Last active
June 21, 2024 06:44
-
-
Save stemangiola/70580cb90c26b865a578edb9eb4219ae to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# PREMISE | |
# these implementation of HPCL is highly experimental. | |
# Therefore the interface, function names, arguments names, types of input | |
# are subject to change and to be extended. | |
# At this stage, the input is a named list of Seurat objects. | |
# In another branch (soon to be integrated), we accept SCE, H5 SCE, and anndata | |
BiocManager::install("MangiolaLaboratory/HPCell@grammar-hpc", upgrade_dependencies=FALSE) | |
BiocManager::install("crew", upgrade_dependencies=FALSE) | |
BiocManager::install("crew.cluster", upgrade_dependencies=FALSE) | |
BiocManager::install('satijalab/seurat-data', upgrade_dependencies=FALSE) | |
library(HPCell) | |
library(crew) | |
library(crew.cluster) | |
library(magrittr) | |
library(Seurat) | |
library(SeuratData) | |
options(Seurat.object.assay.version = "v5") | |
input_seurat <- | |
LoadData("pbmc3k") |> | |
_[,1:500] |> | |
list() |> | |
magrittr::set_names("pbmc3k") | |
# Define and execute the pipeline | |
input_seurat |> | |
# Initialise pipeline characteristics | |
initialise_hpc( | |
#debug_step = "empty_droplets_tbl_072a0a001eedb254", | |
# Default resourced | |
computing_resources = crew_controller_local(workers = 10) | |
# Slurm resources | |
# computing_resources = | |
# crew.cluster::crew_controller_slurm( | |
# slurm_memory_gigabytes_per_cpu = 5, | |
# workers = 50, | |
# tasks_max = 5, | |
# verbose = T | |
# ) | |
) |> | |
# Remove empty outliers | |
remove_empty_DropletUtils() |> | |
# Remove dead cells | |
remove_dead_scuttle() |> | |
# Score cell cycle | |
score_cell_cycle_seurat() |> | |
# Remove doublets | |
remove_doublets_scDblFinder() |> | |
# Annotation | |
annotate_cell_type() |> | |
normalise_abundance_seurat_SCT(factors_to_regress = c( | |
"subsets_Mito_percent", | |
"subsets_Ribo_percent", | |
"G2M.Score" | |
)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment