Created
December 4, 2021 02:20
-
-
Save stellaraccident/764efe49b83c74c0cc2ff1ba9da39860 to your computer and use it in GitHub Desktop.
Resnet AQT to IREE
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Instantiating model... | |
Model instantiated. | |
module @resnet_inference_model { | |
iree_input.global private mutable @_variables$0 : tensor<64xf32> | |
iree_input.global private mutable @_variables$1 : tensor<64xf32> | |
iree_input.global private mutable @_variables$2 : tensor<64xf32> | |
iree_input.global private mutable @_variables$3 : tensor<64xf32> | |
iree_input.global private mutable @_variables$4 : tensor<256xf32> | |
iree_input.global private mutable @_variables$5 : tensor<256xf32> | |
iree_input.global private mutable @_variables$6 : tensor<256xf32> | |
iree_input.global private mutable @_variables$7 : tensor<256xf32> | |
iree_input.global private mutable @_variables$8 : tensor<64xf32> | |
iree_input.global private mutable @_variables$9 : tensor<64xf32> | |
iree_input.global private mutable @_variables$10 : tensor<64xf32> | |
iree_input.global private mutable @_variables$11 : tensor<64xf32> | |
iree_input.global private mutable @_variables$12 : tensor<256xf32> | |
iree_input.global private mutable @_variables$13 : tensor<256xf32> | |
iree_input.global private mutable @_variables$14 : tensor<256xf32> | |
iree_input.global private mutable @_variables$15 : tensor<256xf32> | |
iree_input.global private mutable @_variables$16 : tensor<256xf32> | |
iree_input.global private mutable @_variables$17 : tensor<256xf32> | |
iree_input.global private mutable @_variables$18 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$19 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$20 : tensor<256xf32> | |
iree_input.global private mutable @_variables$21 : tensor<256xf32> | |
iree_input.global private mutable @_variables$22 : tensor<256xf32> | |
iree_input.global private mutable @_variables$23 : tensor<256xf32> | |
iree_input.global private mutable @_variables$24 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$25 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$26 : tensor<256xf32> | |
iree_input.global private mutable @_variables$27 : tensor<256xf32> | |
iree_input.global private mutable @_variables$28 : tensor<256xf32> | |
iree_input.global private mutable @_variables$29 : tensor<256xf32> | |
iree_input.global private mutable @_variables$30 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$31 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$32 : tensor<512xf32> | |
iree_input.global private mutable @_variables$33 : tensor<512xf32> | |
iree_input.global private mutable @_variables$34 : tensor<512xf32> | |
iree_input.global private mutable @_variables$35 : tensor<512xf32> | |
iree_input.global private mutable @_variables$36 : tensor<2048xf32> | |
iree_input.global private mutable @_variables$37 : tensor<2048xf32> | |
iree_input.global private mutable @_variables$38 : tensor<2048xf32> | |
iree_input.global private mutable @_variables$39 : tensor<2048xf32> | |
iree_input.global private mutable @_variables$40 : tensor<512xf32> | |
iree_input.global private mutable @_variables$41 : tensor<512xf32> | |
iree_input.global private mutable @_variables$42 : tensor<512xf32> | |
iree_input.global private mutable @_variables$43 : tensor<512xf32> | |
iree_input.global private mutable @_variables$44 : tensor<2048xf32> | |
iree_input.global private mutable @_variables$45 : tensor<2048xf32> | |
iree_input.global private mutable @_variables$46 : tensor<512xf32> | |
iree_input.global private mutable @_variables$47 : tensor<512xf32> | |
iree_input.global private mutable @_variables$48 : tensor<512xf32> | |
iree_input.global private mutable @_variables$49 : tensor<512xf32> | |
iree_input.global private mutable @_variables$50 : tensor<2048xf32> | |
iree_input.global private mutable @_variables$51 : tensor<2048xf32> | |
iree_input.global private mutable @_variables$52 : tensor<64xf32> | |
iree_input.global private mutable @_variables$53 : tensor<64xf32> | |
iree_input.global private mutable @_variables$54 : tensor<64xf32> | |
iree_input.global private mutable @_variables$55 : tensor<64xf32> | |
iree_input.global private mutable @_variables$56 : tensor<256xf32> | |
iree_input.global private mutable @_variables$57 : tensor<256xf32> | |
iree_input.global private mutable @_variables$58 : tensor<128xf32> | |
iree_input.global private mutable @_variables$59 : tensor<128xf32> | |
iree_input.global private mutable @_variables$60 : tensor<128xf32> | |
iree_input.global private mutable @_variables$61 : tensor<128xf32> | |
iree_input.global private mutable @_variables$62 : tensor<512xf32> | |
iree_input.global private mutable @_variables$63 : tensor<512xf32> | |
iree_input.global private mutable @_variables$64 : tensor<512xf32> | |
iree_input.global private mutable @_variables$65 : tensor<512xf32> | |
iree_input.global private mutable @_variables$66 : tensor<128xf32> | |
iree_input.global private mutable @_variables$67 : tensor<128xf32> | |
iree_input.global private mutable @_variables$68 : tensor<128xf32> | |
iree_input.global private mutable @_variables$69 : tensor<128xf32> | |
iree_input.global private mutable @_variables$70 : tensor<512xf32> | |
iree_input.global private mutable @_variables$71 : tensor<512xf32> | |
iree_input.global private mutable @_variables$72 : tensor<128xf32> | |
iree_input.global private mutable @_variables$73 : tensor<128xf32> | |
iree_input.global private mutable @_variables$74 : tensor<128xf32> | |
iree_input.global private mutable @_variables$75 : tensor<128xf32> | |
iree_input.global private mutable @_variables$76 : tensor<512xf32> | |
iree_input.global private mutable @_variables$77 : tensor<512xf32> | |
iree_input.global private mutable @_variables$78 : tensor<128xf32> | |
iree_input.global private mutable @_variables$79 : tensor<128xf32> | |
iree_input.global private mutable @_variables$80 : tensor<128xf32> | |
iree_input.global private mutable @_variables$81 : tensor<128xf32> | |
iree_input.global private mutable @_variables$82 : tensor<512xf32> | |
iree_input.global private mutable @_variables$83 : tensor<512xf32> | |
iree_input.global private mutable @_variables$84 : tensor<256xf32> | |
iree_input.global private mutable @_variables$85 : tensor<256xf32> | |
iree_input.global private mutable @_variables$86 : tensor<256xf32> | |
iree_input.global private mutable @_variables$87 : tensor<256xf32> | |
iree_input.global private mutable @_variables$88 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$89 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$90 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$91 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$92 : tensor<256xf32> | |
iree_input.global private mutable @_variables$93 : tensor<256xf32> | |
iree_input.global private mutable @_variables$94 : tensor<256xf32> | |
iree_input.global private mutable @_variables$95 : tensor<256xf32> | |
iree_input.global private mutable @_variables$96 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$97 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$98 : tensor<256xf32> | |
iree_input.global private mutable @_variables$99 : tensor<256xf32> | |
iree_input.global private mutable @_variables$100 : tensor<256xf32> | |
iree_input.global private mutable @_variables$101 : tensor<256xf32> | |
iree_input.global private mutable @_variables$102 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$103 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$104 : tensor<64xf32> | |
iree_input.global private mutable @_variables$105 : tensor<64xf32> | |
iree_input.global private mutable @_variables$106 : tensor<1x2048xf32> | |
iree_input.global private mutable @_variables$107 : tensor<1x2048xf32> | |
iree_input.global private mutable @_variables$108 : tensor<1x2048xf32> | |
iree_input.global private mutable @_variables$109 : tensor<1x2048xf32> | |
iree_input.global private mutable @_variables$110 : tensor<1x2048xf32> | |
iree_input.global private mutable @_variables$111 : tensor<1x2048xf32> | |
iree_input.global private mutable @_variables$112 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$113 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$114 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$115 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$116 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$117 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$118 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$119 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$120 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$121 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$122 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$123 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$124 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$125 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$126 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$127 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$128 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$129 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$130 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$131 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$132 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$133 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$134 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$135 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$136 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$137 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$138 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$139 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$140 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$141 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$142 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$143 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$144 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$145 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$146 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$147 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$148 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$149 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$150 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$151 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$152 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$153 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$154 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$155 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$156 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$157 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$158 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$159 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$160 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$161 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$162 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$163 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$164 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$165 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$166 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$167 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$168 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$169 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$170 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$171 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$172 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$173 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$174 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$175 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$176 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$177 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$178 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$179 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$180 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$181 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$182 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$183 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$184 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$185 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$186 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$187 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$188 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$189 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$190 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$191 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$192 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$193 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$194 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$195 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$196 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$197 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$198 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$199 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$200 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$201 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$202 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$203 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$204 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$205 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$206 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$207 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$208 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$209 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$210 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$211 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$212 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$213 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$214 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$215 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$216 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$217 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$218 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$219 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$220 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$221 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$222 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$223 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$224 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$225 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$226 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$227 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$228 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$229 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$230 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$231 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$232 : tensor<1x1x1x2048xf32> | |
iree_input.global private mutable @_variables$233 : tensor<1x1x1x2048xf32> | |
iree_input.global private mutable @_variables$234 : tensor<1x1x1x2048xf32> | |
iree_input.global private mutable @_variables$235 : tensor<1x1x1x2048xf32> | |
iree_input.global private mutable @_variables$236 : tensor<1x1x1x2048xf32> | |
iree_input.global private mutable @_variables$237 : tensor<1x1x1x2048xf32> | |
iree_input.global private mutable @_variables$238 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$239 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$240 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$241 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$242 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$243 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$244 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$245 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$246 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$247 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$248 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$249 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$250 : tensor<1x1x1x2048xf32> | |
iree_input.global private mutable @_variables$251 : tensor<1x1x1x2048xf32> | |
iree_input.global private mutable @_variables$252 : tensor<1x1x1x2048xf32> | |
iree_input.global private mutable @_variables$253 : tensor<1x1x1x2048xf32> | |
iree_input.global private mutable @_variables$254 : tensor<1x1x1x2048xf32> | |
iree_input.global private mutable @_variables$255 : tensor<1x1x1x2048xf32> | |
iree_input.global private mutable @_variables$256 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$257 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$258 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$259 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$260 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$261 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$262 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$263 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$264 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$265 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$266 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$267 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$268 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$269 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$270 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$271 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$272 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$273 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$274 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$275 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$276 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$277 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$278 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$279 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$280 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$281 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$282 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$283 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$284 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$285 : tensor<1x1x1x64xf32> | |
iree_input.global private mutable @_variables$286 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$287 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$288 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$289 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$290 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$291 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$292 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$293 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$294 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$295 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$296 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$297 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$298 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$299 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$300 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$301 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$302 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$303 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$304 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$305 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$306 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$307 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$308 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$309 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$310 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$311 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$312 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$313 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$314 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$315 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$316 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$317 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$318 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$319 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$320 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$321 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$322 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$323 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$324 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$325 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$326 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$327 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$328 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$329 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$330 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$331 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$332 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$333 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$334 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$335 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$336 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$337 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$338 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$339 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$340 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$341 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$342 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$343 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$344 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$345 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$346 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$347 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$348 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$349 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$350 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$351 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$352 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$353 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$354 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$355 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$356 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$357 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$358 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$359 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$360 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$361 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$362 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$363 : tensor<1x1x1x128xf32> | |
iree_input.global private mutable @_variables$364 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$365 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$366 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$367 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$368 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$369 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$370 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$371 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$372 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$373 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$374 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$375 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$376 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$377 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$378 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$379 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$380 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$381 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$382 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$383 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$384 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$385 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$386 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$387 : tensor<1x1x1x512xf32> | |
iree_input.global private mutable @_variables$388 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$389 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$390 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$391 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$392 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$393 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$394 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$395 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$396 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$397 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$398 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$399 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$400 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$401 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$402 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$403 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$404 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$405 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$406 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$407 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$408 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$409 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$410 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$411 : tensor<1x1x1x1024xf32> | |
iree_input.global private mutable @_variables$412 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$413 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$414 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$415 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$416 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$417 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$418 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$419 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$420 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$421 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$422 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$423 : tensor<1x1x1x256xf32> | |
iree_input.global private mutable @_variables$424 : tensor<1x1x1x3xf32> | |
iree_input.global private mutable @_variables$425 : tensor<1x1x1x3xf32> | |
iree_input.global private mutable @_variables$426 : tensor<1x1x1x3xf32> | |
iree_input.global private mutable @_variables$427 : tensor<1x1x1x3xf32> | |
iree_input.global private mutable @_variables$428 : tensor<1x1x1x3xf32> | |
iree_input.global private mutable @_variables$429 : tensor<1x1x1x3xf32> | |
iree_input.global private mutable @_variables$430 : tensor<1000xf32> | |
iree_input.global private mutable @_variables$431 : tensor<2048x1000xf32> | |
iree_input.global private mutable @_variables$432 : tensor<64xf32> | |
iree_input.global private mutable @_variables$433 : tensor<64xf32> | |
iree_input.global private mutable @_variables$434 : tensor<64xf32> | |
iree_input.global private mutable @_variables$435 : tensor<64xf32> | |
iree_input.global private mutable @_variables$436 : tensor<256xf32> | |
iree_input.global private mutable @_variables$437 : tensor<256xf32> | |
iree_input.global private mutable @_variables$438 : tensor<1x1x64x64xf32> | |
iree_input.global private mutable @_variables$439 : tensor<3x3x64x64xf32> | |
iree_input.global private mutable @_variables$440 : tensor<1x1x64x256xf32> | |
iree_input.global private mutable @_variables$441 : tensor<256xf32> | |
iree_input.global private mutable @_variables$442 : tensor<256xf32> | |
iree_input.global private mutable @_variables$443 : tensor<1x1x64x256xf32> | |
iree_input.global private mutable @_variables$444 : tensor<64xf32> | |
iree_input.global private mutable @_variables$445 : tensor<64xf32> | |
iree_input.global private mutable @_variables$446 : tensor<64xf32> | |
iree_input.global private mutable @_variables$447 : tensor<64xf32> | |
iree_input.global private mutable @_variables$448 : tensor<256xf32> | |
iree_input.global private mutable @_variables$449 : tensor<256xf32> | |
iree_input.global private mutable @_variables$450 : tensor<1x1x256x64xf32> | |
iree_input.global private mutable @_variables$451 : tensor<3x3x64x64xf32> | |
iree_input.global private mutable @_variables$452 : tensor<1x1x64x256xf32> | |
iree_input.global private mutable @_variables$453 : tensor<256xf32> | |
iree_input.global private mutable @_variables$454 : tensor<256xf32> | |
iree_input.global private mutable @_variables$455 : tensor<256xf32> | |
iree_input.global private mutable @_variables$456 : tensor<256xf32> | |
iree_input.global private mutable @_variables$457 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$458 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$459 : tensor<1x1x1024x256xf32> | |
iree_input.global private mutable @_variables$460 : tensor<3x3x256x256xf32> | |
iree_input.global private mutable @_variables$461 : tensor<1x1x256x1024xf32> | |
iree_input.global private mutable @_variables$462 : tensor<256xf32> | |
iree_input.global private mutable @_variables$463 : tensor<256xf32> | |
iree_input.global private mutable @_variables$464 : tensor<256xf32> | |
iree_input.global private mutable @_variables$465 : tensor<256xf32> | |
iree_input.global private mutable @_variables$466 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$467 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$468 : tensor<1x1x1024x256xf32> | |
iree_input.global private mutable @_variables$469 : tensor<3x3x256x256xf32> | |
iree_input.global private mutable @_variables$470 : tensor<1x1x256x1024xf32> | |
iree_input.global private mutable @_variables$471 : tensor<256xf32> | |
iree_input.global private mutable @_variables$472 : tensor<256xf32> | |
iree_input.global private mutable @_variables$473 : tensor<256xf32> | |
iree_input.global private mutable @_variables$474 : tensor<256xf32> | |
iree_input.global private mutable @_variables$475 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$476 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$477 : tensor<1x1x1024x256xf32> | |
iree_input.global private mutable @_variables$478 : tensor<3x3x256x256xf32> | |
iree_input.global private mutable @_variables$479 : tensor<1x1x256x1024xf32> | |
iree_input.global private mutable @_variables$480 : tensor<512xf32> | |
iree_input.global private mutable @_variables$481 : tensor<512xf32> | |
iree_input.global private mutable @_variables$482 : tensor<512xf32> | |
iree_input.global private mutable @_variables$483 : tensor<512xf32> | |
iree_input.global private mutable @_variables$484 : tensor<2048xf32> | |
iree_input.global private mutable @_variables$485 : tensor<2048xf32> | |
iree_input.global private mutable @_variables$486 : tensor<1x1x1024x512xf32> | |
iree_input.global private mutable @_variables$487 : tensor<3x3x512x512xf32> | |
iree_input.global private mutable @_variables$488 : tensor<1x1x512x2048xf32> | |
iree_input.global private mutable @_variables$489 : tensor<2048xf32> | |
iree_input.global private mutable @_variables$490 : tensor<2048xf32> | |
iree_input.global private mutable @_variables$491 : tensor<1x1x1024x2048xf32> | |
iree_input.global private mutable @_variables$492 : tensor<512xf32> | |
iree_input.global private mutable @_variables$493 : tensor<512xf32> | |
iree_input.global private mutable @_variables$494 : tensor<512xf32> | |
iree_input.global private mutable @_variables$495 : tensor<512xf32> | |
iree_input.global private mutable @_variables$496 : tensor<2048xf32> | |
iree_input.global private mutable @_variables$497 : tensor<2048xf32> | |
iree_input.global private mutable @_variables$498 : tensor<1x1x2048x512xf32> | |
iree_input.global private mutable @_variables$499 : tensor<3x3x512x512xf32> | |
iree_input.global private mutable @_variables$500 : tensor<1x1x512x2048xf32> | |
iree_input.global private mutable @_variables$501 : tensor<512xf32> | |
iree_input.global private mutable @_variables$502 : tensor<512xf32> | |
iree_input.global private mutable @_variables$503 : tensor<512xf32> | |
iree_input.global private mutable @_variables$504 : tensor<512xf32> | |
iree_input.global private mutable @_variables$505 : tensor<2048xf32> | |
iree_input.global private mutable @_variables$506 : tensor<2048xf32> | |
iree_input.global private mutable @_variables$507 : tensor<1x1x2048x512xf32> | |
iree_input.global private mutable @_variables$508 : tensor<3x3x512x512xf32> | |
iree_input.global private mutable @_variables$509 : tensor<1x1x512x2048xf32> | |
iree_input.global private mutable @_variables$510 : tensor<64xf32> | |
iree_input.global private mutable @_variables$511 : tensor<64xf32> | |
iree_input.global private mutable @_variables$512 : tensor<64xf32> | |
iree_input.global private mutable @_variables$513 : tensor<64xf32> | |
iree_input.global private mutable @_variables$514 : tensor<256xf32> | |
iree_input.global private mutable @_variables$515 : tensor<256xf32> | |
iree_input.global private mutable @_variables$516 : tensor<1x1x256x64xf32> | |
iree_input.global private mutable @_variables$517 : tensor<3x3x64x64xf32> | |
iree_input.global private mutable @_variables$518 : tensor<1x1x64x256xf32> | |
iree_input.global private mutable @_variables$519 : tensor<128xf32> | |
iree_input.global private mutable @_variables$520 : tensor<128xf32> | |
iree_input.global private mutable @_variables$521 : tensor<128xf32> | |
iree_input.global private mutable @_variables$522 : tensor<128xf32> | |
iree_input.global private mutable @_variables$523 : tensor<512xf32> | |
iree_input.global private mutable @_variables$524 : tensor<512xf32> | |
iree_input.global private mutable @_variables$525 : tensor<1x1x256x128xf32> | |
iree_input.global private mutable @_variables$526 : tensor<3x3x128x128xf32> | |
iree_input.global private mutable @_variables$527 : tensor<1x1x128x512xf32> | |
iree_input.global private mutable @_variables$528 : tensor<512xf32> | |
iree_input.global private mutable @_variables$529 : tensor<512xf32> | |
iree_input.global private mutable @_variables$530 : tensor<1x1x256x512xf32> | |
iree_input.global private mutable @_variables$531 : tensor<128xf32> | |
iree_input.global private mutable @_variables$532 : tensor<128xf32> | |
iree_input.global private mutable @_variables$533 : tensor<128xf32> | |
iree_input.global private mutable @_variables$534 : tensor<128xf32> | |
iree_input.global private mutable @_variables$535 : tensor<512xf32> | |
iree_input.global private mutable @_variables$536 : tensor<512xf32> | |
iree_input.global private mutable @_variables$537 : tensor<1x1x512x128xf32> | |
iree_input.global private mutable @_variables$538 : tensor<3x3x128x128xf32> | |
iree_input.global private mutable @_variables$539 : tensor<1x1x128x512xf32> | |
iree_input.global private mutable @_variables$540 : tensor<128xf32> | |
iree_input.global private mutable @_variables$541 : tensor<128xf32> | |
iree_input.global private mutable @_variables$542 : tensor<128xf32> | |
iree_input.global private mutable @_variables$543 : tensor<128xf32> | |
iree_input.global private mutable @_variables$544 : tensor<512xf32> | |
iree_input.global private mutable @_variables$545 : tensor<512xf32> | |
iree_input.global private mutable @_variables$546 : tensor<1x1x512x128xf32> | |
iree_input.global private mutable @_variables$547 : tensor<3x3x128x128xf32> | |
iree_input.global private mutable @_variables$548 : tensor<1x1x128x512xf32> | |
iree_input.global private mutable @_variables$549 : tensor<128xf32> | |
iree_input.global private mutable @_variables$550 : tensor<128xf32> | |
iree_input.global private mutable @_variables$551 : tensor<128xf32> | |
iree_input.global private mutable @_variables$552 : tensor<128xf32> | |
iree_input.global private mutable @_variables$553 : tensor<512xf32> | |
iree_input.global private mutable @_variables$554 : tensor<512xf32> | |
iree_input.global private mutable @_variables$555 : tensor<1x1x512x128xf32> | |
iree_input.global private mutable @_variables$556 : tensor<3x3x128x128xf32> | |
iree_input.global private mutable @_variables$557 : tensor<1x1x128x512xf32> | |
iree_input.global private mutable @_variables$558 : tensor<256xf32> | |
iree_input.global private mutable @_variables$559 : tensor<256xf32> | |
iree_input.global private mutable @_variables$560 : tensor<256xf32> | |
iree_input.global private mutable @_variables$561 : tensor<256xf32> | |
iree_input.global private mutable @_variables$562 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$563 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$564 : tensor<1x1x512x256xf32> | |
iree_input.global private mutable @_variables$565 : tensor<3x3x256x256xf32> | |
iree_input.global private mutable @_variables$566 : tensor<1x1x256x1024xf32> | |
iree_input.global private mutable @_variables$567 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$568 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$569 : tensor<1x1x512x1024xf32> | |
iree_input.global private mutable @_variables$570 : tensor<256xf32> | |
iree_input.global private mutable @_variables$571 : tensor<256xf32> | |
iree_input.global private mutable @_variables$572 : tensor<256xf32> | |
iree_input.global private mutable @_variables$573 : tensor<256xf32> | |
iree_input.global private mutable @_variables$574 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$575 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$576 : tensor<1x1x1024x256xf32> | |
iree_input.global private mutable @_variables$577 : tensor<3x3x256x256xf32> | |
iree_input.global private mutable @_variables$578 : tensor<1x1x256x1024xf32> | |
iree_input.global private mutable @_variables$579 : tensor<256xf32> | |
iree_input.global private mutable @_variables$580 : tensor<256xf32> | |
iree_input.global private mutable @_variables$581 : tensor<256xf32> | |
iree_input.global private mutable @_variables$582 : tensor<256xf32> | |
iree_input.global private mutable @_variables$583 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$584 : tensor<1024xf32> | |
iree_input.global private mutable @_variables$585 : tensor<1x1x1024x256xf32> | |
iree_input.global private mutable @_variables$586 : tensor<3x3x256x256xf32> | |
iree_input.global private mutable @_variables$587 : tensor<1x1x256x1024xf32> | |
iree_input.global private mutable @_variables$588 : tensor<64xf32> | |
iree_input.global private mutable @_variables$589 : tensor<64xf32> | |
iree_input.global private mutable @_variables$590 : tensor<7x7x3x64xf32> | |
func @predict(%arg0: tensor<1x224x224x3xf32>) -> tensor<1x1000xf32> { | |
%0 = iree_input.global.load @_variables$0 : tensor<64xf32> | |
%1 = iree_input.global.load @_variables$1 : tensor<64xf32> | |
%2 = iree_input.global.load @_variables$2 : tensor<64xf32> | |
%3 = iree_input.global.load @_variables$3 : tensor<64xf32> | |
%4 = iree_input.global.load @_variables$4 : tensor<256xf32> | |
%5 = iree_input.global.load @_variables$5 : tensor<256xf32> | |
%6 = iree_input.global.load @_variables$6 : tensor<256xf32> | |
%7 = iree_input.global.load @_variables$7 : tensor<256xf32> | |
%8 = iree_input.global.load @_variables$8 : tensor<64xf32> | |
%9 = iree_input.global.load @_variables$9 : tensor<64xf32> | |
%10 = iree_input.global.load @_variables$10 : tensor<64xf32> | |
%11 = iree_input.global.load @_variables$11 : tensor<64xf32> | |
%12 = iree_input.global.load @_variables$12 : tensor<256xf32> | |
%13 = iree_input.global.load @_variables$13 : tensor<256xf32> | |
%14 = iree_input.global.load @_variables$14 : tensor<256xf32> | |
%15 = iree_input.global.load @_variables$15 : tensor<256xf32> | |
%16 = iree_input.global.load @_variables$16 : tensor<256xf32> | |
%17 = iree_input.global.load @_variables$17 : tensor<256xf32> | |
%18 = iree_input.global.load @_variables$18 : tensor<1024xf32> | |
%19 = iree_input.global.load @_variables$19 : tensor<1024xf32> | |
%20 = iree_input.global.load @_variables$20 : tensor<256xf32> | |
%21 = iree_input.global.load @_variables$21 : tensor<256xf32> | |
%22 = iree_input.global.load @_variables$22 : tensor<256xf32> | |
%23 = iree_input.global.load @_variables$23 : tensor<256xf32> | |
%24 = iree_input.global.load @_variables$24 : tensor<1024xf32> | |
%25 = iree_input.global.load @_variables$25 : tensor<1024xf32> | |
%26 = iree_input.global.load @_variables$26 : tensor<256xf32> | |
%27 = iree_input.global.load @_variables$27 : tensor<256xf32> | |
%28 = iree_input.global.load @_variables$28 : tensor<256xf32> | |
%29 = iree_input.global.load @_variables$29 : tensor<256xf32> | |
%30 = iree_input.global.load @_variables$30 : tensor<1024xf32> | |
%31 = iree_input.global.load @_variables$31 : tensor<1024xf32> | |
%32 = iree_input.global.load @_variables$32 : tensor<512xf32> | |
%33 = iree_input.global.load @_variables$33 : tensor<512xf32> | |
%34 = iree_input.global.load @_variables$34 : tensor<512xf32> | |
%35 = iree_input.global.load @_variables$35 : tensor<512xf32> | |
%36 = iree_input.global.load @_variables$36 : tensor<2048xf32> | |
%37 = iree_input.global.load @_variables$37 : tensor<2048xf32> | |
%38 = iree_input.global.load @_variables$38 : tensor<2048xf32> | |
%39 = iree_input.global.load @_variables$39 : tensor<2048xf32> | |
%40 = iree_input.global.load @_variables$40 : tensor<512xf32> | |
%41 = iree_input.global.load @_variables$41 : tensor<512xf32> | |
%42 = iree_input.global.load @_variables$42 : tensor<512xf32> | |
%43 = iree_input.global.load @_variables$43 : tensor<512xf32> | |
%44 = iree_input.global.load @_variables$44 : tensor<2048xf32> | |
%45 = iree_input.global.load @_variables$45 : tensor<2048xf32> | |
%46 = iree_input.global.load @_variables$46 : tensor<512xf32> | |
%47 = iree_input.global.load @_variables$47 : tensor<512xf32> | |
%48 = iree_input.global.load @_variables$48 : tensor<512xf32> | |
%49 = iree_input.global.load @_variables$49 : tensor<512xf32> | |
%50 = iree_input.global.load @_variables$50 : tensor<2048xf32> | |
%51 = iree_input.global.load @_variables$51 : tensor<2048xf32> | |
%52 = iree_input.global.load @_variables$52 : tensor<64xf32> | |
%53 = iree_input.global.load @_variables$53 : tensor<64xf32> | |
%54 = iree_input.global.load @_variables$54 : tensor<64xf32> | |
%55 = iree_input.global.load @_variables$55 : tensor<64xf32> | |
%56 = iree_input.global.load @_variables$56 : tensor<256xf32> | |
%57 = iree_input.global.load @_variables$57 : tensor<256xf32> | |
%58 = iree_input.global.load @_variables$58 : tensor<128xf32> | |
%59 = iree_input.global.load @_variables$59 : tensor<128xf32> | |
%60 = iree_input.global.load @_variables$60 : tensor<128xf32> | |
%61 = iree_input.global.load @_variables$61 : tensor<128xf32> | |
%62 = iree_input.global.load @_variables$62 : tensor<512xf32> | |
%63 = iree_input.global.load @_variables$63 : tensor<512xf32> | |
%64 = iree_input.global.load @_variables$64 : tensor<512xf32> | |
%65 = iree_input.global.load @_variables$65 : tensor<512xf32> | |
%66 = iree_input.global.load @_variables$66 : tensor<128xf32> | |
%67 = iree_input.global.load @_variables$67 : tensor<128xf32> | |
%68 = iree_input.global.load @_variables$68 : tensor<128xf32> | |
%69 = iree_input.global.load @_variables$69 : tensor<128xf32> | |
%70 = iree_input.global.load @_variables$70 : tensor<512xf32> | |
%71 = iree_input.global.load @_variables$71 : tensor<512xf32> | |
%72 = iree_input.global.load @_variables$72 : tensor<128xf32> | |
%73 = iree_input.global.load @_variables$73 : tensor<128xf32> | |
%74 = iree_input.global.load @_variables$74 : tensor<128xf32> | |
%75 = iree_input.global.load @_variables$75 : tensor<128xf32> | |
%76 = iree_input.global.load @_variables$76 : tensor<512xf32> | |
%77 = iree_input.global.load @_variables$77 : tensor<512xf32> | |
%78 = iree_input.global.load @_variables$78 : tensor<128xf32> | |
%79 = iree_input.global.load @_variables$79 : tensor<128xf32> | |
%80 = iree_input.global.load @_variables$80 : tensor<128xf32> | |
%81 = iree_input.global.load @_variables$81 : tensor<128xf32> | |
%82 = iree_input.global.load @_variables$82 : tensor<512xf32> | |
%83 = iree_input.global.load @_variables$83 : tensor<512xf32> | |
%84 = iree_input.global.load @_variables$84 : tensor<256xf32> | |
%85 = iree_input.global.load @_variables$85 : tensor<256xf32> | |
%86 = iree_input.global.load @_variables$86 : tensor<256xf32> | |
%87 = iree_input.global.load @_variables$87 : tensor<256xf32> | |
%88 = iree_input.global.load @_variables$88 : tensor<1024xf32> | |
%89 = iree_input.global.load @_variables$89 : tensor<1024xf32> | |
%90 = iree_input.global.load @_variables$90 : tensor<1024xf32> | |
%91 = iree_input.global.load @_variables$91 : tensor<1024xf32> | |
%92 = iree_input.global.load @_variables$92 : tensor<256xf32> | |
%93 = iree_input.global.load @_variables$93 : tensor<256xf32> | |
%94 = iree_input.global.load @_variables$94 : tensor<256xf32> | |
%95 = iree_input.global.load @_variables$95 : tensor<256xf32> | |
%96 = iree_input.global.load @_variables$96 : tensor<1024xf32> | |
%97 = iree_input.global.load @_variables$97 : tensor<1024xf32> | |
%98 = iree_input.global.load @_variables$98 : tensor<256xf32> | |
%99 = iree_input.global.load @_variables$99 : tensor<256xf32> | |
%100 = iree_input.global.load @_variables$100 : tensor<256xf32> | |
%101 = iree_input.global.load @_variables$101 : tensor<256xf32> | |
%102 = iree_input.global.load @_variables$102 : tensor<1024xf32> | |
%103 = iree_input.global.load @_variables$103 : tensor<1024xf32> | |
%104 = iree_input.global.load @_variables$104 : tensor<64xf32> | |
%105 = iree_input.global.load @_variables$105 : tensor<64xf32> | |
%106 = iree_input.global.load @_variables$106 : tensor<1x2048xf32> | |
%107 = iree_input.global.load @_variables$112 : tensor<1x1x1x64xf32> | |
%108 = iree_input.global.load @_variables$118 : tensor<1x1x1x64xf32> | |
%109 = iree_input.global.load @_variables$124 : tensor<1x1x1x64xf32> | |
%110 = iree_input.global.load @_variables$130 : tensor<1x1x1x64xf32> | |
%111 = iree_input.global.load @_variables$136 : tensor<1x1x1x256xf32> | |
%112 = iree_input.global.load @_variables$142 : tensor<1x1x1x64xf32> | |
%113 = iree_input.global.load @_variables$148 : tensor<1x1x1x64xf32> | |
%114 = iree_input.global.load @_variables$154 : tensor<1x1x1x1024xf32> | |
%115 = iree_input.global.load @_variables$160 : tensor<1x1x1x256xf32> | |
%116 = iree_input.global.load @_variables$166 : tensor<1x1x1x256xf32> | |
%117 = iree_input.global.load @_variables$172 : tensor<1x1x1x1024xf32> | |
%118 = iree_input.global.load @_variables$178 : tensor<1x1x1x256xf32> | |
%119 = iree_input.global.load @_variables$184 : tensor<1x1x1x256xf32> | |
%120 = iree_input.global.load @_variables$190 : tensor<1x1x1x1024xf32> | |
%121 = iree_input.global.load @_variables$196 : tensor<1x1x1x256xf32> | |
%122 = iree_input.global.load @_variables$202 : tensor<1x1x1x256xf32> | |
%123 = iree_input.global.load @_variables$208 : tensor<1x1x1x1024xf32> | |
%124 = iree_input.global.load @_variables$214 : tensor<1x1x1x512xf32> | |
%125 = iree_input.global.load @_variables$220 : tensor<1x1x1x512xf32> | |
%126 = iree_input.global.load @_variables$226 : tensor<1x1x1x1024xf32> | |
%127 = iree_input.global.load @_variables$232 : tensor<1x1x1x2048xf32> | |
%128 = iree_input.global.load @_variables$238 : tensor<1x1x1x512xf32> | |
%129 = iree_input.global.load @_variables$244 : tensor<1x1x1x512xf32> | |
%130 = iree_input.global.load @_variables$250 : tensor<1x1x1x2048xf32> | |
%131 = iree_input.global.load @_variables$256 : tensor<1x1x1x512xf32> | |
%132 = iree_input.global.load @_variables$262 : tensor<1x1x1x512xf32> | |
%133 = iree_input.global.load @_variables$268 : tensor<1x1x1x256xf32> | |
%134 = iree_input.global.load @_variables$274 : tensor<1x1x1x64xf32> | |
%135 = iree_input.global.load @_variables$280 : tensor<1x1x1x64xf32> | |
%136 = iree_input.global.load @_variables$286 : tensor<1x1x1x256xf32> | |
%137 = iree_input.global.load @_variables$292 : tensor<1x1x1x128xf32> | |
%138 = iree_input.global.load @_variables$298 : tensor<1x1x1x128xf32> | |
%139 = iree_input.global.load @_variables$304 : tensor<1x1x1x256xf32> | |
%140 = iree_input.global.load @_variables$310 : tensor<1x1x1x512xf32> | |
%141 = iree_input.global.load @_variables$316 : tensor<1x1x1x128xf32> | |
%142 = iree_input.global.load @_variables$322 : tensor<1x1x1x128xf32> | |
%143 = iree_input.global.load @_variables$328 : tensor<1x1x1x512xf32> | |
%144 = iree_input.global.load @_variables$334 : tensor<1x1x1x128xf32> | |
%145 = iree_input.global.load @_variables$340 : tensor<1x1x1x128xf32> | |
%146 = iree_input.global.load @_variables$346 : tensor<1x1x1x512xf32> | |
%147 = iree_input.global.load @_variables$352 : tensor<1x1x1x128xf32> | |
%148 = iree_input.global.load @_variables$358 : tensor<1x1x1x128xf32> | |
%149 = iree_input.global.load @_variables$364 : tensor<1x1x1x512xf32> | |
%150 = iree_input.global.load @_variables$370 : tensor<1x1x1x256xf32> | |
%151 = iree_input.global.load @_variables$376 : tensor<1x1x1x256xf32> | |
%152 = iree_input.global.load @_variables$382 : tensor<1x1x1x512xf32> | |
%153 = iree_input.global.load @_variables$388 : tensor<1x1x1x1024xf32> | |
%154 = iree_input.global.load @_variables$394 : tensor<1x1x1x256xf32> | |
%155 = iree_input.global.load @_variables$400 : tensor<1x1x1x256xf32> | |
%156 = iree_input.global.load @_variables$406 : tensor<1x1x1x1024xf32> | |
%157 = iree_input.global.load @_variables$412 : tensor<1x1x1x256xf32> | |
%158 = iree_input.global.load @_variables$418 : tensor<1x1x1x256xf32> | |
%159 = iree_input.global.load @_variables$424 : tensor<1x1x1x3xf32> | |
%160 = iree_input.global.load @_variables$430 : tensor<1000xf32> | |
%161 = iree_input.global.load @_variables$431 : tensor<2048x1000xf32> | |
%162 = iree_input.global.load @_variables$432 : tensor<64xf32> | |
%163 = iree_input.global.load @_variables$433 : tensor<64xf32> | |
%164 = iree_input.global.load @_variables$434 : tensor<64xf32> | |
%165 = iree_input.global.load @_variables$435 : tensor<64xf32> | |
%166 = iree_input.global.load @_variables$436 : tensor<256xf32> | |
%167 = iree_input.global.load @_variables$437 : tensor<256xf32> | |
%168 = iree_input.global.load @_variables$438 : tensor<1x1x64x64xf32> | |
%169 = iree_input.global.load @_variables$439 : tensor<3x3x64x64xf32> | |
%170 = iree_input.global.load @_variables$440 : tensor<1x1x64x256xf32> | |
%171 = iree_input.global.load @_variables$441 : tensor<256xf32> | |
%172 = iree_input.global.load @_variables$442 : tensor<256xf32> | |
%173 = iree_input.global.load @_variables$443 : tensor<1x1x64x256xf32> | |
%174 = iree_input.global.load @_variables$444 : tensor<64xf32> | |
%175 = iree_input.global.load @_variables$445 : tensor<64xf32> | |
%176 = iree_input.global.load @_variables$446 : tensor<64xf32> | |
%177 = iree_input.global.load @_variables$447 : tensor<64xf32> | |
%178 = iree_input.global.load @_variables$448 : tensor<256xf32> | |
%179 = iree_input.global.load @_variables$449 : tensor<256xf32> | |
%180 = iree_input.global.load @_variables$450 : tensor<1x1x256x64xf32> | |
%181 = iree_input.global.load @_variables$451 : tensor<3x3x64x64xf32> | |
%182 = iree_input.global.load @_variables$452 : tensor<1x1x64x256xf32> | |
%183 = iree_input.global.load @_variables$453 : tensor<256xf32> | |
%184 = iree_input.global.load @_variables$454 : tensor<256xf32> | |
%185 = iree_input.global.load @_variables$455 : tensor<256xf32> | |
%186 = iree_input.global.load @_variables$456 : tensor<256xf32> | |
%187 = iree_input.global.load @_variables$457 : tensor<1024xf32> | |
%188 = iree_input.global.load @_variables$458 : tensor<1024xf32> | |
%189 = iree_input.global.load @_variables$459 : tensor<1x1x1024x256xf32> | |
%190 = iree_input.global.load @_variables$460 : tensor<3x3x256x256xf32> | |
%191 = iree_input.global.load @_variables$461 : tensor<1x1x256x1024xf32> | |
%192 = iree_input.global.load @_variables$462 : tensor<256xf32> | |
%193 = iree_input.global.load @_variables$463 : tensor<256xf32> | |
%194 = iree_input.global.load @_variables$464 : tensor<256xf32> | |
%195 = iree_input.global.load @_variables$465 : tensor<256xf32> | |
%196 = iree_input.global.load @_variables$466 : tensor<1024xf32> | |
%197 = iree_input.global.load @_variables$467 : tensor<1024xf32> | |
%198 = iree_input.global.load @_variables$468 : tensor<1x1x1024x256xf32> | |
%199 = iree_input.global.load @_variables$469 : tensor<3x3x256x256xf32> | |
%200 = iree_input.global.load @_variables$470 : tensor<1x1x256x1024xf32> | |
%201 = iree_input.global.load @_variables$471 : tensor<256xf32> | |
%202 = iree_input.global.load @_variables$472 : tensor<256xf32> | |
%203 = iree_input.global.load @_variables$473 : tensor<256xf32> | |
%204 = iree_input.global.load @_variables$474 : tensor<256xf32> | |
%205 = iree_input.global.load @_variables$475 : tensor<1024xf32> | |
%206 = iree_input.global.load @_variables$476 : tensor<1024xf32> | |
%207 = iree_input.global.load @_variables$477 : tensor<1x1x1024x256xf32> | |
%208 = iree_input.global.load @_variables$478 : tensor<3x3x256x256xf32> | |
%209 = iree_input.global.load @_variables$479 : tensor<1x1x256x1024xf32> | |
%210 = iree_input.global.load @_variables$480 : tensor<512xf32> | |
%211 = iree_input.global.load @_variables$481 : tensor<512xf32> | |
%212 = iree_input.global.load @_variables$482 : tensor<512xf32> | |
%213 = iree_input.global.load @_variables$483 : tensor<512xf32> | |
%214 = iree_input.global.load @_variables$484 : tensor<2048xf32> | |
%215 = iree_input.global.load @_variables$485 : tensor<2048xf32> | |
%216 = iree_input.global.load @_variables$486 : tensor<1x1x1024x512xf32> | |
%217 = iree_input.global.load @_variables$487 : tensor<3x3x512x512xf32> | |
%218 = iree_input.global.load @_variables$488 : tensor<1x1x512x2048xf32> | |
%219 = iree_input.global.load @_variables$489 : tensor<2048xf32> | |
%220 = iree_input.global.load @_variables$490 : tensor<2048xf32> | |
%221 = iree_input.global.load @_variables$491 : tensor<1x1x1024x2048xf32> | |
%222 = iree_input.global.load @_variables$492 : tensor<512xf32> | |
%223 = iree_input.global.load @_variables$493 : tensor<512xf32> | |
%224 = iree_input.global.load @_variables$494 : tensor<512xf32> | |
%225 = iree_input.global.load @_variables$495 : tensor<512xf32> | |
%226 = iree_input.global.load @_variables$496 : tensor<2048xf32> | |
%227 = iree_input.global.load @_variables$497 : tensor<2048xf32> | |
%228 = iree_input.global.load @_variables$498 : tensor<1x1x2048x512xf32> | |
%229 = iree_input.global.load @_variables$499 : tensor<3x3x512x512xf32> | |
%230 = iree_input.global.load @_variables$500 : tensor<1x1x512x2048xf32> | |
%231 = iree_input.global.load @_variables$501 : tensor<512xf32> | |
%232 = iree_input.global.load @_variables$502 : tensor<512xf32> | |
%233 = iree_input.global.load @_variables$503 : tensor<512xf32> | |
%234 = iree_input.global.load @_variables$504 : tensor<512xf32> | |
%235 = iree_input.global.load @_variables$505 : tensor<2048xf32> | |
%236 = iree_input.global.load @_variables$506 : tensor<2048xf32> | |
%237 = iree_input.global.load @_variables$507 : tensor<1x1x2048x512xf32> | |
%238 = iree_input.global.load @_variables$508 : tensor<3x3x512x512xf32> | |
%239 = iree_input.global.load @_variables$509 : tensor<1x1x512x2048xf32> | |
%240 = iree_input.global.load @_variables$510 : tensor<64xf32> | |
%241 = iree_input.global.load @_variables$511 : tensor<64xf32> | |
%242 = iree_input.global.load @_variables$512 : tensor<64xf32> | |
%243 = iree_input.global.load @_variables$513 : tensor<64xf32> | |
%244 = iree_input.global.load @_variables$514 : tensor<256xf32> | |
%245 = iree_input.global.load @_variables$515 : tensor<256xf32> | |
%246 = iree_input.global.load @_variables$516 : tensor<1x1x256x64xf32> | |
%247 = iree_input.global.load @_variables$517 : tensor<3x3x64x64xf32> | |
%248 = iree_input.global.load @_variables$518 : tensor<1x1x64x256xf32> | |
%249 = iree_input.global.load @_variables$519 : tensor<128xf32> | |
%250 = iree_input.global.load @_variables$520 : tensor<128xf32> | |
%251 = iree_input.global.load @_variables$521 : tensor<128xf32> | |
%252 = iree_input.global.load @_variables$522 : tensor<128xf32> | |
%253 = iree_input.global.load @_variables$523 : tensor<512xf32> | |
%254 = iree_input.global.load @_variables$524 : tensor<512xf32> | |
%255 = iree_input.global.load @_variables$525 : tensor<1x1x256x128xf32> | |
%256 = iree_input.global.load @_variables$526 : tensor<3x3x128x128xf32> | |
%257 = iree_input.global.load @_variables$527 : tensor<1x1x128x512xf32> | |
%258 = iree_input.global.load @_variables$528 : tensor<512xf32> | |
%259 = iree_input.global.load @_variables$529 : tensor<512xf32> | |
%260 = iree_input.global.load @_variables$530 : tensor<1x1x256x512xf32> | |
%261 = iree_input.global.load @_variables$531 : tensor<128xf32> | |
%262 = iree_input.global.load @_variables$532 : tensor<128xf32> | |
%263 = iree_input.global.load @_variables$533 : tensor<128xf32> | |
%264 = iree_input.global.load @_variables$534 : tensor<128xf32> | |
%265 = iree_input.global.load @_variables$535 : tensor<512xf32> | |
%266 = iree_input.global.load @_variables$536 : tensor<512xf32> | |
%267 = iree_input.global.load @_variables$537 : tensor<1x1x512x128xf32> | |
%268 = iree_input.global.load @_variables$538 : tensor<3x3x128x128xf32> | |
%269 = iree_input.global.load @_variables$539 : tensor<1x1x128x512xf32> | |
%270 = iree_input.global.load @_variables$540 : tensor<128xf32> | |
%271 = iree_input.global.load @_variables$541 : tensor<128xf32> | |
%272 = iree_input.global.load @_variables$542 : tensor<128xf32> | |
%273 = iree_input.global.load @_variables$543 : tensor<128xf32> | |
%274 = iree_input.global.load @_variables$544 : tensor<512xf32> | |
%275 = iree_input.global.load @_variables$545 : tensor<512xf32> | |
%276 = iree_input.global.load @_variables$546 : tensor<1x1x512x128xf32> | |
%277 = iree_input.global.load @_variables$547 : tensor<3x3x128x128xf32> | |
%278 = iree_input.global.load @_variables$548 : tensor<1x1x128x512xf32> | |
%279 = iree_input.global.load @_variables$549 : tensor<128xf32> | |
%280 = iree_input.global.load @_variables$550 : tensor<128xf32> | |
%281 = iree_input.global.load @_variables$551 : tensor<128xf32> | |
%282 = iree_input.global.load @_variables$552 : tensor<128xf32> | |
%283 = iree_input.global.load @_variables$553 : tensor<512xf32> | |
%284 = iree_input.global.load @_variables$554 : tensor<512xf32> | |
%285 = iree_input.global.load @_variables$555 : tensor<1x1x512x128xf32> | |
%286 = iree_input.global.load @_variables$556 : tensor<3x3x128x128xf32> | |
%287 = iree_input.global.load @_variables$557 : tensor<1x1x128x512xf32> | |
%288 = iree_input.global.load @_variables$558 : tensor<256xf32> | |
%289 = iree_input.global.load @_variables$559 : tensor<256xf32> | |
%290 = iree_input.global.load @_variables$560 : tensor<256xf32> | |
%291 = iree_input.global.load @_variables$561 : tensor<256xf32> | |
%292 = iree_input.global.load @_variables$562 : tensor<1024xf32> | |
%293 = iree_input.global.load @_variables$563 : tensor<1024xf32> | |
%294 = iree_input.global.load @_variables$564 : tensor<1x1x512x256xf32> | |
%295 = iree_input.global.load @_variables$565 : tensor<3x3x256x256xf32> | |
%296 = iree_input.global.load @_variables$566 : tensor<1x1x256x1024xf32> | |
%297 = iree_input.global.load @_variables$567 : tensor<1024xf32> | |
%298 = iree_input.global.load @_variables$568 : tensor<1024xf32> | |
%299 = iree_input.global.load @_variables$569 : tensor<1x1x512x1024xf32> | |
%300 = iree_input.global.load @_variables$570 : tensor<256xf32> | |
%301 = iree_input.global.load @_variables$571 : tensor<256xf32> | |
%302 = iree_input.global.load @_variables$572 : tensor<256xf32> | |
%303 = iree_input.global.load @_variables$573 : tensor<256xf32> | |
%304 = iree_input.global.load @_variables$574 : tensor<1024xf32> | |
%305 = iree_input.global.load @_variables$575 : tensor<1024xf32> | |
%306 = iree_input.global.load @_variables$576 : tensor<1x1x1024x256xf32> | |
%307 = iree_input.global.load @_variables$577 : tensor<3x3x256x256xf32> | |
%308 = iree_input.global.load @_variables$578 : tensor<1x1x256x1024xf32> | |
%309 = iree_input.global.load @_variables$579 : tensor<256xf32> | |
%310 = iree_input.global.load @_variables$580 : tensor<256xf32> | |
%311 = iree_input.global.load @_variables$581 : tensor<256xf32> | |
%312 = iree_input.global.load @_variables$582 : tensor<256xf32> | |
%313 = iree_input.global.load @_variables$583 : tensor<1024xf32> | |
%314 = iree_input.global.load @_variables$584 : tensor<1024xf32> | |
%315 = iree_input.global.load @_variables$585 : tensor<1x1x1024x256xf32> | |
%316 = iree_input.global.load @_variables$586 : tensor<3x3x256x256xf32> | |
%317 = iree_input.global.load @_variables$587 : tensor<1x1x256x1024xf32> | |
%318 = iree_input.global.load @_variables$588 : tensor<64xf32> | |
%319 = iree_input.global.load @_variables$589 : tensor<64xf32> | |
%320 = iree_input.global.load @_variables$590 : tensor<7x7x3x64xf32> | |
%321 = call @main(%0, %1, %2, %3, %4, %5, %6, %7, %8, %9, %10, %11, %12, %13, %14, %15, %16, %17, %18, %19, %20, %21, %22, %23, %24, %25, %26, %27, %28, %29, %30, %31, %32, %33, %34, %35, %36, %37, %38, %39, %40, %41, %42, %43, %44, %45, %46, %47, %48, %49, %50, %51, %52, %53, %54, %55, %56, %57, %58, %59, %60, %61, %62, %63, %64, %65, %66, %67, %68, %69, %70, %71, %72, %73, %74, %75, %76, %77, %78, %79, %80, %81, %82, %83, %84, %85, %86, %87, %88, %89, %90, %91, %92, %93, %94, %95, %96, %97, %98, %99, %100, %101, %102, %103, %104, %105, %106, %107, %108, %109, %110, %111, %112, %113, %114, %115, %116, %117, %118, %119, %120, %121, %122, %123, %124, %125, %126, %127, %128, %129, %130, %131, %132, %133, %134, %135, %136, %137, %138, %139, %140, %141, %142, %143, %144, %145, %146, %147, %148, %149, %150, %151, %152, %153, %154, %155, %156, %157, %158, %159, %160, %161, %162, %163, %164, %165, %166, %167, %168, %169, %170, %171, %172, %173, %174, %175, %176, %177, %178, %179, %180, %181, %182, %183, %184, %185, %186, %187, %188, %189, %190, %191, %192, %193, %194, %195, %196, %197, %198, %199, %200, %201, %202, %203, %204, %205, %206, %207, %208, %209, %210, %211, %212, %213, %214, %215, %216, %217, %218, %219, %220, %221, %222, %223, %224, %225, %226, %227, %228, %229, %230, %231, %232, %233, %234, %235, %236, %237, %238, %239, %240, %241, %242, %243, %244, %245, %246, %247, %248, %249, %250, %251, %252, %253, %254, %255, %256, %257, %258, %259, %260, %261, %262, %263, %264, %265, %266, %267, %268, %269, %270, %271, %272, %273, %274, %275, %276, %277, %278, %279, %280, %281, %282, %283, %284, %285, %286, %287, %288, %289, %290, %291, %292, %293, %294, %295, %296, %297, %298, %299, %300, %301, %302, %303, %304, %305, %306, %307, %308, %309, %310, %311, %312, %313, %314, %315, %316, %317, %318, %319, %320, %arg0) : (tensor<64xf32>, tensor<64xf32>, tensor<64xf32>, tensor<64xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<64xf32>, tensor<64xf32>, tensor<64xf32>, tensor<64xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<1024xf32>, tensor<1024xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<1024xf32>, tensor<1024xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<1024xf32>, tensor<1024xf32>, tensor<512xf32>, tensor<512xf32>, tensor<512xf32>, tensor<512xf32>, tensor<2048xf32>, tensor<2048xf32>, tensor<2048xf32>, tensor<2048xf32>, tensor<512xf32>, tensor<512xf32>, tensor<512xf32>, tensor<512xf32>, tensor<2048xf32>, tensor<2048xf32>, tensor<512xf32>, tensor<512xf32>, tensor<512xf32>, tensor<512xf32>, tensor<2048xf32>, tensor<2048xf32>, tensor<64xf32>, tensor<64xf32>, tensor<64xf32>, tensor<64xf32>, tensor<256xf32>, tensor<256xf32>, tensor<128xf32>, tensor<128xf32>, tensor<128xf32>, tensor<128xf32>, tensor<512xf32>, tensor<512xf32>, tensor<512xf32>, tensor<512xf32>, tensor<128xf32>, tensor<128xf32>, tensor<128xf32>, tensor<128xf32>, tensor<512xf32>, tensor<512xf32>, tensor<128xf32>, tensor<128xf32>, tensor<128xf32>, tensor<128xf32>, tensor<512xf32>, tensor<512xf32>, tensor<128xf32>, tensor<128xf32>, tensor<128xf32>, tensor<128xf32>, tensor<512xf32>, tensor<512xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<1024xf32>, tensor<1024xf32>, tensor<1024xf32>, tensor<1024xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<1024xf32>, tensor<1024xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<1024xf32>, tensor<1024xf32>, tensor<64xf32>, tensor<64xf32>, tensor<1x2048xf32>, tensor<1x1x1x64xf32>, tensor<1x1x1x64xf32>, tensor<1x1x1x64xf32>, tensor<1x1x1x64xf32>, tensor<1x1x1x256xf32>, tensor<1x1x1x64xf32>, tensor<1x1x1x64xf32>, tensor<1x1x1x1024xf32>, tensor<1x1x1x256xf32>, tensor<1x1x1x256xf32>, tensor<1x1x1x1024xf32>, tensor<1x1x1x256xf32>, tensor<1x1x1x256xf32>, tensor<1x1x1x1024xf32>, tensor<1x1x1x256xf32>, tensor<1x1x1x256xf32>, tensor<1x1x1x1024xf32>, tensor<1x1x1x512xf32>, tensor<1x1x1x512xf32>, tensor<1x1x1x1024xf32>, tensor<1x1x1x2048xf32>, tensor<1x1x1x512xf32>, tensor<1x1x1x512xf32>, tensor<1x1x1x2048xf32>, tensor<1x1x1x512xf32>, tensor<1x1x1x512xf32>, tensor<1x1x1x256xf32>, tensor<1x1x1x64xf32>, tensor<1x1x1x64xf32>, tensor<1x1x1x256xf32>, tensor<1x1x1x128xf32>, tensor<1x1x1x128xf32>, tensor<1x1x1x256xf32>, tensor<1x1x1x512xf32>, tensor<1x1x1x128xf32>, tensor<1x1x1x128xf32>, tensor<1x1x1x512xf32>, tensor<1x1x1x128xf32>, tensor<1x1x1x128xf32>, tensor<1x1x1x512xf32>, tensor<1x1x1x128xf32>, tensor<1x1x1x128xf32>, tensor<1x1x1x512xf32>, tensor<1x1x1x256xf32>, tensor<1x1x1x256xf32>, tensor<1x1x1x512xf32>, tensor<1x1x1x1024xf32>, tensor<1x1x1x256xf32>, tensor<1x1x1x256xf32>, tensor<1x1x1x1024xf32>, tensor<1x1x1x256xf32>, tensor<1x1x1x256xf32>, tensor<1x1x1x3xf32>, tensor<1000xf32>, tensor<2048x1000xf32>, tensor<64xf32>, tensor<64xf32>, tensor<64xf32>, tensor<64xf32>, tensor<256xf32>, tensor<256xf32>, tensor<1x1x64x64xf32>, tensor<3x3x64x64xf32>, tensor<1x1x64x256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<1x1x64x256xf32>, tensor<64xf32>, tensor<64xf32>, tensor<64xf32>, tensor<64xf32>, tensor<256xf32>, tensor<256xf32>, tensor<1x1x256x64xf32>, tensor<3x3x64x64xf32>, tensor<1x1x64x256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<1024xf32>, tensor<1024xf32>, tensor<1x1x1024x256xf32>, tensor<3x3x256x256xf32>, tensor<1x1x256x1024xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<1024xf32>, tensor<1024xf32>, tensor<1x1x1024x256xf32>, tensor<3x3x256x256xf32>, tensor<1x1x256x1024xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<1024xf32>, tensor<1024xf32>, tensor<1x1x1024x256xf32>, tensor<3x3x256x256xf32>, tensor<1x1x256x1024xf32>, tensor<512xf32>, tensor<512xf32>, tensor<512xf32>, tensor<512xf32>, tensor<2048xf32>, tensor<2048xf32>, tensor<1x1x1024x512xf32>, tensor<3x3x512x512xf32>, tensor<1x1x512x2048xf32>, tensor<2048xf32>, tensor<2048xf32>, tensor<1x1x1024x2048xf32>, tensor<512xf32>, tensor<512xf32>, tensor<512xf32>, tensor<512xf32>, tensor<2048xf32>, tensor<2048xf32>, tensor<1x1x2048x512xf32>, tensor<3x3x512x512xf32>, tensor<1x1x512x2048xf32>, tensor<512xf32>, tensor<512xf32>, tensor<512xf32>, tensor<512xf32>, tensor<2048xf32>, tensor<2048xf32>, tensor<1x1x2048x512xf32>, tensor<3x3x512x512xf32>, tensor<1x1x512x2048xf32>, tensor<64xf32>, tensor<64xf32>, tensor<64xf32>, tensor<64xf32>, tensor<256xf32>, tensor<256xf32>, tensor<1x1x256x64xf32>, tensor<3x3x64x64xf32>, tensor<1x1x64x256xf32>, tensor<128xf32>, tensor<128xf32>, tensor<128xf32>, tensor<128xf32>, tensor<512xf32>, tensor<512xf32>, tensor<1x1x256x128xf32>, tensor<3x3x128x128xf32>, tensor<1x1x128x512xf32>, tensor<512xf32>, tensor<512xf32>, tensor<1x1x256x512xf32>, tensor<128xf32>, tensor<128xf32>, tensor<128xf32>, tensor<128xf32>, tensor<512xf32>, tensor<512xf32>, tensor<1x1x512x128xf32>, tensor<3x3x128x128xf32>, tensor<1x1x128x512xf32>, tensor<128xf32>, tensor<128xf32>, tensor<128xf32>, tensor<128xf32>, tensor<512xf32>, tensor<512xf32>, tensor<1x1x512x128xf32>, tensor<3x3x128x128xf32>, tensor<1x1x128x512xf32>, tensor<128xf32>, tensor<128xf32>, tensor<128xf32>, tensor<128xf32>, tensor<512xf32>, tensor<512xf32>, tensor<1x1x512x128xf32>, tensor<3x3x128x128xf32>, tensor<1x1x128x512xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<1024xf32>, tensor<1024xf32>, tensor<1x1x512x256xf32>, tensor<3x3x256x256xf32>, tensor<1x1x256x1024xf32>, tensor<1024xf32>, tensor<1024xf32>, tensor<1x1x512x1024xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<1024xf32>, tensor<1024xf32>, tensor<1x1x1024x256xf32>, tensor<3x3x256x256xf32>, tensor<1x1x256x1024xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<1024xf32>, tensor<1024xf32>, tensor<1x1x1024x256xf32>, tensor<3x3x256x256xf32>, tensor<1x1x256x1024xf32>, tensor<64xf32>, tensor<64xf32>, tensor<7x7x3x64xf32>, tensor<1x224x224x3xf32>) -> tensor<1x1000xf32> | |
return %321 : tensor<1x1000xf32> | |
} | |
func private @main(%arg0: tensor<64xf32>, %arg1: tensor<64xf32>, %arg2: tensor<64xf32>, %arg3: tensor<64xf32>, %arg4: tensor<256xf32>, %arg5: tensor<256xf32>, %arg6: tensor<256xf32>, %arg7: tensor<256xf32>, %arg8: tensor<64xf32>, %arg9: tensor<64xf32>, %arg10: tensor<64xf32>, %arg11: tensor<64xf32>, %arg12: tensor<256xf32>, %arg13: tensor<256xf32>, %arg14: tensor<256xf32>, %arg15: tensor<256xf32>, %arg16: tensor<256xf32>, %arg17: tensor<256xf32>, %arg18: tensor<1024xf32>, %arg19: tensor<1024xf32>, %arg20: tensor<256xf32>, %arg21: tensor<256xf32>, %arg22: tensor<256xf32>, %arg23: tensor<256xf32>, %arg24: tensor<1024xf32>, %arg25: tensor<1024xf32>, %arg26: tensor<256xf32>, %arg27: tensor<256xf32>, %arg28: tensor<256xf32>, %arg29: tensor<256xf32>, %arg30: tensor<1024xf32>, %arg31: tensor<1024xf32>, %arg32: tensor<512xf32>, %arg33: tensor<512xf32>, %arg34: tensor<512xf32>, %arg35: tensor<512xf32>, %arg36: tensor<2048xf32>, %arg37: tensor<2048xf32>, %arg38: tensor<2048xf32>, %arg39: tensor<2048xf32>, %arg40: tensor<512xf32>, %arg41: tensor<512xf32>, %arg42: tensor<512xf32>, %arg43: tensor<512xf32>, %arg44: tensor<2048xf32>, %arg45: tensor<2048xf32>, %arg46: tensor<512xf32>, %arg47: tensor<512xf32>, %arg48: tensor<512xf32>, %arg49: tensor<512xf32>, %arg50: tensor<2048xf32>, %arg51: tensor<2048xf32>, %arg52: tensor<64xf32>, %arg53: tensor<64xf32>, %arg54: tensor<64xf32>, %arg55: tensor<64xf32>, %arg56: tensor<256xf32>, %arg57: tensor<256xf32>, %arg58: tensor<128xf32>, %arg59: tensor<128xf32>, %arg60: tensor<128xf32>, %arg61: tensor<128xf32>, %arg62: tensor<512xf32>, %arg63: tensor<512xf32>, %arg64: tensor<512xf32>, %arg65: tensor<512xf32>, %arg66: tensor<128xf32>, %arg67: tensor<128xf32>, %arg68: tensor<128xf32>, %arg69: tensor<128xf32>, %arg70: tensor<512xf32>, %arg71: tensor<512xf32>, %arg72: tensor<128xf32>, %arg73: tensor<128xf32>, %arg74: tensor<128xf32>, %arg75: tensor<128xf32>, %arg76: tensor<512xf32>, %arg77: tensor<512xf32>, %arg78: tensor<128xf32>, %arg79: tensor<128xf32>, %arg80: tensor<128xf32>, %arg81: tensor<128xf32>, %arg82: tensor<512xf32>, %arg83: tensor<512xf32>, %arg84: tensor<256xf32>, %arg85: tensor<256xf32>, %arg86: tensor<256xf32>, %arg87: tensor<256xf32>, %arg88: tensor<1024xf32>, %arg89: tensor<1024xf32>, %arg90: tensor<1024xf32>, %arg91: tensor<1024xf32>, %arg92: tensor<256xf32>, %arg93: tensor<256xf32>, %arg94: tensor<256xf32>, %arg95: tensor<256xf32>, %arg96: tensor<1024xf32>, %arg97: tensor<1024xf32>, %arg98: tensor<256xf32>, %arg99: tensor<256xf32>, %arg100: tensor<256xf32>, %arg101: tensor<256xf32>, %arg102: tensor<1024xf32>, %arg103: tensor<1024xf32>, %arg104: tensor<64xf32>, %arg105: tensor<64xf32>, %arg106: tensor<1x2048xf32>, %arg107: tensor<1x1x1x64xf32>, %arg108: tensor<1x1x1x64xf32>, %arg109: tensor<1x1x1x64xf32>, %arg110: tensor<1x1x1x64xf32>, %arg111: tensor<1x1x1x256xf32>, %arg112: tensor<1x1x1x64xf32>, %arg113: tensor<1x1x1x64xf32>, %arg114: tensor<1x1x1x1024xf32>, %arg115: tensor<1x1x1x256xf32>, %arg116: tensor<1x1x1x256xf32>, %arg117: tensor<1x1x1x1024xf32>, %arg118: tensor<1x1x1x256xf32>, %arg119: tensor<1x1x1x256xf32>, %arg120: tensor<1x1x1x1024xf32>, %arg121: tensor<1x1x1x256xf32>, %arg122: tensor<1x1x1x256xf32>, %arg123: tensor<1x1x1x1024xf32>, %arg124: tensor<1x1x1x512xf32>, %arg125: tensor<1x1x1x512xf32>, %arg126: tensor<1x1x1x1024xf32>, %arg127: tensor<1x1x1x2048xf32>, %arg128: tensor<1x1x1x512xf32>, %arg129: tensor<1x1x1x512xf32>, %arg130: tensor<1x1x1x2048xf32>, %arg131: tensor<1x1x1x512xf32>, %arg132: tensor<1x1x1x512xf32>, %arg133: tensor<1x1x1x256xf32>, %arg134: tensor<1x1x1x64xf32>, %arg135: tensor<1x1x1x64xf32>, %arg136: tensor<1x1x1x256xf32>, %arg137: tensor<1x1x1x128xf32>, %arg138: tensor<1x1x1x128xf32>, %arg139: tensor<1x1x1x256xf32>, %arg140: tensor<1x1x1x512xf32>, %arg141: tensor<1x1x1x128xf32>, %arg142: tensor<1x1x1x128xf32>, %arg143: tensor<1x1x1x512xf32>, %arg144: tensor<1x1x1x128xf32>, %arg145: tensor<1x1x1x128xf32>, %arg146: tensor<1x1x1x512xf32>, %arg147: tensor<1x1x1x128xf32>, %arg148: tensor<1x1x1x128xf32>, %arg149: tensor<1x1x1x512xf32>, %arg150: tensor<1x1x1x256xf32>, %arg151: tensor<1x1x1x256xf32>, %arg152: tensor<1x1x1x512xf32>, %arg153: tensor<1x1x1x1024xf32>, %arg154: tensor<1x1x1x256xf32>, %arg155: tensor<1x1x1x256xf32>, %arg156: tensor<1x1x1x1024xf32>, %arg157: tensor<1x1x1x256xf32>, %arg158: tensor<1x1x1x256xf32>, %arg159: tensor<1x1x1x3xf32>, %arg160: tensor<1000xf32>, %arg161: tensor<2048x1000xf32>, %arg162: tensor<64xf32>, %arg163: tensor<64xf32>, %arg164: tensor<64xf32>, %arg165: tensor<64xf32>, %arg166: tensor<256xf32>, %arg167: tensor<256xf32>, %arg168: tensor<1x1x64x64xf32>, %arg169: tensor<3x3x64x64xf32>, %arg170: tensor<1x1x64x256xf32>, %arg171: tensor<256xf32>, %arg172: tensor<256xf32>, %arg173: tensor<1x1x64x256xf32>, %arg174: tensor<64xf32>, %arg175: tensor<64xf32>, %arg176: tensor<64xf32>, %arg177: tensor<64xf32>, %arg178: tensor<256xf32>, %arg179: tensor<256xf32>, %arg180: tensor<1x1x256x64xf32>, %arg181: tensor<3x3x64x64xf32>, %arg182: tensor<1x1x64x256xf32>, %arg183: tensor<256xf32>, %arg184: tensor<256xf32>, %arg185: tensor<256xf32>, %arg186: tensor<256xf32>, %arg187: tensor<1024xf32>, %arg188: tensor<1024xf32>, %arg189: tensor<1x1x1024x256xf32>, %arg190: tensor<3x3x256x256xf32>, %arg191: tensor<1x1x256x1024xf32>, %arg192: tensor<256xf32>, %arg193: tensor<256xf32>, %arg194: tensor<256xf32>, %arg195: tensor<256xf32>, %arg196: tensor<1024xf32>, %arg197: tensor<1024xf32>, %arg198: tensor<1x1x1024x256xf32>, %arg199: tensor<3x3x256x256xf32>, %arg200: tensor<1x1x256x1024xf32>, %arg201: tensor<256xf32>, %arg202: tensor<256xf32>, %arg203: tensor<256xf32>, %arg204: tensor<256xf32>, %arg205: tensor<1024xf32>, %arg206: tensor<1024xf32>, %arg207: tensor<1x1x1024x256xf32>, %arg208: tensor<3x3x256x256xf32>, %arg209: tensor<1x1x256x1024xf32>, %arg210: tensor<512xf32>, %arg211: tensor<512xf32>, %arg212: tensor<512xf32>, %arg213: tensor<512xf32>, %arg214: tensor<2048xf32>, %arg215: tensor<2048xf32>, %arg216: tensor<1x1x1024x512xf32>, %arg217: tensor<3x3x512x512xf32>, %arg218: tensor<1x1x512x2048xf32>, %arg219: tensor<2048xf32>, %arg220: tensor<2048xf32>, %arg221: tensor<1x1x1024x2048xf32>, %arg222: tensor<512xf32>, %arg223: tensor<512xf32>, %arg224: tensor<512xf32>, %arg225: tensor<512xf32>, %arg226: tensor<2048xf32>, %arg227: tensor<2048xf32>, %arg228: tensor<1x1x2048x512xf32>, %arg229: tensor<3x3x512x512xf32>, %arg230: tensor<1x1x512x2048xf32>, %arg231: tensor<512xf32>, %arg232: tensor<512xf32>, %arg233: tensor<512xf32>, %arg234: tensor<512xf32>, %arg235: tensor<2048xf32>, %arg236: tensor<2048xf32>, %arg237: tensor<1x1x2048x512xf32>, %arg238: tensor<3x3x512x512xf32>, %arg239: tensor<1x1x512x2048xf32>, %arg240: tensor<64xf32>, %arg241: tensor<64xf32>, %arg242: tensor<64xf32>, %arg243: tensor<64xf32>, %arg244: tensor<256xf32>, %arg245: tensor<256xf32>, %arg246: tensor<1x1x256x64xf32>, %arg247: tensor<3x3x64x64xf32>, %arg248: tensor<1x1x64x256xf32>, %arg249: tensor<128xf32>, %arg250: tensor<128xf32>, %arg251: tensor<128xf32>, %arg252: tensor<128xf32>, %arg253: tensor<512xf32>, %arg254: tensor<512xf32>, %arg255: tensor<1x1x256x128xf32>, %arg256: tensor<3x3x128x128xf32>, %arg257: tensor<1x1x128x512xf32>, %arg258: tensor<512xf32>, %arg259: tensor<512xf32>, %arg260: tensor<1x1x256x512xf32>, %arg261: tensor<128xf32>, %arg262: tensor<128xf32>, %arg263: tensor<128xf32>, %arg264: tensor<128xf32>, %arg265: tensor<512xf32>, %arg266: tensor<512xf32>, %arg267: tensor<1x1x512x128xf32>, %arg268: tensor<3x3x128x128xf32>, %arg269: tensor<1x1x128x512xf32>, %arg270: tensor<128xf32>, %arg271: tensor<128xf32>, %arg272: tensor<128xf32>, %arg273: tensor<128xf32>, %arg274: tensor<512xf32>, %arg275: tensor<512xf32>, %arg276: tensor<1x1x512x128xf32>, %arg277: tensor<3x3x128x128xf32>, %arg278: tensor<1x1x128x512xf32>, %arg279: tensor<128xf32>, %arg280: tensor<128xf32>, %arg281: tensor<128xf32>, %arg282: tensor<128xf32>, %arg283: tensor<512xf32>, %arg284: tensor<512xf32>, %arg285: tensor<1x1x512x128xf32>, %arg286: tensor<3x3x128x128xf32>, %arg287: tensor<1x1x128x512xf32>, %arg288: tensor<256xf32>, %arg289: tensor<256xf32>, %arg290: tensor<256xf32>, %arg291: tensor<256xf32>, %arg292: tensor<1024xf32>, %arg293: tensor<1024xf32>, %arg294: tensor<1x1x512x256xf32>, %arg295: tensor<3x3x256x256xf32>, %arg296: tensor<1x1x256x1024xf32>, %arg297: tensor<1024xf32>, %arg298: tensor<1024xf32>, %arg299: tensor<1x1x512x1024xf32>, %arg300: tensor<256xf32>, %arg301: tensor<256xf32>, %arg302: tensor<256xf32>, %arg303: tensor<256xf32>, %arg304: tensor<1024xf32>, %arg305: tensor<1024xf32>, %arg306: tensor<1x1x1024x256xf32>, %arg307: tensor<3x3x256x256xf32>, %arg308: tensor<1x1x256x1024xf32>, %arg309: tensor<256xf32>, %arg310: tensor<256xf32>, %arg311: tensor<256xf32>, %arg312: tensor<256xf32>, %arg313: tensor<1024xf32>, %arg314: tensor<1024xf32>, %arg315: tensor<1x1x1024x256xf32>, %arg316: tensor<3x3x256x256xf32>, %arg317: tensor<1x1x256x1024xf32>, %arg318: tensor<64xf32>, %arg319: tensor<64xf32>, %arg320: tensor<7x7x3x64xf32>, %arg321: tensor<1x224x224x3xf32>) -> tensor<1x1000xf32> { | |
%0 = mhlo.constant dense<true> : tensor<i1> | |
%1 = mhlo.constant dense<-1.000000e+00> : tensor<1x2048xf32> | |
%2 = mhlo.constant dense<0> : tensor<i32> | |
%3 = mhlo.constant dense<255> : tensor<i32> | |
%4 = mhlo.constant dense<2.560000e+02> : tensor<1x2048xf32> | |
%5 = mhlo.constant dense<1.1920929E-7> : tensor<1x2048xf32> | |
%6 = mhlo.constant dense<5.000000e-01> : tensor<2048x1000xf32> | |
%7 = mhlo.constant dense<-1.270000e+02> : tensor<f32> | |
%8 = mhlo.constant dense<1.270000e+02> : tensor<f32> | |
%9 = mhlo.constant dense<1.270000e+02> : tensor<1x1000xf32> | |
%10 = mhlo.constant dense<1.1920929E-7> : tensor<1x1000xf32> | |
%11 = mhlo.constant dense<0xFF800000> : tensor<f32> | |
%12 = mhlo.constant dense<4.900000e+01> : tensor<1x2048xf32> | |
%13 = mhlo.constant dense<0.000000e+00> : tensor<f32> | |
%14 = mhlo.constant dense<0.000000e+00> : tensor<1x7x7x2048xf32> | |
%15 = mhlo.constant dense<9.99999974E-6> : tensor<1x1x1x2048xf32> | |
%16 = mhlo.constant dense<5.000000e-01> : tensor<1x1x512x2048xf32> | |
%17 = mhlo.constant dense<1.270000e+02> : tensor<1x1x1x2048xf32> | |
%18 = mhlo.constant dense<1.1920929E-7> : tensor<1x1x1x2048xf32> | |
%19 = mhlo.constant dense<-1.000000e+00> : tensor<1x1x1x512xf32> | |
%20 = mhlo.constant dense<2.560000e+02> : tensor<1x1x1x512xf32> | |
%21 = mhlo.constant dense<1.1920929E-7> : tensor<1x1x1x512xf32> | |
%22 = mhlo.constant dense<0.000000e+00> : tensor<1x7x7x512xf32> | |
%23 = mhlo.constant dense<9.99999974E-6> : tensor<1x1x1x512xf32> | |
%24 = mhlo.constant dense<5.000000e-01> : tensor<3x3x512x512xf32> | |
%25 = mhlo.constant dense<1.270000e+02> : tensor<1x1x1x512xf32> | |
%26 = mhlo.constant dense<5.000000e-01> : tensor<1x1x2048x512xf32> | |
%27 = mhlo.constant dense<-1.000000e+00> : tensor<1x1x1x2048xf32> | |
%28 = mhlo.constant dense<2.560000e+02> : tensor<1x1x1x2048xf32> | |
%29 = mhlo.constant dense<0.000000e+00> : tensor<1x14x14x512xf32> | |
%30 = mhlo.constant dense<5.000000e-01> : tensor<1x1x1024x512xf32> | |
%31 = mhlo.constant dense<-1.000000e+00> : tensor<1x1x1x1024xf32> | |
%32 = mhlo.constant dense<5.000000e-01> : tensor<1x14x14x1024xf32> | |
%33 = mhlo.constant dense<1.270000e+02> : tensor<1x1x1x1024xf32> | |
%34 = mhlo.constant dense<1.1920929E-7> : tensor<1x1x1x1024xf32> | |
%35 = mhlo.constant dense<5.000000e-01> : tensor<1x1x1024x2048xf32> | |
%36 = mhlo.constant dense<2.560000e+02> : tensor<1x1x1x1024xf32> | |
%37 = mhlo.constant dense<0.000000e+00> : tensor<1x14x14x1024xf32> | |
%38 = mhlo.constant dense<9.99999974E-6> : tensor<1x1x1x1024xf32> | |
%39 = mhlo.constant dense<5.000000e-01> : tensor<1x1x256x1024xf32> | |
%40 = mhlo.constant dense<-1.000000e+00> : tensor<1x1x1x256xf32> | |
%41 = mhlo.constant dense<2.560000e+02> : tensor<1x1x1x256xf32> | |
%42 = mhlo.constant dense<1.1920929E-7> : tensor<1x1x1x256xf32> | |
%43 = mhlo.constant dense<0.000000e+00> : tensor<1x14x14x256xf32> | |
%44 = mhlo.constant dense<9.99999974E-6> : tensor<1x1x1x256xf32> | |
%45 = mhlo.constant dense<5.000000e-01> : tensor<3x3x256x256xf32> | |
%46 = mhlo.constant dense<1.270000e+02> : tensor<1x1x1x256xf32> | |
%47 = mhlo.constant dense<5.000000e-01> : tensor<1x1x1024x256xf32> | |
%48 = mhlo.constant dense<0.000000e+00> : tensor<1x28x28x256xf32> | |
%49 = mhlo.constant dense<5.000000e-01> : tensor<1x1x512x256xf32> | |
%50 = mhlo.constant dense<5.000000e-01> : tensor<1x28x28x512xf32> | |
%51 = mhlo.constant dense<5.000000e-01> : tensor<1x1x512x1024xf32> | |
%52 = mhlo.constant dense<0.000000e+00> : tensor<1x28x28x512xf32> | |
%53 = mhlo.constant dense<5.000000e-01> : tensor<1x1x128x512xf32> | |
%54 = mhlo.constant dense<-1.000000e+00> : tensor<1x1x1x128xf32> | |
%55 = mhlo.constant dense<2.560000e+02> : tensor<1x1x1x128xf32> | |
%56 = mhlo.constant dense<1.1920929E-7> : tensor<1x1x1x128xf32> | |
%57 = mhlo.constant dense<0.000000e+00> : tensor<1x28x28x128xf32> | |
%58 = mhlo.constant dense<9.99999974E-6> : tensor<1x1x1x128xf32> | |
%59 = mhlo.constant dense<5.000000e-01> : tensor<3x3x128x128xf32> | |
%60 = mhlo.constant dense<1.270000e+02> : tensor<1x1x1x128xf32> | |
%61 = mhlo.constant dense<5.000000e-01> : tensor<1x1x512x128xf32> | |
%62 = mhlo.constant dense<0.000000e+00> : tensor<1x56x56x128xf32> | |
%63 = mhlo.constant dense<5.000000e-01> : tensor<1x1x256x128xf32> | |
%64 = mhlo.constant dense<5.000000e-01> : tensor<1x56x56x256xf32> | |
%65 = mhlo.constant dense<5.000000e-01> : tensor<1x1x256x512xf32> | |
%66 = mhlo.constant dense<0.000000e+00> : tensor<1x56x56x256xf32> | |
%67 = mhlo.constant dense<5.000000e-01> : tensor<1x1x64x256xf32> | |
%68 = mhlo.constant dense<-1.000000e+00> : tensor<1x1x1x64xf32> | |
%69 = mhlo.constant dense<2.560000e+02> : tensor<1x1x1x64xf32> | |
%70 = mhlo.constant dense<1.1920929E-7> : tensor<1x1x1x64xf32> | |
%71 = mhlo.constant dense<0.000000e+00> : tensor<1x56x56x64xf32> | |
%72 = mhlo.constant dense<9.99999974E-6> : tensor<1x1x1x64xf32> | |
%73 = mhlo.constant dense<5.000000e-01> : tensor<3x3x64x64xf32> | |
%74 = mhlo.constant dense<1.270000e+02> : tensor<1x1x1x64xf32> | |
%75 = mhlo.constant dense<5.000000e-01> : tensor<1x1x256x64xf32> | |
%76 = mhlo.constant dense<5.000000e-01> : tensor<1x1x64x64xf32> | |
%77 = mhlo.constant dense<5.000000e-01> : tensor<1x56x56x64xf32> | |
%78 = mhlo.constant dense<0.000000e+00> : tensor<1x112x112x64xf32> | |
%79 = mhlo.constant dense<5.000000e-01> : tensor<7x7x3x64xf32> | |
%80 = mhlo.constant dense<-1.000000e+00> : tensor<1x1x1x3xf32> | |
%81 = mhlo.constant dense<5.000000e-01> : tensor<1x224x224x3xf32> | |
%82 = mhlo.constant dense<1.270000e+02> : tensor<1x1x1x3xf32> | |
%83 = mhlo.constant dense<1.1920929E-7> : tensor<1x1x1x3xf32> | |
%84 = mhlo.add %arg159, %83 : tensor<1x1x1x3xf32> | |
%85 = mhlo.divide %82, %84 : tensor<1x1x1x3xf32> | |
%86 = "mhlo.broadcast_in_dim"(%85) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x3xf32>) -> tensor<1x224x224x3xf32> | |
%87 = mhlo.multiply %arg321, %86 : tensor<1x224x224x3xf32> | |
%88 = call @jit_clip(%87, %8, %7) : (tensor<1x224x224x3xf32>, tensor<f32>, tensor<f32>) -> tensor<1x224x224x3xf32> | |
%89 = mhlo.add %88, %81 : tensor<1x224x224x3xf32> | |
%90 = "mhlo.floor"(%89) : (tensor<1x224x224x3xf32>) -> tensor<1x224x224x3xf32> | |
%91 = "mhlo.broadcast_in_dim"(%85) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x3xf32>) -> tensor<1x224x224x3xf32> | |
%92 = mhlo.divide %90, %91 : tensor<1x224x224x3xf32> | |
%93 = "mhlo.compare"(%arg159, %80) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x3xf32>, tensor<1x1x1x3xf32>) -> tensor<1x1x1x3xi1> | |
%94 = mhlo.reduce %93, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x3xi1>, tensor<i1>) -> tensor<i1> | |
%95 = "mhlo.not"(%94) : (tensor<i1>) -> tensor<i1> | |
%96 = "mhlo.convert"(%95) : (tensor<i1>) -> tensor<i32> | |
%97 = "mhlo.tuple"(%92, %arg321) : (tensor<1x224x224x3xf32>, tensor<1x224x224x3xf32>) -> tuple<tensor<1x224x224x3xf32>, tensor<1x224x224x3xf32>> | |
%98 = "mhlo.case"(%96, %97, %97) ( { | |
^bb0(%arg322: tuple<tensor<1x224x224x3xf32>, tensor<1x224x224x3xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x224x224x3xf32>, tensor<1x224x224x3xf32>>) -> tensor<1x224x224x3xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x224x224x3xf32>) -> tuple<tensor<1x224x224x3xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x224x224x3xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x224x224x3xf32>, tensor<1x224x224x3xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x224x224x3xf32>, tensor<1x224x224x3xf32>>) -> tensor<1x224x224x3xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x224x224x3xf32>) -> tuple<tensor<1x224x224x3xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x224x224x3xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x224x224x3xf32>, tensor<1x224x224x3xf32>>, tuple<tensor<1x224x224x3xf32>, tensor<1x224x224x3xf32>>) -> tuple<tensor<1x224x224x3xf32>> | |
%99 = "mhlo.get_tuple_element"(%98) {index = 0 : i32} : (tuple<tensor<1x224x224x3xf32>>) -> tensor<1x224x224x3xf32> | |
%100 = "mhlo.abs"(%arg320) : (tensor<7x7x3x64xf32>) -> tensor<7x7x3x64xf32> | |
%101 = mhlo.reduce %100, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<7x7x3x64xf32>, tensor<f32>) -> tensor<64xf32> | |
%102 = "mhlo.broadcast_in_dim"(%101) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%103 = mhlo.add %102, %70 : tensor<1x1x1x64xf32> | |
%104 = mhlo.divide %74, %103 : tensor<1x1x1x64xf32> | |
%105 = "mhlo.broadcast_in_dim"(%104) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<7x7x3x64xf32> | |
%106 = mhlo.multiply %arg320, %105 : tensor<7x7x3x64xf32> | |
%107 = call @jit_clip_0(%106, %8, %7) : (tensor<7x7x3x64xf32>, tensor<f32>, tensor<f32>) -> tensor<7x7x3x64xf32> | |
%108 = mhlo.add %107, %79 : tensor<7x7x3x64xf32> | |
%109 = "mhlo.floor"(%108) : (tensor<7x7x3x64xf32>) -> tensor<7x7x3x64xf32> | |
%110 = "mhlo.broadcast_in_dim"(%104) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<7x7x3x64xf32> | |
%111 = mhlo.divide %109, %110 : tensor<7x7x3x64xf32> | |
%112 = mhlo.convolution(%99, %111) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [2, 2], pad = [[3, 3], [3, 3]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x224x224x3xf32>, tensor<7x7x3x64xf32>) -> tensor<1x112x112x64xf32> | |
%113 = "mhlo.reshape"(%arg104) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%114 = "mhlo.reshape"(%arg105) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%115 = "mhlo.broadcast_in_dim"(%113) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x112x112x64xf32> | |
%116 = mhlo.subtract %112, %115 : tensor<1x112x112x64xf32> | |
%117 = mhlo.add %114, %72 : tensor<1x1x1x64xf32> | |
%118 = "mhlo.rsqrt"(%117) : (tensor<1x1x1x64xf32>) -> tensor<1x1x1x64xf32> | |
%119 = "mhlo.reshape"(%arg319) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%120 = mhlo.multiply %118, %119 : tensor<1x1x1x64xf32> | |
%121 = "mhlo.broadcast_in_dim"(%120) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x112x112x64xf32> | |
%122 = mhlo.multiply %116, %121 : tensor<1x112x112x64xf32> | |
%123 = "mhlo.reshape"(%arg318) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%124 = "mhlo.broadcast_in_dim"(%123) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x112x112x64xf32> | |
%125 = mhlo.add %122, %124 : tensor<1x112x112x64xf32> | |
%126 = mhlo.maximum %125, %78 : tensor<1x112x112x64xf32> | |
%127 = "mhlo.broadcast"(%11) {broadcast_sizes = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<f32> | |
%128 = "mhlo.reduce_window"(%126, %127) ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {base_dilations = dense<1> : tensor<4xi64>, padding = dense<[[0, 0], [0, 1], [0, 1], [0, 0]]> : tensor<4x2xi64>, window_dilations = dense<1> : tensor<4xi64>, window_dimensions = dense<[1, 3, 3, 1]> : tensor<4xi64>, window_strides = dense<[1, 2, 2, 1]> : tensor<4xi64>} : (tensor<1x112x112x64xf32>, tensor<f32>) -> tensor<1x56x56x64xf32> | |
%129 = mhlo.add %arg110, %70 : tensor<1x1x1x64xf32> | |
%130 = mhlo.divide %69, %129 : tensor<1x1x1x64xf32> | |
%131 = "mhlo.broadcast_in_dim"(%130) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%132 = mhlo.multiply %128, %131 : tensor<1x56x56x64xf32> | |
%133 = "mhlo.floor"(%132) : (tensor<1x56x56x64xf32>) -> tensor<1x56x56x64xf32> | |
%134 = call @jit_clip_1(%133, %3, %2) : (tensor<1x56x56x64xf32>, tensor<i32>, tensor<i32>) -> tensor<1x56x56x64xf32> | |
%135 = "mhlo.broadcast_in_dim"(%130) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%136 = mhlo.divide %134, %135 : tensor<1x56x56x64xf32> | |
%137 = "mhlo.compare"(%arg110, %68) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x64xf32>, tensor<1x1x1x64xf32>) -> tensor<1x1x1x64xi1> | |
%138 = mhlo.reduce %137, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xi1>, tensor<i1>) -> tensor<i1> | |
%139 = "mhlo.not"(%138) : (tensor<i1>) -> tensor<i1> | |
%140 = "mhlo.convert"(%139) : (tensor<i1>) -> tensor<i32> | |
%141 = "mhlo.tuple"(%136, %128) : (tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>) -> tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>> | |
%142 = "mhlo.case"(%140, %141, %141) ( { | |
^bb0(%arg322: tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>) -> tensor<1x56x56x64xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x64xf32>) -> tuple<tensor<1x56x56x64xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x64xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>) -> tensor<1x56x56x64xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x64xf32>) -> tuple<tensor<1x56x56x64xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x64xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>, tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>) -> tuple<tensor<1x56x56x64xf32>> | |
%143 = "mhlo.get_tuple_element"(%142) {index = 0 : i32} : (tuple<tensor<1x56x56x64xf32>>) -> tensor<1x56x56x64xf32> | |
%144 = "mhlo.abs"(%arg173) : (tensor<1x1x64x256xf32>) -> tensor<1x1x64x256xf32> | |
%145 = mhlo.reduce %144, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x64x256xf32>, tensor<f32>) -> tensor<256xf32> | |
%146 = "mhlo.broadcast_in_dim"(%145) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%147 = mhlo.add %146, %42 : tensor<1x1x1x256xf32> | |
%148 = mhlo.divide %46, %147 : tensor<1x1x1x256xf32> | |
%149 = "mhlo.broadcast_in_dim"(%148) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x1x64x256xf32> | |
%150 = mhlo.multiply %arg173, %149 : tensor<1x1x64x256xf32> | |
%151 = call @jit_clip_2(%150, %8, %7) : (tensor<1x1x64x256xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x64x256xf32> | |
%152 = mhlo.add %151, %67 : tensor<1x1x64x256xf32> | |
%153 = "mhlo.floor"(%152) : (tensor<1x1x64x256xf32>) -> tensor<1x1x64x256xf32> | |
%154 = "mhlo.broadcast_in_dim"(%148) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x1x64x256xf32> | |
%155 = mhlo.divide %153, %154 : tensor<1x1x64x256xf32> | |
%156 = mhlo.convolution(%143, %155) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x56x56x64xf32>, tensor<1x1x64x256xf32>) -> tensor<1x56x56x256xf32> | |
%157 = "mhlo.reshape"(%arg6) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%158 = "mhlo.reshape"(%arg7) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%159 = "mhlo.broadcast_in_dim"(%157) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x56x56x256xf32> | |
%160 = mhlo.subtract %156, %159 : tensor<1x56x56x256xf32> | |
%161 = mhlo.add %158, %44 : tensor<1x1x1x256xf32> | |
%162 = "mhlo.rsqrt"(%161) : (tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xf32> | |
%163 = "mhlo.reshape"(%arg172) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%164 = mhlo.multiply %162, %163 : tensor<1x1x1x256xf32> | |
%165 = "mhlo.broadcast_in_dim"(%164) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x56x56x256xf32> | |
%166 = mhlo.multiply %160, %165 : tensor<1x56x56x256xf32> | |
%167 = "mhlo.reshape"(%arg171) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%168 = "mhlo.broadcast_in_dim"(%167) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x56x56x256xf32> | |
%169 = mhlo.add %166, %168 : tensor<1x56x56x256xf32> | |
%170 = mhlo.add %arg107, %70 : tensor<1x1x1x64xf32> | |
%171 = mhlo.divide %74, %170 : tensor<1x1x1x64xf32> | |
%172 = "mhlo.broadcast_in_dim"(%171) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%173 = mhlo.multiply %128, %172 : tensor<1x56x56x64xf32> | |
%174 = call @jit_clip_3(%173, %8, %7) : (tensor<1x56x56x64xf32>, tensor<f32>, tensor<f32>) -> tensor<1x56x56x64xf32> | |
%175 = mhlo.add %174, %77 : tensor<1x56x56x64xf32> | |
%176 = "mhlo.floor"(%175) : (tensor<1x56x56x64xf32>) -> tensor<1x56x56x64xf32> | |
%177 = "mhlo.broadcast_in_dim"(%171) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%178 = mhlo.divide %176, %177 : tensor<1x56x56x64xf32> | |
%179 = "mhlo.compare"(%arg107, %68) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x64xf32>, tensor<1x1x1x64xf32>) -> tensor<1x1x1x64xi1> | |
%180 = mhlo.reduce %179, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xi1>, tensor<i1>) -> tensor<i1> | |
%181 = "mhlo.not"(%180) : (tensor<i1>) -> tensor<i1> | |
%182 = "mhlo.convert"(%181) : (tensor<i1>) -> tensor<i32> | |
%183 = "mhlo.tuple"(%178, %128) : (tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>) -> tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>> | |
%184 = "mhlo.case"(%182, %183, %183) ( { | |
^bb0(%arg322: tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>) -> tensor<1x56x56x64xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x64xf32>) -> tuple<tensor<1x56x56x64xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x64xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>) -> tensor<1x56x56x64xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x64xf32>) -> tuple<tensor<1x56x56x64xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x64xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>, tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>) -> tuple<tensor<1x56x56x64xf32>> | |
%185 = "mhlo.get_tuple_element"(%184) {index = 0 : i32} : (tuple<tensor<1x56x56x64xf32>>) -> tensor<1x56x56x64xf32> | |
%186 = "mhlo.abs"(%arg168) : (tensor<1x1x64x64xf32>) -> tensor<1x1x64x64xf32> | |
%187 = mhlo.reduce %186, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x64x64xf32>, tensor<f32>) -> tensor<64xf32> | |
%188 = "mhlo.broadcast_in_dim"(%187) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%189 = mhlo.add %188, %70 : tensor<1x1x1x64xf32> | |
%190 = mhlo.divide %74, %189 : tensor<1x1x1x64xf32> | |
%191 = "mhlo.broadcast_in_dim"(%190) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x1x64x64xf32> | |
%192 = mhlo.multiply %arg168, %191 : tensor<1x1x64x64xf32> | |
%193 = call @jit_clip_4(%192, %8, %7) : (tensor<1x1x64x64xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x64x64xf32> | |
%194 = mhlo.add %193, %76 : tensor<1x1x64x64xf32> | |
%195 = "mhlo.floor"(%194) : (tensor<1x1x64x64xf32>) -> tensor<1x1x64x64xf32> | |
%196 = "mhlo.broadcast_in_dim"(%190) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x1x64x64xf32> | |
%197 = mhlo.divide %195, %196 : tensor<1x1x64x64xf32> | |
%198 = mhlo.convolution(%185, %197) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x56x56x64xf32>, tensor<1x1x64x64xf32>) -> tensor<1x56x56x64xf32> | |
%199 = "mhlo.reshape"(%arg0) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%200 = "mhlo.reshape"(%arg1) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%201 = "mhlo.broadcast_in_dim"(%199) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%202 = mhlo.subtract %198, %201 : tensor<1x56x56x64xf32> | |
%203 = mhlo.add %200, %72 : tensor<1x1x1x64xf32> | |
%204 = "mhlo.rsqrt"(%203) : (tensor<1x1x1x64xf32>) -> tensor<1x1x1x64xf32> | |
%205 = "mhlo.reshape"(%arg163) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%206 = mhlo.multiply %204, %205 : tensor<1x1x1x64xf32> | |
%207 = "mhlo.broadcast_in_dim"(%206) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%208 = mhlo.multiply %202, %207 : tensor<1x56x56x64xf32> | |
%209 = "mhlo.reshape"(%arg162) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%210 = "mhlo.broadcast_in_dim"(%209) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%211 = mhlo.add %208, %210 : tensor<1x56x56x64xf32> | |
%212 = mhlo.maximum %211, %71 : tensor<1x56x56x64xf32> | |
%213 = mhlo.add %arg108, %70 : tensor<1x1x1x64xf32> | |
%214 = mhlo.divide %69, %213 : tensor<1x1x1x64xf32> | |
%215 = "mhlo.broadcast_in_dim"(%214) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%216 = mhlo.multiply %212, %215 : tensor<1x56x56x64xf32> | |
%217 = "mhlo.floor"(%216) : (tensor<1x56x56x64xf32>) -> tensor<1x56x56x64xf32> | |
%218 = call @jit_clip_5(%217, %3, %2) : (tensor<1x56x56x64xf32>, tensor<i32>, tensor<i32>) -> tensor<1x56x56x64xf32> | |
%219 = "mhlo.broadcast_in_dim"(%214) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%220 = mhlo.divide %218, %219 : tensor<1x56x56x64xf32> | |
%221 = "mhlo.compare"(%arg108, %68) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x64xf32>, tensor<1x1x1x64xf32>) -> tensor<1x1x1x64xi1> | |
%222 = mhlo.reduce %221, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xi1>, tensor<i1>) -> tensor<i1> | |
%223 = "mhlo.not"(%222) : (tensor<i1>) -> tensor<i1> | |
%224 = "mhlo.convert"(%223) : (tensor<i1>) -> tensor<i32> | |
%225 = "mhlo.tuple"(%220, %212) : (tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>) -> tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>> | |
%226 = "mhlo.case"(%224, %225, %225) ( { | |
^bb0(%arg322: tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>) -> tensor<1x56x56x64xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x64xf32>) -> tuple<tensor<1x56x56x64xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x64xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>) -> tensor<1x56x56x64xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x64xf32>) -> tuple<tensor<1x56x56x64xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x64xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>, tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>) -> tuple<tensor<1x56x56x64xf32>> | |
%227 = "mhlo.get_tuple_element"(%226) {index = 0 : i32} : (tuple<tensor<1x56x56x64xf32>>) -> tensor<1x56x56x64xf32> | |
%228 = "mhlo.abs"(%arg169) : (tensor<3x3x64x64xf32>) -> tensor<3x3x64x64xf32> | |
%229 = mhlo.reduce %228, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<3x3x64x64xf32>, tensor<f32>) -> tensor<64xf32> | |
%230 = "mhlo.broadcast_in_dim"(%229) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%231 = mhlo.add %230, %70 : tensor<1x1x1x64xf32> | |
%232 = mhlo.divide %74, %231 : tensor<1x1x1x64xf32> | |
%233 = "mhlo.broadcast_in_dim"(%232) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<3x3x64x64xf32> | |
%234 = mhlo.multiply %arg169, %233 : tensor<3x3x64x64xf32> | |
%235 = call @jit_clip_6(%234, %8, %7) : (tensor<3x3x64x64xf32>, tensor<f32>, tensor<f32>) -> tensor<3x3x64x64xf32> | |
%236 = mhlo.add %235, %73 : tensor<3x3x64x64xf32> | |
%237 = "mhlo.floor"(%236) : (tensor<3x3x64x64xf32>) -> tensor<3x3x64x64xf32> | |
%238 = "mhlo.broadcast_in_dim"(%232) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<3x3x64x64xf32> | |
%239 = mhlo.divide %237, %238 : tensor<3x3x64x64xf32> | |
%240 = mhlo.convolution(%227, %239) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[1, 1], [1, 1]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x56x56x64xf32>, tensor<3x3x64x64xf32>) -> tensor<1x56x56x64xf32> | |
%241 = "mhlo.reshape"(%arg2) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%242 = "mhlo.reshape"(%arg3) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%243 = "mhlo.broadcast_in_dim"(%241) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%244 = mhlo.subtract %240, %243 : tensor<1x56x56x64xf32> | |
%245 = mhlo.add %242, %72 : tensor<1x1x1x64xf32> | |
%246 = "mhlo.rsqrt"(%245) : (tensor<1x1x1x64xf32>) -> tensor<1x1x1x64xf32> | |
%247 = "mhlo.reshape"(%arg165) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%248 = mhlo.multiply %246, %247 : tensor<1x1x1x64xf32> | |
%249 = "mhlo.broadcast_in_dim"(%248) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%250 = mhlo.multiply %244, %249 : tensor<1x56x56x64xf32> | |
%251 = "mhlo.reshape"(%arg164) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%252 = "mhlo.broadcast_in_dim"(%251) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%253 = mhlo.add %250, %252 : tensor<1x56x56x64xf32> | |
%254 = mhlo.maximum %253, %71 : tensor<1x56x56x64xf32> | |
%255 = mhlo.add %arg109, %70 : tensor<1x1x1x64xf32> | |
%256 = mhlo.divide %69, %255 : tensor<1x1x1x64xf32> | |
%257 = "mhlo.broadcast_in_dim"(%256) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%258 = mhlo.multiply %254, %257 : tensor<1x56x56x64xf32> | |
%259 = "mhlo.floor"(%258) : (tensor<1x56x56x64xf32>) -> tensor<1x56x56x64xf32> | |
%260 = call @jit_clip_7(%259, %3, %2) : (tensor<1x56x56x64xf32>, tensor<i32>, tensor<i32>) -> tensor<1x56x56x64xf32> | |
%261 = "mhlo.broadcast_in_dim"(%256) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%262 = mhlo.divide %260, %261 : tensor<1x56x56x64xf32> | |
%263 = "mhlo.compare"(%arg109, %68) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x64xf32>, tensor<1x1x1x64xf32>) -> tensor<1x1x1x64xi1> | |
%264 = mhlo.reduce %263, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xi1>, tensor<i1>) -> tensor<i1> | |
%265 = "mhlo.not"(%264) : (tensor<i1>) -> tensor<i1> | |
%266 = "mhlo.convert"(%265) : (tensor<i1>) -> tensor<i32> | |
%267 = "mhlo.tuple"(%262, %254) : (tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>) -> tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>> | |
%268 = "mhlo.case"(%266, %267, %267) ( { | |
^bb0(%arg322: tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>) -> tensor<1x56x56x64xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x64xf32>) -> tuple<tensor<1x56x56x64xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x64xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>) -> tensor<1x56x56x64xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x64xf32>) -> tuple<tensor<1x56x56x64xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x64xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>, tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>) -> tuple<tensor<1x56x56x64xf32>> | |
%269 = "mhlo.get_tuple_element"(%268) {index = 0 : i32} : (tuple<tensor<1x56x56x64xf32>>) -> tensor<1x56x56x64xf32> | |
%270 = "mhlo.abs"(%arg170) : (tensor<1x1x64x256xf32>) -> tensor<1x1x64x256xf32> | |
%271 = mhlo.reduce %270, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x64x256xf32>, tensor<f32>) -> tensor<256xf32> | |
%272 = "mhlo.broadcast_in_dim"(%271) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%273 = mhlo.add %272, %42 : tensor<1x1x1x256xf32> | |
%274 = mhlo.divide %46, %273 : tensor<1x1x1x256xf32> | |
%275 = "mhlo.broadcast_in_dim"(%274) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x1x64x256xf32> | |
%276 = mhlo.multiply %arg170, %275 : tensor<1x1x64x256xf32> | |
%277 = call @jit_clip_8(%276, %8, %7) : (tensor<1x1x64x256xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x64x256xf32> | |
%278 = mhlo.add %277, %67 : tensor<1x1x64x256xf32> | |
%279 = "mhlo.floor"(%278) : (tensor<1x1x64x256xf32>) -> tensor<1x1x64x256xf32> | |
%280 = "mhlo.broadcast_in_dim"(%274) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x1x64x256xf32> | |
%281 = mhlo.divide %279, %280 : tensor<1x1x64x256xf32> | |
%282 = mhlo.convolution(%269, %281) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x56x56x64xf32>, tensor<1x1x64x256xf32>) -> tensor<1x56x56x256xf32> | |
%283 = "mhlo.reshape"(%arg4) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%284 = "mhlo.reshape"(%arg5) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%285 = "mhlo.broadcast_in_dim"(%283) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x56x56x256xf32> | |
%286 = mhlo.subtract %282, %285 : tensor<1x56x56x256xf32> | |
%287 = mhlo.add %284, %44 : tensor<1x1x1x256xf32> | |
%288 = "mhlo.rsqrt"(%287) : (tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xf32> | |
%289 = "mhlo.reshape"(%arg167) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%290 = mhlo.multiply %288, %289 : tensor<1x1x1x256xf32> | |
%291 = "mhlo.broadcast_in_dim"(%290) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x56x56x256xf32> | |
%292 = mhlo.multiply %286, %291 : tensor<1x56x56x256xf32> | |
%293 = "mhlo.reshape"(%arg166) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%294 = "mhlo.broadcast_in_dim"(%293) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x56x56x256xf32> | |
%295 = mhlo.add %292, %294 : tensor<1x56x56x256xf32> | |
%296 = mhlo.add %169, %295 : tensor<1x56x56x256xf32> | |
%297 = mhlo.maximum %296, %66 : tensor<1x56x56x256xf32> | |
%298 = mhlo.add %arg111, %42 : tensor<1x1x1x256xf32> | |
%299 = mhlo.divide %41, %298 : tensor<1x1x1x256xf32> | |
%300 = "mhlo.broadcast_in_dim"(%299) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x56x56x256xf32> | |
%301 = mhlo.multiply %297, %300 : tensor<1x56x56x256xf32> | |
%302 = "mhlo.floor"(%301) : (tensor<1x56x56x256xf32>) -> tensor<1x56x56x256xf32> | |
%303 = call @jit_clip_9(%302, %3, %2) : (tensor<1x56x56x256xf32>, tensor<i32>, tensor<i32>) -> tensor<1x56x56x256xf32> | |
%304 = "mhlo.broadcast_in_dim"(%299) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x56x56x256xf32> | |
%305 = mhlo.divide %303, %304 : tensor<1x56x56x256xf32> | |
%306 = "mhlo.compare"(%arg111, %40) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x256xf32>, tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xi1> | |
%307 = mhlo.reduce %306, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xi1>, tensor<i1>) -> tensor<i1> | |
%308 = "mhlo.not"(%307) : (tensor<i1>) -> tensor<i1> | |
%309 = "mhlo.convert"(%308) : (tensor<i1>) -> tensor<i32> | |
%310 = "mhlo.tuple"(%305, %297) : (tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>) -> tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>> | |
%311 = "mhlo.case"(%309, %310, %310) ( { | |
^bb0(%arg322: tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>>) -> tensor<1x56x56x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x256xf32>) -> tuple<tensor<1x56x56x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x256xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>>) -> tensor<1x56x56x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x256xf32>) -> tuple<tensor<1x56x56x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x256xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>>, tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>>) -> tuple<tensor<1x56x56x256xf32>> | |
%312 = "mhlo.get_tuple_element"(%311) {index = 0 : i32} : (tuple<tensor<1x56x56x256xf32>>) -> tensor<1x56x56x256xf32> | |
%313 = "mhlo.abs"(%arg180) : (tensor<1x1x256x64xf32>) -> tensor<1x1x256x64xf32> | |
%314 = mhlo.reduce %313, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x256x64xf32>, tensor<f32>) -> tensor<64xf32> | |
%315 = "mhlo.broadcast_in_dim"(%314) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%316 = mhlo.add %315, %70 : tensor<1x1x1x64xf32> | |
%317 = mhlo.divide %74, %316 : tensor<1x1x1x64xf32> | |
%318 = "mhlo.broadcast_in_dim"(%317) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x1x256x64xf32> | |
%319 = mhlo.multiply %arg180, %318 : tensor<1x1x256x64xf32> | |
%320 = call @jit_clip_10(%319, %8, %7) : (tensor<1x1x256x64xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x256x64xf32> | |
%321 = mhlo.add %320, %75 : tensor<1x1x256x64xf32> | |
%322 = "mhlo.floor"(%321) : (tensor<1x1x256x64xf32>) -> tensor<1x1x256x64xf32> | |
%323 = "mhlo.broadcast_in_dim"(%317) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x1x256x64xf32> | |
%324 = mhlo.divide %322, %323 : tensor<1x1x256x64xf32> | |
%325 = mhlo.convolution(%312, %324) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x56x56x256xf32>, tensor<1x1x256x64xf32>) -> tensor<1x56x56x64xf32> | |
%326 = "mhlo.reshape"(%arg8) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%327 = "mhlo.reshape"(%arg9) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%328 = "mhlo.broadcast_in_dim"(%326) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%329 = mhlo.subtract %325, %328 : tensor<1x56x56x64xf32> | |
%330 = mhlo.add %327, %72 : tensor<1x1x1x64xf32> | |
%331 = "mhlo.rsqrt"(%330) : (tensor<1x1x1x64xf32>) -> tensor<1x1x1x64xf32> | |
%332 = "mhlo.reshape"(%arg175) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%333 = mhlo.multiply %331, %332 : tensor<1x1x1x64xf32> | |
%334 = "mhlo.broadcast_in_dim"(%333) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%335 = mhlo.multiply %329, %334 : tensor<1x56x56x64xf32> | |
%336 = "mhlo.reshape"(%arg174) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%337 = "mhlo.broadcast_in_dim"(%336) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%338 = mhlo.add %335, %337 : tensor<1x56x56x64xf32> | |
%339 = mhlo.maximum %338, %71 : tensor<1x56x56x64xf32> | |
%340 = mhlo.add %arg112, %70 : tensor<1x1x1x64xf32> | |
%341 = mhlo.divide %69, %340 : tensor<1x1x1x64xf32> | |
%342 = "mhlo.broadcast_in_dim"(%341) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%343 = mhlo.multiply %339, %342 : tensor<1x56x56x64xf32> | |
%344 = "mhlo.floor"(%343) : (tensor<1x56x56x64xf32>) -> tensor<1x56x56x64xf32> | |
%345 = call @jit_clip_11(%344, %3, %2) : (tensor<1x56x56x64xf32>, tensor<i32>, tensor<i32>) -> tensor<1x56x56x64xf32> | |
%346 = "mhlo.broadcast_in_dim"(%341) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%347 = mhlo.divide %345, %346 : tensor<1x56x56x64xf32> | |
%348 = "mhlo.compare"(%arg112, %68) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x64xf32>, tensor<1x1x1x64xf32>) -> tensor<1x1x1x64xi1> | |
%349 = mhlo.reduce %348, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xi1>, tensor<i1>) -> tensor<i1> | |
%350 = "mhlo.not"(%349) : (tensor<i1>) -> tensor<i1> | |
%351 = "mhlo.convert"(%350) : (tensor<i1>) -> tensor<i32> | |
%352 = "mhlo.tuple"(%347, %339) : (tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>) -> tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>> | |
%353 = "mhlo.case"(%351, %352, %352) ( { | |
^bb0(%arg322: tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>) -> tensor<1x56x56x64xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x64xf32>) -> tuple<tensor<1x56x56x64xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x64xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>) -> tensor<1x56x56x64xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x64xf32>) -> tuple<tensor<1x56x56x64xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x64xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>, tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>) -> tuple<tensor<1x56x56x64xf32>> | |
%354 = "mhlo.get_tuple_element"(%353) {index = 0 : i32} : (tuple<tensor<1x56x56x64xf32>>) -> tensor<1x56x56x64xf32> | |
%355 = "mhlo.abs"(%arg181) : (tensor<3x3x64x64xf32>) -> tensor<3x3x64x64xf32> | |
%356 = mhlo.reduce %355, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<3x3x64x64xf32>, tensor<f32>) -> tensor<64xf32> | |
%357 = "mhlo.broadcast_in_dim"(%356) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%358 = mhlo.add %357, %70 : tensor<1x1x1x64xf32> | |
%359 = mhlo.divide %74, %358 : tensor<1x1x1x64xf32> | |
%360 = "mhlo.broadcast_in_dim"(%359) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<3x3x64x64xf32> | |
%361 = mhlo.multiply %arg181, %360 : tensor<3x3x64x64xf32> | |
%362 = call @jit_clip_12(%361, %8, %7) : (tensor<3x3x64x64xf32>, tensor<f32>, tensor<f32>) -> tensor<3x3x64x64xf32> | |
%363 = mhlo.add %362, %73 : tensor<3x3x64x64xf32> | |
%364 = "mhlo.floor"(%363) : (tensor<3x3x64x64xf32>) -> tensor<3x3x64x64xf32> | |
%365 = "mhlo.broadcast_in_dim"(%359) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<3x3x64x64xf32> | |
%366 = mhlo.divide %364, %365 : tensor<3x3x64x64xf32> | |
%367 = mhlo.convolution(%354, %366) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[1, 1], [1, 1]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x56x56x64xf32>, tensor<3x3x64x64xf32>) -> tensor<1x56x56x64xf32> | |
%368 = "mhlo.reshape"(%arg10) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%369 = "mhlo.reshape"(%arg11) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%370 = "mhlo.broadcast_in_dim"(%368) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%371 = mhlo.subtract %367, %370 : tensor<1x56x56x64xf32> | |
%372 = mhlo.add %369, %72 : tensor<1x1x1x64xf32> | |
%373 = "mhlo.rsqrt"(%372) : (tensor<1x1x1x64xf32>) -> tensor<1x1x1x64xf32> | |
%374 = "mhlo.reshape"(%arg177) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%375 = mhlo.multiply %373, %374 : tensor<1x1x1x64xf32> | |
%376 = "mhlo.broadcast_in_dim"(%375) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%377 = mhlo.multiply %371, %376 : tensor<1x56x56x64xf32> | |
%378 = "mhlo.reshape"(%arg176) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%379 = "mhlo.broadcast_in_dim"(%378) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%380 = mhlo.add %377, %379 : tensor<1x56x56x64xf32> | |
%381 = mhlo.maximum %380, %71 : tensor<1x56x56x64xf32> | |
%382 = mhlo.add %arg113, %70 : tensor<1x1x1x64xf32> | |
%383 = mhlo.divide %69, %382 : tensor<1x1x1x64xf32> | |
%384 = "mhlo.broadcast_in_dim"(%383) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%385 = mhlo.multiply %381, %384 : tensor<1x56x56x64xf32> | |
%386 = "mhlo.floor"(%385) : (tensor<1x56x56x64xf32>) -> tensor<1x56x56x64xf32> | |
%387 = call @jit_clip_13(%386, %3, %2) : (tensor<1x56x56x64xf32>, tensor<i32>, tensor<i32>) -> tensor<1x56x56x64xf32> | |
%388 = "mhlo.broadcast_in_dim"(%383) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%389 = mhlo.divide %387, %388 : tensor<1x56x56x64xf32> | |
%390 = "mhlo.compare"(%arg113, %68) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x64xf32>, tensor<1x1x1x64xf32>) -> tensor<1x1x1x64xi1> | |
%391 = mhlo.reduce %390, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xi1>, tensor<i1>) -> tensor<i1> | |
%392 = "mhlo.not"(%391) : (tensor<i1>) -> tensor<i1> | |
%393 = "mhlo.convert"(%392) : (tensor<i1>) -> tensor<i32> | |
%394 = "mhlo.tuple"(%389, %381) : (tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>) -> tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>> | |
%395 = "mhlo.case"(%393, %394, %394) ( { | |
^bb0(%arg322: tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>) -> tensor<1x56x56x64xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x64xf32>) -> tuple<tensor<1x56x56x64xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x64xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>) -> tensor<1x56x56x64xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x64xf32>) -> tuple<tensor<1x56x56x64xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x64xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>, tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>) -> tuple<tensor<1x56x56x64xf32>> | |
%396 = "mhlo.get_tuple_element"(%395) {index = 0 : i32} : (tuple<tensor<1x56x56x64xf32>>) -> tensor<1x56x56x64xf32> | |
%397 = "mhlo.abs"(%arg182) : (tensor<1x1x64x256xf32>) -> tensor<1x1x64x256xf32> | |
%398 = mhlo.reduce %397, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x64x256xf32>, tensor<f32>) -> tensor<256xf32> | |
%399 = "mhlo.broadcast_in_dim"(%398) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%400 = mhlo.add %399, %42 : tensor<1x1x1x256xf32> | |
%401 = mhlo.divide %46, %400 : tensor<1x1x1x256xf32> | |
%402 = "mhlo.broadcast_in_dim"(%401) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x1x64x256xf32> | |
%403 = mhlo.multiply %arg182, %402 : tensor<1x1x64x256xf32> | |
%404 = call @jit_clip_14(%403, %8, %7) : (tensor<1x1x64x256xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x64x256xf32> | |
%405 = mhlo.add %404, %67 : tensor<1x1x64x256xf32> | |
%406 = "mhlo.floor"(%405) : (tensor<1x1x64x256xf32>) -> tensor<1x1x64x256xf32> | |
%407 = "mhlo.broadcast_in_dim"(%401) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x1x64x256xf32> | |
%408 = mhlo.divide %406, %407 : tensor<1x1x64x256xf32> | |
%409 = mhlo.convolution(%396, %408) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x56x56x64xf32>, tensor<1x1x64x256xf32>) -> tensor<1x56x56x256xf32> | |
%410 = "mhlo.reshape"(%arg12) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%411 = "mhlo.reshape"(%arg13) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%412 = "mhlo.broadcast_in_dim"(%410) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x56x56x256xf32> | |
%413 = mhlo.subtract %409, %412 : tensor<1x56x56x256xf32> | |
%414 = mhlo.add %411, %44 : tensor<1x1x1x256xf32> | |
%415 = "mhlo.rsqrt"(%414) : (tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xf32> | |
%416 = "mhlo.reshape"(%arg179) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%417 = mhlo.multiply %415, %416 : tensor<1x1x1x256xf32> | |
%418 = "mhlo.broadcast_in_dim"(%417) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x56x56x256xf32> | |
%419 = mhlo.multiply %413, %418 : tensor<1x56x56x256xf32> | |
%420 = "mhlo.reshape"(%arg178) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%421 = "mhlo.broadcast_in_dim"(%420) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x56x56x256xf32> | |
%422 = mhlo.add %419, %421 : tensor<1x56x56x256xf32> | |
%423 = mhlo.add %297, %422 : tensor<1x56x56x256xf32> | |
%424 = mhlo.maximum %423, %66 : tensor<1x56x56x256xf32> | |
%425 = mhlo.add %arg133, %42 : tensor<1x1x1x256xf32> | |
%426 = mhlo.divide %41, %425 : tensor<1x1x1x256xf32> | |
%427 = "mhlo.broadcast_in_dim"(%426) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x56x56x256xf32> | |
%428 = mhlo.multiply %424, %427 : tensor<1x56x56x256xf32> | |
%429 = "mhlo.floor"(%428) : (tensor<1x56x56x256xf32>) -> tensor<1x56x56x256xf32> | |
%430 = call @jit_clip_15(%429, %3, %2) : (tensor<1x56x56x256xf32>, tensor<i32>, tensor<i32>) -> tensor<1x56x56x256xf32> | |
%431 = "mhlo.broadcast_in_dim"(%426) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x56x56x256xf32> | |
%432 = mhlo.divide %430, %431 : tensor<1x56x56x256xf32> | |
%433 = "mhlo.compare"(%arg133, %40) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x256xf32>, tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xi1> | |
%434 = mhlo.reduce %433, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xi1>, tensor<i1>) -> tensor<i1> | |
%435 = "mhlo.not"(%434) : (tensor<i1>) -> tensor<i1> | |
%436 = "mhlo.convert"(%435) : (tensor<i1>) -> tensor<i32> | |
%437 = "mhlo.tuple"(%432, %424) : (tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>) -> tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>> | |
%438 = "mhlo.case"(%436, %437, %437) ( { | |
^bb0(%arg322: tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>>) -> tensor<1x56x56x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x256xf32>) -> tuple<tensor<1x56x56x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x256xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>>) -> tensor<1x56x56x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x256xf32>) -> tuple<tensor<1x56x56x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x256xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>>, tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>>) -> tuple<tensor<1x56x56x256xf32>> | |
%439 = "mhlo.get_tuple_element"(%438) {index = 0 : i32} : (tuple<tensor<1x56x56x256xf32>>) -> tensor<1x56x56x256xf32> | |
%440 = "mhlo.abs"(%arg246) : (tensor<1x1x256x64xf32>) -> tensor<1x1x256x64xf32> | |
%441 = mhlo.reduce %440, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x256x64xf32>, tensor<f32>) -> tensor<64xf32> | |
%442 = "mhlo.broadcast_in_dim"(%441) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%443 = mhlo.add %442, %70 : tensor<1x1x1x64xf32> | |
%444 = mhlo.divide %74, %443 : tensor<1x1x1x64xf32> | |
%445 = "mhlo.broadcast_in_dim"(%444) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x1x256x64xf32> | |
%446 = mhlo.multiply %arg246, %445 : tensor<1x1x256x64xf32> | |
%447 = call @jit_clip_16(%446, %8, %7) : (tensor<1x1x256x64xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x256x64xf32> | |
%448 = mhlo.add %447, %75 : tensor<1x1x256x64xf32> | |
%449 = "mhlo.floor"(%448) : (tensor<1x1x256x64xf32>) -> tensor<1x1x256x64xf32> | |
%450 = "mhlo.broadcast_in_dim"(%444) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x1x256x64xf32> | |
%451 = mhlo.divide %449, %450 : tensor<1x1x256x64xf32> | |
%452 = mhlo.convolution(%439, %451) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x56x56x256xf32>, tensor<1x1x256x64xf32>) -> tensor<1x56x56x64xf32> | |
%453 = "mhlo.reshape"(%arg52) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%454 = "mhlo.reshape"(%arg53) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%455 = "mhlo.broadcast_in_dim"(%453) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%456 = mhlo.subtract %452, %455 : tensor<1x56x56x64xf32> | |
%457 = mhlo.add %454, %72 : tensor<1x1x1x64xf32> | |
%458 = "mhlo.rsqrt"(%457) : (tensor<1x1x1x64xf32>) -> tensor<1x1x1x64xf32> | |
%459 = "mhlo.reshape"(%arg241) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%460 = mhlo.multiply %458, %459 : tensor<1x1x1x64xf32> | |
%461 = "mhlo.broadcast_in_dim"(%460) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%462 = mhlo.multiply %456, %461 : tensor<1x56x56x64xf32> | |
%463 = "mhlo.reshape"(%arg240) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%464 = "mhlo.broadcast_in_dim"(%463) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%465 = mhlo.add %462, %464 : tensor<1x56x56x64xf32> | |
%466 = mhlo.maximum %465, %71 : tensor<1x56x56x64xf32> | |
%467 = mhlo.add %arg134, %70 : tensor<1x1x1x64xf32> | |
%468 = mhlo.divide %69, %467 : tensor<1x1x1x64xf32> | |
%469 = "mhlo.broadcast_in_dim"(%468) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%470 = mhlo.multiply %466, %469 : tensor<1x56x56x64xf32> | |
%471 = "mhlo.floor"(%470) : (tensor<1x56x56x64xf32>) -> tensor<1x56x56x64xf32> | |
%472 = call @jit_clip_17(%471, %3, %2) : (tensor<1x56x56x64xf32>, tensor<i32>, tensor<i32>) -> tensor<1x56x56x64xf32> | |
%473 = "mhlo.broadcast_in_dim"(%468) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%474 = mhlo.divide %472, %473 : tensor<1x56x56x64xf32> | |
%475 = "mhlo.compare"(%arg134, %68) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x64xf32>, tensor<1x1x1x64xf32>) -> tensor<1x1x1x64xi1> | |
%476 = mhlo.reduce %475, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xi1>, tensor<i1>) -> tensor<i1> | |
%477 = "mhlo.not"(%476) : (tensor<i1>) -> tensor<i1> | |
%478 = "mhlo.convert"(%477) : (tensor<i1>) -> tensor<i32> | |
%479 = "mhlo.tuple"(%474, %466) : (tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>) -> tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>> | |
%480 = "mhlo.case"(%478, %479, %479) ( { | |
^bb0(%arg322: tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>) -> tensor<1x56x56x64xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x64xf32>) -> tuple<tensor<1x56x56x64xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x64xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>) -> tensor<1x56x56x64xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x64xf32>) -> tuple<tensor<1x56x56x64xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x64xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>, tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>) -> tuple<tensor<1x56x56x64xf32>> | |
%481 = "mhlo.get_tuple_element"(%480) {index = 0 : i32} : (tuple<tensor<1x56x56x64xf32>>) -> tensor<1x56x56x64xf32> | |
%482 = "mhlo.abs"(%arg247) : (tensor<3x3x64x64xf32>) -> tensor<3x3x64x64xf32> | |
%483 = mhlo.reduce %482, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<3x3x64x64xf32>, tensor<f32>) -> tensor<64xf32> | |
%484 = "mhlo.broadcast_in_dim"(%483) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%485 = mhlo.add %484, %70 : tensor<1x1x1x64xf32> | |
%486 = mhlo.divide %74, %485 : tensor<1x1x1x64xf32> | |
%487 = "mhlo.broadcast_in_dim"(%486) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<3x3x64x64xf32> | |
%488 = mhlo.multiply %arg247, %487 : tensor<3x3x64x64xf32> | |
%489 = call @jit_clip_18(%488, %8, %7) : (tensor<3x3x64x64xf32>, tensor<f32>, tensor<f32>) -> tensor<3x3x64x64xf32> | |
%490 = mhlo.add %489, %73 : tensor<3x3x64x64xf32> | |
%491 = "mhlo.floor"(%490) : (tensor<3x3x64x64xf32>) -> tensor<3x3x64x64xf32> | |
%492 = "mhlo.broadcast_in_dim"(%486) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<3x3x64x64xf32> | |
%493 = mhlo.divide %491, %492 : tensor<3x3x64x64xf32> | |
%494 = mhlo.convolution(%481, %493) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[1, 1], [1, 1]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x56x56x64xf32>, tensor<3x3x64x64xf32>) -> tensor<1x56x56x64xf32> | |
%495 = "mhlo.reshape"(%arg54) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%496 = "mhlo.reshape"(%arg55) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%497 = "mhlo.broadcast_in_dim"(%495) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%498 = mhlo.subtract %494, %497 : tensor<1x56x56x64xf32> | |
%499 = mhlo.add %496, %72 : tensor<1x1x1x64xf32> | |
%500 = "mhlo.rsqrt"(%499) : (tensor<1x1x1x64xf32>) -> tensor<1x1x1x64xf32> | |
%501 = "mhlo.reshape"(%arg243) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%502 = mhlo.multiply %500, %501 : tensor<1x1x1x64xf32> | |
%503 = "mhlo.broadcast_in_dim"(%502) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%504 = mhlo.multiply %498, %503 : tensor<1x56x56x64xf32> | |
%505 = "mhlo.reshape"(%arg242) : (tensor<64xf32>) -> tensor<1x1x1x64xf32> | |
%506 = "mhlo.broadcast_in_dim"(%505) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%507 = mhlo.add %504, %506 : tensor<1x56x56x64xf32> | |
%508 = mhlo.maximum %507, %71 : tensor<1x56x56x64xf32> | |
%509 = mhlo.add %arg135, %70 : tensor<1x1x1x64xf32> | |
%510 = mhlo.divide %69, %509 : tensor<1x1x1x64xf32> | |
%511 = "mhlo.broadcast_in_dim"(%510) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%512 = mhlo.multiply %508, %511 : tensor<1x56x56x64xf32> | |
%513 = "mhlo.floor"(%512) : (tensor<1x56x56x64xf32>) -> tensor<1x56x56x64xf32> | |
%514 = call @jit_clip_19(%513, %3, %2) : (tensor<1x56x56x64xf32>, tensor<i32>, tensor<i32>) -> tensor<1x56x56x64xf32> | |
%515 = "mhlo.broadcast_in_dim"(%510) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xf32>) -> tensor<1x56x56x64xf32> | |
%516 = mhlo.divide %514, %515 : tensor<1x56x56x64xf32> | |
%517 = "mhlo.compare"(%arg135, %68) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x64xf32>, tensor<1x1x1x64xf32>) -> tensor<1x1x1x64xi1> | |
%518 = mhlo.reduce %517, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x64xi1>, tensor<i1>) -> tensor<i1> | |
%519 = "mhlo.not"(%518) : (tensor<i1>) -> tensor<i1> | |
%520 = "mhlo.convert"(%519) : (tensor<i1>) -> tensor<i32> | |
%521 = "mhlo.tuple"(%516, %508) : (tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>) -> tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>> | |
%522 = "mhlo.case"(%520, %521, %521) ( { | |
^bb0(%arg322: tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>) -> tensor<1x56x56x64xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x64xf32>) -> tuple<tensor<1x56x56x64xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x64xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>) -> tensor<1x56x56x64xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x64xf32>) -> tuple<tensor<1x56x56x64xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x64xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>, tuple<tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>>) -> tuple<tensor<1x56x56x64xf32>> | |
%523 = "mhlo.get_tuple_element"(%522) {index = 0 : i32} : (tuple<tensor<1x56x56x64xf32>>) -> tensor<1x56x56x64xf32> | |
%524 = "mhlo.abs"(%arg248) : (tensor<1x1x64x256xf32>) -> tensor<1x1x64x256xf32> | |
%525 = mhlo.reduce %524, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x64x256xf32>, tensor<f32>) -> tensor<256xf32> | |
%526 = "mhlo.broadcast_in_dim"(%525) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%527 = mhlo.add %526, %42 : tensor<1x1x1x256xf32> | |
%528 = mhlo.divide %46, %527 : tensor<1x1x1x256xf32> | |
%529 = "mhlo.broadcast_in_dim"(%528) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x1x64x256xf32> | |
%530 = mhlo.multiply %arg248, %529 : tensor<1x1x64x256xf32> | |
%531 = call @jit_clip_20(%530, %8, %7) : (tensor<1x1x64x256xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x64x256xf32> | |
%532 = mhlo.add %531, %67 : tensor<1x1x64x256xf32> | |
%533 = "mhlo.floor"(%532) : (tensor<1x1x64x256xf32>) -> tensor<1x1x64x256xf32> | |
%534 = "mhlo.broadcast_in_dim"(%528) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x1x64x256xf32> | |
%535 = mhlo.divide %533, %534 : tensor<1x1x64x256xf32> | |
%536 = mhlo.convolution(%523, %535) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x56x56x64xf32>, tensor<1x1x64x256xf32>) -> tensor<1x56x56x256xf32> | |
%537 = "mhlo.reshape"(%arg56) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%538 = "mhlo.reshape"(%arg57) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%539 = "mhlo.broadcast_in_dim"(%537) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x56x56x256xf32> | |
%540 = mhlo.subtract %536, %539 : tensor<1x56x56x256xf32> | |
%541 = mhlo.add %538, %44 : tensor<1x1x1x256xf32> | |
%542 = "mhlo.rsqrt"(%541) : (tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xf32> | |
%543 = "mhlo.reshape"(%arg245) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%544 = mhlo.multiply %542, %543 : tensor<1x1x1x256xf32> | |
%545 = "mhlo.broadcast_in_dim"(%544) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x56x56x256xf32> | |
%546 = mhlo.multiply %540, %545 : tensor<1x56x56x256xf32> | |
%547 = "mhlo.reshape"(%arg244) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%548 = "mhlo.broadcast_in_dim"(%547) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x56x56x256xf32> | |
%549 = mhlo.add %546, %548 : tensor<1x56x56x256xf32> | |
%550 = mhlo.add %424, %549 : tensor<1x56x56x256xf32> | |
%551 = mhlo.maximum %550, %66 : tensor<1x56x56x256xf32> | |
%552 = mhlo.add %arg139, %42 : tensor<1x1x1x256xf32> | |
%553 = mhlo.divide %41, %552 : tensor<1x1x1x256xf32> | |
%554 = "mhlo.broadcast_in_dim"(%553) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x56x56x256xf32> | |
%555 = mhlo.multiply %551, %554 : tensor<1x56x56x256xf32> | |
%556 = "mhlo.floor"(%555) : (tensor<1x56x56x256xf32>) -> tensor<1x56x56x256xf32> | |
%557 = call @jit_clip_21(%556, %3, %2) : (tensor<1x56x56x256xf32>, tensor<i32>, tensor<i32>) -> tensor<1x56x56x256xf32> | |
%558 = "mhlo.broadcast_in_dim"(%553) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x56x56x256xf32> | |
%559 = mhlo.divide %557, %558 : tensor<1x56x56x256xf32> | |
%560 = "mhlo.compare"(%arg139, %40) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x256xf32>, tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xi1> | |
%561 = mhlo.reduce %560, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xi1>, tensor<i1>) -> tensor<i1> | |
%562 = "mhlo.not"(%561) : (tensor<i1>) -> tensor<i1> | |
%563 = "mhlo.convert"(%562) : (tensor<i1>) -> tensor<i32> | |
%564 = "mhlo.tuple"(%559, %551) : (tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>) -> tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>> | |
%565 = "mhlo.case"(%563, %564, %564) ( { | |
^bb0(%arg322: tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>>) -> tensor<1x56x56x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x256xf32>) -> tuple<tensor<1x56x56x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x256xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>>) -> tensor<1x56x56x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x256xf32>) -> tuple<tensor<1x56x56x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x256xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>>, tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>>) -> tuple<tensor<1x56x56x256xf32>> | |
%566 = "mhlo.get_tuple_element"(%565) {index = 0 : i32} : (tuple<tensor<1x56x56x256xf32>>) -> tensor<1x56x56x256xf32> | |
%567 = "mhlo.abs"(%arg260) : (tensor<1x1x256x512xf32>) -> tensor<1x1x256x512xf32> | |
%568 = mhlo.reduce %567, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x256x512xf32>, tensor<f32>) -> tensor<512xf32> | |
%569 = "mhlo.broadcast_in_dim"(%568) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%570 = mhlo.add %569, %21 : tensor<1x1x1x512xf32> | |
%571 = mhlo.divide %25, %570 : tensor<1x1x1x512xf32> | |
%572 = "mhlo.broadcast_in_dim"(%571) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x1x256x512xf32> | |
%573 = mhlo.multiply %arg260, %572 : tensor<1x1x256x512xf32> | |
%574 = call @jit_clip_22(%573, %8, %7) : (tensor<1x1x256x512xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x256x512xf32> | |
%575 = mhlo.add %574, %65 : tensor<1x1x256x512xf32> | |
%576 = "mhlo.floor"(%575) : (tensor<1x1x256x512xf32>) -> tensor<1x1x256x512xf32> | |
%577 = "mhlo.broadcast_in_dim"(%571) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x1x256x512xf32> | |
%578 = mhlo.divide %576, %577 : tensor<1x1x256x512xf32> | |
%579 = mhlo.convolution(%566, %578) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [2, 2], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x56x56x256xf32>, tensor<1x1x256x512xf32>) -> tensor<1x28x28x512xf32> | |
%580 = "mhlo.reshape"(%arg64) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%581 = "mhlo.reshape"(%arg65) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%582 = "mhlo.broadcast_in_dim"(%580) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x28x28x512xf32> | |
%583 = mhlo.subtract %579, %582 : tensor<1x28x28x512xf32> | |
%584 = mhlo.add %581, %23 : tensor<1x1x1x512xf32> | |
%585 = "mhlo.rsqrt"(%584) : (tensor<1x1x1x512xf32>) -> tensor<1x1x1x512xf32> | |
%586 = "mhlo.reshape"(%arg259) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%587 = mhlo.multiply %585, %586 : tensor<1x1x1x512xf32> | |
%588 = "mhlo.broadcast_in_dim"(%587) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x28x28x512xf32> | |
%589 = mhlo.multiply %583, %588 : tensor<1x28x28x512xf32> | |
%590 = "mhlo.reshape"(%arg258) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%591 = "mhlo.broadcast_in_dim"(%590) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x28x28x512xf32> | |
%592 = mhlo.add %589, %591 : tensor<1x28x28x512xf32> | |
%593 = mhlo.add %arg136, %42 : tensor<1x1x1x256xf32> | |
%594 = mhlo.divide %46, %593 : tensor<1x1x1x256xf32> | |
%595 = "mhlo.broadcast_in_dim"(%594) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x56x56x256xf32> | |
%596 = mhlo.multiply %551, %595 : tensor<1x56x56x256xf32> | |
%597 = call @jit_clip_23(%596, %8, %7) : (tensor<1x56x56x256xf32>, tensor<f32>, tensor<f32>) -> tensor<1x56x56x256xf32> | |
%598 = mhlo.add %597, %64 : tensor<1x56x56x256xf32> | |
%599 = "mhlo.floor"(%598) : (tensor<1x56x56x256xf32>) -> tensor<1x56x56x256xf32> | |
%600 = "mhlo.broadcast_in_dim"(%594) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x56x56x256xf32> | |
%601 = mhlo.divide %599, %600 : tensor<1x56x56x256xf32> | |
%602 = "mhlo.compare"(%arg136, %40) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x256xf32>, tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xi1> | |
%603 = mhlo.reduce %602, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xi1>, tensor<i1>) -> tensor<i1> | |
%604 = "mhlo.not"(%603) : (tensor<i1>) -> tensor<i1> | |
%605 = "mhlo.convert"(%604) : (tensor<i1>) -> tensor<i32> | |
%606 = "mhlo.tuple"(%601, %551) : (tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>) -> tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>> | |
%607 = "mhlo.case"(%605, %606, %606) ( { | |
^bb0(%arg322: tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>>) -> tensor<1x56x56x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x256xf32>) -> tuple<tensor<1x56x56x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x256xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>>) -> tensor<1x56x56x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x256xf32>) -> tuple<tensor<1x56x56x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x256xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>>, tuple<tensor<1x56x56x256xf32>, tensor<1x56x56x256xf32>>) -> tuple<tensor<1x56x56x256xf32>> | |
%608 = "mhlo.get_tuple_element"(%607) {index = 0 : i32} : (tuple<tensor<1x56x56x256xf32>>) -> tensor<1x56x56x256xf32> | |
%609 = "mhlo.abs"(%arg255) : (tensor<1x1x256x128xf32>) -> tensor<1x1x256x128xf32> | |
%610 = mhlo.reduce %609, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x256x128xf32>, tensor<f32>) -> tensor<128xf32> | |
%611 = "mhlo.broadcast_in_dim"(%610) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%612 = mhlo.add %611, %56 : tensor<1x1x1x128xf32> | |
%613 = mhlo.divide %60, %612 : tensor<1x1x1x128xf32> | |
%614 = "mhlo.broadcast_in_dim"(%613) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x1x256x128xf32> | |
%615 = mhlo.multiply %arg255, %614 : tensor<1x1x256x128xf32> | |
%616 = call @jit_clip_24(%615, %8, %7) : (tensor<1x1x256x128xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x256x128xf32> | |
%617 = mhlo.add %616, %63 : tensor<1x1x256x128xf32> | |
%618 = "mhlo.floor"(%617) : (tensor<1x1x256x128xf32>) -> tensor<1x1x256x128xf32> | |
%619 = "mhlo.broadcast_in_dim"(%613) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x1x256x128xf32> | |
%620 = mhlo.divide %618, %619 : tensor<1x1x256x128xf32> | |
%621 = mhlo.convolution(%608, %620) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x56x56x256xf32>, tensor<1x1x256x128xf32>) -> tensor<1x56x56x128xf32> | |
%622 = "mhlo.reshape"(%arg58) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%623 = "mhlo.reshape"(%arg59) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%624 = "mhlo.broadcast_in_dim"(%622) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x56x56x128xf32> | |
%625 = mhlo.subtract %621, %624 : tensor<1x56x56x128xf32> | |
%626 = mhlo.add %623, %58 : tensor<1x1x1x128xf32> | |
%627 = "mhlo.rsqrt"(%626) : (tensor<1x1x1x128xf32>) -> tensor<1x1x1x128xf32> | |
%628 = "mhlo.reshape"(%arg250) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%629 = mhlo.multiply %627, %628 : tensor<1x1x1x128xf32> | |
%630 = "mhlo.broadcast_in_dim"(%629) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x56x56x128xf32> | |
%631 = mhlo.multiply %625, %630 : tensor<1x56x56x128xf32> | |
%632 = "mhlo.reshape"(%arg249) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%633 = "mhlo.broadcast_in_dim"(%632) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x56x56x128xf32> | |
%634 = mhlo.add %631, %633 : tensor<1x56x56x128xf32> | |
%635 = mhlo.maximum %634, %62 : tensor<1x56x56x128xf32> | |
%636 = mhlo.add %arg137, %56 : tensor<1x1x1x128xf32> | |
%637 = mhlo.divide %55, %636 : tensor<1x1x1x128xf32> | |
%638 = "mhlo.broadcast_in_dim"(%637) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x56x56x128xf32> | |
%639 = mhlo.multiply %635, %638 : tensor<1x56x56x128xf32> | |
%640 = "mhlo.floor"(%639) : (tensor<1x56x56x128xf32>) -> tensor<1x56x56x128xf32> | |
%641 = call @jit_clip_25(%640, %3, %2) : (tensor<1x56x56x128xf32>, tensor<i32>, tensor<i32>) -> tensor<1x56x56x128xf32> | |
%642 = "mhlo.broadcast_in_dim"(%637) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x56x56x128xf32> | |
%643 = mhlo.divide %641, %642 : tensor<1x56x56x128xf32> | |
%644 = "mhlo.compare"(%arg137, %54) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x128xf32>, tensor<1x1x1x128xf32>) -> tensor<1x1x1x128xi1> | |
%645 = mhlo.reduce %644, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xi1>, tensor<i1>) -> tensor<i1> | |
%646 = "mhlo.not"(%645) : (tensor<i1>) -> tensor<i1> | |
%647 = "mhlo.convert"(%646) : (tensor<i1>) -> tensor<i32> | |
%648 = "mhlo.tuple"(%643, %635) : (tensor<1x56x56x128xf32>, tensor<1x56x56x128xf32>) -> tuple<tensor<1x56x56x128xf32>, tensor<1x56x56x128xf32>> | |
%649 = "mhlo.case"(%647, %648, %648) ( { | |
^bb0(%arg322: tuple<tensor<1x56x56x128xf32>, tensor<1x56x56x128xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x56x56x128xf32>, tensor<1x56x56x128xf32>>) -> tensor<1x56x56x128xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x128xf32>) -> tuple<tensor<1x56x56x128xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x128xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x56x56x128xf32>, tensor<1x56x56x128xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x56x56x128xf32>, tensor<1x56x56x128xf32>>) -> tensor<1x56x56x128xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x56x56x128xf32>) -> tuple<tensor<1x56x56x128xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x56x56x128xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x56x56x128xf32>, tensor<1x56x56x128xf32>>, tuple<tensor<1x56x56x128xf32>, tensor<1x56x56x128xf32>>) -> tuple<tensor<1x56x56x128xf32>> | |
%650 = "mhlo.get_tuple_element"(%649) {index = 0 : i32} : (tuple<tensor<1x56x56x128xf32>>) -> tensor<1x56x56x128xf32> | |
%651 = "mhlo.abs"(%arg256) : (tensor<3x3x128x128xf32>) -> tensor<3x3x128x128xf32> | |
%652 = mhlo.reduce %651, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<3x3x128x128xf32>, tensor<f32>) -> tensor<128xf32> | |
%653 = "mhlo.broadcast_in_dim"(%652) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%654 = mhlo.add %653, %56 : tensor<1x1x1x128xf32> | |
%655 = mhlo.divide %60, %654 : tensor<1x1x1x128xf32> | |
%656 = "mhlo.broadcast_in_dim"(%655) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<3x3x128x128xf32> | |
%657 = mhlo.multiply %arg256, %656 : tensor<3x3x128x128xf32> | |
%658 = call @jit_clip_26(%657, %8, %7) : (tensor<3x3x128x128xf32>, tensor<f32>, tensor<f32>) -> tensor<3x3x128x128xf32> | |
%659 = mhlo.add %658, %59 : tensor<3x3x128x128xf32> | |
%660 = "mhlo.floor"(%659) : (tensor<3x3x128x128xf32>) -> tensor<3x3x128x128xf32> | |
%661 = "mhlo.broadcast_in_dim"(%655) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<3x3x128x128xf32> | |
%662 = mhlo.divide %660, %661 : tensor<3x3x128x128xf32> | |
%663 = mhlo.convolution(%650, %662) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [2, 2], pad = [[0, 1], [0, 1]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x56x56x128xf32>, tensor<3x3x128x128xf32>) -> tensor<1x28x28x128xf32> | |
%664 = "mhlo.reshape"(%arg60) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%665 = "mhlo.reshape"(%arg61) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%666 = "mhlo.broadcast_in_dim"(%664) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%667 = mhlo.subtract %663, %666 : tensor<1x28x28x128xf32> | |
%668 = mhlo.add %665, %58 : tensor<1x1x1x128xf32> | |
%669 = "mhlo.rsqrt"(%668) : (tensor<1x1x1x128xf32>) -> tensor<1x1x1x128xf32> | |
%670 = "mhlo.reshape"(%arg252) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%671 = mhlo.multiply %669, %670 : tensor<1x1x1x128xf32> | |
%672 = "mhlo.broadcast_in_dim"(%671) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%673 = mhlo.multiply %667, %672 : tensor<1x28x28x128xf32> | |
%674 = "mhlo.reshape"(%arg251) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%675 = "mhlo.broadcast_in_dim"(%674) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%676 = mhlo.add %673, %675 : tensor<1x28x28x128xf32> | |
%677 = mhlo.maximum %676, %57 : tensor<1x28x28x128xf32> | |
%678 = mhlo.add %arg138, %56 : tensor<1x1x1x128xf32> | |
%679 = mhlo.divide %55, %678 : tensor<1x1x1x128xf32> | |
%680 = "mhlo.broadcast_in_dim"(%679) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%681 = mhlo.multiply %677, %680 : tensor<1x28x28x128xf32> | |
%682 = "mhlo.floor"(%681) : (tensor<1x28x28x128xf32>) -> tensor<1x28x28x128xf32> | |
%683 = call @jit_clip_27(%682, %3, %2) : (tensor<1x28x28x128xf32>, tensor<i32>, tensor<i32>) -> tensor<1x28x28x128xf32> | |
%684 = "mhlo.broadcast_in_dim"(%679) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%685 = mhlo.divide %683, %684 : tensor<1x28x28x128xf32> | |
%686 = "mhlo.compare"(%arg138, %54) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x128xf32>, tensor<1x1x1x128xf32>) -> tensor<1x1x1x128xi1> | |
%687 = mhlo.reduce %686, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xi1>, tensor<i1>) -> tensor<i1> | |
%688 = "mhlo.not"(%687) : (tensor<i1>) -> tensor<i1> | |
%689 = "mhlo.convert"(%688) : (tensor<i1>) -> tensor<i32> | |
%690 = "mhlo.tuple"(%685, %677) : (tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>) -> tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>> | |
%691 = "mhlo.case"(%689, %690, %690) ( { | |
^bb0(%arg322: tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>) -> tensor<1x28x28x128xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x128xf32>) -> tuple<tensor<1x28x28x128xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x128xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>) -> tensor<1x28x28x128xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x128xf32>) -> tuple<tensor<1x28x28x128xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x128xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>, tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>) -> tuple<tensor<1x28x28x128xf32>> | |
%692 = "mhlo.get_tuple_element"(%691) {index = 0 : i32} : (tuple<tensor<1x28x28x128xf32>>) -> tensor<1x28x28x128xf32> | |
%693 = "mhlo.abs"(%arg257) : (tensor<1x1x128x512xf32>) -> tensor<1x1x128x512xf32> | |
%694 = mhlo.reduce %693, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x128x512xf32>, tensor<f32>) -> tensor<512xf32> | |
%695 = "mhlo.broadcast_in_dim"(%694) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%696 = mhlo.add %695, %21 : tensor<1x1x1x512xf32> | |
%697 = mhlo.divide %25, %696 : tensor<1x1x1x512xf32> | |
%698 = "mhlo.broadcast_in_dim"(%697) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x1x128x512xf32> | |
%699 = mhlo.multiply %arg257, %698 : tensor<1x1x128x512xf32> | |
%700 = call @jit_clip_28(%699, %8, %7) : (tensor<1x1x128x512xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x128x512xf32> | |
%701 = mhlo.add %700, %53 : tensor<1x1x128x512xf32> | |
%702 = "mhlo.floor"(%701) : (tensor<1x1x128x512xf32>) -> tensor<1x1x128x512xf32> | |
%703 = "mhlo.broadcast_in_dim"(%697) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x1x128x512xf32> | |
%704 = mhlo.divide %702, %703 : tensor<1x1x128x512xf32> | |
%705 = mhlo.convolution(%692, %704) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x28x28x128xf32>, tensor<1x1x128x512xf32>) -> tensor<1x28x28x512xf32> | |
%706 = "mhlo.reshape"(%arg62) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%707 = "mhlo.reshape"(%arg63) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%708 = "mhlo.broadcast_in_dim"(%706) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x28x28x512xf32> | |
%709 = mhlo.subtract %705, %708 : tensor<1x28x28x512xf32> | |
%710 = mhlo.add %707, %23 : tensor<1x1x1x512xf32> | |
%711 = "mhlo.rsqrt"(%710) : (tensor<1x1x1x512xf32>) -> tensor<1x1x1x512xf32> | |
%712 = "mhlo.reshape"(%arg254) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%713 = mhlo.multiply %711, %712 : tensor<1x1x1x512xf32> | |
%714 = "mhlo.broadcast_in_dim"(%713) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x28x28x512xf32> | |
%715 = mhlo.multiply %709, %714 : tensor<1x28x28x512xf32> | |
%716 = "mhlo.reshape"(%arg253) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%717 = "mhlo.broadcast_in_dim"(%716) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x28x28x512xf32> | |
%718 = mhlo.add %715, %717 : tensor<1x28x28x512xf32> | |
%719 = mhlo.add %592, %718 : tensor<1x28x28x512xf32> | |
%720 = mhlo.maximum %719, %52 : tensor<1x28x28x512xf32> | |
%721 = mhlo.add %arg140, %21 : tensor<1x1x1x512xf32> | |
%722 = mhlo.divide %20, %721 : tensor<1x1x1x512xf32> | |
%723 = "mhlo.broadcast_in_dim"(%722) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x28x28x512xf32> | |
%724 = mhlo.multiply %720, %723 : tensor<1x28x28x512xf32> | |
%725 = "mhlo.floor"(%724) : (tensor<1x28x28x512xf32>) -> tensor<1x28x28x512xf32> | |
%726 = call @jit_clip_29(%725, %3, %2) : (tensor<1x28x28x512xf32>, tensor<i32>, tensor<i32>) -> tensor<1x28x28x512xf32> | |
%727 = "mhlo.broadcast_in_dim"(%722) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x28x28x512xf32> | |
%728 = mhlo.divide %726, %727 : tensor<1x28x28x512xf32> | |
%729 = "mhlo.compare"(%arg140, %19) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x512xf32>, tensor<1x1x1x512xf32>) -> tensor<1x1x1x512xi1> | |
%730 = mhlo.reduce %729, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xi1>, tensor<i1>) -> tensor<i1> | |
%731 = "mhlo.not"(%730) : (tensor<i1>) -> tensor<i1> | |
%732 = "mhlo.convert"(%731) : (tensor<i1>) -> tensor<i32> | |
%733 = "mhlo.tuple"(%728, %720) : (tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>) -> tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>> | |
%734 = "mhlo.case"(%732, %733, %733) ( { | |
^bb0(%arg322: tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>) -> tensor<1x28x28x512xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x512xf32>) -> tuple<tensor<1x28x28x512xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x512xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>) -> tensor<1x28x28x512xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x512xf32>) -> tuple<tensor<1x28x28x512xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x512xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>, tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>) -> tuple<tensor<1x28x28x512xf32>> | |
%735 = "mhlo.get_tuple_element"(%734) {index = 0 : i32} : (tuple<tensor<1x28x28x512xf32>>) -> tensor<1x28x28x512xf32> | |
%736 = "mhlo.abs"(%arg267) : (tensor<1x1x512x128xf32>) -> tensor<1x1x512x128xf32> | |
%737 = mhlo.reduce %736, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x512x128xf32>, tensor<f32>) -> tensor<128xf32> | |
%738 = "mhlo.broadcast_in_dim"(%737) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%739 = mhlo.add %738, %56 : tensor<1x1x1x128xf32> | |
%740 = mhlo.divide %60, %739 : tensor<1x1x1x128xf32> | |
%741 = "mhlo.broadcast_in_dim"(%740) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x1x512x128xf32> | |
%742 = mhlo.multiply %arg267, %741 : tensor<1x1x512x128xf32> | |
%743 = call @jit_clip_30(%742, %8, %7) : (tensor<1x1x512x128xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x512x128xf32> | |
%744 = mhlo.add %743, %61 : tensor<1x1x512x128xf32> | |
%745 = "mhlo.floor"(%744) : (tensor<1x1x512x128xf32>) -> tensor<1x1x512x128xf32> | |
%746 = "mhlo.broadcast_in_dim"(%740) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x1x512x128xf32> | |
%747 = mhlo.divide %745, %746 : tensor<1x1x512x128xf32> | |
%748 = mhlo.convolution(%735, %747) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x28x28x512xf32>, tensor<1x1x512x128xf32>) -> tensor<1x28x28x128xf32> | |
%749 = "mhlo.reshape"(%arg66) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%750 = "mhlo.reshape"(%arg67) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%751 = "mhlo.broadcast_in_dim"(%749) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%752 = mhlo.subtract %748, %751 : tensor<1x28x28x128xf32> | |
%753 = mhlo.add %750, %58 : tensor<1x1x1x128xf32> | |
%754 = "mhlo.rsqrt"(%753) : (tensor<1x1x1x128xf32>) -> tensor<1x1x1x128xf32> | |
%755 = "mhlo.reshape"(%arg262) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%756 = mhlo.multiply %754, %755 : tensor<1x1x1x128xf32> | |
%757 = "mhlo.broadcast_in_dim"(%756) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%758 = mhlo.multiply %752, %757 : tensor<1x28x28x128xf32> | |
%759 = "mhlo.reshape"(%arg261) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%760 = "mhlo.broadcast_in_dim"(%759) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%761 = mhlo.add %758, %760 : tensor<1x28x28x128xf32> | |
%762 = mhlo.maximum %761, %57 : tensor<1x28x28x128xf32> | |
%763 = mhlo.add %arg141, %56 : tensor<1x1x1x128xf32> | |
%764 = mhlo.divide %55, %763 : tensor<1x1x1x128xf32> | |
%765 = "mhlo.broadcast_in_dim"(%764) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%766 = mhlo.multiply %762, %765 : tensor<1x28x28x128xf32> | |
%767 = "mhlo.floor"(%766) : (tensor<1x28x28x128xf32>) -> tensor<1x28x28x128xf32> | |
%768 = call @jit_clip_31(%767, %3, %2) : (tensor<1x28x28x128xf32>, tensor<i32>, tensor<i32>) -> tensor<1x28x28x128xf32> | |
%769 = "mhlo.broadcast_in_dim"(%764) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%770 = mhlo.divide %768, %769 : tensor<1x28x28x128xf32> | |
%771 = "mhlo.compare"(%arg141, %54) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x128xf32>, tensor<1x1x1x128xf32>) -> tensor<1x1x1x128xi1> | |
%772 = mhlo.reduce %771, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xi1>, tensor<i1>) -> tensor<i1> | |
%773 = "mhlo.not"(%772) : (tensor<i1>) -> tensor<i1> | |
%774 = "mhlo.convert"(%773) : (tensor<i1>) -> tensor<i32> | |
%775 = "mhlo.tuple"(%770, %762) : (tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>) -> tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>> | |
%776 = "mhlo.case"(%774, %775, %775) ( { | |
^bb0(%arg322: tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>) -> tensor<1x28x28x128xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x128xf32>) -> tuple<tensor<1x28x28x128xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x128xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>) -> tensor<1x28x28x128xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x128xf32>) -> tuple<tensor<1x28x28x128xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x128xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>, tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>) -> tuple<tensor<1x28x28x128xf32>> | |
%777 = "mhlo.get_tuple_element"(%776) {index = 0 : i32} : (tuple<tensor<1x28x28x128xf32>>) -> tensor<1x28x28x128xf32> | |
%778 = "mhlo.abs"(%arg268) : (tensor<3x3x128x128xf32>) -> tensor<3x3x128x128xf32> | |
%779 = mhlo.reduce %778, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<3x3x128x128xf32>, tensor<f32>) -> tensor<128xf32> | |
%780 = "mhlo.broadcast_in_dim"(%779) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%781 = mhlo.add %780, %56 : tensor<1x1x1x128xf32> | |
%782 = mhlo.divide %60, %781 : tensor<1x1x1x128xf32> | |
%783 = "mhlo.broadcast_in_dim"(%782) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<3x3x128x128xf32> | |
%784 = mhlo.multiply %arg268, %783 : tensor<3x3x128x128xf32> | |
%785 = call @jit_clip_32(%784, %8, %7) : (tensor<3x3x128x128xf32>, tensor<f32>, tensor<f32>) -> tensor<3x3x128x128xf32> | |
%786 = mhlo.add %785, %59 : tensor<3x3x128x128xf32> | |
%787 = "mhlo.floor"(%786) : (tensor<3x3x128x128xf32>) -> tensor<3x3x128x128xf32> | |
%788 = "mhlo.broadcast_in_dim"(%782) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<3x3x128x128xf32> | |
%789 = mhlo.divide %787, %788 : tensor<3x3x128x128xf32> | |
%790 = mhlo.convolution(%777, %789) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[1, 1], [1, 1]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x28x28x128xf32>, tensor<3x3x128x128xf32>) -> tensor<1x28x28x128xf32> | |
%791 = "mhlo.reshape"(%arg68) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%792 = "mhlo.reshape"(%arg69) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%793 = "mhlo.broadcast_in_dim"(%791) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%794 = mhlo.subtract %790, %793 : tensor<1x28x28x128xf32> | |
%795 = mhlo.add %792, %58 : tensor<1x1x1x128xf32> | |
%796 = "mhlo.rsqrt"(%795) : (tensor<1x1x1x128xf32>) -> tensor<1x1x1x128xf32> | |
%797 = "mhlo.reshape"(%arg264) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%798 = mhlo.multiply %796, %797 : tensor<1x1x1x128xf32> | |
%799 = "mhlo.broadcast_in_dim"(%798) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%800 = mhlo.multiply %794, %799 : tensor<1x28x28x128xf32> | |
%801 = "mhlo.reshape"(%arg263) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%802 = "mhlo.broadcast_in_dim"(%801) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%803 = mhlo.add %800, %802 : tensor<1x28x28x128xf32> | |
%804 = mhlo.maximum %803, %57 : tensor<1x28x28x128xf32> | |
%805 = mhlo.add %arg142, %56 : tensor<1x1x1x128xf32> | |
%806 = mhlo.divide %55, %805 : tensor<1x1x1x128xf32> | |
%807 = "mhlo.broadcast_in_dim"(%806) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%808 = mhlo.multiply %804, %807 : tensor<1x28x28x128xf32> | |
%809 = "mhlo.floor"(%808) : (tensor<1x28x28x128xf32>) -> tensor<1x28x28x128xf32> | |
%810 = call @jit_clip_33(%809, %3, %2) : (tensor<1x28x28x128xf32>, tensor<i32>, tensor<i32>) -> tensor<1x28x28x128xf32> | |
%811 = "mhlo.broadcast_in_dim"(%806) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%812 = mhlo.divide %810, %811 : tensor<1x28x28x128xf32> | |
%813 = "mhlo.compare"(%arg142, %54) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x128xf32>, tensor<1x1x1x128xf32>) -> tensor<1x1x1x128xi1> | |
%814 = mhlo.reduce %813, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xi1>, tensor<i1>) -> tensor<i1> | |
%815 = "mhlo.not"(%814) : (tensor<i1>) -> tensor<i1> | |
%816 = "mhlo.convert"(%815) : (tensor<i1>) -> tensor<i32> | |
%817 = "mhlo.tuple"(%812, %804) : (tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>) -> tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>> | |
%818 = "mhlo.case"(%816, %817, %817) ( { | |
^bb0(%arg322: tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>) -> tensor<1x28x28x128xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x128xf32>) -> tuple<tensor<1x28x28x128xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x128xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>) -> tensor<1x28x28x128xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x128xf32>) -> tuple<tensor<1x28x28x128xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x128xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>, tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>) -> tuple<tensor<1x28x28x128xf32>> | |
%819 = "mhlo.get_tuple_element"(%818) {index = 0 : i32} : (tuple<tensor<1x28x28x128xf32>>) -> tensor<1x28x28x128xf32> | |
%820 = "mhlo.abs"(%arg269) : (tensor<1x1x128x512xf32>) -> tensor<1x1x128x512xf32> | |
%821 = mhlo.reduce %820, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x128x512xf32>, tensor<f32>) -> tensor<512xf32> | |
%822 = "mhlo.broadcast_in_dim"(%821) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%823 = mhlo.add %822, %21 : tensor<1x1x1x512xf32> | |
%824 = mhlo.divide %25, %823 : tensor<1x1x1x512xf32> | |
%825 = "mhlo.broadcast_in_dim"(%824) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x1x128x512xf32> | |
%826 = mhlo.multiply %arg269, %825 : tensor<1x1x128x512xf32> | |
%827 = call @jit_clip_34(%826, %8, %7) : (tensor<1x1x128x512xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x128x512xf32> | |
%828 = mhlo.add %827, %53 : tensor<1x1x128x512xf32> | |
%829 = "mhlo.floor"(%828) : (tensor<1x1x128x512xf32>) -> tensor<1x1x128x512xf32> | |
%830 = "mhlo.broadcast_in_dim"(%824) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x1x128x512xf32> | |
%831 = mhlo.divide %829, %830 : tensor<1x1x128x512xf32> | |
%832 = mhlo.convolution(%819, %831) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x28x28x128xf32>, tensor<1x1x128x512xf32>) -> tensor<1x28x28x512xf32> | |
%833 = "mhlo.reshape"(%arg70) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%834 = "mhlo.reshape"(%arg71) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%835 = "mhlo.broadcast_in_dim"(%833) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x28x28x512xf32> | |
%836 = mhlo.subtract %832, %835 : tensor<1x28x28x512xf32> | |
%837 = mhlo.add %834, %23 : tensor<1x1x1x512xf32> | |
%838 = "mhlo.rsqrt"(%837) : (tensor<1x1x1x512xf32>) -> tensor<1x1x1x512xf32> | |
%839 = "mhlo.reshape"(%arg266) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%840 = mhlo.multiply %838, %839 : tensor<1x1x1x512xf32> | |
%841 = "mhlo.broadcast_in_dim"(%840) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x28x28x512xf32> | |
%842 = mhlo.multiply %836, %841 : tensor<1x28x28x512xf32> | |
%843 = "mhlo.reshape"(%arg265) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%844 = "mhlo.broadcast_in_dim"(%843) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x28x28x512xf32> | |
%845 = mhlo.add %842, %844 : tensor<1x28x28x512xf32> | |
%846 = mhlo.add %720, %845 : tensor<1x28x28x512xf32> | |
%847 = mhlo.maximum %846, %52 : tensor<1x28x28x512xf32> | |
%848 = mhlo.add %arg143, %21 : tensor<1x1x1x512xf32> | |
%849 = mhlo.divide %20, %848 : tensor<1x1x1x512xf32> | |
%850 = "mhlo.broadcast_in_dim"(%849) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x28x28x512xf32> | |
%851 = mhlo.multiply %847, %850 : tensor<1x28x28x512xf32> | |
%852 = "mhlo.floor"(%851) : (tensor<1x28x28x512xf32>) -> tensor<1x28x28x512xf32> | |
%853 = call @jit_clip_35(%852, %3, %2) : (tensor<1x28x28x512xf32>, tensor<i32>, tensor<i32>) -> tensor<1x28x28x512xf32> | |
%854 = "mhlo.broadcast_in_dim"(%849) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x28x28x512xf32> | |
%855 = mhlo.divide %853, %854 : tensor<1x28x28x512xf32> | |
%856 = "mhlo.compare"(%arg143, %19) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x512xf32>, tensor<1x1x1x512xf32>) -> tensor<1x1x1x512xi1> | |
%857 = mhlo.reduce %856, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xi1>, tensor<i1>) -> tensor<i1> | |
%858 = "mhlo.not"(%857) : (tensor<i1>) -> tensor<i1> | |
%859 = "mhlo.convert"(%858) : (tensor<i1>) -> tensor<i32> | |
%860 = "mhlo.tuple"(%855, %847) : (tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>) -> tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>> | |
%861 = "mhlo.case"(%859, %860, %860) ( { | |
^bb0(%arg322: tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>) -> tensor<1x28x28x512xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x512xf32>) -> tuple<tensor<1x28x28x512xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x512xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>) -> tensor<1x28x28x512xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x512xf32>) -> tuple<tensor<1x28x28x512xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x512xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>, tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>) -> tuple<tensor<1x28x28x512xf32>> | |
%862 = "mhlo.get_tuple_element"(%861) {index = 0 : i32} : (tuple<tensor<1x28x28x512xf32>>) -> tensor<1x28x28x512xf32> | |
%863 = "mhlo.abs"(%arg276) : (tensor<1x1x512x128xf32>) -> tensor<1x1x512x128xf32> | |
%864 = mhlo.reduce %863, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x512x128xf32>, tensor<f32>) -> tensor<128xf32> | |
%865 = "mhlo.broadcast_in_dim"(%864) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%866 = mhlo.add %865, %56 : tensor<1x1x1x128xf32> | |
%867 = mhlo.divide %60, %866 : tensor<1x1x1x128xf32> | |
%868 = "mhlo.broadcast_in_dim"(%867) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x1x512x128xf32> | |
%869 = mhlo.multiply %arg276, %868 : tensor<1x1x512x128xf32> | |
%870 = call @jit_clip_36(%869, %8, %7) : (tensor<1x1x512x128xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x512x128xf32> | |
%871 = mhlo.add %870, %61 : tensor<1x1x512x128xf32> | |
%872 = "mhlo.floor"(%871) : (tensor<1x1x512x128xf32>) -> tensor<1x1x512x128xf32> | |
%873 = "mhlo.broadcast_in_dim"(%867) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x1x512x128xf32> | |
%874 = mhlo.divide %872, %873 : tensor<1x1x512x128xf32> | |
%875 = mhlo.convolution(%862, %874) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x28x28x512xf32>, tensor<1x1x512x128xf32>) -> tensor<1x28x28x128xf32> | |
%876 = "mhlo.reshape"(%arg72) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%877 = "mhlo.reshape"(%arg73) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%878 = "mhlo.broadcast_in_dim"(%876) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%879 = mhlo.subtract %875, %878 : tensor<1x28x28x128xf32> | |
%880 = mhlo.add %877, %58 : tensor<1x1x1x128xf32> | |
%881 = "mhlo.rsqrt"(%880) : (tensor<1x1x1x128xf32>) -> tensor<1x1x1x128xf32> | |
%882 = "mhlo.reshape"(%arg271) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%883 = mhlo.multiply %881, %882 : tensor<1x1x1x128xf32> | |
%884 = "mhlo.broadcast_in_dim"(%883) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%885 = mhlo.multiply %879, %884 : tensor<1x28x28x128xf32> | |
%886 = "mhlo.reshape"(%arg270) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%887 = "mhlo.broadcast_in_dim"(%886) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%888 = mhlo.add %885, %887 : tensor<1x28x28x128xf32> | |
%889 = mhlo.maximum %888, %57 : tensor<1x28x28x128xf32> | |
%890 = mhlo.add %arg144, %56 : tensor<1x1x1x128xf32> | |
%891 = mhlo.divide %55, %890 : tensor<1x1x1x128xf32> | |
%892 = "mhlo.broadcast_in_dim"(%891) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%893 = mhlo.multiply %889, %892 : tensor<1x28x28x128xf32> | |
%894 = "mhlo.floor"(%893) : (tensor<1x28x28x128xf32>) -> tensor<1x28x28x128xf32> | |
%895 = call @jit_clip_37(%894, %3, %2) : (tensor<1x28x28x128xf32>, tensor<i32>, tensor<i32>) -> tensor<1x28x28x128xf32> | |
%896 = "mhlo.broadcast_in_dim"(%891) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%897 = mhlo.divide %895, %896 : tensor<1x28x28x128xf32> | |
%898 = "mhlo.compare"(%arg144, %54) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x128xf32>, tensor<1x1x1x128xf32>) -> tensor<1x1x1x128xi1> | |
%899 = mhlo.reduce %898, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xi1>, tensor<i1>) -> tensor<i1> | |
%900 = "mhlo.not"(%899) : (tensor<i1>) -> tensor<i1> | |
%901 = "mhlo.convert"(%900) : (tensor<i1>) -> tensor<i32> | |
%902 = "mhlo.tuple"(%897, %889) : (tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>) -> tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>> | |
%903 = "mhlo.case"(%901, %902, %902) ( { | |
^bb0(%arg322: tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>) -> tensor<1x28x28x128xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x128xf32>) -> tuple<tensor<1x28x28x128xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x128xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>) -> tensor<1x28x28x128xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x128xf32>) -> tuple<tensor<1x28x28x128xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x128xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>, tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>) -> tuple<tensor<1x28x28x128xf32>> | |
%904 = "mhlo.get_tuple_element"(%903) {index = 0 : i32} : (tuple<tensor<1x28x28x128xf32>>) -> tensor<1x28x28x128xf32> | |
%905 = "mhlo.abs"(%arg277) : (tensor<3x3x128x128xf32>) -> tensor<3x3x128x128xf32> | |
%906 = mhlo.reduce %905, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<3x3x128x128xf32>, tensor<f32>) -> tensor<128xf32> | |
%907 = "mhlo.broadcast_in_dim"(%906) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%908 = mhlo.add %907, %56 : tensor<1x1x1x128xf32> | |
%909 = mhlo.divide %60, %908 : tensor<1x1x1x128xf32> | |
%910 = "mhlo.broadcast_in_dim"(%909) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<3x3x128x128xf32> | |
%911 = mhlo.multiply %arg277, %910 : tensor<3x3x128x128xf32> | |
%912 = call @jit_clip_38(%911, %8, %7) : (tensor<3x3x128x128xf32>, tensor<f32>, tensor<f32>) -> tensor<3x3x128x128xf32> | |
%913 = mhlo.add %912, %59 : tensor<3x3x128x128xf32> | |
%914 = "mhlo.floor"(%913) : (tensor<3x3x128x128xf32>) -> tensor<3x3x128x128xf32> | |
%915 = "mhlo.broadcast_in_dim"(%909) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<3x3x128x128xf32> | |
%916 = mhlo.divide %914, %915 : tensor<3x3x128x128xf32> | |
%917 = mhlo.convolution(%904, %916) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[1, 1], [1, 1]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x28x28x128xf32>, tensor<3x3x128x128xf32>) -> tensor<1x28x28x128xf32> | |
%918 = "mhlo.reshape"(%arg74) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%919 = "mhlo.reshape"(%arg75) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%920 = "mhlo.broadcast_in_dim"(%918) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%921 = mhlo.subtract %917, %920 : tensor<1x28x28x128xf32> | |
%922 = mhlo.add %919, %58 : tensor<1x1x1x128xf32> | |
%923 = "mhlo.rsqrt"(%922) : (tensor<1x1x1x128xf32>) -> tensor<1x1x1x128xf32> | |
%924 = "mhlo.reshape"(%arg273) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%925 = mhlo.multiply %923, %924 : tensor<1x1x1x128xf32> | |
%926 = "mhlo.broadcast_in_dim"(%925) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%927 = mhlo.multiply %921, %926 : tensor<1x28x28x128xf32> | |
%928 = "mhlo.reshape"(%arg272) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%929 = "mhlo.broadcast_in_dim"(%928) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%930 = mhlo.add %927, %929 : tensor<1x28x28x128xf32> | |
%931 = mhlo.maximum %930, %57 : tensor<1x28x28x128xf32> | |
%932 = mhlo.add %arg145, %56 : tensor<1x1x1x128xf32> | |
%933 = mhlo.divide %55, %932 : tensor<1x1x1x128xf32> | |
%934 = "mhlo.broadcast_in_dim"(%933) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%935 = mhlo.multiply %931, %934 : tensor<1x28x28x128xf32> | |
%936 = "mhlo.floor"(%935) : (tensor<1x28x28x128xf32>) -> tensor<1x28x28x128xf32> | |
%937 = call @jit_clip_39(%936, %3, %2) : (tensor<1x28x28x128xf32>, tensor<i32>, tensor<i32>) -> tensor<1x28x28x128xf32> | |
%938 = "mhlo.broadcast_in_dim"(%933) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%939 = mhlo.divide %937, %938 : tensor<1x28x28x128xf32> | |
%940 = "mhlo.compare"(%arg145, %54) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x128xf32>, tensor<1x1x1x128xf32>) -> tensor<1x1x1x128xi1> | |
%941 = mhlo.reduce %940, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xi1>, tensor<i1>) -> tensor<i1> | |
%942 = "mhlo.not"(%941) : (tensor<i1>) -> tensor<i1> | |
%943 = "mhlo.convert"(%942) : (tensor<i1>) -> tensor<i32> | |
%944 = "mhlo.tuple"(%939, %931) : (tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>) -> tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>> | |
%945 = "mhlo.case"(%943, %944, %944) ( { | |
^bb0(%arg322: tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>) -> tensor<1x28x28x128xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x128xf32>) -> tuple<tensor<1x28x28x128xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x128xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>) -> tensor<1x28x28x128xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x128xf32>) -> tuple<tensor<1x28x28x128xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x128xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>, tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>) -> tuple<tensor<1x28x28x128xf32>> | |
%946 = "mhlo.get_tuple_element"(%945) {index = 0 : i32} : (tuple<tensor<1x28x28x128xf32>>) -> tensor<1x28x28x128xf32> | |
%947 = "mhlo.abs"(%arg278) : (tensor<1x1x128x512xf32>) -> tensor<1x1x128x512xf32> | |
%948 = mhlo.reduce %947, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x128x512xf32>, tensor<f32>) -> tensor<512xf32> | |
%949 = "mhlo.broadcast_in_dim"(%948) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%950 = mhlo.add %949, %21 : tensor<1x1x1x512xf32> | |
%951 = mhlo.divide %25, %950 : tensor<1x1x1x512xf32> | |
%952 = "mhlo.broadcast_in_dim"(%951) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x1x128x512xf32> | |
%953 = mhlo.multiply %arg278, %952 : tensor<1x1x128x512xf32> | |
%954 = call @jit_clip_40(%953, %8, %7) : (tensor<1x1x128x512xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x128x512xf32> | |
%955 = mhlo.add %954, %53 : tensor<1x1x128x512xf32> | |
%956 = "mhlo.floor"(%955) : (tensor<1x1x128x512xf32>) -> tensor<1x1x128x512xf32> | |
%957 = "mhlo.broadcast_in_dim"(%951) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x1x128x512xf32> | |
%958 = mhlo.divide %956, %957 : tensor<1x1x128x512xf32> | |
%959 = mhlo.convolution(%946, %958) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x28x28x128xf32>, tensor<1x1x128x512xf32>) -> tensor<1x28x28x512xf32> | |
%960 = "mhlo.reshape"(%arg76) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%961 = "mhlo.reshape"(%arg77) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%962 = "mhlo.broadcast_in_dim"(%960) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x28x28x512xf32> | |
%963 = mhlo.subtract %959, %962 : tensor<1x28x28x512xf32> | |
%964 = mhlo.add %961, %23 : tensor<1x1x1x512xf32> | |
%965 = "mhlo.rsqrt"(%964) : (tensor<1x1x1x512xf32>) -> tensor<1x1x1x512xf32> | |
%966 = "mhlo.reshape"(%arg275) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%967 = mhlo.multiply %965, %966 : tensor<1x1x1x512xf32> | |
%968 = "mhlo.broadcast_in_dim"(%967) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x28x28x512xf32> | |
%969 = mhlo.multiply %963, %968 : tensor<1x28x28x512xf32> | |
%970 = "mhlo.reshape"(%arg274) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%971 = "mhlo.broadcast_in_dim"(%970) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x28x28x512xf32> | |
%972 = mhlo.add %969, %971 : tensor<1x28x28x512xf32> | |
%973 = mhlo.add %847, %972 : tensor<1x28x28x512xf32> | |
%974 = mhlo.maximum %973, %52 : tensor<1x28x28x512xf32> | |
%975 = mhlo.add %arg146, %21 : tensor<1x1x1x512xf32> | |
%976 = mhlo.divide %20, %975 : tensor<1x1x1x512xf32> | |
%977 = "mhlo.broadcast_in_dim"(%976) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x28x28x512xf32> | |
%978 = mhlo.multiply %974, %977 : tensor<1x28x28x512xf32> | |
%979 = "mhlo.floor"(%978) : (tensor<1x28x28x512xf32>) -> tensor<1x28x28x512xf32> | |
%980 = call @jit_clip_41(%979, %3, %2) : (tensor<1x28x28x512xf32>, tensor<i32>, tensor<i32>) -> tensor<1x28x28x512xf32> | |
%981 = "mhlo.broadcast_in_dim"(%976) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x28x28x512xf32> | |
%982 = mhlo.divide %980, %981 : tensor<1x28x28x512xf32> | |
%983 = "mhlo.compare"(%arg146, %19) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x512xf32>, tensor<1x1x1x512xf32>) -> tensor<1x1x1x512xi1> | |
%984 = mhlo.reduce %983, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xi1>, tensor<i1>) -> tensor<i1> | |
%985 = "mhlo.not"(%984) : (tensor<i1>) -> tensor<i1> | |
%986 = "mhlo.convert"(%985) : (tensor<i1>) -> tensor<i32> | |
%987 = "mhlo.tuple"(%982, %974) : (tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>) -> tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>> | |
%988 = "mhlo.case"(%986, %987, %987) ( { | |
^bb0(%arg322: tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>) -> tensor<1x28x28x512xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x512xf32>) -> tuple<tensor<1x28x28x512xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x512xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>) -> tensor<1x28x28x512xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x512xf32>) -> tuple<tensor<1x28x28x512xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x512xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>, tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>) -> tuple<tensor<1x28x28x512xf32>> | |
%989 = "mhlo.get_tuple_element"(%988) {index = 0 : i32} : (tuple<tensor<1x28x28x512xf32>>) -> tensor<1x28x28x512xf32> | |
%990 = "mhlo.abs"(%arg285) : (tensor<1x1x512x128xf32>) -> tensor<1x1x512x128xf32> | |
%991 = mhlo.reduce %990, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x512x128xf32>, tensor<f32>) -> tensor<128xf32> | |
%992 = "mhlo.broadcast_in_dim"(%991) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%993 = mhlo.add %992, %56 : tensor<1x1x1x128xf32> | |
%994 = mhlo.divide %60, %993 : tensor<1x1x1x128xf32> | |
%995 = "mhlo.broadcast_in_dim"(%994) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x1x512x128xf32> | |
%996 = mhlo.multiply %arg285, %995 : tensor<1x1x512x128xf32> | |
%997 = call @jit_clip_42(%996, %8, %7) : (tensor<1x1x512x128xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x512x128xf32> | |
%998 = mhlo.add %997, %61 : tensor<1x1x512x128xf32> | |
%999 = "mhlo.floor"(%998) : (tensor<1x1x512x128xf32>) -> tensor<1x1x512x128xf32> | |
%1000 = "mhlo.broadcast_in_dim"(%994) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x1x512x128xf32> | |
%1001 = mhlo.divide %999, %1000 : tensor<1x1x512x128xf32> | |
%1002 = mhlo.convolution(%989, %1001) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x28x28x512xf32>, tensor<1x1x512x128xf32>) -> tensor<1x28x28x128xf32> | |
%1003 = "mhlo.reshape"(%arg78) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%1004 = "mhlo.reshape"(%arg79) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%1005 = "mhlo.broadcast_in_dim"(%1003) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%1006 = mhlo.subtract %1002, %1005 : tensor<1x28x28x128xf32> | |
%1007 = mhlo.add %1004, %58 : tensor<1x1x1x128xf32> | |
%1008 = "mhlo.rsqrt"(%1007) : (tensor<1x1x1x128xf32>) -> tensor<1x1x1x128xf32> | |
%1009 = "mhlo.reshape"(%arg280) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%1010 = mhlo.multiply %1008, %1009 : tensor<1x1x1x128xf32> | |
%1011 = "mhlo.broadcast_in_dim"(%1010) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%1012 = mhlo.multiply %1006, %1011 : tensor<1x28x28x128xf32> | |
%1013 = "mhlo.reshape"(%arg279) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%1014 = "mhlo.broadcast_in_dim"(%1013) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%1015 = mhlo.add %1012, %1014 : tensor<1x28x28x128xf32> | |
%1016 = mhlo.maximum %1015, %57 : tensor<1x28x28x128xf32> | |
%1017 = mhlo.add %arg147, %56 : tensor<1x1x1x128xf32> | |
%1018 = mhlo.divide %55, %1017 : tensor<1x1x1x128xf32> | |
%1019 = "mhlo.broadcast_in_dim"(%1018) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%1020 = mhlo.multiply %1016, %1019 : tensor<1x28x28x128xf32> | |
%1021 = "mhlo.floor"(%1020) : (tensor<1x28x28x128xf32>) -> tensor<1x28x28x128xf32> | |
%1022 = call @jit_clip_43(%1021, %3, %2) : (tensor<1x28x28x128xf32>, tensor<i32>, tensor<i32>) -> tensor<1x28x28x128xf32> | |
%1023 = "mhlo.broadcast_in_dim"(%1018) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%1024 = mhlo.divide %1022, %1023 : tensor<1x28x28x128xf32> | |
%1025 = "mhlo.compare"(%arg147, %54) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x128xf32>, tensor<1x1x1x128xf32>) -> tensor<1x1x1x128xi1> | |
%1026 = mhlo.reduce %1025, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xi1>, tensor<i1>) -> tensor<i1> | |
%1027 = "mhlo.not"(%1026) : (tensor<i1>) -> tensor<i1> | |
%1028 = "mhlo.convert"(%1027) : (tensor<i1>) -> tensor<i32> | |
%1029 = "mhlo.tuple"(%1024, %1016) : (tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>) -> tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>> | |
%1030 = "mhlo.case"(%1028, %1029, %1029) ( { | |
^bb0(%arg322: tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>) -> tensor<1x28x28x128xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x128xf32>) -> tuple<tensor<1x28x28x128xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x128xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>) -> tensor<1x28x28x128xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x128xf32>) -> tuple<tensor<1x28x28x128xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x128xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>, tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>) -> tuple<tensor<1x28x28x128xf32>> | |
%1031 = "mhlo.get_tuple_element"(%1030) {index = 0 : i32} : (tuple<tensor<1x28x28x128xf32>>) -> tensor<1x28x28x128xf32> | |
%1032 = "mhlo.abs"(%arg286) : (tensor<3x3x128x128xf32>) -> tensor<3x3x128x128xf32> | |
%1033 = mhlo.reduce %1032, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<3x3x128x128xf32>, tensor<f32>) -> tensor<128xf32> | |
%1034 = "mhlo.broadcast_in_dim"(%1033) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%1035 = mhlo.add %1034, %56 : tensor<1x1x1x128xf32> | |
%1036 = mhlo.divide %60, %1035 : tensor<1x1x1x128xf32> | |
%1037 = "mhlo.broadcast_in_dim"(%1036) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<3x3x128x128xf32> | |
%1038 = mhlo.multiply %arg286, %1037 : tensor<3x3x128x128xf32> | |
%1039 = call @jit_clip_44(%1038, %8, %7) : (tensor<3x3x128x128xf32>, tensor<f32>, tensor<f32>) -> tensor<3x3x128x128xf32> | |
%1040 = mhlo.add %1039, %59 : tensor<3x3x128x128xf32> | |
%1041 = "mhlo.floor"(%1040) : (tensor<3x3x128x128xf32>) -> tensor<3x3x128x128xf32> | |
%1042 = "mhlo.broadcast_in_dim"(%1036) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<3x3x128x128xf32> | |
%1043 = mhlo.divide %1041, %1042 : tensor<3x3x128x128xf32> | |
%1044 = mhlo.convolution(%1031, %1043) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[1, 1], [1, 1]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x28x28x128xf32>, tensor<3x3x128x128xf32>) -> tensor<1x28x28x128xf32> | |
%1045 = "mhlo.reshape"(%arg80) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%1046 = "mhlo.reshape"(%arg81) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%1047 = "mhlo.broadcast_in_dim"(%1045) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%1048 = mhlo.subtract %1044, %1047 : tensor<1x28x28x128xf32> | |
%1049 = mhlo.add %1046, %58 : tensor<1x1x1x128xf32> | |
%1050 = "mhlo.rsqrt"(%1049) : (tensor<1x1x1x128xf32>) -> tensor<1x1x1x128xf32> | |
%1051 = "mhlo.reshape"(%arg282) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%1052 = mhlo.multiply %1050, %1051 : tensor<1x1x1x128xf32> | |
%1053 = "mhlo.broadcast_in_dim"(%1052) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%1054 = mhlo.multiply %1048, %1053 : tensor<1x28x28x128xf32> | |
%1055 = "mhlo.reshape"(%arg281) : (tensor<128xf32>) -> tensor<1x1x1x128xf32> | |
%1056 = "mhlo.broadcast_in_dim"(%1055) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%1057 = mhlo.add %1054, %1056 : tensor<1x28x28x128xf32> | |
%1058 = mhlo.maximum %1057, %57 : tensor<1x28x28x128xf32> | |
%1059 = mhlo.add %arg148, %56 : tensor<1x1x1x128xf32> | |
%1060 = mhlo.divide %55, %1059 : tensor<1x1x1x128xf32> | |
%1061 = "mhlo.broadcast_in_dim"(%1060) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%1062 = mhlo.multiply %1058, %1061 : tensor<1x28x28x128xf32> | |
%1063 = "mhlo.floor"(%1062) : (tensor<1x28x28x128xf32>) -> tensor<1x28x28x128xf32> | |
%1064 = call @jit_clip_45(%1063, %3, %2) : (tensor<1x28x28x128xf32>, tensor<i32>, tensor<i32>) -> tensor<1x28x28x128xf32> | |
%1065 = "mhlo.broadcast_in_dim"(%1060) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xf32>) -> tensor<1x28x28x128xf32> | |
%1066 = mhlo.divide %1064, %1065 : tensor<1x28x28x128xf32> | |
%1067 = "mhlo.compare"(%arg148, %54) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x128xf32>, tensor<1x1x1x128xf32>) -> tensor<1x1x1x128xi1> | |
%1068 = mhlo.reduce %1067, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x128xi1>, tensor<i1>) -> tensor<i1> | |
%1069 = "mhlo.not"(%1068) : (tensor<i1>) -> tensor<i1> | |
%1070 = "mhlo.convert"(%1069) : (tensor<i1>) -> tensor<i32> | |
%1071 = "mhlo.tuple"(%1066, %1058) : (tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>) -> tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>> | |
%1072 = "mhlo.case"(%1070, %1071, %1071) ( { | |
^bb0(%arg322: tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>) -> tensor<1x28x28x128xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x128xf32>) -> tuple<tensor<1x28x28x128xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x128xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>) -> tensor<1x28x28x128xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x128xf32>) -> tuple<tensor<1x28x28x128xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x128xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>, tuple<tensor<1x28x28x128xf32>, tensor<1x28x28x128xf32>>) -> tuple<tensor<1x28x28x128xf32>> | |
%1073 = "mhlo.get_tuple_element"(%1072) {index = 0 : i32} : (tuple<tensor<1x28x28x128xf32>>) -> tensor<1x28x28x128xf32> | |
%1074 = "mhlo.abs"(%arg287) : (tensor<1x1x128x512xf32>) -> tensor<1x1x128x512xf32> | |
%1075 = mhlo.reduce %1074, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x128x512xf32>, tensor<f32>) -> tensor<512xf32> | |
%1076 = "mhlo.broadcast_in_dim"(%1075) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%1077 = mhlo.add %1076, %21 : tensor<1x1x1x512xf32> | |
%1078 = mhlo.divide %25, %1077 : tensor<1x1x1x512xf32> | |
%1079 = "mhlo.broadcast_in_dim"(%1078) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x1x128x512xf32> | |
%1080 = mhlo.multiply %arg287, %1079 : tensor<1x1x128x512xf32> | |
%1081 = call @jit_clip_46(%1080, %8, %7) : (tensor<1x1x128x512xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x128x512xf32> | |
%1082 = mhlo.add %1081, %53 : tensor<1x1x128x512xf32> | |
%1083 = "mhlo.floor"(%1082) : (tensor<1x1x128x512xf32>) -> tensor<1x1x128x512xf32> | |
%1084 = "mhlo.broadcast_in_dim"(%1078) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x1x128x512xf32> | |
%1085 = mhlo.divide %1083, %1084 : tensor<1x1x128x512xf32> | |
%1086 = mhlo.convolution(%1073, %1085) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x28x28x128xf32>, tensor<1x1x128x512xf32>) -> tensor<1x28x28x512xf32> | |
%1087 = "mhlo.reshape"(%arg82) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%1088 = "mhlo.reshape"(%arg83) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%1089 = "mhlo.broadcast_in_dim"(%1087) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x28x28x512xf32> | |
%1090 = mhlo.subtract %1086, %1089 : tensor<1x28x28x512xf32> | |
%1091 = mhlo.add %1088, %23 : tensor<1x1x1x512xf32> | |
%1092 = "mhlo.rsqrt"(%1091) : (tensor<1x1x1x512xf32>) -> tensor<1x1x1x512xf32> | |
%1093 = "mhlo.reshape"(%arg284) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%1094 = mhlo.multiply %1092, %1093 : tensor<1x1x1x512xf32> | |
%1095 = "mhlo.broadcast_in_dim"(%1094) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x28x28x512xf32> | |
%1096 = mhlo.multiply %1090, %1095 : tensor<1x28x28x512xf32> | |
%1097 = "mhlo.reshape"(%arg283) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%1098 = "mhlo.broadcast_in_dim"(%1097) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x28x28x512xf32> | |
%1099 = mhlo.add %1096, %1098 : tensor<1x28x28x512xf32> | |
%1100 = mhlo.add %974, %1099 : tensor<1x28x28x512xf32> | |
%1101 = mhlo.maximum %1100, %52 : tensor<1x28x28x512xf32> | |
%1102 = mhlo.add %arg152, %21 : tensor<1x1x1x512xf32> | |
%1103 = mhlo.divide %20, %1102 : tensor<1x1x1x512xf32> | |
%1104 = "mhlo.broadcast_in_dim"(%1103) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x28x28x512xf32> | |
%1105 = mhlo.multiply %1101, %1104 : tensor<1x28x28x512xf32> | |
%1106 = "mhlo.floor"(%1105) : (tensor<1x28x28x512xf32>) -> tensor<1x28x28x512xf32> | |
%1107 = call @jit_clip_47(%1106, %3, %2) : (tensor<1x28x28x512xf32>, tensor<i32>, tensor<i32>) -> tensor<1x28x28x512xf32> | |
%1108 = "mhlo.broadcast_in_dim"(%1103) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x28x28x512xf32> | |
%1109 = mhlo.divide %1107, %1108 : tensor<1x28x28x512xf32> | |
%1110 = "mhlo.compare"(%arg152, %19) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x512xf32>, tensor<1x1x1x512xf32>) -> tensor<1x1x1x512xi1> | |
%1111 = mhlo.reduce %1110, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xi1>, tensor<i1>) -> tensor<i1> | |
%1112 = "mhlo.not"(%1111) : (tensor<i1>) -> tensor<i1> | |
%1113 = "mhlo.convert"(%1112) : (tensor<i1>) -> tensor<i32> | |
%1114 = "mhlo.tuple"(%1109, %1101) : (tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>) -> tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>> | |
%1115 = "mhlo.case"(%1113, %1114, %1114) ( { | |
^bb0(%arg322: tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>) -> tensor<1x28x28x512xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x512xf32>) -> tuple<tensor<1x28x28x512xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x512xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>) -> tensor<1x28x28x512xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x512xf32>) -> tuple<tensor<1x28x28x512xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x512xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>, tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>) -> tuple<tensor<1x28x28x512xf32>> | |
%1116 = "mhlo.get_tuple_element"(%1115) {index = 0 : i32} : (tuple<tensor<1x28x28x512xf32>>) -> tensor<1x28x28x512xf32> | |
%1117 = "mhlo.abs"(%arg299) : (tensor<1x1x512x1024xf32>) -> tensor<1x1x512x1024xf32> | |
%1118 = mhlo.reduce %1117, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x512x1024xf32>, tensor<f32>) -> tensor<1024xf32> | |
%1119 = "mhlo.broadcast_in_dim"(%1118) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1120 = mhlo.add %1119, %34 : tensor<1x1x1x1024xf32> | |
%1121 = mhlo.divide %33, %1120 : tensor<1x1x1x1024xf32> | |
%1122 = "mhlo.broadcast_in_dim"(%1121) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x1x512x1024xf32> | |
%1123 = mhlo.multiply %arg299, %1122 : tensor<1x1x512x1024xf32> | |
%1124 = call @jit_clip_48(%1123, %8, %7) : (tensor<1x1x512x1024xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x512x1024xf32> | |
%1125 = mhlo.add %1124, %51 : tensor<1x1x512x1024xf32> | |
%1126 = "mhlo.floor"(%1125) : (tensor<1x1x512x1024xf32>) -> tensor<1x1x512x1024xf32> | |
%1127 = "mhlo.broadcast_in_dim"(%1121) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x1x512x1024xf32> | |
%1128 = mhlo.divide %1126, %1127 : tensor<1x1x512x1024xf32> | |
%1129 = mhlo.convolution(%1116, %1128) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [2, 2], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x28x28x512xf32>, tensor<1x1x512x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1130 = "mhlo.reshape"(%arg90) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1131 = "mhlo.reshape"(%arg91) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1132 = "mhlo.broadcast_in_dim"(%1130) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1133 = mhlo.subtract %1129, %1132 : tensor<1x14x14x1024xf32> | |
%1134 = mhlo.add %1131, %38 : tensor<1x1x1x1024xf32> | |
%1135 = "mhlo.rsqrt"(%1134) : (tensor<1x1x1x1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1136 = "mhlo.reshape"(%arg298) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1137 = mhlo.multiply %1135, %1136 : tensor<1x1x1x1024xf32> | |
%1138 = "mhlo.broadcast_in_dim"(%1137) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1139 = mhlo.multiply %1133, %1138 : tensor<1x14x14x1024xf32> | |
%1140 = "mhlo.reshape"(%arg297) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1141 = "mhlo.broadcast_in_dim"(%1140) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1142 = mhlo.add %1139, %1141 : tensor<1x14x14x1024xf32> | |
%1143 = mhlo.add %arg149, %21 : tensor<1x1x1x512xf32> | |
%1144 = mhlo.divide %25, %1143 : tensor<1x1x1x512xf32> | |
%1145 = "mhlo.broadcast_in_dim"(%1144) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x28x28x512xf32> | |
%1146 = mhlo.multiply %1101, %1145 : tensor<1x28x28x512xf32> | |
%1147 = call @jit_clip_49(%1146, %8, %7) : (tensor<1x28x28x512xf32>, tensor<f32>, tensor<f32>) -> tensor<1x28x28x512xf32> | |
%1148 = mhlo.add %1147, %50 : tensor<1x28x28x512xf32> | |
%1149 = "mhlo.floor"(%1148) : (tensor<1x28x28x512xf32>) -> tensor<1x28x28x512xf32> | |
%1150 = "mhlo.broadcast_in_dim"(%1144) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x28x28x512xf32> | |
%1151 = mhlo.divide %1149, %1150 : tensor<1x28x28x512xf32> | |
%1152 = "mhlo.compare"(%arg149, %19) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x512xf32>, tensor<1x1x1x512xf32>) -> tensor<1x1x1x512xi1> | |
%1153 = mhlo.reduce %1152, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xi1>, tensor<i1>) -> tensor<i1> | |
%1154 = "mhlo.not"(%1153) : (tensor<i1>) -> tensor<i1> | |
%1155 = "mhlo.convert"(%1154) : (tensor<i1>) -> tensor<i32> | |
%1156 = "mhlo.tuple"(%1151, %1101) : (tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>) -> tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>> | |
%1157 = "mhlo.case"(%1155, %1156, %1156) ( { | |
^bb0(%arg322: tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>) -> tensor<1x28x28x512xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x512xf32>) -> tuple<tensor<1x28x28x512xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x512xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>) -> tensor<1x28x28x512xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x512xf32>) -> tuple<tensor<1x28x28x512xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x512xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>, tuple<tensor<1x28x28x512xf32>, tensor<1x28x28x512xf32>>) -> tuple<tensor<1x28x28x512xf32>> | |
%1158 = "mhlo.get_tuple_element"(%1157) {index = 0 : i32} : (tuple<tensor<1x28x28x512xf32>>) -> tensor<1x28x28x512xf32> | |
%1159 = "mhlo.abs"(%arg294) : (tensor<1x1x512x256xf32>) -> tensor<1x1x512x256xf32> | |
%1160 = mhlo.reduce %1159, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x512x256xf32>, tensor<f32>) -> tensor<256xf32> | |
%1161 = "mhlo.broadcast_in_dim"(%1160) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1162 = mhlo.add %1161, %42 : tensor<1x1x1x256xf32> | |
%1163 = mhlo.divide %46, %1162 : tensor<1x1x1x256xf32> | |
%1164 = "mhlo.broadcast_in_dim"(%1163) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x1x512x256xf32> | |
%1165 = mhlo.multiply %arg294, %1164 : tensor<1x1x512x256xf32> | |
%1166 = call @jit_clip_50(%1165, %8, %7) : (tensor<1x1x512x256xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x512x256xf32> | |
%1167 = mhlo.add %1166, %49 : tensor<1x1x512x256xf32> | |
%1168 = "mhlo.floor"(%1167) : (tensor<1x1x512x256xf32>) -> tensor<1x1x512x256xf32> | |
%1169 = "mhlo.broadcast_in_dim"(%1163) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x1x512x256xf32> | |
%1170 = mhlo.divide %1168, %1169 : tensor<1x1x512x256xf32> | |
%1171 = mhlo.convolution(%1158, %1170) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x28x28x512xf32>, tensor<1x1x512x256xf32>) -> tensor<1x28x28x256xf32> | |
%1172 = "mhlo.reshape"(%arg84) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1173 = "mhlo.reshape"(%arg85) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1174 = "mhlo.broadcast_in_dim"(%1172) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x28x28x256xf32> | |
%1175 = mhlo.subtract %1171, %1174 : tensor<1x28x28x256xf32> | |
%1176 = mhlo.add %1173, %44 : tensor<1x1x1x256xf32> | |
%1177 = "mhlo.rsqrt"(%1176) : (tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xf32> | |
%1178 = "mhlo.reshape"(%arg289) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1179 = mhlo.multiply %1177, %1178 : tensor<1x1x1x256xf32> | |
%1180 = "mhlo.broadcast_in_dim"(%1179) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x28x28x256xf32> | |
%1181 = mhlo.multiply %1175, %1180 : tensor<1x28x28x256xf32> | |
%1182 = "mhlo.reshape"(%arg288) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1183 = "mhlo.broadcast_in_dim"(%1182) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x28x28x256xf32> | |
%1184 = mhlo.add %1181, %1183 : tensor<1x28x28x256xf32> | |
%1185 = mhlo.maximum %1184, %48 : tensor<1x28x28x256xf32> | |
%1186 = mhlo.add %arg150, %42 : tensor<1x1x1x256xf32> | |
%1187 = mhlo.divide %41, %1186 : tensor<1x1x1x256xf32> | |
%1188 = "mhlo.broadcast_in_dim"(%1187) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x28x28x256xf32> | |
%1189 = mhlo.multiply %1185, %1188 : tensor<1x28x28x256xf32> | |
%1190 = "mhlo.floor"(%1189) : (tensor<1x28x28x256xf32>) -> tensor<1x28x28x256xf32> | |
%1191 = call @jit_clip_51(%1190, %3, %2) : (tensor<1x28x28x256xf32>, tensor<i32>, tensor<i32>) -> tensor<1x28x28x256xf32> | |
%1192 = "mhlo.broadcast_in_dim"(%1187) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x28x28x256xf32> | |
%1193 = mhlo.divide %1191, %1192 : tensor<1x28x28x256xf32> | |
%1194 = "mhlo.compare"(%arg150, %40) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x256xf32>, tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xi1> | |
%1195 = mhlo.reduce %1194, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xi1>, tensor<i1>) -> tensor<i1> | |
%1196 = "mhlo.not"(%1195) : (tensor<i1>) -> tensor<i1> | |
%1197 = "mhlo.convert"(%1196) : (tensor<i1>) -> tensor<i32> | |
%1198 = "mhlo.tuple"(%1193, %1185) : (tensor<1x28x28x256xf32>, tensor<1x28x28x256xf32>) -> tuple<tensor<1x28x28x256xf32>, tensor<1x28x28x256xf32>> | |
%1199 = "mhlo.case"(%1197, %1198, %1198) ( { | |
^bb0(%arg322: tuple<tensor<1x28x28x256xf32>, tensor<1x28x28x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x28x28x256xf32>, tensor<1x28x28x256xf32>>) -> tensor<1x28x28x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x256xf32>) -> tuple<tensor<1x28x28x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x256xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x28x28x256xf32>, tensor<1x28x28x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x28x28x256xf32>, tensor<1x28x28x256xf32>>) -> tensor<1x28x28x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x28x28x256xf32>) -> tuple<tensor<1x28x28x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x28x28x256xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x28x28x256xf32>, tensor<1x28x28x256xf32>>, tuple<tensor<1x28x28x256xf32>, tensor<1x28x28x256xf32>>) -> tuple<tensor<1x28x28x256xf32>> | |
%1200 = "mhlo.get_tuple_element"(%1199) {index = 0 : i32} : (tuple<tensor<1x28x28x256xf32>>) -> tensor<1x28x28x256xf32> | |
%1201 = "mhlo.abs"(%arg295) : (tensor<3x3x256x256xf32>) -> tensor<3x3x256x256xf32> | |
%1202 = mhlo.reduce %1201, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<3x3x256x256xf32>, tensor<f32>) -> tensor<256xf32> | |
%1203 = "mhlo.broadcast_in_dim"(%1202) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1204 = mhlo.add %1203, %42 : tensor<1x1x1x256xf32> | |
%1205 = mhlo.divide %46, %1204 : tensor<1x1x1x256xf32> | |
%1206 = "mhlo.broadcast_in_dim"(%1205) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<3x3x256x256xf32> | |
%1207 = mhlo.multiply %arg295, %1206 : tensor<3x3x256x256xf32> | |
%1208 = call @jit_clip_52(%1207, %8, %7) : (tensor<3x3x256x256xf32>, tensor<f32>, tensor<f32>) -> tensor<3x3x256x256xf32> | |
%1209 = mhlo.add %1208, %45 : tensor<3x3x256x256xf32> | |
%1210 = "mhlo.floor"(%1209) : (tensor<3x3x256x256xf32>) -> tensor<3x3x256x256xf32> | |
%1211 = "mhlo.broadcast_in_dim"(%1205) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<3x3x256x256xf32> | |
%1212 = mhlo.divide %1210, %1211 : tensor<3x3x256x256xf32> | |
%1213 = mhlo.convolution(%1200, %1212) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [2, 2], pad = [[0, 1], [0, 1]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x28x28x256xf32>, tensor<3x3x256x256xf32>) -> tensor<1x14x14x256xf32> | |
%1214 = "mhlo.reshape"(%arg86) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1215 = "mhlo.reshape"(%arg87) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1216 = "mhlo.broadcast_in_dim"(%1214) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1217 = mhlo.subtract %1213, %1216 : tensor<1x14x14x256xf32> | |
%1218 = mhlo.add %1215, %44 : tensor<1x1x1x256xf32> | |
%1219 = "mhlo.rsqrt"(%1218) : (tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xf32> | |
%1220 = "mhlo.reshape"(%arg291) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1221 = mhlo.multiply %1219, %1220 : tensor<1x1x1x256xf32> | |
%1222 = "mhlo.broadcast_in_dim"(%1221) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1223 = mhlo.multiply %1217, %1222 : tensor<1x14x14x256xf32> | |
%1224 = "mhlo.reshape"(%arg290) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1225 = "mhlo.broadcast_in_dim"(%1224) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1226 = mhlo.add %1223, %1225 : tensor<1x14x14x256xf32> | |
%1227 = mhlo.maximum %1226, %43 : tensor<1x14x14x256xf32> | |
%1228 = mhlo.add %arg151, %42 : tensor<1x1x1x256xf32> | |
%1229 = mhlo.divide %41, %1228 : tensor<1x1x1x256xf32> | |
%1230 = "mhlo.broadcast_in_dim"(%1229) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1231 = mhlo.multiply %1227, %1230 : tensor<1x14x14x256xf32> | |
%1232 = "mhlo.floor"(%1231) : (tensor<1x14x14x256xf32>) -> tensor<1x14x14x256xf32> | |
%1233 = call @jit_clip_53(%1232, %3, %2) : (tensor<1x14x14x256xf32>, tensor<i32>, tensor<i32>) -> tensor<1x14x14x256xf32> | |
%1234 = "mhlo.broadcast_in_dim"(%1229) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1235 = mhlo.divide %1233, %1234 : tensor<1x14x14x256xf32> | |
%1236 = "mhlo.compare"(%arg151, %40) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x256xf32>, tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xi1> | |
%1237 = mhlo.reduce %1236, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xi1>, tensor<i1>) -> tensor<i1> | |
%1238 = "mhlo.not"(%1237) : (tensor<i1>) -> tensor<i1> | |
%1239 = "mhlo.convert"(%1238) : (tensor<i1>) -> tensor<i32> | |
%1240 = "mhlo.tuple"(%1235, %1227) : (tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>> | |
%1241 = "mhlo.case"(%1239, %1240, %1240) ( { | |
^bb0(%arg322: tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x256xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x256xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>, tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tuple<tensor<1x14x14x256xf32>> | |
%1242 = "mhlo.get_tuple_element"(%1241) {index = 0 : i32} : (tuple<tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%1243 = "mhlo.abs"(%arg296) : (tensor<1x1x256x1024xf32>) -> tensor<1x1x256x1024xf32> | |
%1244 = mhlo.reduce %1243, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x256x1024xf32>, tensor<f32>) -> tensor<1024xf32> | |
%1245 = "mhlo.broadcast_in_dim"(%1244) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1246 = mhlo.add %1245, %34 : tensor<1x1x1x1024xf32> | |
%1247 = mhlo.divide %33, %1246 : tensor<1x1x1x1024xf32> | |
%1248 = "mhlo.broadcast_in_dim"(%1247) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x1x256x1024xf32> | |
%1249 = mhlo.multiply %arg296, %1248 : tensor<1x1x256x1024xf32> | |
%1250 = call @jit_clip_54(%1249, %8, %7) : (tensor<1x1x256x1024xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x256x1024xf32> | |
%1251 = mhlo.add %1250, %39 : tensor<1x1x256x1024xf32> | |
%1252 = "mhlo.floor"(%1251) : (tensor<1x1x256x1024xf32>) -> tensor<1x1x256x1024xf32> | |
%1253 = "mhlo.broadcast_in_dim"(%1247) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x1x256x1024xf32> | |
%1254 = mhlo.divide %1252, %1253 : tensor<1x1x256x1024xf32> | |
%1255 = mhlo.convolution(%1242, %1254) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x14x14x256xf32>, tensor<1x1x256x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1256 = "mhlo.reshape"(%arg88) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1257 = "mhlo.reshape"(%arg89) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1258 = "mhlo.broadcast_in_dim"(%1256) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1259 = mhlo.subtract %1255, %1258 : tensor<1x14x14x1024xf32> | |
%1260 = mhlo.add %1257, %38 : tensor<1x1x1x1024xf32> | |
%1261 = "mhlo.rsqrt"(%1260) : (tensor<1x1x1x1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1262 = "mhlo.reshape"(%arg293) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1263 = mhlo.multiply %1261, %1262 : tensor<1x1x1x1024xf32> | |
%1264 = "mhlo.broadcast_in_dim"(%1263) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1265 = mhlo.multiply %1259, %1264 : tensor<1x14x14x1024xf32> | |
%1266 = "mhlo.reshape"(%arg292) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1267 = "mhlo.broadcast_in_dim"(%1266) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1268 = mhlo.add %1265, %1267 : tensor<1x14x14x1024xf32> | |
%1269 = mhlo.add %1142, %1268 : tensor<1x14x14x1024xf32> | |
%1270 = mhlo.maximum %1269, %37 : tensor<1x14x14x1024xf32> | |
%1271 = mhlo.add %arg153, %34 : tensor<1x1x1x1024xf32> | |
%1272 = mhlo.divide %36, %1271 : tensor<1x1x1x1024xf32> | |
%1273 = "mhlo.broadcast_in_dim"(%1272) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1274 = mhlo.multiply %1270, %1273 : tensor<1x14x14x1024xf32> | |
%1275 = "mhlo.floor"(%1274) : (tensor<1x14x14x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1276 = call @jit_clip_55(%1275, %3, %2) : (tensor<1x14x14x1024xf32>, tensor<i32>, tensor<i32>) -> tensor<1x14x14x1024xf32> | |
%1277 = "mhlo.broadcast_in_dim"(%1272) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1278 = mhlo.divide %1276, %1277 : tensor<1x14x14x1024xf32> | |
%1279 = "mhlo.compare"(%arg153, %31) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x1024xf32>, tensor<1x1x1x1024xf32>) -> tensor<1x1x1x1024xi1> | |
%1280 = mhlo.reduce %1279, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xi1>, tensor<i1>) -> tensor<i1> | |
%1281 = "mhlo.not"(%1280) : (tensor<i1>) -> tensor<i1> | |
%1282 = "mhlo.convert"(%1281) : (tensor<i1>) -> tensor<i32> | |
%1283 = "mhlo.tuple"(%1278, %1270) : (tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>) -> tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>> | |
%1284 = "mhlo.case"(%1282, %1283, %1283) ( { | |
^bb0(%arg322: tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>) -> tensor<1x14x14x1024xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x1024xf32>) -> tuple<tensor<1x14x14x1024xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x1024xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>) -> tensor<1x14x14x1024xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x1024xf32>) -> tuple<tensor<1x14x14x1024xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x1024xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>, tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>) -> tuple<tensor<1x14x14x1024xf32>> | |
%1285 = "mhlo.get_tuple_element"(%1284) {index = 0 : i32} : (tuple<tensor<1x14x14x1024xf32>>) -> tensor<1x14x14x1024xf32> | |
%1286 = "mhlo.abs"(%arg306) : (tensor<1x1x1024x256xf32>) -> tensor<1x1x1024x256xf32> | |
%1287 = mhlo.reduce %1286, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x1024x256xf32>, tensor<f32>) -> tensor<256xf32> | |
%1288 = "mhlo.broadcast_in_dim"(%1287) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1289 = mhlo.add %1288, %42 : tensor<1x1x1x256xf32> | |
%1290 = mhlo.divide %46, %1289 : tensor<1x1x1x256xf32> | |
%1291 = "mhlo.broadcast_in_dim"(%1290) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x1x1024x256xf32> | |
%1292 = mhlo.multiply %arg306, %1291 : tensor<1x1x1024x256xf32> | |
%1293 = call @jit_clip_56(%1292, %8, %7) : (tensor<1x1x1024x256xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x1024x256xf32> | |
%1294 = mhlo.add %1293, %47 : tensor<1x1x1024x256xf32> | |
%1295 = "mhlo.floor"(%1294) : (tensor<1x1x1024x256xf32>) -> tensor<1x1x1024x256xf32> | |
%1296 = "mhlo.broadcast_in_dim"(%1290) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x1x1024x256xf32> | |
%1297 = mhlo.divide %1295, %1296 : tensor<1x1x1024x256xf32> | |
%1298 = mhlo.convolution(%1285, %1297) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x14x14x1024xf32>, tensor<1x1x1024x256xf32>) -> tensor<1x14x14x256xf32> | |
%1299 = "mhlo.reshape"(%arg92) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1300 = "mhlo.reshape"(%arg93) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1301 = "mhlo.broadcast_in_dim"(%1299) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1302 = mhlo.subtract %1298, %1301 : tensor<1x14x14x256xf32> | |
%1303 = mhlo.add %1300, %44 : tensor<1x1x1x256xf32> | |
%1304 = "mhlo.rsqrt"(%1303) : (tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xf32> | |
%1305 = "mhlo.reshape"(%arg301) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1306 = mhlo.multiply %1304, %1305 : tensor<1x1x1x256xf32> | |
%1307 = "mhlo.broadcast_in_dim"(%1306) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1308 = mhlo.multiply %1302, %1307 : tensor<1x14x14x256xf32> | |
%1309 = "mhlo.reshape"(%arg300) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1310 = "mhlo.broadcast_in_dim"(%1309) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1311 = mhlo.add %1308, %1310 : tensor<1x14x14x256xf32> | |
%1312 = mhlo.maximum %1311, %43 : tensor<1x14x14x256xf32> | |
%1313 = mhlo.add %arg154, %42 : tensor<1x1x1x256xf32> | |
%1314 = mhlo.divide %41, %1313 : tensor<1x1x1x256xf32> | |
%1315 = "mhlo.broadcast_in_dim"(%1314) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1316 = mhlo.multiply %1312, %1315 : tensor<1x14x14x256xf32> | |
%1317 = "mhlo.floor"(%1316) : (tensor<1x14x14x256xf32>) -> tensor<1x14x14x256xf32> | |
%1318 = call @jit_clip_57(%1317, %3, %2) : (tensor<1x14x14x256xf32>, tensor<i32>, tensor<i32>) -> tensor<1x14x14x256xf32> | |
%1319 = "mhlo.broadcast_in_dim"(%1314) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1320 = mhlo.divide %1318, %1319 : tensor<1x14x14x256xf32> | |
%1321 = "mhlo.compare"(%arg154, %40) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x256xf32>, tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xi1> | |
%1322 = mhlo.reduce %1321, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xi1>, tensor<i1>) -> tensor<i1> | |
%1323 = "mhlo.not"(%1322) : (tensor<i1>) -> tensor<i1> | |
%1324 = "mhlo.convert"(%1323) : (tensor<i1>) -> tensor<i32> | |
%1325 = "mhlo.tuple"(%1320, %1312) : (tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>> | |
%1326 = "mhlo.case"(%1324, %1325, %1325) ( { | |
^bb0(%arg322: tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x256xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x256xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>, tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tuple<tensor<1x14x14x256xf32>> | |
%1327 = "mhlo.get_tuple_element"(%1326) {index = 0 : i32} : (tuple<tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%1328 = "mhlo.abs"(%arg307) : (tensor<3x3x256x256xf32>) -> tensor<3x3x256x256xf32> | |
%1329 = mhlo.reduce %1328, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<3x3x256x256xf32>, tensor<f32>) -> tensor<256xf32> | |
%1330 = "mhlo.broadcast_in_dim"(%1329) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1331 = mhlo.add %1330, %42 : tensor<1x1x1x256xf32> | |
%1332 = mhlo.divide %46, %1331 : tensor<1x1x1x256xf32> | |
%1333 = "mhlo.broadcast_in_dim"(%1332) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<3x3x256x256xf32> | |
%1334 = mhlo.multiply %arg307, %1333 : tensor<3x3x256x256xf32> | |
%1335 = call @jit_clip_58(%1334, %8, %7) : (tensor<3x3x256x256xf32>, tensor<f32>, tensor<f32>) -> tensor<3x3x256x256xf32> | |
%1336 = mhlo.add %1335, %45 : tensor<3x3x256x256xf32> | |
%1337 = "mhlo.floor"(%1336) : (tensor<3x3x256x256xf32>) -> tensor<3x3x256x256xf32> | |
%1338 = "mhlo.broadcast_in_dim"(%1332) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<3x3x256x256xf32> | |
%1339 = mhlo.divide %1337, %1338 : tensor<3x3x256x256xf32> | |
%1340 = mhlo.convolution(%1327, %1339) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[1, 1], [1, 1]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x14x14x256xf32>, tensor<3x3x256x256xf32>) -> tensor<1x14x14x256xf32> | |
%1341 = "mhlo.reshape"(%arg94) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1342 = "mhlo.reshape"(%arg95) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1343 = "mhlo.broadcast_in_dim"(%1341) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1344 = mhlo.subtract %1340, %1343 : tensor<1x14x14x256xf32> | |
%1345 = mhlo.add %1342, %44 : tensor<1x1x1x256xf32> | |
%1346 = "mhlo.rsqrt"(%1345) : (tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xf32> | |
%1347 = "mhlo.reshape"(%arg303) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1348 = mhlo.multiply %1346, %1347 : tensor<1x1x1x256xf32> | |
%1349 = "mhlo.broadcast_in_dim"(%1348) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1350 = mhlo.multiply %1344, %1349 : tensor<1x14x14x256xf32> | |
%1351 = "mhlo.reshape"(%arg302) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1352 = "mhlo.broadcast_in_dim"(%1351) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1353 = mhlo.add %1350, %1352 : tensor<1x14x14x256xf32> | |
%1354 = mhlo.maximum %1353, %43 : tensor<1x14x14x256xf32> | |
%1355 = mhlo.add %arg155, %42 : tensor<1x1x1x256xf32> | |
%1356 = mhlo.divide %41, %1355 : tensor<1x1x1x256xf32> | |
%1357 = "mhlo.broadcast_in_dim"(%1356) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1358 = mhlo.multiply %1354, %1357 : tensor<1x14x14x256xf32> | |
%1359 = "mhlo.floor"(%1358) : (tensor<1x14x14x256xf32>) -> tensor<1x14x14x256xf32> | |
%1360 = call @jit_clip_59(%1359, %3, %2) : (tensor<1x14x14x256xf32>, tensor<i32>, tensor<i32>) -> tensor<1x14x14x256xf32> | |
%1361 = "mhlo.broadcast_in_dim"(%1356) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1362 = mhlo.divide %1360, %1361 : tensor<1x14x14x256xf32> | |
%1363 = "mhlo.compare"(%arg155, %40) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x256xf32>, tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xi1> | |
%1364 = mhlo.reduce %1363, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xi1>, tensor<i1>) -> tensor<i1> | |
%1365 = "mhlo.not"(%1364) : (tensor<i1>) -> tensor<i1> | |
%1366 = "mhlo.convert"(%1365) : (tensor<i1>) -> tensor<i32> | |
%1367 = "mhlo.tuple"(%1362, %1354) : (tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>> | |
%1368 = "mhlo.case"(%1366, %1367, %1367) ( { | |
^bb0(%arg322: tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x256xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x256xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>, tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tuple<tensor<1x14x14x256xf32>> | |
%1369 = "mhlo.get_tuple_element"(%1368) {index = 0 : i32} : (tuple<tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%1370 = "mhlo.abs"(%arg308) : (tensor<1x1x256x1024xf32>) -> tensor<1x1x256x1024xf32> | |
%1371 = mhlo.reduce %1370, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x256x1024xf32>, tensor<f32>) -> tensor<1024xf32> | |
%1372 = "mhlo.broadcast_in_dim"(%1371) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1373 = mhlo.add %1372, %34 : tensor<1x1x1x1024xf32> | |
%1374 = mhlo.divide %33, %1373 : tensor<1x1x1x1024xf32> | |
%1375 = "mhlo.broadcast_in_dim"(%1374) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x1x256x1024xf32> | |
%1376 = mhlo.multiply %arg308, %1375 : tensor<1x1x256x1024xf32> | |
%1377 = call @jit_clip_60(%1376, %8, %7) : (tensor<1x1x256x1024xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x256x1024xf32> | |
%1378 = mhlo.add %1377, %39 : tensor<1x1x256x1024xf32> | |
%1379 = "mhlo.floor"(%1378) : (tensor<1x1x256x1024xf32>) -> tensor<1x1x256x1024xf32> | |
%1380 = "mhlo.broadcast_in_dim"(%1374) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x1x256x1024xf32> | |
%1381 = mhlo.divide %1379, %1380 : tensor<1x1x256x1024xf32> | |
%1382 = mhlo.convolution(%1369, %1381) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x14x14x256xf32>, tensor<1x1x256x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1383 = "mhlo.reshape"(%arg96) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1384 = "mhlo.reshape"(%arg97) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1385 = "mhlo.broadcast_in_dim"(%1383) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1386 = mhlo.subtract %1382, %1385 : tensor<1x14x14x1024xf32> | |
%1387 = mhlo.add %1384, %38 : tensor<1x1x1x1024xf32> | |
%1388 = "mhlo.rsqrt"(%1387) : (tensor<1x1x1x1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1389 = "mhlo.reshape"(%arg305) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1390 = mhlo.multiply %1388, %1389 : tensor<1x1x1x1024xf32> | |
%1391 = "mhlo.broadcast_in_dim"(%1390) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1392 = mhlo.multiply %1386, %1391 : tensor<1x14x14x1024xf32> | |
%1393 = "mhlo.reshape"(%arg304) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1394 = "mhlo.broadcast_in_dim"(%1393) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1395 = mhlo.add %1392, %1394 : tensor<1x14x14x1024xf32> | |
%1396 = mhlo.add %1270, %1395 : tensor<1x14x14x1024xf32> | |
%1397 = mhlo.maximum %1396, %37 : tensor<1x14x14x1024xf32> | |
%1398 = mhlo.add %arg156, %34 : tensor<1x1x1x1024xf32> | |
%1399 = mhlo.divide %36, %1398 : tensor<1x1x1x1024xf32> | |
%1400 = "mhlo.broadcast_in_dim"(%1399) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1401 = mhlo.multiply %1397, %1400 : tensor<1x14x14x1024xf32> | |
%1402 = "mhlo.floor"(%1401) : (tensor<1x14x14x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1403 = call @jit_clip_61(%1402, %3, %2) : (tensor<1x14x14x1024xf32>, tensor<i32>, tensor<i32>) -> tensor<1x14x14x1024xf32> | |
%1404 = "mhlo.broadcast_in_dim"(%1399) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1405 = mhlo.divide %1403, %1404 : tensor<1x14x14x1024xf32> | |
%1406 = "mhlo.compare"(%arg156, %31) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x1024xf32>, tensor<1x1x1x1024xf32>) -> tensor<1x1x1x1024xi1> | |
%1407 = mhlo.reduce %1406, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xi1>, tensor<i1>) -> tensor<i1> | |
%1408 = "mhlo.not"(%1407) : (tensor<i1>) -> tensor<i1> | |
%1409 = "mhlo.convert"(%1408) : (tensor<i1>) -> tensor<i32> | |
%1410 = "mhlo.tuple"(%1405, %1397) : (tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>) -> tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>> | |
%1411 = "mhlo.case"(%1409, %1410, %1410) ( { | |
^bb0(%arg322: tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>) -> tensor<1x14x14x1024xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x1024xf32>) -> tuple<tensor<1x14x14x1024xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x1024xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>) -> tensor<1x14x14x1024xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x1024xf32>) -> tuple<tensor<1x14x14x1024xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x1024xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>, tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>) -> tuple<tensor<1x14x14x1024xf32>> | |
%1412 = "mhlo.get_tuple_element"(%1411) {index = 0 : i32} : (tuple<tensor<1x14x14x1024xf32>>) -> tensor<1x14x14x1024xf32> | |
%1413 = "mhlo.abs"(%arg315) : (tensor<1x1x1024x256xf32>) -> tensor<1x1x1024x256xf32> | |
%1414 = mhlo.reduce %1413, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x1024x256xf32>, tensor<f32>) -> tensor<256xf32> | |
%1415 = "mhlo.broadcast_in_dim"(%1414) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1416 = mhlo.add %1415, %42 : tensor<1x1x1x256xf32> | |
%1417 = mhlo.divide %46, %1416 : tensor<1x1x1x256xf32> | |
%1418 = "mhlo.broadcast_in_dim"(%1417) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x1x1024x256xf32> | |
%1419 = mhlo.multiply %arg315, %1418 : tensor<1x1x1024x256xf32> | |
%1420 = call @jit_clip_62(%1419, %8, %7) : (tensor<1x1x1024x256xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x1024x256xf32> | |
%1421 = mhlo.add %1420, %47 : tensor<1x1x1024x256xf32> | |
%1422 = "mhlo.floor"(%1421) : (tensor<1x1x1024x256xf32>) -> tensor<1x1x1024x256xf32> | |
%1423 = "mhlo.broadcast_in_dim"(%1417) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x1x1024x256xf32> | |
%1424 = mhlo.divide %1422, %1423 : tensor<1x1x1024x256xf32> | |
%1425 = mhlo.convolution(%1412, %1424) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x14x14x1024xf32>, tensor<1x1x1024x256xf32>) -> tensor<1x14x14x256xf32> | |
%1426 = "mhlo.reshape"(%arg98) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1427 = "mhlo.reshape"(%arg99) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1428 = "mhlo.broadcast_in_dim"(%1426) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1429 = mhlo.subtract %1425, %1428 : tensor<1x14x14x256xf32> | |
%1430 = mhlo.add %1427, %44 : tensor<1x1x1x256xf32> | |
%1431 = "mhlo.rsqrt"(%1430) : (tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xf32> | |
%1432 = "mhlo.reshape"(%arg310) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1433 = mhlo.multiply %1431, %1432 : tensor<1x1x1x256xf32> | |
%1434 = "mhlo.broadcast_in_dim"(%1433) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1435 = mhlo.multiply %1429, %1434 : tensor<1x14x14x256xf32> | |
%1436 = "mhlo.reshape"(%arg309) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1437 = "mhlo.broadcast_in_dim"(%1436) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1438 = mhlo.add %1435, %1437 : tensor<1x14x14x256xf32> | |
%1439 = mhlo.maximum %1438, %43 : tensor<1x14x14x256xf32> | |
%1440 = mhlo.add %arg157, %42 : tensor<1x1x1x256xf32> | |
%1441 = mhlo.divide %41, %1440 : tensor<1x1x1x256xf32> | |
%1442 = "mhlo.broadcast_in_dim"(%1441) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1443 = mhlo.multiply %1439, %1442 : tensor<1x14x14x256xf32> | |
%1444 = "mhlo.floor"(%1443) : (tensor<1x14x14x256xf32>) -> tensor<1x14x14x256xf32> | |
%1445 = call @jit_clip_63(%1444, %3, %2) : (tensor<1x14x14x256xf32>, tensor<i32>, tensor<i32>) -> tensor<1x14x14x256xf32> | |
%1446 = "mhlo.broadcast_in_dim"(%1441) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1447 = mhlo.divide %1445, %1446 : tensor<1x14x14x256xf32> | |
%1448 = "mhlo.compare"(%arg157, %40) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x256xf32>, tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xi1> | |
%1449 = mhlo.reduce %1448, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xi1>, tensor<i1>) -> tensor<i1> | |
%1450 = "mhlo.not"(%1449) : (tensor<i1>) -> tensor<i1> | |
%1451 = "mhlo.convert"(%1450) : (tensor<i1>) -> tensor<i32> | |
%1452 = "mhlo.tuple"(%1447, %1439) : (tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>> | |
%1453 = "mhlo.case"(%1451, %1452, %1452) ( { | |
^bb0(%arg322: tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x256xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x256xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>, tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tuple<tensor<1x14x14x256xf32>> | |
%1454 = "mhlo.get_tuple_element"(%1453) {index = 0 : i32} : (tuple<tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%1455 = "mhlo.abs"(%arg316) : (tensor<3x3x256x256xf32>) -> tensor<3x3x256x256xf32> | |
%1456 = mhlo.reduce %1455, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<3x3x256x256xf32>, tensor<f32>) -> tensor<256xf32> | |
%1457 = "mhlo.broadcast_in_dim"(%1456) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1458 = mhlo.add %1457, %42 : tensor<1x1x1x256xf32> | |
%1459 = mhlo.divide %46, %1458 : tensor<1x1x1x256xf32> | |
%1460 = "mhlo.broadcast_in_dim"(%1459) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<3x3x256x256xf32> | |
%1461 = mhlo.multiply %arg316, %1460 : tensor<3x3x256x256xf32> | |
%1462 = call @jit_clip_64(%1461, %8, %7) : (tensor<3x3x256x256xf32>, tensor<f32>, tensor<f32>) -> tensor<3x3x256x256xf32> | |
%1463 = mhlo.add %1462, %45 : tensor<3x3x256x256xf32> | |
%1464 = "mhlo.floor"(%1463) : (tensor<3x3x256x256xf32>) -> tensor<3x3x256x256xf32> | |
%1465 = "mhlo.broadcast_in_dim"(%1459) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<3x3x256x256xf32> | |
%1466 = mhlo.divide %1464, %1465 : tensor<3x3x256x256xf32> | |
%1467 = mhlo.convolution(%1454, %1466) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[1, 1], [1, 1]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x14x14x256xf32>, tensor<3x3x256x256xf32>) -> tensor<1x14x14x256xf32> | |
%1468 = "mhlo.reshape"(%arg100) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1469 = "mhlo.reshape"(%arg101) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1470 = "mhlo.broadcast_in_dim"(%1468) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1471 = mhlo.subtract %1467, %1470 : tensor<1x14x14x256xf32> | |
%1472 = mhlo.add %1469, %44 : tensor<1x1x1x256xf32> | |
%1473 = "mhlo.rsqrt"(%1472) : (tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xf32> | |
%1474 = "mhlo.reshape"(%arg312) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1475 = mhlo.multiply %1473, %1474 : tensor<1x1x1x256xf32> | |
%1476 = "mhlo.broadcast_in_dim"(%1475) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1477 = mhlo.multiply %1471, %1476 : tensor<1x14x14x256xf32> | |
%1478 = "mhlo.reshape"(%arg311) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1479 = "mhlo.broadcast_in_dim"(%1478) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1480 = mhlo.add %1477, %1479 : tensor<1x14x14x256xf32> | |
%1481 = mhlo.maximum %1480, %43 : tensor<1x14x14x256xf32> | |
%1482 = mhlo.add %arg158, %42 : tensor<1x1x1x256xf32> | |
%1483 = mhlo.divide %41, %1482 : tensor<1x1x1x256xf32> | |
%1484 = "mhlo.broadcast_in_dim"(%1483) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1485 = mhlo.multiply %1481, %1484 : tensor<1x14x14x256xf32> | |
%1486 = "mhlo.floor"(%1485) : (tensor<1x14x14x256xf32>) -> tensor<1x14x14x256xf32> | |
%1487 = call @jit_clip_65(%1486, %3, %2) : (tensor<1x14x14x256xf32>, tensor<i32>, tensor<i32>) -> tensor<1x14x14x256xf32> | |
%1488 = "mhlo.broadcast_in_dim"(%1483) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1489 = mhlo.divide %1487, %1488 : tensor<1x14x14x256xf32> | |
%1490 = "mhlo.compare"(%arg158, %40) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x256xf32>, tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xi1> | |
%1491 = mhlo.reduce %1490, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xi1>, tensor<i1>) -> tensor<i1> | |
%1492 = "mhlo.not"(%1491) : (tensor<i1>) -> tensor<i1> | |
%1493 = "mhlo.convert"(%1492) : (tensor<i1>) -> tensor<i32> | |
%1494 = "mhlo.tuple"(%1489, %1481) : (tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>> | |
%1495 = "mhlo.case"(%1493, %1494, %1494) ( { | |
^bb0(%arg322: tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x256xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x256xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>, tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tuple<tensor<1x14x14x256xf32>> | |
%1496 = "mhlo.get_tuple_element"(%1495) {index = 0 : i32} : (tuple<tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%1497 = "mhlo.abs"(%arg317) : (tensor<1x1x256x1024xf32>) -> tensor<1x1x256x1024xf32> | |
%1498 = mhlo.reduce %1497, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x256x1024xf32>, tensor<f32>) -> tensor<1024xf32> | |
%1499 = "mhlo.broadcast_in_dim"(%1498) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1500 = mhlo.add %1499, %34 : tensor<1x1x1x1024xf32> | |
%1501 = mhlo.divide %33, %1500 : tensor<1x1x1x1024xf32> | |
%1502 = "mhlo.broadcast_in_dim"(%1501) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x1x256x1024xf32> | |
%1503 = mhlo.multiply %arg317, %1502 : tensor<1x1x256x1024xf32> | |
%1504 = call @jit_clip_66(%1503, %8, %7) : (tensor<1x1x256x1024xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x256x1024xf32> | |
%1505 = mhlo.add %1504, %39 : tensor<1x1x256x1024xf32> | |
%1506 = "mhlo.floor"(%1505) : (tensor<1x1x256x1024xf32>) -> tensor<1x1x256x1024xf32> | |
%1507 = "mhlo.broadcast_in_dim"(%1501) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x1x256x1024xf32> | |
%1508 = mhlo.divide %1506, %1507 : tensor<1x1x256x1024xf32> | |
%1509 = mhlo.convolution(%1496, %1508) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x14x14x256xf32>, tensor<1x1x256x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1510 = "mhlo.reshape"(%arg102) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1511 = "mhlo.reshape"(%arg103) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1512 = "mhlo.broadcast_in_dim"(%1510) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1513 = mhlo.subtract %1509, %1512 : tensor<1x14x14x1024xf32> | |
%1514 = mhlo.add %1511, %38 : tensor<1x1x1x1024xf32> | |
%1515 = "mhlo.rsqrt"(%1514) : (tensor<1x1x1x1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1516 = "mhlo.reshape"(%arg314) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1517 = mhlo.multiply %1515, %1516 : tensor<1x1x1x1024xf32> | |
%1518 = "mhlo.broadcast_in_dim"(%1517) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1519 = mhlo.multiply %1513, %1518 : tensor<1x14x14x1024xf32> | |
%1520 = "mhlo.reshape"(%arg313) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1521 = "mhlo.broadcast_in_dim"(%1520) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1522 = mhlo.add %1519, %1521 : tensor<1x14x14x1024xf32> | |
%1523 = mhlo.add %1397, %1522 : tensor<1x14x14x1024xf32> | |
%1524 = mhlo.maximum %1523, %37 : tensor<1x14x14x1024xf32> | |
%1525 = mhlo.add %arg114, %34 : tensor<1x1x1x1024xf32> | |
%1526 = mhlo.divide %36, %1525 : tensor<1x1x1x1024xf32> | |
%1527 = "mhlo.broadcast_in_dim"(%1526) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1528 = mhlo.multiply %1524, %1527 : tensor<1x14x14x1024xf32> | |
%1529 = "mhlo.floor"(%1528) : (tensor<1x14x14x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1530 = call @jit_clip_67(%1529, %3, %2) : (tensor<1x14x14x1024xf32>, tensor<i32>, tensor<i32>) -> tensor<1x14x14x1024xf32> | |
%1531 = "mhlo.broadcast_in_dim"(%1526) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1532 = mhlo.divide %1530, %1531 : tensor<1x14x14x1024xf32> | |
%1533 = "mhlo.compare"(%arg114, %31) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x1024xf32>, tensor<1x1x1x1024xf32>) -> tensor<1x1x1x1024xi1> | |
%1534 = mhlo.reduce %1533, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xi1>, tensor<i1>) -> tensor<i1> | |
%1535 = "mhlo.not"(%1534) : (tensor<i1>) -> tensor<i1> | |
%1536 = "mhlo.convert"(%1535) : (tensor<i1>) -> tensor<i32> | |
%1537 = "mhlo.tuple"(%1532, %1524) : (tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>) -> tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>> | |
%1538 = "mhlo.case"(%1536, %1537, %1537) ( { | |
^bb0(%arg322: tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>) -> tensor<1x14x14x1024xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x1024xf32>) -> tuple<tensor<1x14x14x1024xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x1024xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>) -> tensor<1x14x14x1024xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x1024xf32>) -> tuple<tensor<1x14x14x1024xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x1024xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>, tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>) -> tuple<tensor<1x14x14x1024xf32>> | |
%1539 = "mhlo.get_tuple_element"(%1538) {index = 0 : i32} : (tuple<tensor<1x14x14x1024xf32>>) -> tensor<1x14x14x1024xf32> | |
%1540 = "mhlo.abs"(%arg189) : (tensor<1x1x1024x256xf32>) -> tensor<1x1x1024x256xf32> | |
%1541 = mhlo.reduce %1540, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x1024x256xf32>, tensor<f32>) -> tensor<256xf32> | |
%1542 = "mhlo.broadcast_in_dim"(%1541) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1543 = mhlo.add %1542, %42 : tensor<1x1x1x256xf32> | |
%1544 = mhlo.divide %46, %1543 : tensor<1x1x1x256xf32> | |
%1545 = "mhlo.broadcast_in_dim"(%1544) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x1x1024x256xf32> | |
%1546 = mhlo.multiply %arg189, %1545 : tensor<1x1x1024x256xf32> | |
%1547 = call @jit_clip_68(%1546, %8, %7) : (tensor<1x1x1024x256xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x1024x256xf32> | |
%1548 = mhlo.add %1547, %47 : tensor<1x1x1024x256xf32> | |
%1549 = "mhlo.floor"(%1548) : (tensor<1x1x1024x256xf32>) -> tensor<1x1x1024x256xf32> | |
%1550 = "mhlo.broadcast_in_dim"(%1544) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x1x1024x256xf32> | |
%1551 = mhlo.divide %1549, %1550 : tensor<1x1x1024x256xf32> | |
%1552 = mhlo.convolution(%1539, %1551) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x14x14x1024xf32>, tensor<1x1x1024x256xf32>) -> tensor<1x14x14x256xf32> | |
%1553 = "mhlo.reshape"(%arg14) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1554 = "mhlo.reshape"(%arg15) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1555 = "mhlo.broadcast_in_dim"(%1553) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1556 = mhlo.subtract %1552, %1555 : tensor<1x14x14x256xf32> | |
%1557 = mhlo.add %1554, %44 : tensor<1x1x1x256xf32> | |
%1558 = "mhlo.rsqrt"(%1557) : (tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xf32> | |
%1559 = "mhlo.reshape"(%arg184) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1560 = mhlo.multiply %1558, %1559 : tensor<1x1x1x256xf32> | |
%1561 = "mhlo.broadcast_in_dim"(%1560) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1562 = mhlo.multiply %1556, %1561 : tensor<1x14x14x256xf32> | |
%1563 = "mhlo.reshape"(%arg183) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1564 = "mhlo.broadcast_in_dim"(%1563) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1565 = mhlo.add %1562, %1564 : tensor<1x14x14x256xf32> | |
%1566 = mhlo.maximum %1565, %43 : tensor<1x14x14x256xf32> | |
%1567 = mhlo.add %arg115, %42 : tensor<1x1x1x256xf32> | |
%1568 = mhlo.divide %41, %1567 : tensor<1x1x1x256xf32> | |
%1569 = "mhlo.broadcast_in_dim"(%1568) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1570 = mhlo.multiply %1566, %1569 : tensor<1x14x14x256xf32> | |
%1571 = "mhlo.floor"(%1570) : (tensor<1x14x14x256xf32>) -> tensor<1x14x14x256xf32> | |
%1572 = call @jit_clip_69(%1571, %3, %2) : (tensor<1x14x14x256xf32>, tensor<i32>, tensor<i32>) -> tensor<1x14x14x256xf32> | |
%1573 = "mhlo.broadcast_in_dim"(%1568) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1574 = mhlo.divide %1572, %1573 : tensor<1x14x14x256xf32> | |
%1575 = "mhlo.compare"(%arg115, %40) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x256xf32>, tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xi1> | |
%1576 = mhlo.reduce %1575, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xi1>, tensor<i1>) -> tensor<i1> | |
%1577 = "mhlo.not"(%1576) : (tensor<i1>) -> tensor<i1> | |
%1578 = "mhlo.convert"(%1577) : (tensor<i1>) -> tensor<i32> | |
%1579 = "mhlo.tuple"(%1574, %1566) : (tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>> | |
%1580 = "mhlo.case"(%1578, %1579, %1579) ( { | |
^bb0(%arg322: tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x256xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x256xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>, tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tuple<tensor<1x14x14x256xf32>> | |
%1581 = "mhlo.get_tuple_element"(%1580) {index = 0 : i32} : (tuple<tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%1582 = "mhlo.abs"(%arg190) : (tensor<3x3x256x256xf32>) -> tensor<3x3x256x256xf32> | |
%1583 = mhlo.reduce %1582, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<3x3x256x256xf32>, tensor<f32>) -> tensor<256xf32> | |
%1584 = "mhlo.broadcast_in_dim"(%1583) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1585 = mhlo.add %1584, %42 : tensor<1x1x1x256xf32> | |
%1586 = mhlo.divide %46, %1585 : tensor<1x1x1x256xf32> | |
%1587 = "mhlo.broadcast_in_dim"(%1586) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<3x3x256x256xf32> | |
%1588 = mhlo.multiply %arg190, %1587 : tensor<3x3x256x256xf32> | |
%1589 = call @jit_clip_70(%1588, %8, %7) : (tensor<3x3x256x256xf32>, tensor<f32>, tensor<f32>) -> tensor<3x3x256x256xf32> | |
%1590 = mhlo.add %1589, %45 : tensor<3x3x256x256xf32> | |
%1591 = "mhlo.floor"(%1590) : (tensor<3x3x256x256xf32>) -> tensor<3x3x256x256xf32> | |
%1592 = "mhlo.broadcast_in_dim"(%1586) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<3x3x256x256xf32> | |
%1593 = mhlo.divide %1591, %1592 : tensor<3x3x256x256xf32> | |
%1594 = mhlo.convolution(%1581, %1593) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[1, 1], [1, 1]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x14x14x256xf32>, tensor<3x3x256x256xf32>) -> tensor<1x14x14x256xf32> | |
%1595 = "mhlo.reshape"(%arg16) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1596 = "mhlo.reshape"(%arg17) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1597 = "mhlo.broadcast_in_dim"(%1595) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1598 = mhlo.subtract %1594, %1597 : tensor<1x14x14x256xf32> | |
%1599 = mhlo.add %1596, %44 : tensor<1x1x1x256xf32> | |
%1600 = "mhlo.rsqrt"(%1599) : (tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xf32> | |
%1601 = "mhlo.reshape"(%arg186) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1602 = mhlo.multiply %1600, %1601 : tensor<1x1x1x256xf32> | |
%1603 = "mhlo.broadcast_in_dim"(%1602) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1604 = mhlo.multiply %1598, %1603 : tensor<1x14x14x256xf32> | |
%1605 = "mhlo.reshape"(%arg185) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1606 = "mhlo.broadcast_in_dim"(%1605) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1607 = mhlo.add %1604, %1606 : tensor<1x14x14x256xf32> | |
%1608 = mhlo.maximum %1607, %43 : tensor<1x14x14x256xf32> | |
%1609 = mhlo.add %arg116, %42 : tensor<1x1x1x256xf32> | |
%1610 = mhlo.divide %41, %1609 : tensor<1x1x1x256xf32> | |
%1611 = "mhlo.broadcast_in_dim"(%1610) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1612 = mhlo.multiply %1608, %1611 : tensor<1x14x14x256xf32> | |
%1613 = "mhlo.floor"(%1612) : (tensor<1x14x14x256xf32>) -> tensor<1x14x14x256xf32> | |
%1614 = call @jit_clip_71(%1613, %3, %2) : (tensor<1x14x14x256xf32>, tensor<i32>, tensor<i32>) -> tensor<1x14x14x256xf32> | |
%1615 = "mhlo.broadcast_in_dim"(%1610) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1616 = mhlo.divide %1614, %1615 : tensor<1x14x14x256xf32> | |
%1617 = "mhlo.compare"(%arg116, %40) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x256xf32>, tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xi1> | |
%1618 = mhlo.reduce %1617, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xi1>, tensor<i1>) -> tensor<i1> | |
%1619 = "mhlo.not"(%1618) : (tensor<i1>) -> tensor<i1> | |
%1620 = "mhlo.convert"(%1619) : (tensor<i1>) -> tensor<i32> | |
%1621 = "mhlo.tuple"(%1616, %1608) : (tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>> | |
%1622 = "mhlo.case"(%1620, %1621, %1621) ( { | |
^bb0(%arg322: tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x256xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x256xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>, tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tuple<tensor<1x14x14x256xf32>> | |
%1623 = "mhlo.get_tuple_element"(%1622) {index = 0 : i32} : (tuple<tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%1624 = "mhlo.abs"(%arg191) : (tensor<1x1x256x1024xf32>) -> tensor<1x1x256x1024xf32> | |
%1625 = mhlo.reduce %1624, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x256x1024xf32>, tensor<f32>) -> tensor<1024xf32> | |
%1626 = "mhlo.broadcast_in_dim"(%1625) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1627 = mhlo.add %1626, %34 : tensor<1x1x1x1024xf32> | |
%1628 = mhlo.divide %33, %1627 : tensor<1x1x1x1024xf32> | |
%1629 = "mhlo.broadcast_in_dim"(%1628) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x1x256x1024xf32> | |
%1630 = mhlo.multiply %arg191, %1629 : tensor<1x1x256x1024xf32> | |
%1631 = call @jit_clip_72(%1630, %8, %7) : (tensor<1x1x256x1024xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x256x1024xf32> | |
%1632 = mhlo.add %1631, %39 : tensor<1x1x256x1024xf32> | |
%1633 = "mhlo.floor"(%1632) : (tensor<1x1x256x1024xf32>) -> tensor<1x1x256x1024xf32> | |
%1634 = "mhlo.broadcast_in_dim"(%1628) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x1x256x1024xf32> | |
%1635 = mhlo.divide %1633, %1634 : tensor<1x1x256x1024xf32> | |
%1636 = mhlo.convolution(%1623, %1635) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x14x14x256xf32>, tensor<1x1x256x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1637 = "mhlo.reshape"(%arg18) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1638 = "mhlo.reshape"(%arg19) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1639 = "mhlo.broadcast_in_dim"(%1637) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1640 = mhlo.subtract %1636, %1639 : tensor<1x14x14x1024xf32> | |
%1641 = mhlo.add %1638, %38 : tensor<1x1x1x1024xf32> | |
%1642 = "mhlo.rsqrt"(%1641) : (tensor<1x1x1x1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1643 = "mhlo.reshape"(%arg188) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1644 = mhlo.multiply %1642, %1643 : tensor<1x1x1x1024xf32> | |
%1645 = "mhlo.broadcast_in_dim"(%1644) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1646 = mhlo.multiply %1640, %1645 : tensor<1x14x14x1024xf32> | |
%1647 = "mhlo.reshape"(%arg187) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1648 = "mhlo.broadcast_in_dim"(%1647) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1649 = mhlo.add %1646, %1648 : tensor<1x14x14x1024xf32> | |
%1650 = mhlo.add %1524, %1649 : tensor<1x14x14x1024xf32> | |
%1651 = mhlo.maximum %1650, %37 : tensor<1x14x14x1024xf32> | |
%1652 = mhlo.add %arg117, %34 : tensor<1x1x1x1024xf32> | |
%1653 = mhlo.divide %36, %1652 : tensor<1x1x1x1024xf32> | |
%1654 = "mhlo.broadcast_in_dim"(%1653) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1655 = mhlo.multiply %1651, %1654 : tensor<1x14x14x1024xf32> | |
%1656 = "mhlo.floor"(%1655) : (tensor<1x14x14x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1657 = call @jit_clip_73(%1656, %3, %2) : (tensor<1x14x14x1024xf32>, tensor<i32>, tensor<i32>) -> tensor<1x14x14x1024xf32> | |
%1658 = "mhlo.broadcast_in_dim"(%1653) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1659 = mhlo.divide %1657, %1658 : tensor<1x14x14x1024xf32> | |
%1660 = "mhlo.compare"(%arg117, %31) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x1024xf32>, tensor<1x1x1x1024xf32>) -> tensor<1x1x1x1024xi1> | |
%1661 = mhlo.reduce %1660, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xi1>, tensor<i1>) -> tensor<i1> | |
%1662 = "mhlo.not"(%1661) : (tensor<i1>) -> tensor<i1> | |
%1663 = "mhlo.convert"(%1662) : (tensor<i1>) -> tensor<i32> | |
%1664 = "mhlo.tuple"(%1659, %1651) : (tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>) -> tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>> | |
%1665 = "mhlo.case"(%1663, %1664, %1664) ( { | |
^bb0(%arg322: tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>) -> tensor<1x14x14x1024xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x1024xf32>) -> tuple<tensor<1x14x14x1024xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x1024xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>) -> tensor<1x14x14x1024xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x1024xf32>) -> tuple<tensor<1x14x14x1024xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x1024xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>, tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>) -> tuple<tensor<1x14x14x1024xf32>> | |
%1666 = "mhlo.get_tuple_element"(%1665) {index = 0 : i32} : (tuple<tensor<1x14x14x1024xf32>>) -> tensor<1x14x14x1024xf32> | |
%1667 = "mhlo.abs"(%arg198) : (tensor<1x1x1024x256xf32>) -> tensor<1x1x1024x256xf32> | |
%1668 = mhlo.reduce %1667, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x1024x256xf32>, tensor<f32>) -> tensor<256xf32> | |
%1669 = "mhlo.broadcast_in_dim"(%1668) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1670 = mhlo.add %1669, %42 : tensor<1x1x1x256xf32> | |
%1671 = mhlo.divide %46, %1670 : tensor<1x1x1x256xf32> | |
%1672 = "mhlo.broadcast_in_dim"(%1671) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x1x1024x256xf32> | |
%1673 = mhlo.multiply %arg198, %1672 : tensor<1x1x1024x256xf32> | |
%1674 = call @jit_clip_74(%1673, %8, %7) : (tensor<1x1x1024x256xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x1024x256xf32> | |
%1675 = mhlo.add %1674, %47 : tensor<1x1x1024x256xf32> | |
%1676 = "mhlo.floor"(%1675) : (tensor<1x1x1024x256xf32>) -> tensor<1x1x1024x256xf32> | |
%1677 = "mhlo.broadcast_in_dim"(%1671) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x1x1024x256xf32> | |
%1678 = mhlo.divide %1676, %1677 : tensor<1x1x1024x256xf32> | |
%1679 = mhlo.convolution(%1666, %1678) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x14x14x1024xf32>, tensor<1x1x1024x256xf32>) -> tensor<1x14x14x256xf32> | |
%1680 = "mhlo.reshape"(%arg20) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1681 = "mhlo.reshape"(%arg21) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1682 = "mhlo.broadcast_in_dim"(%1680) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1683 = mhlo.subtract %1679, %1682 : tensor<1x14x14x256xf32> | |
%1684 = mhlo.add %1681, %44 : tensor<1x1x1x256xf32> | |
%1685 = "mhlo.rsqrt"(%1684) : (tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xf32> | |
%1686 = "mhlo.reshape"(%arg193) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1687 = mhlo.multiply %1685, %1686 : tensor<1x1x1x256xf32> | |
%1688 = "mhlo.broadcast_in_dim"(%1687) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1689 = mhlo.multiply %1683, %1688 : tensor<1x14x14x256xf32> | |
%1690 = "mhlo.reshape"(%arg192) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1691 = "mhlo.broadcast_in_dim"(%1690) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1692 = mhlo.add %1689, %1691 : tensor<1x14x14x256xf32> | |
%1693 = mhlo.maximum %1692, %43 : tensor<1x14x14x256xf32> | |
%1694 = mhlo.add %arg118, %42 : tensor<1x1x1x256xf32> | |
%1695 = mhlo.divide %41, %1694 : tensor<1x1x1x256xf32> | |
%1696 = "mhlo.broadcast_in_dim"(%1695) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1697 = mhlo.multiply %1693, %1696 : tensor<1x14x14x256xf32> | |
%1698 = "mhlo.floor"(%1697) : (tensor<1x14x14x256xf32>) -> tensor<1x14x14x256xf32> | |
%1699 = call @jit_clip_75(%1698, %3, %2) : (tensor<1x14x14x256xf32>, tensor<i32>, tensor<i32>) -> tensor<1x14x14x256xf32> | |
%1700 = "mhlo.broadcast_in_dim"(%1695) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1701 = mhlo.divide %1699, %1700 : tensor<1x14x14x256xf32> | |
%1702 = "mhlo.compare"(%arg118, %40) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x256xf32>, tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xi1> | |
%1703 = mhlo.reduce %1702, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xi1>, tensor<i1>) -> tensor<i1> | |
%1704 = "mhlo.not"(%1703) : (tensor<i1>) -> tensor<i1> | |
%1705 = "mhlo.convert"(%1704) : (tensor<i1>) -> tensor<i32> | |
%1706 = "mhlo.tuple"(%1701, %1693) : (tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>> | |
%1707 = "mhlo.case"(%1705, %1706, %1706) ( { | |
^bb0(%arg322: tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x256xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x256xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>, tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tuple<tensor<1x14x14x256xf32>> | |
%1708 = "mhlo.get_tuple_element"(%1707) {index = 0 : i32} : (tuple<tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%1709 = "mhlo.abs"(%arg199) : (tensor<3x3x256x256xf32>) -> tensor<3x3x256x256xf32> | |
%1710 = mhlo.reduce %1709, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<3x3x256x256xf32>, tensor<f32>) -> tensor<256xf32> | |
%1711 = "mhlo.broadcast_in_dim"(%1710) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1712 = mhlo.add %1711, %42 : tensor<1x1x1x256xf32> | |
%1713 = mhlo.divide %46, %1712 : tensor<1x1x1x256xf32> | |
%1714 = "mhlo.broadcast_in_dim"(%1713) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<3x3x256x256xf32> | |
%1715 = mhlo.multiply %arg199, %1714 : tensor<3x3x256x256xf32> | |
%1716 = call @jit_clip_76(%1715, %8, %7) : (tensor<3x3x256x256xf32>, tensor<f32>, tensor<f32>) -> tensor<3x3x256x256xf32> | |
%1717 = mhlo.add %1716, %45 : tensor<3x3x256x256xf32> | |
%1718 = "mhlo.floor"(%1717) : (tensor<3x3x256x256xf32>) -> tensor<3x3x256x256xf32> | |
%1719 = "mhlo.broadcast_in_dim"(%1713) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<3x3x256x256xf32> | |
%1720 = mhlo.divide %1718, %1719 : tensor<3x3x256x256xf32> | |
%1721 = mhlo.convolution(%1708, %1720) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[1, 1], [1, 1]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x14x14x256xf32>, tensor<3x3x256x256xf32>) -> tensor<1x14x14x256xf32> | |
%1722 = "mhlo.reshape"(%arg22) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1723 = "mhlo.reshape"(%arg23) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1724 = "mhlo.broadcast_in_dim"(%1722) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1725 = mhlo.subtract %1721, %1724 : tensor<1x14x14x256xf32> | |
%1726 = mhlo.add %1723, %44 : tensor<1x1x1x256xf32> | |
%1727 = "mhlo.rsqrt"(%1726) : (tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xf32> | |
%1728 = "mhlo.reshape"(%arg195) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1729 = mhlo.multiply %1727, %1728 : tensor<1x1x1x256xf32> | |
%1730 = "mhlo.broadcast_in_dim"(%1729) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1731 = mhlo.multiply %1725, %1730 : tensor<1x14x14x256xf32> | |
%1732 = "mhlo.reshape"(%arg194) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1733 = "mhlo.broadcast_in_dim"(%1732) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1734 = mhlo.add %1731, %1733 : tensor<1x14x14x256xf32> | |
%1735 = mhlo.maximum %1734, %43 : tensor<1x14x14x256xf32> | |
%1736 = mhlo.add %arg119, %42 : tensor<1x1x1x256xf32> | |
%1737 = mhlo.divide %41, %1736 : tensor<1x1x1x256xf32> | |
%1738 = "mhlo.broadcast_in_dim"(%1737) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1739 = mhlo.multiply %1735, %1738 : tensor<1x14x14x256xf32> | |
%1740 = "mhlo.floor"(%1739) : (tensor<1x14x14x256xf32>) -> tensor<1x14x14x256xf32> | |
%1741 = call @jit_clip_77(%1740, %3, %2) : (tensor<1x14x14x256xf32>, tensor<i32>, tensor<i32>) -> tensor<1x14x14x256xf32> | |
%1742 = "mhlo.broadcast_in_dim"(%1737) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1743 = mhlo.divide %1741, %1742 : tensor<1x14x14x256xf32> | |
%1744 = "mhlo.compare"(%arg119, %40) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x256xf32>, tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xi1> | |
%1745 = mhlo.reduce %1744, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xi1>, tensor<i1>) -> tensor<i1> | |
%1746 = "mhlo.not"(%1745) : (tensor<i1>) -> tensor<i1> | |
%1747 = "mhlo.convert"(%1746) : (tensor<i1>) -> tensor<i32> | |
%1748 = "mhlo.tuple"(%1743, %1735) : (tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>> | |
%1749 = "mhlo.case"(%1747, %1748, %1748) ( { | |
^bb0(%arg322: tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x256xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x256xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>, tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tuple<tensor<1x14x14x256xf32>> | |
%1750 = "mhlo.get_tuple_element"(%1749) {index = 0 : i32} : (tuple<tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%1751 = "mhlo.abs"(%arg200) : (tensor<1x1x256x1024xf32>) -> tensor<1x1x256x1024xf32> | |
%1752 = mhlo.reduce %1751, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x256x1024xf32>, tensor<f32>) -> tensor<1024xf32> | |
%1753 = "mhlo.broadcast_in_dim"(%1752) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1754 = mhlo.add %1753, %34 : tensor<1x1x1x1024xf32> | |
%1755 = mhlo.divide %33, %1754 : tensor<1x1x1x1024xf32> | |
%1756 = "mhlo.broadcast_in_dim"(%1755) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x1x256x1024xf32> | |
%1757 = mhlo.multiply %arg200, %1756 : tensor<1x1x256x1024xf32> | |
%1758 = call @jit_clip_78(%1757, %8, %7) : (tensor<1x1x256x1024xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x256x1024xf32> | |
%1759 = mhlo.add %1758, %39 : tensor<1x1x256x1024xf32> | |
%1760 = "mhlo.floor"(%1759) : (tensor<1x1x256x1024xf32>) -> tensor<1x1x256x1024xf32> | |
%1761 = "mhlo.broadcast_in_dim"(%1755) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x1x256x1024xf32> | |
%1762 = mhlo.divide %1760, %1761 : tensor<1x1x256x1024xf32> | |
%1763 = mhlo.convolution(%1750, %1762) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x14x14x256xf32>, tensor<1x1x256x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1764 = "mhlo.reshape"(%arg24) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1765 = "mhlo.reshape"(%arg25) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1766 = "mhlo.broadcast_in_dim"(%1764) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1767 = mhlo.subtract %1763, %1766 : tensor<1x14x14x1024xf32> | |
%1768 = mhlo.add %1765, %38 : tensor<1x1x1x1024xf32> | |
%1769 = "mhlo.rsqrt"(%1768) : (tensor<1x1x1x1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1770 = "mhlo.reshape"(%arg197) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1771 = mhlo.multiply %1769, %1770 : tensor<1x1x1x1024xf32> | |
%1772 = "mhlo.broadcast_in_dim"(%1771) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1773 = mhlo.multiply %1767, %1772 : tensor<1x14x14x1024xf32> | |
%1774 = "mhlo.reshape"(%arg196) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1775 = "mhlo.broadcast_in_dim"(%1774) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1776 = mhlo.add %1773, %1775 : tensor<1x14x14x1024xf32> | |
%1777 = mhlo.add %1651, %1776 : tensor<1x14x14x1024xf32> | |
%1778 = mhlo.maximum %1777, %37 : tensor<1x14x14x1024xf32> | |
%1779 = mhlo.add %arg120, %34 : tensor<1x1x1x1024xf32> | |
%1780 = mhlo.divide %36, %1779 : tensor<1x1x1x1024xf32> | |
%1781 = "mhlo.broadcast_in_dim"(%1780) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1782 = mhlo.multiply %1778, %1781 : tensor<1x14x14x1024xf32> | |
%1783 = "mhlo.floor"(%1782) : (tensor<1x14x14x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1784 = call @jit_clip_79(%1783, %3, %2) : (tensor<1x14x14x1024xf32>, tensor<i32>, tensor<i32>) -> tensor<1x14x14x1024xf32> | |
%1785 = "mhlo.broadcast_in_dim"(%1780) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1786 = mhlo.divide %1784, %1785 : tensor<1x14x14x1024xf32> | |
%1787 = "mhlo.compare"(%arg120, %31) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x1024xf32>, tensor<1x1x1x1024xf32>) -> tensor<1x1x1x1024xi1> | |
%1788 = mhlo.reduce %1787, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xi1>, tensor<i1>) -> tensor<i1> | |
%1789 = "mhlo.not"(%1788) : (tensor<i1>) -> tensor<i1> | |
%1790 = "mhlo.convert"(%1789) : (tensor<i1>) -> tensor<i32> | |
%1791 = "mhlo.tuple"(%1786, %1778) : (tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>) -> tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>> | |
%1792 = "mhlo.case"(%1790, %1791, %1791) ( { | |
^bb0(%arg322: tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>) -> tensor<1x14x14x1024xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x1024xf32>) -> tuple<tensor<1x14x14x1024xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x1024xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>) -> tensor<1x14x14x1024xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x1024xf32>) -> tuple<tensor<1x14x14x1024xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x1024xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>, tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>) -> tuple<tensor<1x14x14x1024xf32>> | |
%1793 = "mhlo.get_tuple_element"(%1792) {index = 0 : i32} : (tuple<tensor<1x14x14x1024xf32>>) -> tensor<1x14x14x1024xf32> | |
%1794 = "mhlo.abs"(%arg207) : (tensor<1x1x1024x256xf32>) -> tensor<1x1x1024x256xf32> | |
%1795 = mhlo.reduce %1794, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x1024x256xf32>, tensor<f32>) -> tensor<256xf32> | |
%1796 = "mhlo.broadcast_in_dim"(%1795) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1797 = mhlo.add %1796, %42 : tensor<1x1x1x256xf32> | |
%1798 = mhlo.divide %46, %1797 : tensor<1x1x1x256xf32> | |
%1799 = "mhlo.broadcast_in_dim"(%1798) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x1x1024x256xf32> | |
%1800 = mhlo.multiply %arg207, %1799 : tensor<1x1x1024x256xf32> | |
%1801 = call @jit_clip_80(%1800, %8, %7) : (tensor<1x1x1024x256xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x1024x256xf32> | |
%1802 = mhlo.add %1801, %47 : tensor<1x1x1024x256xf32> | |
%1803 = "mhlo.floor"(%1802) : (tensor<1x1x1024x256xf32>) -> tensor<1x1x1024x256xf32> | |
%1804 = "mhlo.broadcast_in_dim"(%1798) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x1x1024x256xf32> | |
%1805 = mhlo.divide %1803, %1804 : tensor<1x1x1024x256xf32> | |
%1806 = mhlo.convolution(%1793, %1805) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x14x14x1024xf32>, tensor<1x1x1024x256xf32>) -> tensor<1x14x14x256xf32> | |
%1807 = "mhlo.reshape"(%arg26) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1808 = "mhlo.reshape"(%arg27) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1809 = "mhlo.broadcast_in_dim"(%1807) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1810 = mhlo.subtract %1806, %1809 : tensor<1x14x14x256xf32> | |
%1811 = mhlo.add %1808, %44 : tensor<1x1x1x256xf32> | |
%1812 = "mhlo.rsqrt"(%1811) : (tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xf32> | |
%1813 = "mhlo.reshape"(%arg202) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1814 = mhlo.multiply %1812, %1813 : tensor<1x1x1x256xf32> | |
%1815 = "mhlo.broadcast_in_dim"(%1814) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1816 = mhlo.multiply %1810, %1815 : tensor<1x14x14x256xf32> | |
%1817 = "mhlo.reshape"(%arg201) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1818 = "mhlo.broadcast_in_dim"(%1817) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1819 = mhlo.add %1816, %1818 : tensor<1x14x14x256xf32> | |
%1820 = mhlo.maximum %1819, %43 : tensor<1x14x14x256xf32> | |
%1821 = mhlo.add %arg121, %42 : tensor<1x1x1x256xf32> | |
%1822 = mhlo.divide %41, %1821 : tensor<1x1x1x256xf32> | |
%1823 = "mhlo.broadcast_in_dim"(%1822) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1824 = mhlo.multiply %1820, %1823 : tensor<1x14x14x256xf32> | |
%1825 = "mhlo.floor"(%1824) : (tensor<1x14x14x256xf32>) -> tensor<1x14x14x256xf32> | |
%1826 = call @jit_clip_81(%1825, %3, %2) : (tensor<1x14x14x256xf32>, tensor<i32>, tensor<i32>) -> tensor<1x14x14x256xf32> | |
%1827 = "mhlo.broadcast_in_dim"(%1822) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1828 = mhlo.divide %1826, %1827 : tensor<1x14x14x256xf32> | |
%1829 = "mhlo.compare"(%arg121, %40) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x256xf32>, tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xi1> | |
%1830 = mhlo.reduce %1829, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xi1>, tensor<i1>) -> tensor<i1> | |
%1831 = "mhlo.not"(%1830) : (tensor<i1>) -> tensor<i1> | |
%1832 = "mhlo.convert"(%1831) : (tensor<i1>) -> tensor<i32> | |
%1833 = "mhlo.tuple"(%1828, %1820) : (tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>> | |
%1834 = "mhlo.case"(%1832, %1833, %1833) ( { | |
^bb0(%arg322: tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x256xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x256xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>, tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tuple<tensor<1x14x14x256xf32>> | |
%1835 = "mhlo.get_tuple_element"(%1834) {index = 0 : i32} : (tuple<tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%1836 = "mhlo.abs"(%arg208) : (tensor<3x3x256x256xf32>) -> tensor<3x3x256x256xf32> | |
%1837 = mhlo.reduce %1836, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<3x3x256x256xf32>, tensor<f32>) -> tensor<256xf32> | |
%1838 = "mhlo.broadcast_in_dim"(%1837) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1839 = mhlo.add %1838, %42 : tensor<1x1x1x256xf32> | |
%1840 = mhlo.divide %46, %1839 : tensor<1x1x1x256xf32> | |
%1841 = "mhlo.broadcast_in_dim"(%1840) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<3x3x256x256xf32> | |
%1842 = mhlo.multiply %arg208, %1841 : tensor<3x3x256x256xf32> | |
%1843 = call @jit_clip_82(%1842, %8, %7) : (tensor<3x3x256x256xf32>, tensor<f32>, tensor<f32>) -> tensor<3x3x256x256xf32> | |
%1844 = mhlo.add %1843, %45 : tensor<3x3x256x256xf32> | |
%1845 = "mhlo.floor"(%1844) : (tensor<3x3x256x256xf32>) -> tensor<3x3x256x256xf32> | |
%1846 = "mhlo.broadcast_in_dim"(%1840) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<3x3x256x256xf32> | |
%1847 = mhlo.divide %1845, %1846 : tensor<3x3x256x256xf32> | |
%1848 = mhlo.convolution(%1835, %1847) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[1, 1], [1, 1]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x14x14x256xf32>, tensor<3x3x256x256xf32>) -> tensor<1x14x14x256xf32> | |
%1849 = "mhlo.reshape"(%arg28) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1850 = "mhlo.reshape"(%arg29) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1851 = "mhlo.broadcast_in_dim"(%1849) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1852 = mhlo.subtract %1848, %1851 : tensor<1x14x14x256xf32> | |
%1853 = mhlo.add %1850, %44 : tensor<1x1x1x256xf32> | |
%1854 = "mhlo.rsqrt"(%1853) : (tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xf32> | |
%1855 = "mhlo.reshape"(%arg204) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1856 = mhlo.multiply %1854, %1855 : tensor<1x1x1x256xf32> | |
%1857 = "mhlo.broadcast_in_dim"(%1856) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1858 = mhlo.multiply %1852, %1857 : tensor<1x14x14x256xf32> | |
%1859 = "mhlo.reshape"(%arg203) : (tensor<256xf32>) -> tensor<1x1x1x256xf32> | |
%1860 = "mhlo.broadcast_in_dim"(%1859) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1861 = mhlo.add %1858, %1860 : tensor<1x14x14x256xf32> | |
%1862 = mhlo.maximum %1861, %43 : tensor<1x14x14x256xf32> | |
%1863 = mhlo.add %arg122, %42 : tensor<1x1x1x256xf32> | |
%1864 = mhlo.divide %41, %1863 : tensor<1x1x1x256xf32> | |
%1865 = "mhlo.broadcast_in_dim"(%1864) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1866 = mhlo.multiply %1862, %1865 : tensor<1x14x14x256xf32> | |
%1867 = "mhlo.floor"(%1866) : (tensor<1x14x14x256xf32>) -> tensor<1x14x14x256xf32> | |
%1868 = call @jit_clip_83(%1867, %3, %2) : (tensor<1x14x14x256xf32>, tensor<i32>, tensor<i32>) -> tensor<1x14x14x256xf32> | |
%1869 = "mhlo.broadcast_in_dim"(%1864) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xf32>) -> tensor<1x14x14x256xf32> | |
%1870 = mhlo.divide %1868, %1869 : tensor<1x14x14x256xf32> | |
%1871 = "mhlo.compare"(%arg122, %40) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x256xf32>, tensor<1x1x1x256xf32>) -> tensor<1x1x1x256xi1> | |
%1872 = mhlo.reduce %1871, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x256xi1>, tensor<i1>) -> tensor<i1> | |
%1873 = "mhlo.not"(%1872) : (tensor<i1>) -> tensor<i1> | |
%1874 = "mhlo.convert"(%1873) : (tensor<i1>) -> tensor<i32> | |
%1875 = "mhlo.tuple"(%1870, %1862) : (tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>> | |
%1876 = "mhlo.case"(%1874, %1875, %1875) ( { | |
^bb0(%arg322: tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x256xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x256xf32>) -> tuple<tensor<1x14x14x256xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x256xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>, tuple<tensor<1x14x14x256xf32>, tensor<1x14x14x256xf32>>) -> tuple<tensor<1x14x14x256xf32>> | |
%1877 = "mhlo.get_tuple_element"(%1876) {index = 0 : i32} : (tuple<tensor<1x14x14x256xf32>>) -> tensor<1x14x14x256xf32> | |
%1878 = "mhlo.abs"(%arg209) : (tensor<1x1x256x1024xf32>) -> tensor<1x1x256x1024xf32> | |
%1879 = mhlo.reduce %1878, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x256x1024xf32>, tensor<f32>) -> tensor<1024xf32> | |
%1880 = "mhlo.broadcast_in_dim"(%1879) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1881 = mhlo.add %1880, %34 : tensor<1x1x1x1024xf32> | |
%1882 = mhlo.divide %33, %1881 : tensor<1x1x1x1024xf32> | |
%1883 = "mhlo.broadcast_in_dim"(%1882) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x1x256x1024xf32> | |
%1884 = mhlo.multiply %arg209, %1883 : tensor<1x1x256x1024xf32> | |
%1885 = call @jit_clip_84(%1884, %8, %7) : (tensor<1x1x256x1024xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x256x1024xf32> | |
%1886 = mhlo.add %1885, %39 : tensor<1x1x256x1024xf32> | |
%1887 = "mhlo.floor"(%1886) : (tensor<1x1x256x1024xf32>) -> tensor<1x1x256x1024xf32> | |
%1888 = "mhlo.broadcast_in_dim"(%1882) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x1x256x1024xf32> | |
%1889 = mhlo.divide %1887, %1888 : tensor<1x1x256x1024xf32> | |
%1890 = mhlo.convolution(%1877, %1889) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x14x14x256xf32>, tensor<1x1x256x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1891 = "mhlo.reshape"(%arg30) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1892 = "mhlo.reshape"(%arg31) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1893 = "mhlo.broadcast_in_dim"(%1891) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1894 = mhlo.subtract %1890, %1893 : tensor<1x14x14x1024xf32> | |
%1895 = mhlo.add %1892, %38 : tensor<1x1x1x1024xf32> | |
%1896 = "mhlo.rsqrt"(%1895) : (tensor<1x1x1x1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1897 = "mhlo.reshape"(%arg206) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1898 = mhlo.multiply %1896, %1897 : tensor<1x1x1x1024xf32> | |
%1899 = "mhlo.broadcast_in_dim"(%1898) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1900 = mhlo.multiply %1894, %1899 : tensor<1x14x14x1024xf32> | |
%1901 = "mhlo.reshape"(%arg205) : (tensor<1024xf32>) -> tensor<1x1x1x1024xf32> | |
%1902 = "mhlo.broadcast_in_dim"(%1901) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1903 = mhlo.add %1900, %1902 : tensor<1x14x14x1024xf32> | |
%1904 = mhlo.add %1778, %1903 : tensor<1x14x14x1024xf32> | |
%1905 = mhlo.maximum %1904, %37 : tensor<1x14x14x1024xf32> | |
%1906 = mhlo.add %arg126, %34 : tensor<1x1x1x1024xf32> | |
%1907 = mhlo.divide %36, %1906 : tensor<1x1x1x1024xf32> | |
%1908 = "mhlo.broadcast_in_dim"(%1907) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1909 = mhlo.multiply %1905, %1908 : tensor<1x14x14x1024xf32> | |
%1910 = "mhlo.floor"(%1909) : (tensor<1x14x14x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1911 = call @jit_clip_85(%1910, %3, %2) : (tensor<1x14x14x1024xf32>, tensor<i32>, tensor<i32>) -> tensor<1x14x14x1024xf32> | |
%1912 = "mhlo.broadcast_in_dim"(%1907) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1913 = mhlo.divide %1911, %1912 : tensor<1x14x14x1024xf32> | |
%1914 = "mhlo.compare"(%arg126, %31) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x1024xf32>, tensor<1x1x1x1024xf32>) -> tensor<1x1x1x1024xi1> | |
%1915 = mhlo.reduce %1914, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xi1>, tensor<i1>) -> tensor<i1> | |
%1916 = "mhlo.not"(%1915) : (tensor<i1>) -> tensor<i1> | |
%1917 = "mhlo.convert"(%1916) : (tensor<i1>) -> tensor<i32> | |
%1918 = "mhlo.tuple"(%1913, %1905) : (tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>) -> tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>> | |
%1919 = "mhlo.case"(%1917, %1918, %1918) ( { | |
^bb0(%arg322: tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>) -> tensor<1x14x14x1024xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x1024xf32>) -> tuple<tensor<1x14x14x1024xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x1024xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>) -> tensor<1x14x14x1024xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x1024xf32>) -> tuple<tensor<1x14x14x1024xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x1024xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>, tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>) -> tuple<tensor<1x14x14x1024xf32>> | |
%1920 = "mhlo.get_tuple_element"(%1919) {index = 0 : i32} : (tuple<tensor<1x14x14x1024xf32>>) -> tensor<1x14x14x1024xf32> | |
%1921 = "mhlo.abs"(%arg221) : (tensor<1x1x1024x2048xf32>) -> tensor<1x1x1024x2048xf32> | |
%1922 = mhlo.reduce %1921, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x1024x2048xf32>, tensor<f32>) -> tensor<2048xf32> | |
%1923 = "mhlo.broadcast_in_dim"(%1922) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<2048xf32>) -> tensor<1x1x1x2048xf32> | |
%1924 = mhlo.add %1923, %18 : tensor<1x1x1x2048xf32> | |
%1925 = mhlo.divide %17, %1924 : tensor<1x1x1x2048xf32> | |
%1926 = "mhlo.broadcast_in_dim"(%1925) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xf32>) -> tensor<1x1x1024x2048xf32> | |
%1927 = mhlo.multiply %arg221, %1926 : tensor<1x1x1024x2048xf32> | |
%1928 = call @jit_clip_86(%1927, %8, %7) : (tensor<1x1x1024x2048xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x1024x2048xf32> | |
%1929 = mhlo.add %1928, %35 : tensor<1x1x1024x2048xf32> | |
%1930 = "mhlo.floor"(%1929) : (tensor<1x1x1024x2048xf32>) -> tensor<1x1x1024x2048xf32> | |
%1931 = "mhlo.broadcast_in_dim"(%1925) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xf32>) -> tensor<1x1x1024x2048xf32> | |
%1932 = mhlo.divide %1930, %1931 : tensor<1x1x1024x2048xf32> | |
%1933 = mhlo.convolution(%1920, %1932) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [2, 2], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x14x14x1024xf32>, tensor<1x1x1024x2048xf32>) -> tensor<1x7x7x2048xf32> | |
%1934 = "mhlo.reshape"(%arg38) : (tensor<2048xf32>) -> tensor<1x1x1x2048xf32> | |
%1935 = "mhlo.reshape"(%arg39) : (tensor<2048xf32>) -> tensor<1x1x1x2048xf32> | |
%1936 = "mhlo.broadcast_in_dim"(%1934) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xf32>) -> tensor<1x7x7x2048xf32> | |
%1937 = mhlo.subtract %1933, %1936 : tensor<1x7x7x2048xf32> | |
%1938 = mhlo.add %1935, %15 : tensor<1x1x1x2048xf32> | |
%1939 = "mhlo.rsqrt"(%1938) : (tensor<1x1x1x2048xf32>) -> tensor<1x1x1x2048xf32> | |
%1940 = "mhlo.reshape"(%arg220) : (tensor<2048xf32>) -> tensor<1x1x1x2048xf32> | |
%1941 = mhlo.multiply %1939, %1940 : tensor<1x1x1x2048xf32> | |
%1942 = "mhlo.broadcast_in_dim"(%1941) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xf32>) -> tensor<1x7x7x2048xf32> | |
%1943 = mhlo.multiply %1937, %1942 : tensor<1x7x7x2048xf32> | |
%1944 = "mhlo.reshape"(%arg219) : (tensor<2048xf32>) -> tensor<1x1x1x2048xf32> | |
%1945 = "mhlo.broadcast_in_dim"(%1944) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xf32>) -> tensor<1x7x7x2048xf32> | |
%1946 = mhlo.add %1943, %1945 : tensor<1x7x7x2048xf32> | |
%1947 = mhlo.add %arg123, %34 : tensor<1x1x1x1024xf32> | |
%1948 = mhlo.divide %33, %1947 : tensor<1x1x1x1024xf32> | |
%1949 = "mhlo.broadcast_in_dim"(%1948) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1950 = mhlo.multiply %1905, %1949 : tensor<1x14x14x1024xf32> | |
%1951 = call @jit_clip_87(%1950, %8, %7) : (tensor<1x14x14x1024xf32>, tensor<f32>, tensor<f32>) -> tensor<1x14x14x1024xf32> | |
%1952 = mhlo.add %1951, %32 : tensor<1x14x14x1024xf32> | |
%1953 = "mhlo.floor"(%1952) : (tensor<1x14x14x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1954 = "mhlo.broadcast_in_dim"(%1948) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xf32>) -> tensor<1x14x14x1024xf32> | |
%1955 = mhlo.divide %1953, %1954 : tensor<1x14x14x1024xf32> | |
%1956 = "mhlo.compare"(%arg123, %31) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x1024xf32>, tensor<1x1x1x1024xf32>) -> tensor<1x1x1x1024xi1> | |
%1957 = mhlo.reduce %1956, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x1024xi1>, tensor<i1>) -> tensor<i1> | |
%1958 = "mhlo.not"(%1957) : (tensor<i1>) -> tensor<i1> | |
%1959 = "mhlo.convert"(%1958) : (tensor<i1>) -> tensor<i32> | |
%1960 = "mhlo.tuple"(%1955, %1905) : (tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>) -> tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>> | |
%1961 = "mhlo.case"(%1959, %1960, %1960) ( { | |
^bb0(%arg322: tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>) -> tensor<1x14x14x1024xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x1024xf32>) -> tuple<tensor<1x14x14x1024xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x1024xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>) -> tensor<1x14x14x1024xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x1024xf32>) -> tuple<tensor<1x14x14x1024xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x1024xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>, tuple<tensor<1x14x14x1024xf32>, tensor<1x14x14x1024xf32>>) -> tuple<tensor<1x14x14x1024xf32>> | |
%1962 = "mhlo.get_tuple_element"(%1961) {index = 0 : i32} : (tuple<tensor<1x14x14x1024xf32>>) -> tensor<1x14x14x1024xf32> | |
%1963 = "mhlo.abs"(%arg216) : (tensor<1x1x1024x512xf32>) -> tensor<1x1x1024x512xf32> | |
%1964 = mhlo.reduce %1963, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x1024x512xf32>, tensor<f32>) -> tensor<512xf32> | |
%1965 = "mhlo.broadcast_in_dim"(%1964) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%1966 = mhlo.add %1965, %21 : tensor<1x1x1x512xf32> | |
%1967 = mhlo.divide %25, %1966 : tensor<1x1x1x512xf32> | |
%1968 = "mhlo.broadcast_in_dim"(%1967) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x1x1024x512xf32> | |
%1969 = mhlo.multiply %arg216, %1968 : tensor<1x1x1024x512xf32> | |
%1970 = call @jit_clip_88(%1969, %8, %7) : (tensor<1x1x1024x512xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x1024x512xf32> | |
%1971 = mhlo.add %1970, %30 : tensor<1x1x1024x512xf32> | |
%1972 = "mhlo.floor"(%1971) : (tensor<1x1x1024x512xf32>) -> tensor<1x1x1024x512xf32> | |
%1973 = "mhlo.broadcast_in_dim"(%1967) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x1x1024x512xf32> | |
%1974 = mhlo.divide %1972, %1973 : tensor<1x1x1024x512xf32> | |
%1975 = mhlo.convolution(%1962, %1974) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x14x14x1024xf32>, tensor<1x1x1024x512xf32>) -> tensor<1x14x14x512xf32> | |
%1976 = "mhlo.reshape"(%arg32) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%1977 = "mhlo.reshape"(%arg33) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%1978 = "mhlo.broadcast_in_dim"(%1976) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x14x14x512xf32> | |
%1979 = mhlo.subtract %1975, %1978 : tensor<1x14x14x512xf32> | |
%1980 = mhlo.add %1977, %23 : tensor<1x1x1x512xf32> | |
%1981 = "mhlo.rsqrt"(%1980) : (tensor<1x1x1x512xf32>) -> tensor<1x1x1x512xf32> | |
%1982 = "mhlo.reshape"(%arg211) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%1983 = mhlo.multiply %1981, %1982 : tensor<1x1x1x512xf32> | |
%1984 = "mhlo.broadcast_in_dim"(%1983) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x14x14x512xf32> | |
%1985 = mhlo.multiply %1979, %1984 : tensor<1x14x14x512xf32> | |
%1986 = "mhlo.reshape"(%arg210) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%1987 = "mhlo.broadcast_in_dim"(%1986) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x14x14x512xf32> | |
%1988 = mhlo.add %1985, %1987 : tensor<1x14x14x512xf32> | |
%1989 = mhlo.maximum %1988, %29 : tensor<1x14x14x512xf32> | |
%1990 = mhlo.add %arg124, %21 : tensor<1x1x1x512xf32> | |
%1991 = mhlo.divide %20, %1990 : tensor<1x1x1x512xf32> | |
%1992 = "mhlo.broadcast_in_dim"(%1991) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x14x14x512xf32> | |
%1993 = mhlo.multiply %1989, %1992 : tensor<1x14x14x512xf32> | |
%1994 = "mhlo.floor"(%1993) : (tensor<1x14x14x512xf32>) -> tensor<1x14x14x512xf32> | |
%1995 = call @jit_clip_89(%1994, %3, %2) : (tensor<1x14x14x512xf32>, tensor<i32>, tensor<i32>) -> tensor<1x14x14x512xf32> | |
%1996 = "mhlo.broadcast_in_dim"(%1991) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x14x14x512xf32> | |
%1997 = mhlo.divide %1995, %1996 : tensor<1x14x14x512xf32> | |
%1998 = "mhlo.compare"(%arg124, %19) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x512xf32>, tensor<1x1x1x512xf32>) -> tensor<1x1x1x512xi1> | |
%1999 = mhlo.reduce %1998, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xi1>, tensor<i1>) -> tensor<i1> | |
%2000 = "mhlo.not"(%1999) : (tensor<i1>) -> tensor<i1> | |
%2001 = "mhlo.convert"(%2000) : (tensor<i1>) -> tensor<i32> | |
%2002 = "mhlo.tuple"(%1997, %1989) : (tensor<1x14x14x512xf32>, tensor<1x14x14x512xf32>) -> tuple<tensor<1x14x14x512xf32>, tensor<1x14x14x512xf32>> | |
%2003 = "mhlo.case"(%2001, %2002, %2002) ( { | |
^bb0(%arg322: tuple<tensor<1x14x14x512xf32>, tensor<1x14x14x512xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x14x14x512xf32>, tensor<1x14x14x512xf32>>) -> tensor<1x14x14x512xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x512xf32>) -> tuple<tensor<1x14x14x512xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x512xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x14x14x512xf32>, tensor<1x14x14x512xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x14x14x512xf32>, tensor<1x14x14x512xf32>>) -> tensor<1x14x14x512xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x14x14x512xf32>) -> tuple<tensor<1x14x14x512xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x14x14x512xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x14x14x512xf32>, tensor<1x14x14x512xf32>>, tuple<tensor<1x14x14x512xf32>, tensor<1x14x14x512xf32>>) -> tuple<tensor<1x14x14x512xf32>> | |
%2004 = "mhlo.get_tuple_element"(%2003) {index = 0 : i32} : (tuple<tensor<1x14x14x512xf32>>) -> tensor<1x14x14x512xf32> | |
%2005 = "mhlo.abs"(%arg217) : (tensor<3x3x512x512xf32>) -> tensor<3x3x512x512xf32> | |
%2006 = mhlo.reduce %2005, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<3x3x512x512xf32>, tensor<f32>) -> tensor<512xf32> | |
%2007 = "mhlo.broadcast_in_dim"(%2006) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%2008 = mhlo.add %2007, %21 : tensor<1x1x1x512xf32> | |
%2009 = mhlo.divide %25, %2008 : tensor<1x1x1x512xf32> | |
%2010 = "mhlo.broadcast_in_dim"(%2009) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<3x3x512x512xf32> | |
%2011 = mhlo.multiply %arg217, %2010 : tensor<3x3x512x512xf32> | |
%2012 = call @jit_clip_90(%2011, %8, %7) : (tensor<3x3x512x512xf32>, tensor<f32>, tensor<f32>) -> tensor<3x3x512x512xf32> | |
%2013 = mhlo.add %2012, %24 : tensor<3x3x512x512xf32> | |
%2014 = "mhlo.floor"(%2013) : (tensor<3x3x512x512xf32>) -> tensor<3x3x512x512xf32> | |
%2015 = "mhlo.broadcast_in_dim"(%2009) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<3x3x512x512xf32> | |
%2016 = mhlo.divide %2014, %2015 : tensor<3x3x512x512xf32> | |
%2017 = mhlo.convolution(%2004, %2016) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [2, 2], pad = [[0, 1], [0, 1]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x14x14x512xf32>, tensor<3x3x512x512xf32>) -> tensor<1x7x7x512xf32> | |
%2018 = "mhlo.reshape"(%arg34) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%2019 = "mhlo.reshape"(%arg35) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%2020 = "mhlo.broadcast_in_dim"(%2018) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x7x7x512xf32> | |
%2021 = mhlo.subtract %2017, %2020 : tensor<1x7x7x512xf32> | |
%2022 = mhlo.add %2019, %23 : tensor<1x1x1x512xf32> | |
%2023 = "mhlo.rsqrt"(%2022) : (tensor<1x1x1x512xf32>) -> tensor<1x1x1x512xf32> | |
%2024 = "mhlo.reshape"(%arg213) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%2025 = mhlo.multiply %2023, %2024 : tensor<1x1x1x512xf32> | |
%2026 = "mhlo.broadcast_in_dim"(%2025) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x7x7x512xf32> | |
%2027 = mhlo.multiply %2021, %2026 : tensor<1x7x7x512xf32> | |
%2028 = "mhlo.reshape"(%arg212) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%2029 = "mhlo.broadcast_in_dim"(%2028) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x7x7x512xf32> | |
%2030 = mhlo.add %2027, %2029 : tensor<1x7x7x512xf32> | |
%2031 = mhlo.maximum %2030, %22 : tensor<1x7x7x512xf32> | |
%2032 = mhlo.add %arg125, %21 : tensor<1x1x1x512xf32> | |
%2033 = mhlo.divide %20, %2032 : tensor<1x1x1x512xf32> | |
%2034 = "mhlo.broadcast_in_dim"(%2033) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x7x7x512xf32> | |
%2035 = mhlo.multiply %2031, %2034 : tensor<1x7x7x512xf32> | |
%2036 = "mhlo.floor"(%2035) : (tensor<1x7x7x512xf32>) -> tensor<1x7x7x512xf32> | |
%2037 = call @jit_clip_91(%2036, %3, %2) : (tensor<1x7x7x512xf32>, tensor<i32>, tensor<i32>) -> tensor<1x7x7x512xf32> | |
%2038 = "mhlo.broadcast_in_dim"(%2033) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x7x7x512xf32> | |
%2039 = mhlo.divide %2037, %2038 : tensor<1x7x7x512xf32> | |
%2040 = "mhlo.compare"(%arg125, %19) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x512xf32>, tensor<1x1x1x512xf32>) -> tensor<1x1x1x512xi1> | |
%2041 = mhlo.reduce %2040, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xi1>, tensor<i1>) -> tensor<i1> | |
%2042 = "mhlo.not"(%2041) : (tensor<i1>) -> tensor<i1> | |
%2043 = "mhlo.convert"(%2042) : (tensor<i1>) -> tensor<i32> | |
%2044 = "mhlo.tuple"(%2039, %2031) : (tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>) -> tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>> | |
%2045 = "mhlo.case"(%2043, %2044, %2044) ( { | |
^bb0(%arg322: tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>) -> tensor<1x7x7x512xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x7x7x512xf32>) -> tuple<tensor<1x7x7x512xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x7x7x512xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>) -> tensor<1x7x7x512xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x7x7x512xf32>) -> tuple<tensor<1x7x7x512xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x7x7x512xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>, tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>) -> tuple<tensor<1x7x7x512xf32>> | |
%2046 = "mhlo.get_tuple_element"(%2045) {index = 0 : i32} : (tuple<tensor<1x7x7x512xf32>>) -> tensor<1x7x7x512xf32> | |
%2047 = "mhlo.abs"(%arg218) : (tensor<1x1x512x2048xf32>) -> tensor<1x1x512x2048xf32> | |
%2048 = mhlo.reduce %2047, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x512x2048xf32>, tensor<f32>) -> tensor<2048xf32> | |
%2049 = "mhlo.broadcast_in_dim"(%2048) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<2048xf32>) -> tensor<1x1x1x2048xf32> | |
%2050 = mhlo.add %2049, %18 : tensor<1x1x1x2048xf32> | |
%2051 = mhlo.divide %17, %2050 : tensor<1x1x1x2048xf32> | |
%2052 = "mhlo.broadcast_in_dim"(%2051) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xf32>) -> tensor<1x1x512x2048xf32> | |
%2053 = mhlo.multiply %arg218, %2052 : tensor<1x1x512x2048xf32> | |
%2054 = call @jit_clip_92(%2053, %8, %7) : (tensor<1x1x512x2048xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x512x2048xf32> | |
%2055 = mhlo.add %2054, %16 : tensor<1x1x512x2048xf32> | |
%2056 = "mhlo.floor"(%2055) : (tensor<1x1x512x2048xf32>) -> tensor<1x1x512x2048xf32> | |
%2057 = "mhlo.broadcast_in_dim"(%2051) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xf32>) -> tensor<1x1x512x2048xf32> | |
%2058 = mhlo.divide %2056, %2057 : tensor<1x1x512x2048xf32> | |
%2059 = mhlo.convolution(%2046, %2058) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x7x7x512xf32>, tensor<1x1x512x2048xf32>) -> tensor<1x7x7x2048xf32> | |
%2060 = "mhlo.reshape"(%arg36) : (tensor<2048xf32>) -> tensor<1x1x1x2048xf32> | |
%2061 = "mhlo.reshape"(%arg37) : (tensor<2048xf32>) -> tensor<1x1x1x2048xf32> | |
%2062 = "mhlo.broadcast_in_dim"(%2060) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xf32>) -> tensor<1x7x7x2048xf32> | |
%2063 = mhlo.subtract %2059, %2062 : tensor<1x7x7x2048xf32> | |
%2064 = mhlo.add %2061, %15 : tensor<1x1x1x2048xf32> | |
%2065 = "mhlo.rsqrt"(%2064) : (tensor<1x1x1x2048xf32>) -> tensor<1x1x1x2048xf32> | |
%2066 = "mhlo.reshape"(%arg215) : (tensor<2048xf32>) -> tensor<1x1x1x2048xf32> | |
%2067 = mhlo.multiply %2065, %2066 : tensor<1x1x1x2048xf32> | |
%2068 = "mhlo.broadcast_in_dim"(%2067) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xf32>) -> tensor<1x7x7x2048xf32> | |
%2069 = mhlo.multiply %2063, %2068 : tensor<1x7x7x2048xf32> | |
%2070 = "mhlo.reshape"(%arg214) : (tensor<2048xf32>) -> tensor<1x1x1x2048xf32> | |
%2071 = "mhlo.broadcast_in_dim"(%2070) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xf32>) -> tensor<1x7x7x2048xf32> | |
%2072 = mhlo.add %2069, %2071 : tensor<1x7x7x2048xf32> | |
%2073 = mhlo.add %1946, %2072 : tensor<1x7x7x2048xf32> | |
%2074 = mhlo.maximum %2073, %14 : tensor<1x7x7x2048xf32> | |
%2075 = mhlo.add %arg127, %18 : tensor<1x1x1x2048xf32> | |
%2076 = mhlo.divide %28, %2075 : tensor<1x1x1x2048xf32> | |
%2077 = "mhlo.broadcast_in_dim"(%2076) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xf32>) -> tensor<1x7x7x2048xf32> | |
%2078 = mhlo.multiply %2074, %2077 : tensor<1x7x7x2048xf32> | |
%2079 = "mhlo.floor"(%2078) : (tensor<1x7x7x2048xf32>) -> tensor<1x7x7x2048xf32> | |
%2080 = call @jit_clip_93(%2079, %3, %2) : (tensor<1x7x7x2048xf32>, tensor<i32>, tensor<i32>) -> tensor<1x7x7x2048xf32> | |
%2081 = "mhlo.broadcast_in_dim"(%2076) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xf32>) -> tensor<1x7x7x2048xf32> | |
%2082 = mhlo.divide %2080, %2081 : tensor<1x7x7x2048xf32> | |
%2083 = "mhlo.compare"(%arg127, %27) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x2048xf32>, tensor<1x1x1x2048xf32>) -> tensor<1x1x1x2048xi1> | |
%2084 = mhlo.reduce %2083, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xi1>, tensor<i1>) -> tensor<i1> | |
%2085 = "mhlo.not"(%2084) : (tensor<i1>) -> tensor<i1> | |
%2086 = "mhlo.convert"(%2085) : (tensor<i1>) -> tensor<i32> | |
%2087 = "mhlo.tuple"(%2082, %2074) : (tensor<1x7x7x2048xf32>, tensor<1x7x7x2048xf32>) -> tuple<tensor<1x7x7x2048xf32>, tensor<1x7x7x2048xf32>> | |
%2088 = "mhlo.case"(%2086, %2087, %2087) ( { | |
^bb0(%arg322: tuple<tensor<1x7x7x2048xf32>, tensor<1x7x7x2048xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x7x7x2048xf32>, tensor<1x7x7x2048xf32>>) -> tensor<1x7x7x2048xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x7x7x2048xf32>) -> tuple<tensor<1x7x7x2048xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x7x7x2048xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x7x7x2048xf32>, tensor<1x7x7x2048xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x7x7x2048xf32>, tensor<1x7x7x2048xf32>>) -> tensor<1x7x7x2048xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x7x7x2048xf32>) -> tuple<tensor<1x7x7x2048xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x7x7x2048xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x7x7x2048xf32>, tensor<1x7x7x2048xf32>>, tuple<tensor<1x7x7x2048xf32>, tensor<1x7x7x2048xf32>>) -> tuple<tensor<1x7x7x2048xf32>> | |
%2089 = "mhlo.get_tuple_element"(%2088) {index = 0 : i32} : (tuple<tensor<1x7x7x2048xf32>>) -> tensor<1x7x7x2048xf32> | |
%2090 = "mhlo.abs"(%arg228) : (tensor<1x1x2048x512xf32>) -> tensor<1x1x2048x512xf32> | |
%2091 = mhlo.reduce %2090, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x2048x512xf32>, tensor<f32>) -> tensor<512xf32> | |
%2092 = "mhlo.broadcast_in_dim"(%2091) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%2093 = mhlo.add %2092, %21 : tensor<1x1x1x512xf32> | |
%2094 = mhlo.divide %25, %2093 : tensor<1x1x1x512xf32> | |
%2095 = "mhlo.broadcast_in_dim"(%2094) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x1x2048x512xf32> | |
%2096 = mhlo.multiply %arg228, %2095 : tensor<1x1x2048x512xf32> | |
%2097 = call @jit_clip_94(%2096, %8, %7) : (tensor<1x1x2048x512xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x2048x512xf32> | |
%2098 = mhlo.add %2097, %26 : tensor<1x1x2048x512xf32> | |
%2099 = "mhlo.floor"(%2098) : (tensor<1x1x2048x512xf32>) -> tensor<1x1x2048x512xf32> | |
%2100 = "mhlo.broadcast_in_dim"(%2094) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x1x2048x512xf32> | |
%2101 = mhlo.divide %2099, %2100 : tensor<1x1x2048x512xf32> | |
%2102 = mhlo.convolution(%2089, %2101) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x7x7x2048xf32>, tensor<1x1x2048x512xf32>) -> tensor<1x7x7x512xf32> | |
%2103 = "mhlo.reshape"(%arg40) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%2104 = "mhlo.reshape"(%arg41) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%2105 = "mhlo.broadcast_in_dim"(%2103) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x7x7x512xf32> | |
%2106 = mhlo.subtract %2102, %2105 : tensor<1x7x7x512xf32> | |
%2107 = mhlo.add %2104, %23 : tensor<1x1x1x512xf32> | |
%2108 = "mhlo.rsqrt"(%2107) : (tensor<1x1x1x512xf32>) -> tensor<1x1x1x512xf32> | |
%2109 = "mhlo.reshape"(%arg223) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%2110 = mhlo.multiply %2108, %2109 : tensor<1x1x1x512xf32> | |
%2111 = "mhlo.broadcast_in_dim"(%2110) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x7x7x512xf32> | |
%2112 = mhlo.multiply %2106, %2111 : tensor<1x7x7x512xf32> | |
%2113 = "mhlo.reshape"(%arg222) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%2114 = "mhlo.broadcast_in_dim"(%2113) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x7x7x512xf32> | |
%2115 = mhlo.add %2112, %2114 : tensor<1x7x7x512xf32> | |
%2116 = mhlo.maximum %2115, %22 : tensor<1x7x7x512xf32> | |
%2117 = mhlo.add %arg128, %21 : tensor<1x1x1x512xf32> | |
%2118 = mhlo.divide %20, %2117 : tensor<1x1x1x512xf32> | |
%2119 = "mhlo.broadcast_in_dim"(%2118) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x7x7x512xf32> | |
%2120 = mhlo.multiply %2116, %2119 : tensor<1x7x7x512xf32> | |
%2121 = "mhlo.floor"(%2120) : (tensor<1x7x7x512xf32>) -> tensor<1x7x7x512xf32> | |
%2122 = call @jit_clip_95(%2121, %3, %2) : (tensor<1x7x7x512xf32>, tensor<i32>, tensor<i32>) -> tensor<1x7x7x512xf32> | |
%2123 = "mhlo.broadcast_in_dim"(%2118) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x7x7x512xf32> | |
%2124 = mhlo.divide %2122, %2123 : tensor<1x7x7x512xf32> | |
%2125 = "mhlo.compare"(%arg128, %19) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x512xf32>, tensor<1x1x1x512xf32>) -> tensor<1x1x1x512xi1> | |
%2126 = mhlo.reduce %2125, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xi1>, tensor<i1>) -> tensor<i1> | |
%2127 = "mhlo.not"(%2126) : (tensor<i1>) -> tensor<i1> | |
%2128 = "mhlo.convert"(%2127) : (tensor<i1>) -> tensor<i32> | |
%2129 = "mhlo.tuple"(%2124, %2116) : (tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>) -> tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>> | |
%2130 = "mhlo.case"(%2128, %2129, %2129) ( { | |
^bb0(%arg322: tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>) -> tensor<1x7x7x512xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x7x7x512xf32>) -> tuple<tensor<1x7x7x512xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x7x7x512xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>) -> tensor<1x7x7x512xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x7x7x512xf32>) -> tuple<tensor<1x7x7x512xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x7x7x512xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>, tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>) -> tuple<tensor<1x7x7x512xf32>> | |
%2131 = "mhlo.get_tuple_element"(%2130) {index = 0 : i32} : (tuple<tensor<1x7x7x512xf32>>) -> tensor<1x7x7x512xf32> | |
%2132 = "mhlo.abs"(%arg229) : (tensor<3x3x512x512xf32>) -> tensor<3x3x512x512xf32> | |
%2133 = mhlo.reduce %2132, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<3x3x512x512xf32>, tensor<f32>) -> tensor<512xf32> | |
%2134 = "mhlo.broadcast_in_dim"(%2133) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%2135 = mhlo.add %2134, %21 : tensor<1x1x1x512xf32> | |
%2136 = mhlo.divide %25, %2135 : tensor<1x1x1x512xf32> | |
%2137 = "mhlo.broadcast_in_dim"(%2136) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<3x3x512x512xf32> | |
%2138 = mhlo.multiply %arg229, %2137 : tensor<3x3x512x512xf32> | |
%2139 = call @jit_clip_96(%2138, %8, %7) : (tensor<3x3x512x512xf32>, tensor<f32>, tensor<f32>) -> tensor<3x3x512x512xf32> | |
%2140 = mhlo.add %2139, %24 : tensor<3x3x512x512xf32> | |
%2141 = "mhlo.floor"(%2140) : (tensor<3x3x512x512xf32>) -> tensor<3x3x512x512xf32> | |
%2142 = "mhlo.broadcast_in_dim"(%2136) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<3x3x512x512xf32> | |
%2143 = mhlo.divide %2141, %2142 : tensor<3x3x512x512xf32> | |
%2144 = mhlo.convolution(%2131, %2143) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[1, 1], [1, 1]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x7x7x512xf32>, tensor<3x3x512x512xf32>) -> tensor<1x7x7x512xf32> | |
%2145 = "mhlo.reshape"(%arg42) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%2146 = "mhlo.reshape"(%arg43) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%2147 = "mhlo.broadcast_in_dim"(%2145) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x7x7x512xf32> | |
%2148 = mhlo.subtract %2144, %2147 : tensor<1x7x7x512xf32> | |
%2149 = mhlo.add %2146, %23 : tensor<1x1x1x512xf32> | |
%2150 = "mhlo.rsqrt"(%2149) : (tensor<1x1x1x512xf32>) -> tensor<1x1x1x512xf32> | |
%2151 = "mhlo.reshape"(%arg225) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%2152 = mhlo.multiply %2150, %2151 : tensor<1x1x1x512xf32> | |
%2153 = "mhlo.broadcast_in_dim"(%2152) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x7x7x512xf32> | |
%2154 = mhlo.multiply %2148, %2153 : tensor<1x7x7x512xf32> | |
%2155 = "mhlo.reshape"(%arg224) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%2156 = "mhlo.broadcast_in_dim"(%2155) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x7x7x512xf32> | |
%2157 = mhlo.add %2154, %2156 : tensor<1x7x7x512xf32> | |
%2158 = mhlo.maximum %2157, %22 : tensor<1x7x7x512xf32> | |
%2159 = mhlo.add %arg129, %21 : tensor<1x1x1x512xf32> | |
%2160 = mhlo.divide %20, %2159 : tensor<1x1x1x512xf32> | |
%2161 = "mhlo.broadcast_in_dim"(%2160) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x7x7x512xf32> | |
%2162 = mhlo.multiply %2158, %2161 : tensor<1x7x7x512xf32> | |
%2163 = "mhlo.floor"(%2162) : (tensor<1x7x7x512xf32>) -> tensor<1x7x7x512xf32> | |
%2164 = call @jit_clip_97(%2163, %3, %2) : (tensor<1x7x7x512xf32>, tensor<i32>, tensor<i32>) -> tensor<1x7x7x512xf32> | |
%2165 = "mhlo.broadcast_in_dim"(%2160) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x7x7x512xf32> | |
%2166 = mhlo.divide %2164, %2165 : tensor<1x7x7x512xf32> | |
%2167 = "mhlo.compare"(%arg129, %19) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x512xf32>, tensor<1x1x1x512xf32>) -> tensor<1x1x1x512xi1> | |
%2168 = mhlo.reduce %2167, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xi1>, tensor<i1>) -> tensor<i1> | |
%2169 = "mhlo.not"(%2168) : (tensor<i1>) -> tensor<i1> | |
%2170 = "mhlo.convert"(%2169) : (tensor<i1>) -> tensor<i32> | |
%2171 = "mhlo.tuple"(%2166, %2158) : (tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>) -> tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>> | |
%2172 = "mhlo.case"(%2170, %2171, %2171) ( { | |
^bb0(%arg322: tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>) -> tensor<1x7x7x512xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x7x7x512xf32>) -> tuple<tensor<1x7x7x512xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x7x7x512xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>) -> tensor<1x7x7x512xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x7x7x512xf32>) -> tuple<tensor<1x7x7x512xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x7x7x512xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>, tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>) -> tuple<tensor<1x7x7x512xf32>> | |
%2173 = "mhlo.get_tuple_element"(%2172) {index = 0 : i32} : (tuple<tensor<1x7x7x512xf32>>) -> tensor<1x7x7x512xf32> | |
%2174 = "mhlo.abs"(%arg230) : (tensor<1x1x512x2048xf32>) -> tensor<1x1x512x2048xf32> | |
%2175 = mhlo.reduce %2174, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x512x2048xf32>, tensor<f32>) -> tensor<2048xf32> | |
%2176 = "mhlo.broadcast_in_dim"(%2175) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<2048xf32>) -> tensor<1x1x1x2048xf32> | |
%2177 = mhlo.add %2176, %18 : tensor<1x1x1x2048xf32> | |
%2178 = mhlo.divide %17, %2177 : tensor<1x1x1x2048xf32> | |
%2179 = "mhlo.broadcast_in_dim"(%2178) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xf32>) -> tensor<1x1x512x2048xf32> | |
%2180 = mhlo.multiply %arg230, %2179 : tensor<1x1x512x2048xf32> | |
%2181 = call @jit_clip_98(%2180, %8, %7) : (tensor<1x1x512x2048xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x512x2048xf32> | |
%2182 = mhlo.add %2181, %16 : tensor<1x1x512x2048xf32> | |
%2183 = "mhlo.floor"(%2182) : (tensor<1x1x512x2048xf32>) -> tensor<1x1x512x2048xf32> | |
%2184 = "mhlo.broadcast_in_dim"(%2178) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xf32>) -> tensor<1x1x512x2048xf32> | |
%2185 = mhlo.divide %2183, %2184 : tensor<1x1x512x2048xf32> | |
%2186 = mhlo.convolution(%2173, %2185) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x7x7x512xf32>, tensor<1x1x512x2048xf32>) -> tensor<1x7x7x2048xf32> | |
%2187 = "mhlo.reshape"(%arg44) : (tensor<2048xf32>) -> tensor<1x1x1x2048xf32> | |
%2188 = "mhlo.reshape"(%arg45) : (tensor<2048xf32>) -> tensor<1x1x1x2048xf32> | |
%2189 = "mhlo.broadcast_in_dim"(%2187) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xf32>) -> tensor<1x7x7x2048xf32> | |
%2190 = mhlo.subtract %2186, %2189 : tensor<1x7x7x2048xf32> | |
%2191 = mhlo.add %2188, %15 : tensor<1x1x1x2048xf32> | |
%2192 = "mhlo.rsqrt"(%2191) : (tensor<1x1x1x2048xf32>) -> tensor<1x1x1x2048xf32> | |
%2193 = "mhlo.reshape"(%arg227) : (tensor<2048xf32>) -> tensor<1x1x1x2048xf32> | |
%2194 = mhlo.multiply %2192, %2193 : tensor<1x1x1x2048xf32> | |
%2195 = "mhlo.broadcast_in_dim"(%2194) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xf32>) -> tensor<1x7x7x2048xf32> | |
%2196 = mhlo.multiply %2190, %2195 : tensor<1x7x7x2048xf32> | |
%2197 = "mhlo.reshape"(%arg226) : (tensor<2048xf32>) -> tensor<1x1x1x2048xf32> | |
%2198 = "mhlo.broadcast_in_dim"(%2197) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xf32>) -> tensor<1x7x7x2048xf32> | |
%2199 = mhlo.add %2196, %2198 : tensor<1x7x7x2048xf32> | |
%2200 = mhlo.add %2074, %2199 : tensor<1x7x7x2048xf32> | |
%2201 = mhlo.maximum %2200, %14 : tensor<1x7x7x2048xf32> | |
%2202 = mhlo.add %arg130, %18 : tensor<1x1x1x2048xf32> | |
%2203 = mhlo.divide %28, %2202 : tensor<1x1x1x2048xf32> | |
%2204 = "mhlo.broadcast_in_dim"(%2203) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xf32>) -> tensor<1x7x7x2048xf32> | |
%2205 = mhlo.multiply %2201, %2204 : tensor<1x7x7x2048xf32> | |
%2206 = "mhlo.floor"(%2205) : (tensor<1x7x7x2048xf32>) -> tensor<1x7x7x2048xf32> | |
%2207 = call @jit_clip_99(%2206, %3, %2) : (tensor<1x7x7x2048xf32>, tensor<i32>, tensor<i32>) -> tensor<1x7x7x2048xf32> | |
%2208 = "mhlo.broadcast_in_dim"(%2203) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xf32>) -> tensor<1x7x7x2048xf32> | |
%2209 = mhlo.divide %2207, %2208 : tensor<1x7x7x2048xf32> | |
%2210 = "mhlo.compare"(%arg130, %27) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x2048xf32>, tensor<1x1x1x2048xf32>) -> tensor<1x1x1x2048xi1> | |
%2211 = mhlo.reduce %2210, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xi1>, tensor<i1>) -> tensor<i1> | |
%2212 = "mhlo.not"(%2211) : (tensor<i1>) -> tensor<i1> | |
%2213 = "mhlo.convert"(%2212) : (tensor<i1>) -> tensor<i32> | |
%2214 = "mhlo.tuple"(%2209, %2201) : (tensor<1x7x7x2048xf32>, tensor<1x7x7x2048xf32>) -> tuple<tensor<1x7x7x2048xf32>, tensor<1x7x7x2048xf32>> | |
%2215 = "mhlo.case"(%2213, %2214, %2214) ( { | |
^bb0(%arg322: tuple<tensor<1x7x7x2048xf32>, tensor<1x7x7x2048xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x7x7x2048xf32>, tensor<1x7x7x2048xf32>>) -> tensor<1x7x7x2048xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x7x7x2048xf32>) -> tuple<tensor<1x7x7x2048xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x7x7x2048xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x7x7x2048xf32>, tensor<1x7x7x2048xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x7x7x2048xf32>, tensor<1x7x7x2048xf32>>) -> tensor<1x7x7x2048xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x7x7x2048xf32>) -> tuple<tensor<1x7x7x2048xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x7x7x2048xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x7x7x2048xf32>, tensor<1x7x7x2048xf32>>, tuple<tensor<1x7x7x2048xf32>, tensor<1x7x7x2048xf32>>) -> tuple<tensor<1x7x7x2048xf32>> | |
%2216 = "mhlo.get_tuple_element"(%2215) {index = 0 : i32} : (tuple<tensor<1x7x7x2048xf32>>) -> tensor<1x7x7x2048xf32> | |
%2217 = "mhlo.abs"(%arg237) : (tensor<1x1x2048x512xf32>) -> tensor<1x1x2048x512xf32> | |
%2218 = mhlo.reduce %2217, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x2048x512xf32>, tensor<f32>) -> tensor<512xf32> | |
%2219 = "mhlo.broadcast_in_dim"(%2218) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%2220 = mhlo.add %2219, %21 : tensor<1x1x1x512xf32> | |
%2221 = mhlo.divide %25, %2220 : tensor<1x1x1x512xf32> | |
%2222 = "mhlo.broadcast_in_dim"(%2221) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x1x2048x512xf32> | |
%2223 = mhlo.multiply %arg237, %2222 : tensor<1x1x2048x512xf32> | |
%2224 = call @jit_clip_100(%2223, %8, %7) : (tensor<1x1x2048x512xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x2048x512xf32> | |
%2225 = mhlo.add %2224, %26 : tensor<1x1x2048x512xf32> | |
%2226 = "mhlo.floor"(%2225) : (tensor<1x1x2048x512xf32>) -> tensor<1x1x2048x512xf32> | |
%2227 = "mhlo.broadcast_in_dim"(%2221) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x1x2048x512xf32> | |
%2228 = mhlo.divide %2226, %2227 : tensor<1x1x2048x512xf32> | |
%2229 = mhlo.convolution(%2216, %2228) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x7x7x2048xf32>, tensor<1x1x2048x512xf32>) -> tensor<1x7x7x512xf32> | |
%2230 = "mhlo.reshape"(%arg46) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%2231 = "mhlo.reshape"(%arg47) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%2232 = "mhlo.broadcast_in_dim"(%2230) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x7x7x512xf32> | |
%2233 = mhlo.subtract %2229, %2232 : tensor<1x7x7x512xf32> | |
%2234 = mhlo.add %2231, %23 : tensor<1x1x1x512xf32> | |
%2235 = "mhlo.rsqrt"(%2234) : (tensor<1x1x1x512xf32>) -> tensor<1x1x1x512xf32> | |
%2236 = "mhlo.reshape"(%arg232) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%2237 = mhlo.multiply %2235, %2236 : tensor<1x1x1x512xf32> | |
%2238 = "mhlo.broadcast_in_dim"(%2237) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x7x7x512xf32> | |
%2239 = mhlo.multiply %2233, %2238 : tensor<1x7x7x512xf32> | |
%2240 = "mhlo.reshape"(%arg231) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%2241 = "mhlo.broadcast_in_dim"(%2240) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x7x7x512xf32> | |
%2242 = mhlo.add %2239, %2241 : tensor<1x7x7x512xf32> | |
%2243 = mhlo.maximum %2242, %22 : tensor<1x7x7x512xf32> | |
%2244 = mhlo.add %arg131, %21 : tensor<1x1x1x512xf32> | |
%2245 = mhlo.divide %20, %2244 : tensor<1x1x1x512xf32> | |
%2246 = "mhlo.broadcast_in_dim"(%2245) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x7x7x512xf32> | |
%2247 = mhlo.multiply %2243, %2246 : tensor<1x7x7x512xf32> | |
%2248 = "mhlo.floor"(%2247) : (tensor<1x7x7x512xf32>) -> tensor<1x7x7x512xf32> | |
%2249 = call @jit_clip_101(%2248, %3, %2) : (tensor<1x7x7x512xf32>, tensor<i32>, tensor<i32>) -> tensor<1x7x7x512xf32> | |
%2250 = "mhlo.broadcast_in_dim"(%2245) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x7x7x512xf32> | |
%2251 = mhlo.divide %2249, %2250 : tensor<1x7x7x512xf32> | |
%2252 = "mhlo.compare"(%arg131, %19) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x512xf32>, tensor<1x1x1x512xf32>) -> tensor<1x1x1x512xi1> | |
%2253 = mhlo.reduce %2252, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xi1>, tensor<i1>) -> tensor<i1> | |
%2254 = "mhlo.not"(%2253) : (tensor<i1>) -> tensor<i1> | |
%2255 = "mhlo.convert"(%2254) : (tensor<i1>) -> tensor<i32> | |
%2256 = "mhlo.tuple"(%2251, %2243) : (tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>) -> tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>> | |
%2257 = "mhlo.case"(%2255, %2256, %2256) ( { | |
^bb0(%arg322: tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>) -> tensor<1x7x7x512xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x7x7x512xf32>) -> tuple<tensor<1x7x7x512xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x7x7x512xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>) -> tensor<1x7x7x512xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x7x7x512xf32>) -> tuple<tensor<1x7x7x512xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x7x7x512xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>, tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>) -> tuple<tensor<1x7x7x512xf32>> | |
%2258 = "mhlo.get_tuple_element"(%2257) {index = 0 : i32} : (tuple<tensor<1x7x7x512xf32>>) -> tensor<1x7x7x512xf32> | |
%2259 = "mhlo.abs"(%arg238) : (tensor<3x3x512x512xf32>) -> tensor<3x3x512x512xf32> | |
%2260 = mhlo.reduce %2259, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<3x3x512x512xf32>, tensor<f32>) -> tensor<512xf32> | |
%2261 = "mhlo.broadcast_in_dim"(%2260) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%2262 = mhlo.add %2261, %21 : tensor<1x1x1x512xf32> | |
%2263 = mhlo.divide %25, %2262 : tensor<1x1x1x512xf32> | |
%2264 = "mhlo.broadcast_in_dim"(%2263) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<3x3x512x512xf32> | |
%2265 = mhlo.multiply %arg238, %2264 : tensor<3x3x512x512xf32> | |
%2266 = call @jit_clip_102(%2265, %8, %7) : (tensor<3x3x512x512xf32>, tensor<f32>, tensor<f32>) -> tensor<3x3x512x512xf32> | |
%2267 = mhlo.add %2266, %24 : tensor<3x3x512x512xf32> | |
%2268 = "mhlo.floor"(%2267) : (tensor<3x3x512x512xf32>) -> tensor<3x3x512x512xf32> | |
%2269 = "mhlo.broadcast_in_dim"(%2263) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<3x3x512x512xf32> | |
%2270 = mhlo.divide %2268, %2269 : tensor<3x3x512x512xf32> | |
%2271 = mhlo.convolution(%2258, %2270) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[1, 1], [1, 1]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x7x7x512xf32>, tensor<3x3x512x512xf32>) -> tensor<1x7x7x512xf32> | |
%2272 = "mhlo.reshape"(%arg48) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%2273 = "mhlo.reshape"(%arg49) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%2274 = "mhlo.broadcast_in_dim"(%2272) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x7x7x512xf32> | |
%2275 = mhlo.subtract %2271, %2274 : tensor<1x7x7x512xf32> | |
%2276 = mhlo.add %2273, %23 : tensor<1x1x1x512xf32> | |
%2277 = "mhlo.rsqrt"(%2276) : (tensor<1x1x1x512xf32>) -> tensor<1x1x1x512xf32> | |
%2278 = "mhlo.reshape"(%arg234) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%2279 = mhlo.multiply %2277, %2278 : tensor<1x1x1x512xf32> | |
%2280 = "mhlo.broadcast_in_dim"(%2279) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x7x7x512xf32> | |
%2281 = mhlo.multiply %2275, %2280 : tensor<1x7x7x512xf32> | |
%2282 = "mhlo.reshape"(%arg233) : (tensor<512xf32>) -> tensor<1x1x1x512xf32> | |
%2283 = "mhlo.broadcast_in_dim"(%2282) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x7x7x512xf32> | |
%2284 = mhlo.add %2281, %2283 : tensor<1x7x7x512xf32> | |
%2285 = mhlo.maximum %2284, %22 : tensor<1x7x7x512xf32> | |
%2286 = mhlo.add %arg132, %21 : tensor<1x1x1x512xf32> | |
%2287 = mhlo.divide %20, %2286 : tensor<1x1x1x512xf32> | |
%2288 = "mhlo.broadcast_in_dim"(%2287) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x7x7x512xf32> | |
%2289 = mhlo.multiply %2285, %2288 : tensor<1x7x7x512xf32> | |
%2290 = "mhlo.floor"(%2289) : (tensor<1x7x7x512xf32>) -> tensor<1x7x7x512xf32> | |
%2291 = call @jit_clip_103(%2290, %3, %2) : (tensor<1x7x7x512xf32>, tensor<i32>, tensor<i32>) -> tensor<1x7x7x512xf32> | |
%2292 = "mhlo.broadcast_in_dim"(%2287) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xf32>) -> tensor<1x7x7x512xf32> | |
%2293 = mhlo.divide %2291, %2292 : tensor<1x7x7x512xf32> | |
%2294 = "mhlo.compare"(%arg132, %19) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x1x1x512xf32>, tensor<1x1x1x512xf32>) -> tensor<1x1x1x512xi1> | |
%2295 = mhlo.reduce %2294, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x512xi1>, tensor<i1>) -> tensor<i1> | |
%2296 = "mhlo.not"(%2295) : (tensor<i1>) -> tensor<i1> | |
%2297 = "mhlo.convert"(%2296) : (tensor<i1>) -> tensor<i32> | |
%2298 = "mhlo.tuple"(%2293, %2285) : (tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>) -> tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>> | |
%2299 = "mhlo.case"(%2297, %2298, %2298) ( { | |
^bb0(%arg322: tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>) -> tensor<1x7x7x512xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x7x7x512xf32>) -> tuple<tensor<1x7x7x512xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x7x7x512xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>) -> tensor<1x7x7x512xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x7x7x512xf32>) -> tuple<tensor<1x7x7x512xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x7x7x512xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>, tuple<tensor<1x7x7x512xf32>, tensor<1x7x7x512xf32>>) -> tuple<tensor<1x7x7x512xf32>> | |
%2300 = "mhlo.get_tuple_element"(%2299) {index = 0 : i32} : (tuple<tensor<1x7x7x512xf32>>) -> tensor<1x7x7x512xf32> | |
%2301 = "mhlo.abs"(%arg239) : (tensor<1x1x512x2048xf32>) -> tensor<1x1x512x2048xf32> | |
%2302 = mhlo.reduce %2301, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x512x2048xf32>, tensor<f32>) -> tensor<2048xf32> | |
%2303 = "mhlo.broadcast_in_dim"(%2302) {broadcast_dimensions = dense<3> : tensor<1xi64>} : (tensor<2048xf32>) -> tensor<1x1x1x2048xf32> | |
%2304 = mhlo.add %2303, %18 : tensor<1x1x1x2048xf32> | |
%2305 = mhlo.divide %17, %2304 : tensor<1x1x1x2048xf32> | |
%2306 = "mhlo.broadcast_in_dim"(%2305) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xf32>) -> tensor<1x1x512x2048xf32> | |
%2307 = mhlo.multiply %arg239, %2306 : tensor<1x1x512x2048xf32> | |
%2308 = call @jit_clip_104(%2307, %8, %7) : (tensor<1x1x512x2048xf32>, tensor<f32>, tensor<f32>) -> tensor<1x1x512x2048xf32> | |
%2309 = mhlo.add %2308, %16 : tensor<1x1x512x2048xf32> | |
%2310 = "mhlo.floor"(%2309) : (tensor<1x1x512x2048xf32>) -> tensor<1x1x512x2048xf32> | |
%2311 = "mhlo.broadcast_in_dim"(%2305) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xf32>) -> tensor<1x1x512x2048xf32> | |
%2312 = mhlo.divide %2310, %2311 : tensor<1x1x512x2048xf32> | |
%2313 = mhlo.convolution(%2300, %2312) dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f], window = {stride = [1, 1], pad = [[0, 0], [0, 0]], lhs_dilate = [1, 1], rhs_dilate = [1, 1], reverse = [0, 0]} {batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x7x7x512xf32>, tensor<1x1x512x2048xf32>) -> tensor<1x7x7x2048xf32> | |
%2314 = "mhlo.reshape"(%arg50) : (tensor<2048xf32>) -> tensor<1x1x1x2048xf32> | |
%2315 = "mhlo.reshape"(%arg51) : (tensor<2048xf32>) -> tensor<1x1x1x2048xf32> | |
%2316 = "mhlo.broadcast_in_dim"(%2314) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xf32>) -> tensor<1x7x7x2048xf32> | |
%2317 = mhlo.subtract %2313, %2316 : tensor<1x7x7x2048xf32> | |
%2318 = mhlo.add %2315, %15 : tensor<1x1x1x2048xf32> | |
%2319 = "mhlo.rsqrt"(%2318) : (tensor<1x1x1x2048xf32>) -> tensor<1x1x1x2048xf32> | |
%2320 = "mhlo.reshape"(%arg236) : (tensor<2048xf32>) -> tensor<1x1x1x2048xf32> | |
%2321 = mhlo.multiply %2319, %2320 : tensor<1x1x1x2048xf32> | |
%2322 = "mhlo.broadcast_in_dim"(%2321) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xf32>) -> tensor<1x7x7x2048xf32> | |
%2323 = mhlo.multiply %2317, %2322 : tensor<1x7x7x2048xf32> | |
%2324 = "mhlo.reshape"(%arg235) : (tensor<2048xf32>) -> tensor<1x1x1x2048xf32> | |
%2325 = "mhlo.broadcast_in_dim"(%2324) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x1x2048xf32>) -> tensor<1x7x7x2048xf32> | |
%2326 = mhlo.add %2323, %2325 : tensor<1x7x7x2048xf32> | |
%2327 = mhlo.add %2201, %2326 : tensor<1x7x7x2048xf32> | |
%2328 = mhlo.maximum %2327, %14 : tensor<1x7x7x2048xf32> | |
%2329 = mhlo.reduce %2328, %13 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.add %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<[1, 2]> : tensor<2xi64>} : (tensor<1x7x7x2048xf32>, tensor<f32>) -> tensor<1x2048xf32> | |
%2330 = mhlo.divide %2329, %12 : tensor<1x2048xf32> | |
%2331 = "mhlo.abs"(%arg161) : (tensor<2048x1000xf32>) -> tensor<2048x1000xf32> | |
%2332 = mhlo.reduce %2331, %11 ( { | |
^bb0(%arg322: tensor<f32>, %arg323: tensor<f32>): // no predecessors | |
%2359 = mhlo.maximum %arg322, %arg323 : tensor<f32> | |
"mhlo.return"(%2359) : (tensor<f32>) -> () | |
}) {dimensions = dense<0> : tensor<1xi64>} : (tensor<2048x1000xf32>, tensor<f32>) -> tensor<1000xf32> | |
%2333 = "mhlo.broadcast_in_dim"(%2332) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<1000xf32>) -> tensor<1x1000xf32> | |
%2334 = mhlo.add %2333, %10 : tensor<1x1000xf32> | |
%2335 = mhlo.divide %9, %2334 : tensor<1x1000xf32> | |
%2336 = "mhlo.broadcast_in_dim"(%2335) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1000xf32>) -> tensor<2048x1000xf32> | |
%2337 = mhlo.multiply %arg161, %2336 : tensor<2048x1000xf32> | |
%2338 = call @jit_clip_105(%2337, %8, %7) : (tensor<2048x1000xf32>, tensor<f32>, tensor<f32>) -> tensor<2048x1000xf32> | |
%2339 = mhlo.add %2338, %6 : tensor<2048x1000xf32> | |
%2340 = "mhlo.floor"(%2339) : (tensor<2048x1000xf32>) -> tensor<2048x1000xf32> | |
%2341 = "mhlo.broadcast_in_dim"(%2335) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x1000xf32>) -> tensor<2048x1000xf32> | |
%2342 = mhlo.divide %2340, %2341 : tensor<2048x1000xf32> | |
%2343 = mhlo.add %arg106, %5 : tensor<1x2048xf32> | |
%2344 = mhlo.divide %4, %2343 : tensor<1x2048xf32> | |
%2345 = mhlo.multiply %2330, %2344 : tensor<1x2048xf32> | |
%2346 = "mhlo.floor"(%2345) : (tensor<1x2048xf32>) -> tensor<1x2048xf32> | |
%2347 = call @jit_clip_106(%2346, %3, %2) : (tensor<1x2048xf32>, tensor<i32>, tensor<i32>) -> tensor<1x2048xf32> | |
%2348 = mhlo.divide %2347, %2344 : tensor<1x2048xf32> | |
%2349 = "mhlo.compare"(%arg106, %1) {compare_type = "FLOAT", comparison_direction = "EQ"} : (tensor<1x2048xf32>, tensor<1x2048xf32>) -> tensor<1x2048xi1> | |
%2350 = mhlo.reduce %2349, %0 ( { | |
^bb0(%arg322: tensor<i1>, %arg323: tensor<i1>): // no predecessors | |
%2359 = mhlo.and %arg322, %arg323 : tensor<i1> | |
"mhlo.return"(%2359) : (tensor<i1>) -> () | |
}) {dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x2048xi1>, tensor<i1>) -> tensor<i1> | |
%2351 = "mhlo.not"(%2350) : (tensor<i1>) -> tensor<i1> | |
%2352 = "mhlo.convert"(%2351) : (tensor<i1>) -> tensor<i32> | |
%2353 = "mhlo.tuple"(%2348, %2330) : (tensor<1x2048xf32>, tensor<1x2048xf32>) -> tuple<tensor<1x2048xf32>, tensor<1x2048xf32>> | |
%2354 = "mhlo.case"(%2352, %2353, %2353) ( { | |
^bb0(%arg322: tuple<tensor<1x2048xf32>, tensor<1x2048xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 1 : i32} : (tuple<tensor<1x2048xf32>, tensor<1x2048xf32>>) -> tensor<1x2048xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x2048xf32>) -> tuple<tensor<1x2048xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x2048xf32>>) -> () | |
}, { | |
^bb0(%arg322: tuple<tensor<1x2048xf32>, tensor<1x2048xf32>>): // no predecessors | |
%2359 = "mhlo.get_tuple_element"(%arg322) {index = 0 : i32} : (tuple<tensor<1x2048xf32>, tensor<1x2048xf32>>) -> tensor<1x2048xf32> | |
%2360 = "mhlo.tuple"(%2359) : (tensor<1x2048xf32>) -> tuple<tensor<1x2048xf32>> | |
"mhlo.return"(%2360) : (tuple<tensor<1x2048xf32>>) -> () | |
}) : (tensor<i32>, tuple<tensor<1x2048xf32>, tensor<1x2048xf32>>, tuple<tensor<1x2048xf32>, tensor<1x2048xf32>>) -> tuple<tensor<1x2048xf32>> | |
%2355 = "mhlo.get_tuple_element"(%2354) {index = 0 : i32} : (tuple<tensor<1x2048xf32>>) -> tensor<1x2048xf32> | |
%2356 = "mhlo.dot_general"(%2355, %2342) {dot_dimension_numbers = #mhlo.dot<lhs_contracting_dimensions = [1], rhs_contracting_dimensions = [0]>, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x2048xf32>, tensor<2048x1000xf32>) -> tensor<1x1000xf32> | |
%2357 = "mhlo.broadcast_in_dim"(%arg160) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<1000xf32>) -> tensor<1x1000xf32> | |
%2358 = mhlo.add %2356, %2357 : tensor<1x1000xf32> | |
return %2358 : tensor<1x1000xf32> | |
} | |
func private @jit_clip(%arg0: tensor<1x224x224x3xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x224x224x3xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x224x224x3xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x224x224x3xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x224x224x3xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x224x224x3xf32> | |
return %3 : tensor<1x224x224x3xf32> | |
} | |
func private @jit_clip_0(%arg0: tensor<7x7x3x64xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<7x7x3x64xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<7x7x3x64xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<7x7x3x64xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<7x7x3x64xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<7x7x3x64xf32> | |
return %3 : tensor<7x7x3x64xf32> | |
} | |
func private @jit_clip_1(%arg0: tensor<1x56x56x64xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x56x56x64xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x64xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x56x56x64xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x64xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x56x56x64xf32> | |
return %5 : tensor<1x56x56x64xf32> | |
} | |
func private @jit_clip_2(%arg0: tensor<1x1x64x256xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x64x256xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x64x256xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x64x256xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x64x256xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x64x256xf32> | |
return %3 : tensor<1x1x64x256xf32> | |
} | |
func private @jit_clip_3(%arg0: tensor<1x56x56x64xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x56x56x64xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x64xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x56x56x64xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x64xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x56x56x64xf32> | |
return %3 : tensor<1x56x56x64xf32> | |
} | |
func private @jit_clip_4(%arg0: tensor<1x1x64x64xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x64x64xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x64x64xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x64x64xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x64x64xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x64x64xf32> | |
return %3 : tensor<1x1x64x64xf32> | |
} | |
func private @jit_clip_5(%arg0: tensor<1x56x56x64xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x56x56x64xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x64xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x56x56x64xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x64xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x56x56x64xf32> | |
return %5 : tensor<1x56x56x64xf32> | |
} | |
func private @jit_clip_6(%arg0: tensor<3x3x64x64xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<3x3x64x64xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x64x64xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<3x3x64x64xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x64x64xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<3x3x64x64xf32> | |
return %3 : tensor<3x3x64x64xf32> | |
} | |
func private @jit_clip_7(%arg0: tensor<1x56x56x64xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x56x56x64xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x64xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x56x56x64xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x64xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x56x56x64xf32> | |
return %5 : tensor<1x56x56x64xf32> | |
} | |
func private @jit_clip_8(%arg0: tensor<1x1x64x256xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x64x256xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x64x256xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x64x256xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x64x256xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x64x256xf32> | |
return %3 : tensor<1x1x64x256xf32> | |
} | |
func private @jit_clip_9(%arg0: tensor<1x56x56x256xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x56x56x256xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x256xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x56x56x256xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x256xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x56x56x256xf32> | |
return %5 : tensor<1x56x56x256xf32> | |
} | |
func private @jit_clip_10(%arg0: tensor<1x1x256x64xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x256x64xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x256x64xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x256x64xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x256x64xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x256x64xf32> | |
return %3 : tensor<1x1x256x64xf32> | |
} | |
func private @jit_clip_11(%arg0: tensor<1x56x56x64xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x56x56x64xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x64xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x56x56x64xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x64xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x56x56x64xf32> | |
return %5 : tensor<1x56x56x64xf32> | |
} | |
func private @jit_clip_12(%arg0: tensor<3x3x64x64xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<3x3x64x64xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x64x64xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<3x3x64x64xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x64x64xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<3x3x64x64xf32> | |
return %3 : tensor<3x3x64x64xf32> | |
} | |
func private @jit_clip_13(%arg0: tensor<1x56x56x64xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x56x56x64xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x64xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x56x56x64xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x64xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x56x56x64xf32> | |
return %5 : tensor<1x56x56x64xf32> | |
} | |
func private @jit_clip_14(%arg0: tensor<1x1x64x256xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x64x256xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x64x256xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x64x256xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x64x256xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x64x256xf32> | |
return %3 : tensor<1x1x64x256xf32> | |
} | |
func private @jit_clip_15(%arg0: tensor<1x56x56x256xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x56x56x256xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x256xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x56x56x256xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x256xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x56x56x256xf32> | |
return %5 : tensor<1x56x56x256xf32> | |
} | |
func private @jit_clip_16(%arg0: tensor<1x1x256x64xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x256x64xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x256x64xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x256x64xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x256x64xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x256x64xf32> | |
return %3 : tensor<1x1x256x64xf32> | |
} | |
func private @jit_clip_17(%arg0: tensor<1x56x56x64xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x56x56x64xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x64xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x56x56x64xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x64xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x56x56x64xf32> | |
return %5 : tensor<1x56x56x64xf32> | |
} | |
func private @jit_clip_18(%arg0: tensor<3x3x64x64xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<3x3x64x64xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x64x64xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<3x3x64x64xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x64x64xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<3x3x64x64xf32> | |
return %3 : tensor<3x3x64x64xf32> | |
} | |
func private @jit_clip_19(%arg0: tensor<1x56x56x64xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x56x56x64xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x64xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x56x56x64xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x64xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x56x56x64xf32> | |
return %5 : tensor<1x56x56x64xf32> | |
} | |
func private @jit_clip_20(%arg0: tensor<1x1x64x256xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x64x256xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x64x256xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x64x256xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x64x256xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x64x256xf32> | |
return %3 : tensor<1x1x64x256xf32> | |
} | |
func private @jit_clip_21(%arg0: tensor<1x56x56x256xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x56x56x256xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x256xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x56x56x256xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x256xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x56x56x256xf32> | |
return %5 : tensor<1x56x56x256xf32> | |
} | |
func private @jit_clip_22(%arg0: tensor<1x1x256x512xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x256x512xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x256x512xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x256x512xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x256x512xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x256x512xf32> | |
return %3 : tensor<1x1x256x512xf32> | |
} | |
func private @jit_clip_23(%arg0: tensor<1x56x56x256xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x56x56x256xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x256xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x56x56x256xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x256xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x56x56x256xf32> | |
return %3 : tensor<1x56x56x256xf32> | |
} | |
func private @jit_clip_24(%arg0: tensor<1x1x256x128xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x256x128xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x256x128xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x256x128xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x256x128xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x256x128xf32> | |
return %3 : tensor<1x1x256x128xf32> | |
} | |
func private @jit_clip_25(%arg0: tensor<1x56x56x128xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x56x56x128xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x128xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x56x56x128xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x56x56x128xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x56x56x128xf32> | |
return %5 : tensor<1x56x56x128xf32> | |
} | |
func private @jit_clip_26(%arg0: tensor<3x3x128x128xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<3x3x128x128xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x128x128xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<3x3x128x128xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x128x128xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<3x3x128x128xf32> | |
return %3 : tensor<3x3x128x128xf32> | |
} | |
func private @jit_clip_27(%arg0: tensor<1x28x28x128xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x28x28x128xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x128xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x28x28x128xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x128xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x28x28x128xf32> | |
return %5 : tensor<1x28x28x128xf32> | |
} | |
func private @jit_clip_28(%arg0: tensor<1x1x128x512xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x128x512xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x128x512xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x128x512xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x128x512xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x128x512xf32> | |
return %3 : tensor<1x1x128x512xf32> | |
} | |
func private @jit_clip_29(%arg0: tensor<1x28x28x512xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x28x28x512xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x512xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x28x28x512xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x512xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x28x28x512xf32> | |
return %5 : tensor<1x28x28x512xf32> | |
} | |
func private @jit_clip_30(%arg0: tensor<1x1x512x128xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x512x128xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x512x128xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x512x128xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x512x128xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x512x128xf32> | |
return %3 : tensor<1x1x512x128xf32> | |
} | |
func private @jit_clip_31(%arg0: tensor<1x28x28x128xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x28x28x128xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x128xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x28x28x128xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x128xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x28x28x128xf32> | |
return %5 : tensor<1x28x28x128xf32> | |
} | |
func private @jit_clip_32(%arg0: tensor<3x3x128x128xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<3x3x128x128xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x128x128xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<3x3x128x128xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x128x128xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<3x3x128x128xf32> | |
return %3 : tensor<3x3x128x128xf32> | |
} | |
func private @jit_clip_33(%arg0: tensor<1x28x28x128xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x28x28x128xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x128xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x28x28x128xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x128xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x28x28x128xf32> | |
return %5 : tensor<1x28x28x128xf32> | |
} | |
func private @jit_clip_34(%arg0: tensor<1x1x128x512xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x128x512xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x128x512xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x128x512xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x128x512xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x128x512xf32> | |
return %3 : tensor<1x1x128x512xf32> | |
} | |
func private @jit_clip_35(%arg0: tensor<1x28x28x512xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x28x28x512xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x512xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x28x28x512xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x512xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x28x28x512xf32> | |
return %5 : tensor<1x28x28x512xf32> | |
} | |
func private @jit_clip_36(%arg0: tensor<1x1x512x128xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x512x128xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x512x128xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x512x128xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x512x128xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x512x128xf32> | |
return %3 : tensor<1x1x512x128xf32> | |
} | |
func private @jit_clip_37(%arg0: tensor<1x28x28x128xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x28x28x128xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x128xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x28x28x128xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x128xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x28x28x128xf32> | |
return %5 : tensor<1x28x28x128xf32> | |
} | |
func private @jit_clip_38(%arg0: tensor<3x3x128x128xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<3x3x128x128xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x128x128xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<3x3x128x128xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x128x128xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<3x3x128x128xf32> | |
return %3 : tensor<3x3x128x128xf32> | |
} | |
func private @jit_clip_39(%arg0: tensor<1x28x28x128xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x28x28x128xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x128xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x28x28x128xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x128xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x28x28x128xf32> | |
return %5 : tensor<1x28x28x128xf32> | |
} | |
func private @jit_clip_40(%arg0: tensor<1x1x128x512xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x128x512xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x128x512xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x128x512xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x128x512xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x128x512xf32> | |
return %3 : tensor<1x1x128x512xf32> | |
} | |
func private @jit_clip_41(%arg0: tensor<1x28x28x512xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x28x28x512xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x512xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x28x28x512xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x512xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x28x28x512xf32> | |
return %5 : tensor<1x28x28x512xf32> | |
} | |
func private @jit_clip_42(%arg0: tensor<1x1x512x128xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x512x128xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x512x128xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x512x128xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x512x128xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x512x128xf32> | |
return %3 : tensor<1x1x512x128xf32> | |
} | |
func private @jit_clip_43(%arg0: tensor<1x28x28x128xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x28x28x128xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x128xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x28x28x128xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x128xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x28x28x128xf32> | |
return %5 : tensor<1x28x28x128xf32> | |
} | |
func private @jit_clip_44(%arg0: tensor<3x3x128x128xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<3x3x128x128xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x128x128xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<3x3x128x128xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x128x128xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<3x3x128x128xf32> | |
return %3 : tensor<3x3x128x128xf32> | |
} | |
func private @jit_clip_45(%arg0: tensor<1x28x28x128xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x28x28x128xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x128xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x28x28x128xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x128xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x28x28x128xf32> | |
return %5 : tensor<1x28x28x128xf32> | |
} | |
func private @jit_clip_46(%arg0: tensor<1x1x128x512xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x128x512xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x128x512xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x128x512xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x128x512xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x128x512xf32> | |
return %3 : tensor<1x1x128x512xf32> | |
} | |
func private @jit_clip_47(%arg0: tensor<1x28x28x512xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x28x28x512xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x512xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x28x28x512xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x512xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x28x28x512xf32> | |
return %5 : tensor<1x28x28x512xf32> | |
} | |
func private @jit_clip_48(%arg0: tensor<1x1x512x1024xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x512x1024xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x512x1024xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x512x1024xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x512x1024xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x512x1024xf32> | |
return %3 : tensor<1x1x512x1024xf32> | |
} | |
func private @jit_clip_49(%arg0: tensor<1x28x28x512xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x28x28x512xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x512xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x28x28x512xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x512xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x28x28x512xf32> | |
return %3 : tensor<1x28x28x512xf32> | |
} | |
func private @jit_clip_50(%arg0: tensor<1x1x512x256xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x512x256xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x512x256xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x512x256xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x512x256xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x512x256xf32> | |
return %3 : tensor<1x1x512x256xf32> | |
} | |
func private @jit_clip_51(%arg0: tensor<1x28x28x256xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x28x28x256xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x256xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x28x28x256xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x28x28x256xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x28x28x256xf32> | |
return %5 : tensor<1x28x28x256xf32> | |
} | |
func private @jit_clip_52(%arg0: tensor<3x3x256x256xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<3x3x256x256xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x256x256xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<3x3x256x256xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x256x256xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<3x3x256x256xf32> | |
return %3 : tensor<3x3x256x256xf32> | |
} | |
func private @jit_clip_53(%arg0: tensor<1x14x14x256xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x14x14x256xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x256xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x14x14x256xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x256xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x14x14x256xf32> | |
return %5 : tensor<1x14x14x256xf32> | |
} | |
func private @jit_clip_54(%arg0: tensor<1x1x256x1024xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x256x1024xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x256x1024xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x256x1024xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x256x1024xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x256x1024xf32> | |
return %3 : tensor<1x1x256x1024xf32> | |
} | |
func private @jit_clip_55(%arg0: tensor<1x14x14x1024xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x14x14x1024xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x1024xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x14x14x1024xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x1024xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x14x14x1024xf32> | |
return %5 : tensor<1x14x14x1024xf32> | |
} | |
func private @jit_clip_56(%arg0: tensor<1x1x1024x256xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x1024x256xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x1024x256xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x1024x256xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x1024x256xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x1024x256xf32> | |
return %3 : tensor<1x1x1024x256xf32> | |
} | |
func private @jit_clip_57(%arg0: tensor<1x14x14x256xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x14x14x256xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x256xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x14x14x256xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x256xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x14x14x256xf32> | |
return %5 : tensor<1x14x14x256xf32> | |
} | |
func private @jit_clip_58(%arg0: tensor<3x3x256x256xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<3x3x256x256xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x256x256xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<3x3x256x256xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x256x256xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<3x3x256x256xf32> | |
return %3 : tensor<3x3x256x256xf32> | |
} | |
func private @jit_clip_59(%arg0: tensor<1x14x14x256xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x14x14x256xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x256xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x14x14x256xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x256xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x14x14x256xf32> | |
return %5 : tensor<1x14x14x256xf32> | |
} | |
func private @jit_clip_60(%arg0: tensor<1x1x256x1024xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x256x1024xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x256x1024xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x256x1024xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x256x1024xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x256x1024xf32> | |
return %3 : tensor<1x1x256x1024xf32> | |
} | |
func private @jit_clip_61(%arg0: tensor<1x14x14x1024xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x14x14x1024xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x1024xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x14x14x1024xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x1024xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x14x14x1024xf32> | |
return %5 : tensor<1x14x14x1024xf32> | |
} | |
func private @jit_clip_62(%arg0: tensor<1x1x1024x256xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x1024x256xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x1024x256xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x1024x256xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x1024x256xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x1024x256xf32> | |
return %3 : tensor<1x1x1024x256xf32> | |
} | |
func private @jit_clip_63(%arg0: tensor<1x14x14x256xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x14x14x256xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x256xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x14x14x256xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x256xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x14x14x256xf32> | |
return %5 : tensor<1x14x14x256xf32> | |
} | |
func private @jit_clip_64(%arg0: tensor<3x3x256x256xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<3x3x256x256xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x256x256xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<3x3x256x256xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x256x256xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<3x3x256x256xf32> | |
return %3 : tensor<3x3x256x256xf32> | |
} | |
func private @jit_clip_65(%arg0: tensor<1x14x14x256xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x14x14x256xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x256xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x14x14x256xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x256xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x14x14x256xf32> | |
return %5 : tensor<1x14x14x256xf32> | |
} | |
func private @jit_clip_66(%arg0: tensor<1x1x256x1024xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x256x1024xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x256x1024xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x256x1024xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x256x1024xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x256x1024xf32> | |
return %3 : tensor<1x1x256x1024xf32> | |
} | |
func private @jit_clip_67(%arg0: tensor<1x14x14x1024xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x14x14x1024xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x1024xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x14x14x1024xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x1024xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x14x14x1024xf32> | |
return %5 : tensor<1x14x14x1024xf32> | |
} | |
func private @jit_clip_68(%arg0: tensor<1x1x1024x256xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x1024x256xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x1024x256xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x1024x256xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x1024x256xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x1024x256xf32> | |
return %3 : tensor<1x1x1024x256xf32> | |
} | |
func private @jit_clip_69(%arg0: tensor<1x14x14x256xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x14x14x256xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x256xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x14x14x256xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x256xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x14x14x256xf32> | |
return %5 : tensor<1x14x14x256xf32> | |
} | |
func private @jit_clip_70(%arg0: tensor<3x3x256x256xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<3x3x256x256xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x256x256xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<3x3x256x256xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x256x256xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<3x3x256x256xf32> | |
return %3 : tensor<3x3x256x256xf32> | |
} | |
func private @jit_clip_71(%arg0: tensor<1x14x14x256xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x14x14x256xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x256xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x14x14x256xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x256xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x14x14x256xf32> | |
return %5 : tensor<1x14x14x256xf32> | |
} | |
func private @jit_clip_72(%arg0: tensor<1x1x256x1024xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x256x1024xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x256x1024xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x256x1024xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x256x1024xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x256x1024xf32> | |
return %3 : tensor<1x1x256x1024xf32> | |
} | |
func private @jit_clip_73(%arg0: tensor<1x14x14x1024xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x14x14x1024xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x1024xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x14x14x1024xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x1024xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x14x14x1024xf32> | |
return %5 : tensor<1x14x14x1024xf32> | |
} | |
func private @jit_clip_74(%arg0: tensor<1x1x1024x256xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x1024x256xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x1024x256xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x1024x256xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x1024x256xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x1024x256xf32> | |
return %3 : tensor<1x1x1024x256xf32> | |
} | |
func private @jit_clip_75(%arg0: tensor<1x14x14x256xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x14x14x256xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x256xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x14x14x256xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x256xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x14x14x256xf32> | |
return %5 : tensor<1x14x14x256xf32> | |
} | |
func private @jit_clip_76(%arg0: tensor<3x3x256x256xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<3x3x256x256xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x256x256xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<3x3x256x256xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x256x256xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<3x3x256x256xf32> | |
return %3 : tensor<3x3x256x256xf32> | |
} | |
func private @jit_clip_77(%arg0: tensor<1x14x14x256xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x14x14x256xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x256xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x14x14x256xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x256xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x14x14x256xf32> | |
return %5 : tensor<1x14x14x256xf32> | |
} | |
func private @jit_clip_78(%arg0: tensor<1x1x256x1024xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x256x1024xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x256x1024xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x256x1024xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x256x1024xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x256x1024xf32> | |
return %3 : tensor<1x1x256x1024xf32> | |
} | |
func private @jit_clip_79(%arg0: tensor<1x14x14x1024xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x14x14x1024xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x1024xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x14x14x1024xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x1024xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x14x14x1024xf32> | |
return %5 : tensor<1x14x14x1024xf32> | |
} | |
func private @jit_clip_80(%arg0: tensor<1x1x1024x256xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x1024x256xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x1024x256xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x1024x256xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x1024x256xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x1024x256xf32> | |
return %3 : tensor<1x1x1024x256xf32> | |
} | |
func private @jit_clip_81(%arg0: tensor<1x14x14x256xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x14x14x256xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x256xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x14x14x256xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x256xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x14x14x256xf32> | |
return %5 : tensor<1x14x14x256xf32> | |
} | |
func private @jit_clip_82(%arg0: tensor<3x3x256x256xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<3x3x256x256xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x256x256xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<3x3x256x256xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x256x256xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<3x3x256x256xf32> | |
return %3 : tensor<3x3x256x256xf32> | |
} | |
func private @jit_clip_83(%arg0: tensor<1x14x14x256xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x14x14x256xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x256xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x14x14x256xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x256xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x14x14x256xf32> | |
return %5 : tensor<1x14x14x256xf32> | |
} | |
func private @jit_clip_84(%arg0: tensor<1x1x256x1024xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x256x1024xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x256x1024xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x256x1024xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x256x1024xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x256x1024xf32> | |
return %3 : tensor<1x1x256x1024xf32> | |
} | |
func private @jit_clip_85(%arg0: tensor<1x14x14x1024xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x14x14x1024xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x1024xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x14x14x1024xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x1024xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x14x14x1024xf32> | |
return %5 : tensor<1x14x14x1024xf32> | |
} | |
func private @jit_clip_86(%arg0: tensor<1x1x1024x2048xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x1024x2048xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x1024x2048xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x1024x2048xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x1024x2048xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x1024x2048xf32> | |
return %3 : tensor<1x1x1024x2048xf32> | |
} | |
func private @jit_clip_87(%arg0: tensor<1x14x14x1024xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x14x14x1024xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x1024xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x14x14x1024xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x1024xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x14x14x1024xf32> | |
return %3 : tensor<1x14x14x1024xf32> | |
} | |
func private @jit_clip_88(%arg0: tensor<1x1x1024x512xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x1024x512xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x1024x512xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x1024x512xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x1024x512xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x1024x512xf32> | |
return %3 : tensor<1x1x1024x512xf32> | |
} | |
func private @jit_clip_89(%arg0: tensor<1x14x14x512xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x14x14x512xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x512xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x14x14x512xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x14x14x512xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x14x14x512xf32> | |
return %5 : tensor<1x14x14x512xf32> | |
} | |
func private @jit_clip_90(%arg0: tensor<3x3x512x512xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<3x3x512x512xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x512x512xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<3x3x512x512xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x512x512xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<3x3x512x512xf32> | |
return %3 : tensor<3x3x512x512xf32> | |
} | |
func private @jit_clip_91(%arg0: tensor<1x7x7x512xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x7x7x512xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x7x7x512xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x7x7x512xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x7x7x512xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x7x7x512xf32> | |
return %5 : tensor<1x7x7x512xf32> | |
} | |
func private @jit_clip_92(%arg0: tensor<1x1x512x2048xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x512x2048xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x512x2048xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x512x2048xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x512x2048xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x512x2048xf32> | |
return %3 : tensor<1x1x512x2048xf32> | |
} | |
func private @jit_clip_93(%arg0: tensor<1x7x7x2048xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x7x7x2048xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x7x7x2048xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x7x7x2048xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x7x7x2048xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x7x7x2048xf32> | |
return %5 : tensor<1x7x7x2048xf32> | |
} | |
func private @jit_clip_94(%arg0: tensor<1x1x2048x512xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x2048x512xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x2048x512xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x2048x512xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x2048x512xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x2048x512xf32> | |
return %3 : tensor<1x1x2048x512xf32> | |
} | |
func private @jit_clip_95(%arg0: tensor<1x7x7x512xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x7x7x512xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x7x7x512xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x7x7x512xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x7x7x512xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x7x7x512xf32> | |
return %5 : tensor<1x7x7x512xf32> | |
} | |
func private @jit_clip_96(%arg0: tensor<3x3x512x512xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<3x3x512x512xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x512x512xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<3x3x512x512xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x512x512xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<3x3x512x512xf32> | |
return %3 : tensor<3x3x512x512xf32> | |
} | |
func private @jit_clip_97(%arg0: tensor<1x7x7x512xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x7x7x512xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x7x7x512xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x7x7x512xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x7x7x512xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x7x7x512xf32> | |
return %5 : tensor<1x7x7x512xf32> | |
} | |
func private @jit_clip_98(%arg0: tensor<1x1x512x2048xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x512x2048xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x512x2048xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x512x2048xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x512x2048xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x512x2048xf32> | |
return %3 : tensor<1x1x512x2048xf32> | |
} | |
func private @jit_clip_99(%arg0: tensor<1x7x7x2048xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x7x7x2048xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x7x7x2048xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x7x7x2048xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x7x7x2048xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x7x7x2048xf32> | |
return %5 : tensor<1x7x7x2048xf32> | |
} | |
func private @jit_clip_100(%arg0: tensor<1x1x2048x512xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x2048x512xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x2048x512xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x2048x512xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x2048x512xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x2048x512xf32> | |
return %3 : tensor<1x1x2048x512xf32> | |
} | |
func private @jit_clip_101(%arg0: tensor<1x7x7x512xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x7x7x512xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x7x7x512xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x7x7x512xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x7x7x512xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x7x7x512xf32> | |
return %5 : tensor<1x7x7x512xf32> | |
} | |
func private @jit_clip_102(%arg0: tensor<3x3x512x512xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<3x3x512x512xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x512x512xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<3x3x512x512xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<3x3x512x512xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<3x3x512x512xf32> | |
return %3 : tensor<3x3x512x512xf32> | |
} | |
func private @jit_clip_103(%arg0: tensor<1x7x7x512xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x7x7x512xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x7x7x512xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x7x7x512xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x7x7x512xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x7x7x512xf32> | |
return %5 : tensor<1x7x7x512xf32> | |
} | |
func private @jit_clip_104(%arg0: tensor<1x1x512x2048xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<1x1x512x2048xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x512x2048xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<1x1x512x2048xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x1x512x2048xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<1x1x512x2048xf32> | |
return %3 : tensor<1x1x512x2048xf32> | |
} | |
func private @jit_clip_105(%arg0: tensor<2048x1000xf32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> tensor<2048x1000xf32> { | |
%0 = "mhlo.broadcast_in_dim"(%arg2) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x1000xf32> | |
%1 = mhlo.maximum %0, %arg0 : tensor<2048x1000xf32> | |
%2 = "mhlo.broadcast_in_dim"(%arg1) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<2048x1000xf32> | |
%3 = mhlo.minimum %2, %1 : tensor<2048x1000xf32> | |
return %3 : tensor<2048x1000xf32> | |
} | |
func private @jit_clip_106(%arg0: tensor<1x2048xf32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tensor<1x2048xf32> { | |
%0 = "mhlo.convert"(%arg2) : (tensor<i32>) -> tensor<f32> | |
%1 = "mhlo.broadcast_in_dim"(%0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x2048xf32> | |
%2 = mhlo.maximum %1, %arg0 : tensor<1x2048xf32> | |
%3 = "mhlo.convert"(%arg1) : (tensor<i32>) -> tensor<f32> | |
%4 = "mhlo.broadcast_in_dim"(%3) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1x2048xf32> | |
%5 = mhlo.minimum %4, %2 : tensor<1x2048xf32> | |
return %5 : tensor<1x2048xf32> | |
} | |
} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment