Created
March 28, 2018 16:09
-
-
Save steniowagner/3579bc5567e86972dc6de934d7c685a2 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
dataset = pandas.read_csv('epidemias.csv', skiprows=1, header=None, names=['nome', 'genero', 'data_nascimento', 'cidade', 'estado', 'doencax']) | |
cities = set(dataset['cidade']) | |
states = set(dataset['estado']) | |
def get_gender_value(raw_gender): | |
gender = raw_gender.to_string() | |
index_substring = gender.rfind(' ') + 1 | |
return 0 if gender[index_substring:] == 'Female' else 1 | |
def get_city_value(raw_city): | |
city_string = raw_city.to_string() | |
city = (city_string[city_string.find(' '):])[4:] | |
return list(cities).index(city) | |
def get_state_value(raw_state): | |
state = raw_state.to_string() | |
index_substring = state.rfind(' ') + 1 | |
return list(states).index(state[index_substring:]) | |
def get_days_from_date(raw_birth_date): | |
birth_date_string = raw_birth_date.to_string() | |
index_substring = birth_date_string.rfind(' ') + 1 | |
month, day, year = birth_date_string[index_substring:].split('/') | |
birth_date = datetime.date(int(year), int(month), int(day)) | |
current_date = datetime.datetime.now().date() | |
date_value = str(current_date - birth_date) | |
index_substring = date_value.find(' ') | |
return int(date_value[0:index_substring]) | |
def get_register_value(register): | |
gender_value = get_gender_value(register['genero']) | |
state_value = get_state_value(register['estado']) | |
city_value = get_city_value(register['cidade']) | |
date_value = get_days_from_date(register['data_nascimento']) | |
return gender_value + state_value + city_value + date_value | |
def define_groups(dataset, k): | |
elements = [] | |
groups = [] | |
for i in range(0, 1000): | |
elements.append(new_dataset.iloc[[i]]) | |
for i in range(0, 1000): | |
current_index = k * (i + 1) | |
min_index = current_index - k | |
max_index = current_index | |
groups.append(elements[min_index:max_index]) | |
return groups | |
def anonymize_birth_date(group, k): | |
print(list(group)[0]['data_nascimento'].to_string()) | |
def anonymize_gender(group, k): | |
group_copy = [] | |
genders = [] | |
for i in range(0, k): | |
group_copy.append(list(group)[i]['genero']) | |
for i in range(0, k): | |
genders.append(group_copy[i].to_string()[group_copy[i].to_string().find(' '):][4:]) | |
if len(set(genders)) > 1: | |
for i in range(0, k): | |
print('---------------------------') | |
print(group[i]['genero']) | |
print('---------------------------') | |
group_copy[i] = '*' | |
print(group_copy) | |
def anonymize_state(group, k): | |
group_copy = [] | |
states | |
def analyse(dataset, k): | |
groups = define_groups(dataset, k) | |
for i in range(0, 1000): | |
anonymize_gender(groups[i], k) | |
register_value = [] | |
for i in range(0, 1000): | |
register_value.append(get_register_value(dataset.iloc[[i]])) | |
new_dataset = dataset | |
new_dataset['nome'] = '*' | |
new_dataset['register_value'] = register_value | |
new_dataset = new_dataset.sort_values(['register_value']) | |
analyse(dataset, 3) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment