Claude Code Prompt: Read the docs and workflows in therock using subagents and tell me how to make developer builds from a PR and get packages w/ pytorch.
Add labels to your PR:
| module @aqt_matmul { | |
| iree_input.global private @_params$0 = dense<[[0.000000e+00, 5.003000e+02, 1.000600e+03], [1500.8999, 2.001200e+03, 2.501500e+03], [3001.7998, 3502.09985, 4.002400e+03], [4502.69971, 5.003000e+03, 5.503300e+03], [6003.59961, 6503.8999, 7004.1997], [7.504500e+03, 8004.7998, 8.505100e+03]]> : tensor<6x3xf32> | |
| iree_input.global private @_params$1 = dense<5.000000e+00> : tensor<f32> | |
| func @compute_native(%arg0: tensor<5x6xf32>) -> tensor<5x3xf32> { | |
| %0 = iree_input.global.load @_params$0 : tensor<6x3xf32> | |
| %1 = iree_input.global.load @_params$1 : tensor<f32> | |
| %2 = call @main(%0, %1, %arg0) : (tensor<6x3xf32>, tensor<f32>, tensor<5x6xf32>) -> tensor<5x3xf32> | |
| return %2 : tensor<5x3xf32> | |
| } | |
| func private @main(%arg0: tensor<6x3xf32>, %arg1: tensor<f32>, %arg2: tensor<5x6xf32>) -> tensor<5x3xf32> { |
| #device_target_vmvx = #hal.device.target<"vmvx", {executable_targets = [#hal.executable.target<"vmvx", "vmvx-bytecode-fb">]}> | |
| module attributes {hal.device.targets = [#device_target_vmvx]} { | |
| util.global private @hoisted_1 : !hal.buffer | |
| util.global private @hoisted_1__offset : index | |
| util.global private @hoisted_1__size : index | |
| util.global private @hoisted_0 : !hal.buffer | |
| util.global private @hoisted : !hal.buffer | |
| util.global private @hoisted__storage_size : index | |
| util.global private @hoisted__offset : index | |
| util.global private @hoisted__size : index |
| #map0 = affine_map<(d0, d1) -> ()> | |
| #map1 = affine_map<(d0, d1) -> (d0, d1)> | |
| #map2 = affine_map<() -> ()> | |
| module @aqt_matmul { | |
| util.global private @_params$0 = dense<[[0.000000e+00, 5.003000e+02, 1.000600e+03], [1500.8999, 2.001200e+03, 2.501500e+03], [3001.7998, 3502.09985, 4.002400e+03], [4502.69971, 5.003000e+03, 5.503300e+03], [6003.59961, 6503.8999, 7004.1997], [7.504500e+03, 8004.7998, 8.505100e+03]]> : tensor<6x3xf32> | |
| util.global private @_params$1 = dense<5.000000e+00> : tensor<f32> | |
| func @compute_native(%arg0: tensor<5x6xf32>) -> tensor<5x3xf32> { | |
| %c0_i32 = arith.constant 0 : i32 | |
| %cst = arith.constant dense<5.000000e-01> : tensor<5x6xf32> | |
| %cst_0 = arith.constant dense<-1.270000e+02> : tensor<5x6xf32> |
| CONSTANT ROOT: %cst_0 = arith.constant dense<5.000000e-01> : tensor<6x3xf32> | |
| CONSTANT ROOT: %_params$0 = util.global.load @_params$0 : tensor<6x3xf32> | |
| CONSTANT ROOT: %cst_4 = arith.constant dense<1.270000e+02> : tensor<5x6xf32> | |
| CONSTANT ROOT: %cst_2 = arith.constant dense<-1.270000e+02> : tensor<5x6xf32> | |
| CONSTANT ROOT: %cst_3 = arith.constant dense<1.270000e+02> : tensor<f32> | |
| CONSTANT ROOT: %c0_i32 = arith.constant 0 : i32 | |
| CONSTANT ROOT: %cst_1 = arith.constant dense<5.000000e-01> : tensor<5x6xf32> | |
| CONSTANT ROOT: %_params$1 = util.global.load @_params$1 : tensor<f32> | |
| CONSTANT ROOT: %cst = arith.constant 0xFF800000 : f32 | |
| EXPAND TO UNKNOWN: %26 = linalg.generic {indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>], iterator_types = ["parallel", "parallel"]} ins(%24, %cst_0 : tensor<6x3xf32>, tensor<6x3xf32>) outs(%25 : tensor<6x3xf32>) { |
| module @aqt_dense { | |
| iree_input.global private @_params$0 = dense<[[0.000000e+00, 1.000000e-03, 2.000000e-03], [3.000000e-03, 4.000000e-03, 0.00500000035], [6.000000e-03, 7.000000e-03, 8.000000e-03], [0.00900000054, 0.0100000007, 0.0110000009], [1.200000e-02, 1.300000e-02, 1.400000e-02], [0.0150000006, 1.600000e-02, 1.700000e-02]]> : tensor<6x3xf32> | |
| iree_input.global private @_params$1 = dense<[0.000000e+00, 1.000000e+01, 2.000000e+01]> : tensor<3xf32> | |
| iree_input.global private @_params$2 = dense<5.000000e+00> : tensor<f32> | |
| iree_input.global private @_params$3 = dense<[[0.000000e+00, 0.00999999977, 2.000000e-02, 3.000000e-02, 4.000000e-02, 0.049999997, 6.000000e-02, 7.000000e-02, 8.000000e-02], [0.0899999961, 0.099999994, 1.100000e-01, 1.200000e-01, 1.300000e-01, 1.400000e-01, 0.149999991, 1.600000e-01, 1.700000e-01], [0.179999992, 1.900000e-01, 0.199999988, 2.100000e-01, 2.200000e-01, 0.229999989, 2.400000e-01, 2.500000e-01, 2.600000e-01]]> : tensor<3x9xf32> | |
| iree_input.global private @_params$4 = d |
| module @resnet_inference_model { | |
| iree_input.global private mutable @_variables$0 : tensor<64xf32> | |
| iree_input.global private mutable @_variables$1 : tensor<64xf32> | |
| iree_input.global private mutable @_variables$2 : tensor<64xf32> | |
| iree_input.global private mutable @_variables$3 : tensor<64xf32> | |
| iree_input.global private mutable @_variables$4 : tensor<256xf32> | |
| iree_input.global private mutable @_variables$5 : tensor<256xf32> | |
| iree_input.global private mutable @_variables$6 : tensor<256xf32> | |
| iree_input.global private mutable @_variables$7 : tensor<256xf32> | |
| iree_input.global private mutable @_variables$8 : tensor<64xf32> |
| Instantiating model... | |
| Model instantiated. | |
| module @resnet_inference_model { | |
| iree_input.global private mutable @_variables$0 : tensor<64xf32> | |
| iree_input.global private mutable @_variables$1 : tensor<64xf32> | |
| iree_input.global private mutable @_variables$2 : tensor<64xf32> | |
| iree_input.global private mutable @_variables$3 : tensor<64xf32> | |
| iree_input.global private mutable @_variables$4 : tensor<256xf32> | |
| iree_input.global private mutable @_variables$5 : tensor<256xf32> | |
| iree_input.global private mutable @_variables$6 : tensor<256xf32> |
| module { | |
| iree_input.global private mutable @init_params$0 : tensor<784x1024xf32> | |
| iree_input.global private mutable @init_params$1 : tensor<1024xf32> | |
| iree_input.global private mutable @init_params$2 : tensor<1024x1024xf32> | |
| iree_input.global private mutable @init_params$3 : tensor<1024xf32> | |
| iree_input.global private mutable @init_params$4 : tensor<1024x10xf32> | |
| iree_input.global private mutable @init_params$5 : tensor<10xf32> | |
| iree_input.global private mutable @opt_state$1 : tensor<784x1024xf32> | |
| iree_input.global private mutable @opt_state$3 : tensor<1024xf32> | |
| iree_input.global private mutable @opt_state$5 : tensor<1024x1024xf32> |