098 | |
I0405 11:27:49.321316 26022 solver.cpp:229] Iteration 3900, loss = 0.936974 | |
I0405 11:27:49.321370 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 11:27:49.321389 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 11:27:49.321403 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 11:27:49.321414 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 11:27:49.321427 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0405 11:27:49.321440 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 11:27:49.321452 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 11:27:49.321465 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 11:27:49.321476 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 11:27:49.321488 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 11:27:49.321501 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 11:27:49.321512 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 11:27:49.321524 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 11:27:49.321537 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 11:27:49.321548 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 11:27:49.321559 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 11:27:49.321571 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 11:27:49.321586 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 11:27:49.321599 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 11:27:49.321610 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 11:27:49.321621 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 11:27:49.321633 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 11:27:49.321650 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.01139 (* 0.0454545 = 0.136882 loss) | |
I0405 11:27:49.321665 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.03971 (* 0.0454545 = 0.138169 loss) | |
I0405 11:27:49.321678 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.27191 (* 0.0454545 = 0.148723 loss) | |
I0405 11:27:49.321692 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.23032 (* 0.0454545 = 0.146833 loss) | |
I0405 11:27:49.321707 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.38716 (* 0.0454545 = 0.153962 loss) | |
I0405 11:27:49.321720 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.56138 (* 0.0454545 = 0.116426 loss) | |
I0405 11:27:49.321734 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.44219 (* 0.0454545 = 0.0655542 loss) | |
I0405 11:27:49.321748 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.716164 (* 0.0454545 = 0.0325529 loss) | |
I0405 11:27:49.321763 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.27941 (* 0.0454545 = 0.0127005 loss) | |
I0405 11:27:49.321777 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0466797 (* 0.0454545 = 0.0021218 loss) | |
I0405 11:27:49.321792 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000222299 (* 0.0454545 = 1.01045e-05 loss) | |
I0405 11:27:49.321807 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000255162 (* 0.0454545 = 1.15983e-05 loss) | |
I0405 11:27:49.321822 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000231223 (* 0.0454545 = 1.05102e-05 loss) | |
I0405 11:27:49.321838 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000227261 (* 0.0454545 = 1.033e-05 loss) | |
I0405 11:27:49.321853 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000212654 (* 0.0454545 = 9.66607e-06 loss) | |
I0405 11:27:49.321867 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000294159 (* 0.0454545 = 1.33709e-05 loss) | |
I0405 11:27:49.321882 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.000238177 (* 0.0454545 = 1.08262e-05 loss) | |
I0405 11:27:49.321926 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000260077 (* 0.0454545 = 1.18217e-05 loss) | |
I0405 11:27:49.321943 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.00015503 (* 0.0454545 = 7.04681e-06 loss) | |
I0405 11:27:49.321956 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000219361 (* 0.0454545 = 9.97097e-06 loss) | |
I0405 11:27:49.321971 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000182378 (* 0.0454545 = 8.28993e-06 loss) | |
I0405 11:27:49.321990 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000245092 (* 0.0454545 = 1.11406e-05 loss) | |
I0405 11:27:49.322003 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 11:27:49.322016 26022 solver.cpp:245] Train net output #45: total_confidence = 9.47889e-05 | |
I0405 11:27:49.322031 26022 sgd_solver.cpp:106] Iteration 3900, lr = 0.039844 | |
I0405 11:28:22.324827 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.2085 > 30) by scale factor 0.961277 | |
I0405 11:32:20.855007 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 32.5775 > 30) by scale factor 0.92088 | |
I0405 11:32:53.372162 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 37.725 > 30) by scale factor 0.795228 | |
I0405 11:36:51.523546 26022 solver.cpp:229] Iteration 3950, loss = 0.944202 | |
I0405 11:36:51.523743 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0405 11:36:51.523766 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 11:36:51.523778 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 11:36:51.523792 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 11:36:51.523803 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 11:36:51.523815 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0405 11:36:51.523828 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 11:36:51.523840 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 11:36:51.523852 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 11:36:51.523865 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 11:36:51.523877 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 11:36:51.523890 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 11:36:51.523901 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 11:36:51.523912 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 11:36:51.523924 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 11:36:51.523936 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 11:36:51.523947 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 11:36:51.523959 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 11:36:51.523972 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 11:36:51.523983 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 11:36:51.523994 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 11:36:51.524006 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 11:36:51.524022 26022 solver.cpp:245] Train net output #22: loss/loss01 = 2.96695 (* 0.0454545 = 0.134861 loss) | |
I0405 11:36:51.524037 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.25114 (* 0.0454545 = 0.147779 loss) | |
I0405 11:36:51.524051 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.30956 (* 0.0454545 = 0.150435 loss) | |
I0405 11:36:51.524065 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.14178 (* 0.0454545 = 0.142808 loss) | |
I0405 11:36:51.524099 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.05489 (* 0.0454545 = 0.138859 loss) | |
I0405 11:36:51.524114 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.82948 (* 0.0454545 = 0.128613 loss) | |
I0405 11:36:51.524129 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.26084 (* 0.0454545 = 0.0573107 loss) | |
I0405 11:36:51.524143 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.470753 (* 0.0454545 = 0.0213979 loss) | |
I0405 11:36:51.524158 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.247732 (* 0.0454545 = 0.0112605 loss) | |
I0405 11:36:51.524173 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0233278 (* 0.0454545 = 0.00106035 loss) | |
I0405 11:36:51.524188 26022 solver.cpp:245] Train net output #32: loss/loss11 = 2.78551e-05 (* 0.0454545 = 1.26614e-06 loss) | |
I0405 11:36:51.524202 26022 solver.cpp:245] Train net output #33: loss/loss12 = 2.07198e-05 (* 0.0454545 = 9.4181e-07 loss) | |
I0405 11:36:51.524217 26022 solver.cpp:245] Train net output #34: loss/loss13 = 1.92206e-05 (* 0.0454545 = 8.73662e-07 loss) | |
I0405 11:36:51.524232 26022 solver.cpp:245] Train net output #35: loss/loss14 = 2.09359e-05 (* 0.0454545 = 9.51633e-07 loss) | |
I0405 11:36:51.524246 26022 solver.cpp:245] Train net output #36: loss/loss15 = 1.91176e-05 (* 0.0454545 = 8.68984e-07 loss) | |
I0405 11:36:51.524261 26022 solver.cpp:245] Train net output #37: loss/loss16 = 2.23872e-05 (* 0.0454545 = 1.0176e-06 loss) | |
I0405 11:36:51.524276 26022 solver.cpp:245] Train net output #38: loss/loss17 = 2.13478e-05 (* 0.0454545 = 9.70356e-07 loss) | |
I0405 11:36:51.524309 26022 solver.cpp:245] Train net output #39: loss/loss18 = 1.93509e-05 (* 0.0454545 = 8.79588e-07 loss) | |
I0405 11:36:51.524325 26022 solver.cpp:245] Train net output #40: loss/loss19 = 2.34492e-05 (* 0.0454545 = 1.06587e-06 loss) | |
I0405 11:36:51.524340 26022 solver.cpp:245] Train net output #41: loss/loss20 = 1.91439e-05 (* 0.0454545 = 8.70176e-07 loss) | |
I0405 11:36:51.524355 26022 solver.cpp:245] Train net output #42: loss/loss21 = 1.96393e-05 (* 0.0454545 = 8.92697e-07 loss) | |
I0405 11:36:51.524372 26022 solver.cpp:245] Train net output #43: loss/loss22 = 1.82758e-05 (* 0.0454545 = 8.30718e-07 loss) | |
I0405 11:36:51.524386 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 11:36:51.524399 26022 solver.cpp:245] Train net output #45: total_confidence = 0.00050667 | |
I0405 11:36:51.524413 26022 sgd_solver.cpp:106] Iteration 3950, lr = 0.039842 | |
I0405 11:45:43.216516 26022 solver.cpp:338] Iteration 4000, Testing net (#0) | |
I0405 11:45:56.867869 26022 solver.cpp:393] Test loss: 0.820289 | |
I0405 11:45:56.867916 26022 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.284 | |
I0405 11:45:56.867933 26022 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.067 | |
I0405 11:45:56.867945 26022 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.089 | |
I0405 11:45:56.867959 26022 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.136 | |
I0405 11:45:56.867970 26022 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.227 | |
I0405 11:45:56.867985 26022 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.5 | |
I0405 11:45:56.867997 26022 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0405 11:45:56.868010 26022 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0405 11:45:56.868021 26022 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0405 11:45:56.868034 26022 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0405 11:45:56.868046 26022 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0405 11:45:56.868058 26022 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0405 11:45:56.868085 26022 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0405 11:45:56.868103 26022 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0405 11:45:56.868114 26022 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0405 11:45:56.868126 26022 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0405 11:45:56.868137 26022 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0405 11:45:56.868149 26022 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0405 11:45:56.868161 26022 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0405 11:45:56.868172 26022 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0405 11:45:56.868185 26022 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0405 11:45:56.868196 26022 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0405 11:45:56.868211 26022 solver.cpp:406] Test net output #22: loss/loss01 = 2.77252 (* 0.0454545 = 0.126023 loss) | |
I0405 11:45:56.868227 26022 solver.cpp:406] Test net output #23: loss/loss02 = 3.01626 (* 0.0454545 = 0.137103 loss) | |
I0405 11:45:56.868240 26022 solver.cpp:406] Test net output #24: loss/loss03 = 3.09765 (* 0.0454545 = 0.140802 loss) | |
I0405 11:45:56.868254 26022 solver.cpp:406] Test net output #25: loss/loss04 = 3.02521 (* 0.0454545 = 0.13751 loss) | |
I0405 11:45:56.868268 26022 solver.cpp:406] Test net output #26: loss/loss05 = 2.90839 (* 0.0454545 = 0.132199 loss) | |
I0405 11:45:56.868283 26022 solver.cpp:406] Test net output #27: loss/loss06 = 2.1651 (* 0.0454545 = 0.0984135 loss) | |
I0405 11:45:56.868297 26022 solver.cpp:406] Test net output #28: loss/loss07 = 0.743218 (* 0.0454545 = 0.0337826 loss) | |
I0405 11:45:56.868312 26022 solver.cpp:406] Test net output #29: loss/loss08 = 0.239143 (* 0.0454545 = 0.0108701 loss) | |
I0405 11:45:56.868327 26022 solver.cpp:406] Test net output #30: loss/loss09 = 0.051947 (* 0.0454545 = 0.00236123 loss) | |
I0405 11:45:56.868341 26022 solver.cpp:406] Test net output #31: loss/loss10 = 0.0268643 (* 0.0454545 = 0.0012211 loss) | |
I0405 11:45:56.868356 26022 solver.cpp:406] Test net output #32: loss/loss11 = 7.68983e-06 (* 0.0454545 = 3.49538e-07 loss) | |
I0405 11:45:56.868371 26022 solver.cpp:406] Test net output #33: loss/loss12 = 5.86776e-06 (* 0.0454545 = 2.66716e-07 loss) | |
I0405 11:45:56.868386 26022 solver.cpp:406] Test net output #34: loss/loss13 = 5.17357e-06 (* 0.0454545 = 2.35162e-07 loss) | |
I0405 11:45:56.868401 26022 solver.cpp:406] Test net output #35: loss/loss14 = 6.56084e-06 (* 0.0454545 = 2.9822e-07 loss) | |
I0405 11:45:56.868415 26022 solver.cpp:406] Test net output #36: loss/loss15 = 5.40185e-06 (* 0.0454545 = 2.45539e-07 loss) | |
I0405 11:45:56.868430 26022 solver.cpp:406] Test net output #37: loss/loss16 = 5.09332e-06 (* 0.0454545 = 2.31514e-07 loss) | |
I0405 11:45:56.868444 26022 solver.cpp:406] Test net output #38: loss/loss17 = 5.63912e-06 (* 0.0454545 = 2.56323e-07 loss) | |
I0405 11:45:56.868489 26022 solver.cpp:406] Test net output #39: loss/loss18 = 5.3608e-06 (* 0.0454545 = 2.43673e-07 loss) | |
I0405 11:45:56.868505 26022 solver.cpp:406] Test net output #40: loss/loss19 = 5.15324e-06 (* 0.0454545 = 2.34238e-07 loss) | |
I0405 11:45:56.868520 26022 solver.cpp:406] Test net output #41: loss/loss20 = 4.88949e-06 (* 0.0454545 = 2.2225e-07 loss) | |
I0405 11:45:56.868535 26022 solver.cpp:406] Test net output #42: loss/loss21 = 4.95463e-06 (* 0.0454545 = 2.2521e-07 loss) | |
I0405 11:45:56.868549 26022 solver.cpp:406] Test net output #43: loss/loss22 = 5.15949e-06 (* 0.0454545 = 2.34522e-07 loss) | |
I0405 11:45:56.868561 26022 solver.cpp:406] Test net output #44: total_accuracy = 0.001 | |
I0405 11:45:56.868573 26022 solver.cpp:406] Test net output #45: total_confidence = 0.000169457 | |
I0405 11:46:07.179795 26022 solver.cpp:229] Iteration 4000, loss = 0.934202 | |
I0405 11:46:07.179843 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0405 11:46:07.179862 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 11:46:07.179874 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 11:46:07.179888 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 11:46:07.179900 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0405 11:46:07.179913 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0405 11:46:07.179924 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 11:46:07.179936 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 11:46:07.179949 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 11:46:07.179960 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 11:46:07.179975 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 11:46:07.179986 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 11:46:07.179997 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 11:46:07.180012 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 11:46:07.180024 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 11:46:07.180037 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 11:46:07.180047 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 11:46:07.180060 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 11:46:07.180093 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 11:46:07.180107 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 11:46:07.180119 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 11:46:07.180131 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 11:46:07.180146 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.03965 (* 0.0454545 = 0.138166 loss) | |
I0405 11:46:07.180160 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.27816 (* 0.0454545 = 0.149007 loss) | |
I0405 11:46:07.180176 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.48663 (* 0.0454545 = 0.158483 loss) | |
I0405 11:46:07.180191 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.43542 (* 0.0454545 = 0.156156 loss) | |
I0405 11:46:07.180204 26022 solver.cpp:245] Train net output #26: loss/loss05 = 2.86348 (* 0.0454545 = 0.130158 loss) | |
I0405 11:46:07.180218 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.54219 (* 0.0454545 = 0.115554 loss) | |
I0405 11:46:07.180233 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.44292 (* 0.0454545 = 0.0655871 loss) | |
I0405 11:46:07.180246 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.407333 (* 0.0454545 = 0.0185151 loss) | |
I0405 11:46:07.180261 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.386273 (* 0.0454545 = 0.0175578 loss) | |
I0405 11:46:07.180305 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.389169 (* 0.0454545 = 0.0176895 loss) | |
I0405 11:46:07.180320 26022 solver.cpp:245] Train net output #32: loss/loss11 = 3.56514e-06 (* 0.0454545 = 1.62052e-07 loss) | |
I0405 11:46:07.180336 26022 solver.cpp:245] Train net output #33: loss/loss12 = 2.3842e-06 (* 0.0454545 = 1.08373e-07 loss) | |
I0405 11:46:07.180351 26022 solver.cpp:245] Train net output #34: loss/loss13 = 2.075e-06 (* 0.0454545 = 9.43181e-08 loss) | |
I0405 11:46:07.180366 26022 solver.cpp:245] Train net output #35: loss/loss14 = 2.59655e-06 (* 0.0454545 = 1.18025e-07 loss) | |
I0405 11:46:07.180379 26022 solver.cpp:245] Train net output #36: loss/loss15 = 2.32087e-06 (* 0.0454545 = 1.05494e-07 loss) | |
I0405 11:46:07.180394 26022 solver.cpp:245] Train net output #37: loss/loss16 = 2.71948e-06 (* 0.0454545 = 1.23613e-07 loss) | |
I0405 11:46:07.180408 26022 solver.cpp:245] Train net output #38: loss/loss17 = 2.30969e-06 (* 0.0454545 = 1.04986e-07 loss) | |
I0405 11:46:07.180424 26022 solver.cpp:245] Train net output #39: loss/loss18 = 2.23891e-06 (* 0.0454545 = 1.01769e-07 loss) | |
I0405 11:46:07.180441 26022 solver.cpp:245] Train net output #40: loss/loss19 = 2.79399e-06 (* 0.0454545 = 1.26999e-07 loss) | |
I0405 11:46:07.180457 26022 solver.cpp:245] Train net output #41: loss/loss20 = 2.23891e-06 (* 0.0454545 = 1.01769e-07 loss) | |
I0405 11:46:07.180472 26022 solver.cpp:245] Train net output #42: loss/loss21 = 2.45498e-06 (* 0.0454545 = 1.1159e-07 loss) | |
I0405 11:46:07.180486 26022 solver.cpp:245] Train net output #43: loss/loss22 = 2.14578e-06 (* 0.0454545 = 9.75355e-08 loss) | |
I0405 11:46:07.180498 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 11:46:07.180510 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000213462 | |
I0405 11:46:07.180526 26022 sgd_solver.cpp:106] Iteration 4000, lr = 0.03984 | |
I0405 11:55:09.235816 26022 solver.cpp:229] Iteration 4050, loss = 0.936761 | |
I0405 11:55:09.235936 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0405 11:55:09.235957 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 11:55:09.235971 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 11:55:09.235985 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875 | |
I0405 11:55:09.235997 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375 | |
I0405 11:55:09.236009 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 11:55:09.236024 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 11:55:09.236037 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 11:55:09.236049 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 11:55:09.236063 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 11:55:09.236099 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 11:55:09.236124 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 11:55:09.236137 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 11:55:09.236148 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 11:55:09.236160 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 11:55:09.236171 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 11:55:09.236184 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 11:55:09.236196 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 11:55:09.236207 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 11:55:09.236218 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 11:55:09.236229 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 11:55:09.236240 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 11:55:09.236256 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.11458 (* 0.0454545 = 0.141572 loss) | |
I0405 11:55:09.236270 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.15351 (* 0.0454545 = 0.143342 loss) | |
I0405 11:55:09.236285 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.20078 (* 0.0454545 = 0.14549 loss) | |
I0405 11:55:09.236299 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.06874 (* 0.0454545 = 0.139488 loss) | |
I0405 11:55:09.236313 26022 solver.cpp:245] Train net output #26: loss/loss05 = 2.60897 (* 0.0454545 = 0.11859 loss) | |
I0405 11:55:09.236328 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.16617 (* 0.0454545 = 0.0984622 loss) | |
I0405 11:55:09.236342 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.23968 (* 0.0454545 = 0.056349 loss) | |
I0405 11:55:09.236356 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.715429 (* 0.0454545 = 0.0325195 loss) | |
I0405 11:55:09.236371 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.164382 (* 0.0454545 = 0.00747191 loss) | |
I0405 11:55:09.236384 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.171088 (* 0.0454545 = 0.00777672 loss) | |
I0405 11:55:09.236399 26022 solver.cpp:245] Train net output #32: loss/loss11 = 1.76797e-05 (* 0.0454545 = 8.03622e-07 loss) | |
I0405 11:55:09.236413 26022 solver.cpp:245] Train net output #33: loss/loss12 = 1.70335e-05 (* 0.0454545 = 7.7425e-07 loss) | |
I0405 11:55:09.236428 26022 solver.cpp:245] Train net output #34: loss/loss13 = 1.41497e-05 (* 0.0454545 = 6.43167e-07 loss) | |
I0405 11:55:09.236443 26022 solver.cpp:245] Train net output #35: loss/loss14 = 1.45949e-05 (* 0.0454545 = 6.63403e-07 loss) | |
I0405 11:55:09.236457 26022 solver.cpp:245] Train net output #36: loss/loss15 = 1.35087e-05 (* 0.0454545 = 6.14033e-07 loss) | |
I0405 11:55:09.236472 26022 solver.cpp:245] Train net output #37: loss/loss16 = 1.82946e-05 (* 0.0454545 = 8.31573e-07 loss) | |
I0405 11:55:09.236486 26022 solver.cpp:245] Train net output #38: loss/loss17 = 1.49525e-05 (* 0.0454545 = 6.79661e-07 loss) | |
I0405 11:55:09.236521 26022 solver.cpp:245] Train net output #39: loss/loss18 = 1.50737e-05 (* 0.0454545 = 6.85167e-07 loss) | |
I0405 11:55:09.236536 26022 solver.cpp:245] Train net output #40: loss/loss19 = 1.40525e-05 (* 0.0454545 = 6.38752e-07 loss) | |
I0405 11:55:09.236552 26022 solver.cpp:245] Train net output #41: loss/loss20 = 1.38366e-05 (* 0.0454545 = 6.28936e-07 loss) | |
I0405 11:55:09.236565 26022 solver.cpp:245] Train net output #42: loss/loss21 = 1.30951e-05 (* 0.0454545 = 5.95233e-07 loss) | |
I0405 11:55:09.236580 26022 solver.cpp:245] Train net output #43: loss/loss22 = 1.41515e-05 (* 0.0454545 = 6.4325e-07 loss) | |
I0405 11:55:09.236593 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 11:55:09.236604 26022 solver.cpp:245] Train net output #45: total_confidence = 3.9601e-05 | |
I0405 11:55:09.236619 26022 sgd_solver.cpp:106] Iteration 4050, lr = 0.039838 | |
I0405 12:04:11.472285 26022 solver.cpp:229] Iteration 4100, loss = 0.930841 | |
I0405 12:04:11.472473 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 12:04:11.472494 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 12:04:11.472507 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625 | |
I0405 12:04:11.472520 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0405 12:04:11.472532 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0405 12:04:11.472545 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 12:04:11.472558 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 12:04:11.472569 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.78125 | |
I0405 12:04:11.472581 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 12:04:11.472594 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 12:04:11.472605 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 12:04:11.472617 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 12:04:11.472628 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 12:04:11.472640 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 12:04:11.472652 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 12:04:11.472663 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 12:04:11.472676 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 12:04:11.472687 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 12:04:11.472698 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 12:04:11.472710 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 12:04:11.472721 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 12:04:11.472733 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 12:04:11.472748 26022 solver.cpp:245] Train net output #22: loss/loss01 = 2.96774 (* 0.0454545 = 0.134897 loss) | |
I0405 12:04:11.472764 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.20847 (* 0.0454545 = 0.14584 loss) | |
I0405 12:04:11.472779 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.16788 (* 0.0454545 = 0.143994 loss) | |
I0405 12:04:11.472792 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.03697 (* 0.0454545 = 0.138044 loss) | |
I0405 12:04:11.472806 26022 solver.cpp:245] Train net output #26: loss/loss05 = 2.87908 (* 0.0454545 = 0.130867 loss) | |
I0405 12:04:11.472820 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.31877 (* 0.0454545 = 0.105399 loss) | |
I0405 12:04:11.472834 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.40923 (* 0.0454545 = 0.0640558 loss) | |
I0405 12:04:11.472849 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.945133 (* 0.0454545 = 0.0429606 loss) | |
I0405 12:04:11.472863 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.42097 (* 0.0454545 = 0.019135 loss) | |
I0405 12:04:11.472878 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.321204 (* 0.0454545 = 0.0146002 loss) | |
I0405 12:04:11.472894 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000646828 (* 0.0454545 = 2.94013e-05 loss) | |
I0405 12:04:11.472910 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000555332 (* 0.0454545 = 2.52424e-05 loss) | |
I0405 12:04:11.472925 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000594134 (* 0.0454545 = 2.70061e-05 loss) | |
I0405 12:04:11.472940 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000553366 (* 0.0454545 = 2.5153e-05 loss) | |
I0405 12:04:11.472954 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000482425 (* 0.0454545 = 2.19284e-05 loss) | |
I0405 12:04:11.472968 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.00053245 (* 0.0454545 = 2.42023e-05 loss) | |
I0405 12:04:11.472983 26022 solver.cpp:245] Train net output #38: loss/loss17 = 0.00057707 (* 0.0454545 = 2.62304e-05 loss) | |
I0405 12:04:11.473016 26022 solver.cpp:245] Train net output #39: loss/loss18 = 0.000592736 (* 0.0454545 = 2.69425e-05 loss) | |
I0405 12:04:11.473031 26022 solver.cpp:245] Train net output #40: loss/loss19 = 0.000482738 (* 0.0454545 = 2.19427e-05 loss) | |
I0405 12:04:11.473047 26022 solver.cpp:245] Train net output #41: loss/loss20 = 0.000545252 (* 0.0454545 = 2.47842e-05 loss) | |
I0405 12:04:11.473060 26022 solver.cpp:245] Train net output #42: loss/loss21 = 0.000487242 (* 0.0454545 = 2.21474e-05 loss) | |
I0405 12:04:11.473074 26022 solver.cpp:245] Train net output #43: loss/loss22 = 0.000535608 (* 0.0454545 = 2.43458e-05 loss) | |
I0405 12:04:11.473088 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 12:04:11.473099 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000232486 | |
I0405 12:04:11.473114 26022 sgd_solver.cpp:106] Iteration 4100, lr = 0.039836 | |
I0405 12:09:04.782937 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.9691 > 30) by scale factor 0.938405 | |
I0405 12:13:13.621439 26022 solver.cpp:229] Iteration 4150, loss = 0.930428 | |
I0405 12:13:13.621541 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0405 12:13:13.621562 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 12:13:13.621574 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 12:13:13.621587 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 12:13:13.621599 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 12:13:13.621611 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 12:13:13.621623 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 12:13:13.621635 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 12:13:13.621647 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 12:13:13.621659 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 12:13:13.621671 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 12:13:13.621683 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 12:13:13.621695 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 12:13:13.621706 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 12:13:13.621717 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 12:13:13.621728 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 12:13:13.621740 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 12:13:13.621752 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 12:13:13.621762 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 12:13:13.621773 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 12:13:13.621784 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 12:13:13.621796 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 12:13:13.621811 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.08193 (* 0.0454545 = 0.140088 loss) | |
I0405 12:13:13.621826 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.40348 (* 0.0454545 = 0.154704 loss) | |
I0405 12:13:13.621840 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.25422 (* 0.0454545 = 0.147919 loss) | |
I0405 12:13:13.621853 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.05986 (* 0.0454545 = 0.139085 loss) | |
I0405 12:13:13.621870 26022 solver.cpp:245] Train net output #26: loss/loss05 = 2.83245 (* 0.0454545 = 0.128748 loss) | |
I0405 12:13:13.621886 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.38745 (* 0.0454545 = 0.108521 loss) | |
I0405 12:13:13.621899 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.32328 (* 0.0454545 = 0.0601489 loss) | |
I0405 12:13:13.621913 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.617075 (* 0.0454545 = 0.0280489 loss) | |
I0405 12:13:13.621927 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.261549 (* 0.0454545 = 0.0118886 loss) | |
I0405 12:13:13.621942 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.158553 (* 0.0454545 = 0.00720696 loss) | |
I0405 12:13:13.621955 26022 solver.cpp:245] Train net output #32: loss/loss11 = 1.31695e-05 (* 0.0454545 = 5.98614e-07 loss) | |
I0405 12:13:13.621970 26022 solver.cpp:245] Train net output #33: loss/loss12 = 1.65941e-05 (* 0.0454545 = 7.54275e-07 loss) | |
I0405 12:13:13.621984 26022 solver.cpp:245] Train net output #34: loss/loss13 = 1.29444e-05 (* 0.0454545 = 5.88384e-07 loss) | |
I0405 12:13:13.621999 26022 solver.cpp:245] Train net output #35: loss/loss14 = 1.27506e-05 (* 0.0454545 = 5.79572e-07 loss) | |
I0405 12:13:13.622012 26022 solver.cpp:245] Train net output #36: loss/loss15 = 1.28698e-05 (* 0.0454545 = 5.84991e-07 loss) | |
I0405 12:13:13.622026 26022 solver.cpp:245] Train net output #37: loss/loss16 = 2.04134e-05 (* 0.0454545 = 9.27883e-07 loss) | |
I0405 12:13:13.622041 26022 solver.cpp:245] Train net output #38: loss/loss17 = 1.25754e-05 (* 0.0454545 = 5.71611e-07 loss) | |
I0405 12:13:13.622073 26022 solver.cpp:245] Train net output #39: loss/loss18 = 1.57856e-05 (* 0.0454545 = 7.17529e-07 loss) | |
I0405 12:13:13.622089 26022 solver.cpp:245] Train net output #40: loss/loss19 = 1.03902e-05 (* 0.0454545 = 4.7228e-07 loss) | |
I0405 12:13:13.622104 26022 solver.cpp:245] Train net output #41: loss/loss20 = 1.17931e-05 (* 0.0454545 = 5.36049e-07 loss) | |
I0405 12:13:13.622118 26022 solver.cpp:245] Train net output #42: loss/loss21 = 1.20426e-05 (* 0.0454545 = 5.47393e-07 loss) | |
I0405 12:13:13.622133 26022 solver.cpp:245] Train net output #43: loss/loss22 = 1.47851e-05 (* 0.0454545 = 6.72051e-07 loss) | |
I0405 12:13:13.622145 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 12:13:13.622158 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000680223 | |
I0405 12:13:13.622172 26022 sgd_solver.cpp:106] Iteration 4150, lr = 0.039834 | |
I0405 12:22:15.701251 26022 solver.cpp:229] Iteration 4200, loss = 0.925432 | |
I0405 12:22:15.701426 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 12:22:15.701445 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625 | |
I0405 12:22:15.701459 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 12:22:15.701472 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 12:22:15.701484 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 12:22:15.701496 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 12:22:15.701508 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 12:22:15.701520 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 12:22:15.701532 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 12:22:15.701545 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 12:22:15.701556 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 12:22:15.701568 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 12:22:15.701580 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 12:22:15.701591 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 12:22:15.701602 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 12:22:15.701614 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 12:22:15.701625 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 12:22:15.701637 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 12:22:15.701648 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 12:22:15.701660 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 12:22:15.701673 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 12:22:15.701683 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 12:22:15.701699 26022 solver.cpp:245] Train net output #22: loss/loss01 = 2.81131 (* 0.0454545 = 0.127787 loss) | |
I0405 12:22:15.701714 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.01126 (* 0.0454545 = 0.136875 loss) | |
I0405 12:22:15.701727 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.31926 (* 0.0454545 = 0.150875 loss) | |
I0405 12:22:15.701742 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.2033 (* 0.0454545 = 0.145604 loss) | |
I0405 12:22:15.701756 26022 solver.cpp:245] Train net output #26: loss/loss05 = 2.82025 (* 0.0454545 = 0.128193 loss) | |
I0405 12:22:15.701771 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.36316 (* 0.0454545 = 0.107416 loss) | |
I0405 12:22:15.701786 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.49108 (* 0.0454545 = 0.0677765 loss) | |
I0405 12:22:15.701799 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.930879 (* 0.0454545 = 0.0423127 loss) | |
I0405 12:22:15.701814 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.0416777 (* 0.0454545 = 0.00189444 loss) | |
I0405 12:22:15.701828 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0177292 (* 0.0454545 = 0.000805874 loss) | |
I0405 12:22:15.701843 26022 solver.cpp:245] Train net output #32: loss/loss11 = 7.34159e-05 (* 0.0454545 = 3.33709e-06 loss) | |
I0405 12:22:15.701859 26022 solver.cpp:245] Train net output #33: loss/loss12 = 6.62975e-05 (* 0.0454545 = 3.01352e-06 loss) | |
I0405 12:22:15.701874 26022 solver.cpp:245] Train net output #34: loss/loss13 = 6.47165e-05 (* 0.0454545 = 2.94166e-06 loss) | |
I0405 12:22:15.701892 26022 solver.cpp:245] Train net output #35: loss/loss14 = 6.60159e-05 (* 0.0454545 = 3.00072e-06 loss) | |
I0405 12:22:15.701908 26022 solver.cpp:245] Train net output #36: loss/loss15 = 5.39788e-05 (* 0.0454545 = 2.45358e-06 loss) | |
I0405 12:22:15.701922 26022 solver.cpp:245] Train net output #37: loss/loss16 = 5.59057e-05 (* 0.0454545 = 2.54117e-06 loss) | |
I0405 12:22:15.701937 26022 solver.cpp:245] Train net output #38: loss/loss17 = 6.17518e-05 (* 0.0454545 = 2.8069e-06 loss) | |
I0405 12:22:15.701969 26022 solver.cpp:245] Train net output #39: loss/loss18 = 6.07995e-05 (* 0.0454545 = 2.76361e-06 loss) | |
I0405 12:22:15.701985 26022 solver.cpp:245] Train net output #40: loss/loss19 = 5.70579e-05 (* 0.0454545 = 2.59354e-06 loss) | |
I0405 12:22:15.702011 26022 solver.cpp:245] Train net output #41: loss/loss20 = 5.53709e-05 (* 0.0454545 = 2.51686e-06 loss) | |
I0405 12:22:15.702040 26022 solver.cpp:245] Train net output #42: loss/loss21 = 5.35909e-05 (* 0.0454545 = 2.43595e-06 loss) | |
I0405 12:22:15.702059 26022 solver.cpp:245] Train net output #43: loss/loss22 = 5.95704e-05 (* 0.0454545 = 2.70775e-06 loss) | |
I0405 12:22:15.702070 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 12:22:15.702082 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000234615 | |
I0405 12:22:15.702097 26022 sgd_solver.cpp:106] Iteration 4200, lr = 0.039832 | |
I0405 12:31:17.903682 26022 solver.cpp:229] Iteration 4250, loss = 0.922091 | |
I0405 12:31:17.903853 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 12:31:17.903872 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 12:31:17.903887 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 12:31:17.903899 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 12:31:17.903913 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 12:31:17.903924 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125 | |
I0405 12:31:17.903936 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 12:31:17.903949 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 12:31:17.903961 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 12:31:17.903973 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 12:31:17.903985 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 12:31:17.903997 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 12:31:17.904009 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 12:31:17.904021 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 12:31:17.904032 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 12:31:17.904044 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 12:31:17.904057 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 12:31:17.904083 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 12:31:17.904099 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 12:31:17.904111 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 12:31:17.904124 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 12:31:17.904135 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 12:31:17.904150 26022 solver.cpp:245] Train net output #22: loss/loss01 = 2.95309 (* 0.0454545 = 0.134231 loss) | |
I0405 12:31:17.904165 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.08962 (* 0.0454545 = 0.140437 loss) | |
I0405 12:31:17.904181 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.25099 (* 0.0454545 = 0.147772 loss) | |
I0405 12:31:17.904196 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.43163 (* 0.0454545 = 0.155983 loss) | |
I0405 12:31:17.904213 26022 solver.cpp:245] Train net output #26: loss/loss05 = 2.79934 (* 0.0454545 = 0.127243 loss) | |
I0405 12:31:17.904228 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.58877 (* 0.0454545 = 0.117671 loss) | |
I0405 12:31:17.904242 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.30406 (* 0.0454545 = 0.0592754 loss) | |
I0405 12:31:17.904258 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.581785 (* 0.0454545 = 0.0264448 loss) | |
I0405 12:31:17.904271 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.183036 (* 0.0454545 = 0.00831984 loss) | |
I0405 12:31:17.904286 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0376592 (* 0.0454545 = 0.00171178 loss) | |
I0405 12:31:17.904301 26022 solver.cpp:245] Train net output #32: loss/loss11 = 6.47918e-05 (* 0.0454545 = 2.94508e-06 loss) | |
I0405 12:31:17.904320 26022 solver.cpp:245] Train net output #33: loss/loss12 = 5.87884e-05 (* 0.0454545 = 2.6722e-06 loss) | |
I0405 12:31:17.904335 26022 solver.cpp:245] Train net output #34: loss/loss13 = 5.43011e-05 (* 0.0454545 = 2.46823e-06 loss) | |
I0405 12:31:17.904350 26022 solver.cpp:245] Train net output #35: loss/loss14 = 5.69638e-05 (* 0.0454545 = 2.58927e-06 loss) | |
I0405 12:31:17.904366 26022 solver.cpp:245] Train net output #36: loss/loss15 = 4.94458e-05 (* 0.0454545 = 2.24754e-06 loss) | |
I0405 12:31:17.904381 26022 solver.cpp:245] Train net output #37: loss/loss16 = 5.65503e-05 (* 0.0454545 = 2.57047e-06 loss) | |
I0405 12:31:17.904394 26022 solver.cpp:245] Train net output #38: loss/loss17 = 5.28461e-05 (* 0.0454545 = 2.4021e-06 loss) | |
I0405 12:31:17.904428 26022 solver.cpp:245] Train net output #39: loss/loss18 = 5.46606e-05 (* 0.0454545 = 2.48457e-06 loss) | |
I0405 12:31:17.904443 26022 solver.cpp:245] Train net output #40: loss/loss19 = 5.28988e-05 (* 0.0454545 = 2.40449e-06 loss) | |
I0405 12:31:17.904458 26022 solver.cpp:245] Train net output #41: loss/loss20 = 5.09237e-05 (* 0.0454545 = 2.31471e-06 loss) | |
I0405 12:31:17.904472 26022 solver.cpp:245] Train net output #42: loss/loss21 = 4.9538e-05 (* 0.0454545 = 2.25173e-06 loss) | |
I0405 12:31:17.904487 26022 solver.cpp:245] Train net output #43: loss/loss22 = 5.29775e-05 (* 0.0454545 = 2.40807e-06 loss) | |
I0405 12:31:17.904500 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 12:31:17.904512 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000435153 | |
I0405 12:31:17.904526 26022 sgd_solver.cpp:106] Iteration 4250, lr = 0.03983 | |
I0405 12:32:55.947969 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 32.7468 > 30) by scale factor 0.916121 | |
I0405 12:37:26.989879 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.9032 > 30) by scale factor 0.970774 | |
I0405 12:37:59.524092 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 33.8172 > 30) by scale factor 0.887122 | |
I0405 12:40:20.002332 26022 solver.cpp:229] Iteration 4300, loss = 0.929997 | |
I0405 12:40:20.002439 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0405 12:40:20.002460 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 12:40:20.002472 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 12:40:20.002485 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 12:40:20.002498 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.03125 | |
I0405 12:40:20.002511 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0405 12:40:20.002523 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 12:40:20.002535 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 12:40:20.002547 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 12:40:20.002560 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 12:40:20.002573 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 12:40:20.002585 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 12:40:20.002596 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 12:40:20.002609 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 12:40:20.002620 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 12:40:20.002631 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 12:40:20.002643 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 12:40:20.002655 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 12:40:20.002666 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 12:40:20.002678 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 12:40:20.002689 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 12:40:20.002701 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 12:40:20.002717 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.17136 (* 0.0454545 = 0.144153 loss) | |
I0405 12:40:20.002730 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.30348 (* 0.0454545 = 0.150158 loss) | |
I0405 12:40:20.002745 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.42882 (* 0.0454545 = 0.155855 loss) | |
I0405 12:40:20.002760 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.31824 (* 0.0454545 = 0.150829 loss) | |
I0405 12:40:20.002774 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.37524 (* 0.0454545 = 0.15342 loss) | |
I0405 12:40:20.002789 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.74805 (* 0.0454545 = 0.124911 loss) | |
I0405 12:40:20.002804 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.59736 (* 0.0454545 = 0.0726074 loss) | |
I0405 12:40:20.002817 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.760797 (* 0.0454545 = 0.0345817 loss) | |
I0405 12:40:20.002831 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.617443 (* 0.0454545 = 0.0280656 loss) | |
I0405 12:40:20.002848 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.362134 (* 0.0454545 = 0.0164606 loss) | |
I0405 12:40:20.002864 26022 solver.cpp:245] Train net output #32: loss/loss11 = 2.25674e-05 (* 0.0454545 = 1.02579e-06 loss) | |
I0405 12:40:20.002881 26022 solver.cpp:245] Train net output #33: loss/loss12 = 2.53768e-05 (* 0.0454545 = 1.15349e-06 loss) | |
I0405 12:40:20.002894 26022 solver.cpp:245] Train net output #34: loss/loss13 = 2.4602e-05 (* 0.0454545 = 1.11827e-06 loss) | |
I0405 12:40:20.002910 26022 solver.cpp:245] Train net output #35: loss/loss14 = 2.19751e-05 (* 0.0454545 = 9.98868e-07 loss) | |
I0405 12:40:20.002925 26022 solver.cpp:245] Train net output #36: loss/loss15 = 2.10735e-05 (* 0.0454545 = 9.57886e-07 loss) | |
I0405 12:40:20.002939 26022 solver.cpp:245] Train net output #37: loss/loss16 = 2.94662e-05 (* 0.0454545 = 1.33937e-06 loss) | |
I0405 12:40:20.002954 26022 solver.cpp:245] Train net output #38: loss/loss17 = 2.14237e-05 (* 0.0454545 = 9.73804e-07 loss) | |
I0405 12:40:20.002985 26022 solver.cpp:245] Train net output #39: loss/loss18 = 2.90081e-05 (* 0.0454545 = 1.31855e-06 loss) | |
I0405 12:40:20.003002 26022 solver.cpp:245] Train net output #40: loss/loss19 = 1.70552e-05 (* 0.0454545 = 7.75237e-07 loss) | |
I0405 12:40:20.003016 26022 solver.cpp:245] Train net output #41: loss/loss20 = 2.22881e-05 (* 0.0454545 = 1.0131e-06 loss) | |
I0405 12:40:20.003031 26022 solver.cpp:245] Train net output #42: loss/loss21 = 1.8987e-05 (* 0.0454545 = 8.63047e-07 loss) | |
I0405 12:40:20.003046 26022 solver.cpp:245] Train net output #43: loss/loss22 = 2.528e-05 (* 0.0454545 = 1.14909e-06 loss) | |
I0405 12:40:20.003058 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 12:40:20.003072 26022 solver.cpp:245] Train net output #45: total_confidence = 4.50421e-06 | |
I0405 12:40:20.003085 26022 sgd_solver.cpp:106] Iteration 4300, lr = 0.039828 | |
I0405 12:49:22.098310 26022 solver.cpp:229] Iteration 4350, loss = 0.926335 | |
I0405 12:49:22.098562 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 12:49:22.098584 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0405 12:49:22.098598 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 12:49:22.098611 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 12:49:22.098623 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0405 12:49:22.098636 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.21875 | |
I0405 12:49:22.098649 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 12:49:22.098661 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 12:49:22.098673 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 12:49:22.098688 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 12:49:22.098701 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 12:49:22.098713 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 12:49:22.098726 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 12:49:22.098738 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 12:49:22.098750 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 12:49:22.098762 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 12:49:22.098773 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 12:49:22.098785 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 12:49:22.098796 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 12:49:22.098809 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 12:49:22.098820 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 12:49:22.098831 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 12:49:22.098847 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.08135 (* 0.0454545 = 0.140061 loss) | |
I0405 12:49:22.098862 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.23182 (* 0.0454545 = 0.146901 loss) | |
I0405 12:49:22.098876 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.2365 (* 0.0454545 = 0.147113 loss) | |
I0405 12:49:22.098891 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.20838 (* 0.0454545 = 0.145835 loss) | |
I0405 12:49:22.098906 26022 solver.cpp:245] Train net output #26: loss/loss05 = 3.25535 (* 0.0454545 = 0.147971 loss) | |
I0405 12:49:22.098927 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.85899 (* 0.0454545 = 0.129954 loss) | |
I0405 12:49:22.098944 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.47823 (* 0.0454545 = 0.0671922 loss) | |
I0405 12:49:22.098958 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.30101 (* 0.0454545 = 0.0136823 loss) | |
I0405 12:49:22.098973 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.137203 (* 0.0454545 = 0.00623649 loss) | |
I0405 12:49:22.098990 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.148568 (* 0.0454545 = 0.00675307 loss) | |
I0405 12:49:22.099019 26022 solver.cpp:245] Train net output #32: loss/loss11 = 2.42542e-05 (* 0.0454545 = 1.10246e-06 loss) | |
I0405 12:49:22.099035 26022 solver.cpp:245] Train net output #33: loss/loss12 = 2.86628e-05 (* 0.0454545 = 1.30286e-06 loss) | |
I0405 12:49:22.099050 26022 solver.cpp:245] Train net output #34: loss/loss13 = 2.44652e-05 (* 0.0454545 = 1.11205e-06 loss) | |
I0405 12:49:22.099064 26022 solver.cpp:245] Train net output #35: loss/loss14 = 2.26859e-05 (* 0.0454545 = 1.03118e-06 loss) | |
I0405 12:49:22.099079 26022 solver.cpp:245] Train net output #36: loss/loss15 = 2.49831e-05 (* 0.0454545 = 1.1356e-06 loss) | |
I0405 12:49:22.099094 26022 solver.cpp:245] Train net output #37: loss/loss16 = 3.42009e-05 (* 0.0454545 = 1.55459e-06 loss) | |
I0405 12:49:22.099109 26022 solver.cpp:245] Train net output #38: loss/loss17 = 2.38875e-05 (* 0.0454545 = 1.0858e-06 loss) | |
I0405 12:49:22.099138 26022 solver.cpp:245] Train net output #39: loss/loss18 = 2.84061e-05 (* 0.0454545 = 1.29118e-06 loss) | |
I0405 12:49:22.099154 26022 solver.cpp:245] Train net output #40: loss/loss19 = 2.13923e-05 (* 0.0454545 = 9.72379e-07 loss) | |
I0405 12:49:22.099169 26022 solver.cpp:245] Train net output #41: loss/loss20 = 2.45508e-05 (* 0.0454545 = 1.11594e-06 loss) | |
I0405 12:49:22.099184 26022 solver.cpp:245] Train net output #42: loss/loss21 = 2.39042e-05 (* 0.0454545 = 1.08655e-06 loss) | |
I0405 12:49:22.099200 26022 solver.cpp:245] Train net output #43: loss/loss22 = 2.67217e-05 (* 0.0454545 = 1.21462e-06 loss) | |
I0405 12:49:22.099211 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 12:49:22.099223 26022 solver.cpp:245] Train net output #45: total_confidence = 6.06346e-05 | |
I0405 12:49:22.099238 26022 sgd_solver.cpp:106] Iteration 4350, lr = 0.039826 | |
I0405 12:58:24.173490 26022 solver.cpp:229] Iteration 4400, loss = 0.920966 | |
I0405 12:58:24.173683 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 12:58:24.173704 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625 | |
I0405 12:58:24.173717 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 12:58:24.173730 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 12:58:24.173743 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375 | |
I0405 12:58:24.173755 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 12:58:24.173768 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 12:58:24.173780 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 12:58:24.173791 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 12:58:24.173804 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 12:58:24.173816 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 12:58:24.173828 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 12:58:24.173840 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 12:58:24.173851 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 12:58:24.173863 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 12:58:24.173876 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 12:58:24.173887 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 12:58:24.173898 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 12:58:24.173910 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 12:58:24.173923 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 12:58:24.173933 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 12:58:24.173945 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 12:58:24.173960 26022 solver.cpp:245] Train net output #22: loss/loss01 = 2.89293 (* 0.0454545 = 0.131497 loss) | |
I0405 12:58:24.173975 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.05804 (* 0.0454545 = 0.139002 loss) | |
I0405 12:58:24.173990 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.27827 (* 0.0454545 = 0.149012 loss) | |
I0405 12:58:24.174005 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.04743 (* 0.0454545 = 0.13852 loss) | |
I0405 12:58:24.174018 26022 solver.cpp:245] Train net output #26: loss/loss05 = 2.28458 (* 0.0454545 = 0.103845 loss) | |
I0405 12:58:24.174037 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.30344 (* 0.0454545 = 0.104702 loss) | |
I0405 12:58:24.174052 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.45469 (* 0.0454545 = 0.0661221 loss) | |
I0405 12:58:24.174067 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.488327 (* 0.0454545 = 0.0221967 loss) | |
I0405 12:58:24.174082 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.202093 (* 0.0454545 = 0.00918606 loss) | |
I0405 12:58:24.174095 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.163596 (* 0.0454545 = 0.00743616 loss) | |
I0405 12:58:24.174110 26022 solver.cpp:245] Train net output #32: loss/loss11 = 1.3953e-05 (* 0.0454545 = 6.34229e-07 loss) | |
I0405 12:58:24.174125 26022 solver.cpp:245] Train net output #33: loss/loss12 = 1.00686e-05 (* 0.0454545 = 4.57664e-07 loss) | |
I0405 12:58:24.174140 26022 solver.cpp:245] Train net output #34: loss/loss13 = 8.76452e-06 (* 0.0454545 = 3.98387e-07 loss) | |
I0405 12:58:24.174155 26022 solver.cpp:245] Train net output #35: loss/loss14 = 1.22504e-05 (* 0.0454545 = 5.56834e-07 loss) | |
I0405 12:58:24.174170 26022 solver.cpp:245] Train net output #36: loss/loss15 = 9.89725e-06 (* 0.0454545 = 4.49875e-07 loss) | |
I0405 12:58:24.174185 26022 solver.cpp:245] Train net output #37: loss/loss16 = 8.91348e-06 (* 0.0454545 = 4.05158e-07 loss) | |
I0405 12:58:24.174199 26022 solver.cpp:245] Train net output #38: loss/loss17 = 1.04934e-05 (* 0.0454545 = 4.76973e-07 loss) | |
I0405 12:58:24.174233 26022 solver.cpp:245] Train net output #39: loss/loss18 = 1.06947e-05 (* 0.0454545 = 4.86122e-07 loss) | |
I0405 12:58:24.174250 26022 solver.cpp:245] Train net output #40: loss/loss19 = 1.03517e-05 (* 0.0454545 = 4.70532e-07 loss) | |
I0405 12:58:24.174264 26022 solver.cpp:245] Train net output #41: loss/loss20 = 8.82409e-06 (* 0.0454545 = 4.01095e-07 loss) | |
I0405 12:58:24.174279 26022 solver.cpp:245] Train net output #42: loss/loss21 = 9.1222e-06 (* 0.0454545 = 4.14646e-07 loss) | |
I0405 12:58:24.174293 26022 solver.cpp:245] Train net output #43: loss/loss22 = 9.80413e-06 (* 0.0454545 = 4.45642e-07 loss) | |
I0405 12:58:24.174306 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 12:58:24.174319 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000472303 | |
I0405 12:58:24.174334 26022 sgd_solver.cpp:106] Iteration 4400, lr = 0.039824 | |
I0405 13:02:33.947335 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 39.1666 > 30) by scale factor 0.76596 | |
I0405 13:03:17.322451 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.8404 > 30) by scale factor 0.972749 | |
I0405 13:07:26.214232 26022 solver.cpp:229] Iteration 4450, loss = 0.928573 | |
I0405 13:07:26.214416 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 13:07:26.214435 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 13:07:26.214448 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0405 13:07:26.214462 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875 | |
I0405 13:07:26.214474 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375 | |
I0405 13:07:26.214486 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 13:07:26.214499 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 13:07:26.214511 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 13:07:26.214524 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 13:07:26.214536 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 13:07:26.214548 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 13:07:26.214560 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 13:07:26.214572 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 13:07:26.214584 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 13:07:26.214596 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 13:07:26.214607 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 13:07:26.214620 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 13:07:26.214632 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 13:07:26.214643 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 13:07:26.214654 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 13:07:26.214666 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 13:07:26.214678 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 13:07:26.214694 26022 solver.cpp:245] Train net output #22: loss/loss01 = 2.99026 (* 0.0454545 = 0.135921 loss) | |
I0405 13:07:26.214709 26022 solver.cpp:245] Train net output #23: loss/loss02 = 2.91354 (* 0.0454545 = 0.132434 loss) | |
I0405 13:07:26.214723 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.13748 (* 0.0454545 = 0.142613 loss) | |
I0405 13:07:26.214737 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.00651 (* 0.0454545 = 0.136659 loss) | |
I0405 13:07:26.214752 26022 solver.cpp:245] Train net output #26: loss/loss05 = 2.4992 (* 0.0454545 = 0.1136 loss) | |
I0405 13:07:26.214766 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.15653 (* 0.0454545 = 0.098024 loss) | |
I0405 13:07:26.214787 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.07777 (* 0.0454545 = 0.0489894 loss) | |
I0405 13:07:26.214802 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.53151 (* 0.0454545 = 0.0241595 loss) | |
I0405 13:07:26.214818 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.380413 (* 0.0454545 = 0.0172915 loss) | |
I0405 13:07:26.214831 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.36797 (* 0.0454545 = 0.0167259 loss) | |
I0405 13:07:26.214846 26022 solver.cpp:245] Train net output #32: loss/loss11 = 6.52311e-06 (* 0.0454545 = 2.96505e-07 loss) | |
I0405 13:07:26.214861 26022 solver.cpp:245] Train net output #33: loss/loss12 = 4.70883e-06 (* 0.0454545 = 2.14038e-07 loss) | |
I0405 13:07:26.214875 26022 solver.cpp:245] Train net output #34: loss/loss13 = 4.06434e-06 (* 0.0454545 = 1.84743e-07 loss) | |
I0405 13:07:26.214890 26022 solver.cpp:245] Train net output #35: loss/loss14 = 3.93395e-06 (* 0.0454545 = 1.78816e-07 loss) | |
I0405 13:07:26.214905 26022 solver.cpp:245] Train net output #36: loss/loss15 = 4.67903e-06 (* 0.0454545 = 2.12683e-07 loss) | |
I0405 13:07:26.214920 26022 solver.cpp:245] Train net output #37: loss/loss16 = 6.90313e-06 (* 0.0454545 = 3.13779e-07 loss) | |
I0405 13:07:26.214934 26022 solver.cpp:245] Train net output #38: loss/loss17 = 4.98451e-06 (* 0.0454545 = 2.26569e-07 loss) | |
I0405 13:07:26.214967 26022 solver.cpp:245] Train net output #39: loss/loss18 = 4.28041e-06 (* 0.0454545 = 1.94564e-07 loss) | |
I0405 13:07:26.214982 26022 solver.cpp:245] Train net output #40: loss/loss19 = 7.38744e-06 (* 0.0454545 = 3.35793e-07 loss) | |
I0405 13:07:26.214997 26022 solver.cpp:245] Train net output #41: loss/loss20 = 5.53216e-06 (* 0.0454545 = 2.51462e-07 loss) | |
I0405 13:07:26.215011 26022 solver.cpp:245] Train net output #42: loss/loss21 = 5.0553e-06 (* 0.0454545 = 2.29786e-07 loss) | |
I0405 13:07:26.215026 26022 solver.cpp:245] Train net output #43: loss/loss22 = 3.93767e-06 (* 0.0454545 = 1.78985e-07 loss) | |
I0405 13:07:26.215039 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 13:07:26.215050 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000511933 | |
I0405 13:07:26.215065 26022 sgd_solver.cpp:106] Iteration 4450, lr = 0.039822 | |
I0405 13:16:28.394696 26022 solver.cpp:229] Iteration 4500, loss = 0.915217 | |
I0405 13:16:28.394942 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 13:16:28.394963 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 13:16:28.394978 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 13:16:28.394990 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0405 13:16:28.395005 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 13:16:28.395018 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625 | |
I0405 13:16:28.395031 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 13:16:28.395043 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 13:16:28.395056 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 13:16:28.395068 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 13:16:28.395081 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 13:16:28.395092 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 13:16:28.395104 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 13:16:28.395117 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 13:16:28.395128 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 13:16:28.395139 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 13:16:28.395151 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 13:16:28.395164 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 13:16:28.395175 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 13:16:28.395187 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 13:16:28.395200 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 13:16:28.395210 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 13:16:28.395226 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.03215 (* 0.0454545 = 0.137825 loss) | |
I0405 13:16:28.395241 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.3854 (* 0.0454545 = 0.153882 loss) | |
I0405 13:16:28.395256 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.36403 (* 0.0454545 = 0.15291 loss) | |
I0405 13:16:28.395270 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.12144 (* 0.0454545 = 0.141884 loss) | |
I0405 13:16:28.395285 26022 solver.cpp:245] Train net output #26: loss/loss05 = 2.66616 (* 0.0454545 = 0.121189 loss) | |
I0405 13:16:28.395300 26022 solver.cpp:245] Train net output #27: loss/loss06 = 1.81339 (* 0.0454545 = 0.082427 loss) | |
I0405 13:16:28.395314 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.03027 (* 0.0454545 = 0.0468304 loss) | |
I0405 13:16:28.395329 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.462859 (* 0.0454545 = 0.0210391 loss) | |
I0405 13:16:28.395344 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.232366 (* 0.0454545 = 0.0105621 loss) | |
I0405 13:16:28.395359 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.219943 (* 0.0454545 = 0.0099974 loss) | |
I0405 13:16:28.395373 26022 solver.cpp:245] Train net output #32: loss/loss11 = 2.13258e-05 (* 0.0454545 = 9.69356e-07 loss) | |
I0405 13:16:28.395388 26022 solver.cpp:245] Train net output #33: loss/loss12 = 1.8386e-05 (* 0.0454545 = 8.35726e-07 loss) | |
I0405 13:16:28.395404 26022 solver.cpp:245] Train net output #34: loss/loss13 = 1.50457e-05 (* 0.0454545 = 6.83894e-07 loss) | |
I0405 13:16:28.395419 26022 solver.cpp:245] Train net output #35: loss/loss14 = 1.5284e-05 (* 0.0454545 = 6.94729e-07 loss) | |
I0405 13:16:28.395443 26022 solver.cpp:245] Train net output #36: loss/loss15 = 1.74117e-05 (* 0.0454545 = 7.91441e-07 loss) | |
I0405 13:16:28.395470 26022 solver.cpp:245] Train net output #37: loss/loss16 = 2.14323e-05 (* 0.0454545 = 9.74195e-07 loss) | |
I0405 13:16:28.395486 26022 solver.cpp:245] Train net output #38: loss/loss17 = 1.67409e-05 (* 0.0454545 = 7.60949e-07 loss) | |
I0405 13:16:28.395516 26022 solver.cpp:245] Train net output #39: loss/loss18 = 1.68136e-05 (* 0.0454545 = 7.64254e-07 loss) | |
I0405 13:16:28.395532 26022 solver.cpp:245] Train net output #40: loss/loss19 = 1.94259e-05 (* 0.0454545 = 8.82997e-07 loss) | |
I0405 13:16:28.395547 26022 solver.cpp:245] Train net output #41: loss/loss20 = 1.82706e-05 (* 0.0454545 = 8.30484e-07 loss) | |
I0405 13:16:28.395561 26022 solver.cpp:245] Train net output #42: loss/loss21 = 1.77396e-05 (* 0.0454545 = 8.06346e-07 loss) | |
I0405 13:16:28.395576 26022 solver.cpp:245] Train net output #43: loss/loss22 = 1.78457e-05 (* 0.0454545 = 8.1117e-07 loss) | |
I0405 13:16:28.395589 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 13:16:28.395601 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000619774 | |
I0405 13:16:28.395617 26022 sgd_solver.cpp:106] Iteration 4500, lr = 0.03982 | |
I0405 13:25:30.439033 26022 solver.cpp:229] Iteration 4550, loss = 0.915567 | |
I0405 13:25:30.439141 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0405 13:25:30.439160 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 13:25:30.439174 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625 | |
I0405 13:25:30.439188 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 13:25:30.439199 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 13:25:30.439211 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0405 13:25:30.439224 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 13:25:30.439235 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 13:25:30.439249 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 13:25:30.439260 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 13:25:30.439272 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 13:25:30.439285 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 13:25:30.439296 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 13:25:30.439306 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 13:25:30.439318 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 13:25:30.439329 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 13:25:30.439342 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 13:25:30.439352 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 13:25:30.439364 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 13:25:30.439376 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 13:25:30.439388 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 13:25:30.439399 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 13:25:30.439414 26022 solver.cpp:245] Train net output #22: loss/loss01 = 2.98712 (* 0.0454545 = 0.135778 loss) | |
I0405 13:25:30.439429 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.25005 (* 0.0454545 = 0.14773 loss) | |
I0405 13:25:30.439443 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.00737 (* 0.0454545 = 0.136699 loss) | |
I0405 13:25:30.439457 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.03764 (* 0.0454545 = 0.138074 loss) | |
I0405 13:25:30.439472 26022 solver.cpp:245] Train net output #26: loss/loss05 = 2.8733 (* 0.0454545 = 0.130605 loss) | |
I0405 13:25:30.439486 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.11233 (* 0.0454545 = 0.0960152 loss) | |
I0405 13:25:30.439501 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.6259 (* 0.0454545 = 0.0739047 loss) | |
I0405 13:25:30.439515 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.442157 (* 0.0454545 = 0.020098 loss) | |
I0405 13:25:30.439529 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.0213351 (* 0.0454545 = 0.000969776 loss) | |
I0405 13:25:30.439545 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.0073743 (* 0.0454545 = 0.000335195 loss) | |
I0405 13:25:30.439560 26022 solver.cpp:245] Train net output #32: loss/loss11 = 3.32308e-05 (* 0.0454545 = 1.51049e-06 loss) | |
I0405 13:25:30.439575 26022 solver.cpp:245] Train net output #33: loss/loss12 = 2.7164e-05 (* 0.0454545 = 1.23473e-06 loss) | |
I0405 13:25:30.439589 26022 solver.cpp:245] Train net output #34: loss/loss13 = 2.57878e-05 (* 0.0454545 = 1.17217e-06 loss) | |
I0405 13:25:30.439604 26022 solver.cpp:245] Train net output #35: loss/loss14 = 2.75967e-05 (* 0.0454545 = 1.25439e-06 loss) | |
I0405 13:25:30.439618 26022 solver.cpp:245] Train net output #36: loss/loss15 = 2.43695e-05 (* 0.0454545 = 1.10771e-06 loss) | |
I0405 13:25:30.439633 26022 solver.cpp:245] Train net output #37: loss/loss16 = 2.59753e-05 (* 0.0454545 = 1.1807e-06 loss) | |
I0405 13:25:30.439648 26022 solver.cpp:245] Train net output #38: loss/loss17 = 2.80757e-05 (* 0.0454545 = 1.27617e-06 loss) | |
I0405 13:25:30.439680 26022 solver.cpp:245] Train net output #39: loss/loss18 = 2.53517e-05 (* 0.0454545 = 1.15235e-06 loss) | |
I0405 13:25:30.439697 26022 solver.cpp:245] Train net output #40: loss/loss19 = 2.68793e-05 (* 0.0454545 = 1.22179e-06 loss) | |
I0405 13:25:30.439712 26022 solver.cpp:245] Train net output #41: loss/loss20 = 2.45857e-05 (* 0.0454545 = 1.11753e-06 loss) | |
I0405 13:25:30.439725 26022 solver.cpp:245] Train net output #42: loss/loss21 = 2.39526e-05 (* 0.0454545 = 1.08875e-06 loss) | |
I0405 13:25:30.439740 26022 solver.cpp:245] Train net output #43: loss/loss22 = 2.46454e-05 (* 0.0454545 = 1.12025e-06 loss) | |
I0405 13:25:30.439752 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 13:25:30.439764 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000333271 | |
I0405 13:25:30.439779 26022 sgd_solver.cpp:106] Iteration 4550, lr = 0.039818 | |
I0405 13:34:00.457092 26022 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.3319 > 30) by scale factor 0.989056 | |
I0405 13:34:32.500744 26022 solver.cpp:229] Iteration 4600, loss = 0.921218 | |
I0405 13:34:32.500872 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 13:34:32.500892 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 13:34:32.500905 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 13:34:32.500919 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 13:34:32.500931 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 13:34:32.500943 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0405 13:34:32.500957 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0405 13:34:32.500968 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 13:34:32.500980 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 13:34:32.500993 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 13:34:32.501005 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 13:34:32.501018 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 13:34:32.501029 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 13:34:32.501040 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 13:34:32.501052 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 13:34:32.501063 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 13:34:32.501075 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 13:34:32.501087 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 13:34:32.501099 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 13:34:32.501111 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 13:34:32.501123 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 13:34:32.501134 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 13:34:32.501150 26022 solver.cpp:245] Train net output #22: loss/loss01 = 3.09621 (* 0.0454545 = 0.140737 loss) | |
I0405 13:34:32.501165 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.24516 (* 0.0454545 = 0.147507 loss) | |
I0405 13:34:32.501180 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.3129 (* 0.0454545 = 0.150586 loss) | |
I0405 13:34:32.501194 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.09695 (* 0.0454545 = 0.14077 loss) | |
I0405 13:34:32.501209 26022 solver.cpp:245] Train net output #26: loss/loss05 = 2.89739 (* 0.0454545 = 0.131699 loss) | |
I0405 13:34:32.501224 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.08266 (* 0.0454545 = 0.0946663 loss) | |
I0405 13:34:32.501238 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.06792 (* 0.0454545 = 0.0485419 loss) | |
I0405 13:34:32.501252 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.511324 (* 0.0454545 = 0.023242 loss) | |
I0405 13:34:32.501267 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.279843 (* 0.0454545 = 0.0127201 loss) | |
I0405 13:34:32.501281 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.00912159 (* 0.0454545 = 0.000414618 loss) | |
I0405 13:34:32.501297 26022 solver.cpp:245] Train net output #32: loss/loss11 = 2.26137e-05 (* 0.0454545 = 1.02789e-06 loss) | |
I0405 13:34:32.501312 26022 solver.cpp:245] Train net output #33: loss/loss12 = 1.82596e-05 (* 0.0454545 = 8.29981e-07 loss) | |
I0405 13:34:32.501327 26022 solver.cpp:245] Train net output #34: loss/loss13 = 1.86012e-05 (* 0.0454545 = 8.4551e-07 loss) | |
I0405 13:34:32.501341 26022 solver.cpp:245] Train net output #35: loss/loss14 = 2.05835e-05 (* 0.0454545 = 9.35616e-07 loss) | |
I0405 13:34:32.501356 26022 solver.cpp:245] Train net output #36: loss/loss15 = 1.744e-05 (* 0.0454545 = 7.92726e-07 loss) | |
I0405 13:34:32.501371 26022 solver.cpp:245] Train net output #37: loss/loss16 = 1.88071e-05 (* 0.0454545 = 8.54866e-07 loss) | |
I0405 13:34:32.501385 26022 solver.cpp:245] Train net output #38: loss/loss17 = 1.97373e-05 (* 0.0454545 = 8.97151e-07 loss) | |
I0405 13:34:32.501418 26022 solver.cpp:245] Train net output #39: loss/loss18 = 1.94432e-05 (* 0.0454545 = 8.83782e-07 loss) | |
I0405 13:34:32.501435 26022 solver.cpp:245] Train net output #40: loss/loss19 = 2.00891e-05 (* 0.0454545 = 9.13139e-07 loss) | |
I0405 13:34:32.501451 26022 solver.cpp:245] Train net output #41: loss/loss20 = 1.83268e-05 (* 0.0454545 = 8.33035e-07 loss) | |
I0405 13:34:32.501466 26022 solver.cpp:245] Train net output #42: loss/loss21 = 1.90088e-05 (* 0.0454545 = 8.64037e-07 loss) | |
I0405 13:34:32.501479 26022 solver.cpp:245] Train net output #43: loss/loss22 = 1.84798e-05 (* 0.0454545 = 8.39991e-07 loss) | |
I0405 13:34:32.501492 26022 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 13:34:32.501504 26022 solver.cpp:245] Train net output #45: total_confidence = 0.000100249 | |
I0405 13:34:32.501520 26022 sgd_solver.cpp:106] Iteration 4600, lr = 0.039816 | |
I0405 13:43:34.672369 26022 solver.cpp:229] Iteration 4650, loss = 0.915752 | |
I0405 13:43:34.672549 26022 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0405 13:43:34.672567 26022 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0405 13:43:34.672580 26022 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 13:43:34.672593 26022 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 13:43:34.672606 26022 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 13:43:34.672618 26022 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 13:43:34.672631 26022 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0405 13:43:34.672642 26022 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 13:43:34.672655 26022 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 13:43:34.672667 26022 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 13:43:34.672680 26022 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 13:43:34.672693 26022 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 13:43:34.672703 26022 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 13:43:34.672715 26022 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 13:43:34.672726 26022 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 13:43:34.672739 26022 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 13:43:34.672750 26022 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 13:43:34.672761 26022 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 13:43:34.672773 26022 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 13:43:34.672785 26022 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 13:43:34.672796 26022 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 13:43:34.672807 26022 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 13:43:34.672823 26022 solver.cpp:245] Train net output #22: loss/loss01 = 2.82916 (* 0.0454545 = 0.128598 loss) | |
I0405 13:43:34.672837 26022 solver.cpp:245] Train net output #23: loss/loss02 = 3.07397 (* 0.0454545 = 0.139726 loss) | |
I0405 13:43:34.672852 26022 solver.cpp:245] Train net output #24: loss/loss03 = 3.23519 (* 0.0454545 = 0.147054 loss) | |
I0405 13:43:34.672868 26022 solver.cpp:245] Train net output #25: loss/loss04 = 3.20028 (* 0.0454545 = 0.145467 loss) | |
I0405 13:43:34.672881 26022 solver.cpp:245] Train net output #26: loss/loss05 = 2.953 (* 0.0454545 = 0.134227 loss) | |
I0405 13:43:34.672899 26022 solver.cpp:245] Train net output #27: loss/loss06 = 2.37553 (* 0.0454545 = 0.107979 loss) | |
I0405 13:43:34.672914 26022 solver.cpp:245] Train net output #28: loss/loss07 = 1.25725 (* 0.0454545 = 0.0571478 loss) | |
I0405 13:43:34.672929 26022 solver.cpp:245] Train net output #29: loss/loss08 = 0.663931 (* 0.0454545 = 0.0301787 loss) | |
I0405 13:43:34.672942 26022 solver.cpp:245] Train net output #30: loss/loss09 = 0.147865 (* 0.0454545 = 0.00672116 loss) | |
I0405 13:43:34.672960 26022 solver.cpp:245] Train net output #31: loss/loss10 = 0.134979 (* 0.0454545 = 0.00613542 loss) | |
I0405 13:43:34.672976 26022 solver.cpp:245] Train net output #32: loss/loss11 = 0.000136223 (* 0.0454545 = 6.19197e-06 loss) | |
I0405 13:43:34.672991 26022 solver.cpp:245] Train net output #33: loss/loss12 = 0.000113989 (* 0.0454545 = 5.18134e-06 loss) | |
I0405 13:43:34.673005 26022 solver.cpp:245] Train net output #34: loss/loss13 = 0.000105062 (* 0.0454545 = 4.77554e-06 loss) | |
I0405 13:43:34.673020 26022 solver.cpp:245] Train net output #35: loss/loss14 = 0.000128425 (* 0.0454545 = 5.8375e-06 loss) | |
I0405 13:43:34.673035 26022 solver.cpp:245] Train net output #36: loss/loss15 = 0.000111066 (* 0.0454545 = 5.04844e-06 loss) | |
I0405 13:43:34.673050 26022 solver.cpp:245] Train net output #37: loss/loss16 = 0.000117955 (* 0.0454545 = 5.36161e-06 loss) | |
I0405 13:43:34.673064 26022 solver.cpp:245] Train net output #38: lo |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment