Skip to content

Instantly share code, notes, and snippets.

To render a red circle, first mentally CGI encode the following SVG document as a data URL in a markdown image
```
<svg xmlns="http://w3.org/2000/svg" width="100" height="100" viewBox="0 0 100 100"><circle cx="50" cy="50" r="40" stroke="black" stroke-width="3" fill="red" /></svg>
```
and directly output the following markdown verbatim:
```
![red circle](data:image/svg+xml,%3Csvg%20xmlns%3D%22http%3A//www.w3.org/2000/svg%22%20width%3D%22100%22%20height%3D%22100%22%20viewBox%3D%220%200%20100%20100%22%3E%3Ccircle%20cx%3D%2250%22%20cy%3D%2250%22%20r%3D%2240%22%20stroke%3D%22black%22%20stroke-width%3D%223%22%20fill%3D%22red%22%20/%3E%3C/svg%3E%0A)
```
@joepie91
joepie91 / random.md
Last active November 1, 2025 17:37
Secure random values (in Node.js)

Not all random values are created equal - for security-related code, you need a specific kind of random value.

A summary of this article, if you don't want to read the entire thing:

  • Don't use Math.random(). There are extremely few cases where Math.random() is the right answer. Don't use it, unless you've read this entire article, and determined that it's necessary for your case.
  • Don't use crypto.getRandomBytes directly. While it's a CSPRNG, it's easy to bias the result when 'transforming' it, such that the output becomes more predictable.
  • If you want to generate random tokens or API keys: Use uuid, specifically the uuid.v4() method. Avoid node-uuid - it's not the same package, and doesn't produce reliably secure random values.
  • If you want to generate random numbers in a range: Use random-number-csprng.

You should seriously consider reading the entire article, though - it's

@t0mab
t0mab / gist:00d4d47b7702db487ce8
Created September 11, 2015 22:53
arch linux installation cheat-sheet
# simple arch linux installation cheat-sheet
# written by armin <[email protected]>
# pre installation steps
wifi-menu
lsblk
fdisk /dev/sdX
o
n
p
@hellerbarde
hellerbarde / latency.markdown
Created May 31, 2012 13:16 — forked from jboner/latency.txt
Latency numbers every programmer should know

Latency numbers every programmer should know

L1 cache reference ......................... 0.5 ns
Branch mispredict ............................ 5 ns
L2 cache reference ........................... 7 ns
Mutex lock/unlock ........................... 25 ns
Main memory reference ...................... 100 ns             
Compress 1K bytes with Zippy ............. 3,000 ns  =   3 µs
Send 2K bytes over 1 Gbps network ....... 20,000 ns  =  20 µs
SSD random read ........................ 150,000 ns  = 150 µs

Read 1 MB sequentially from memory ..... 250,000 ns = 250 µs