Created
May 25, 2020 12:17
-
-
Save stephanlachnit/1bd93586fc6c205d4addbe2d68bce392 to your computer and use it in GitHub Desktop.
Create Graphs for Bethe-Weizsäcker binding energy per nukleon
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# SPDX-License-Identifier: Unlicense | |
import matplotlib.pyplot as plt | |
import numpy as np | |
# Graph Limits | |
Zmin = 1 | |
Zmax = 200 | |
Nmin = 1 | |
Nmax = 200 | |
# Bethe-Weizsäcker values in MeV | |
# from https://de.wikipedia.org/wiki/Bethe-Weizs%C3%A4cker-Formel (2020-05-25) | |
a_V = 15.67 | |
a_O = 17.23 | |
a_C = 0.714 | |
a_S = 93.15 | |
a_P = 11.2 | |
# Bethe-Weizsäcker formula | |
# from https://de.wikipedia.org/wiki/Bethe-Weizs%C3%A4cker-Formel (2020-05-25) | |
def E(Z, N): | |
A = Z + N | |
if Z % 2 == 0: | |
if N % 2 == 0: | |
sgn = 1 | |
else: | |
sgn = 0 | |
else: | |
if N % 2 == 0: | |
sgn = 0 | |
else: | |
sgn = -1 | |
out = a_V * A - a_O * A**(2/3) - a_C * Z * (Z-1) * A**(-1/3) - a_S * (N-Z)**2 / (4*A) + sgn * a_P * A**(-1/2) | |
if out < 0: | |
out = np.nan | |
else: | |
out /= A | |
return out | |
# Arrays | |
Z_array = range(Zmin, Zmax+1) | |
N_array = range(Nmin, Nmax+1) | |
E_array = [[None for N in N_array] for P in Z_array] | |
# Computation | |
for P in Z_array: | |
for N in N_array: | |
E_array[P-Zmin][N-Nmin] = E(P, N) | |
# Graph | |
plt.figure() | |
plt.title('binding energy per nucleon') | |
plt.xlim(Nmin, Nmax) | |
plt.xlabel('N') | |
plt.ylim(Zmin, Zmax) | |
plt.ylabel('Z') | |
graph = plt.pcolormesh(N_array, Z_array, E_array) | |
plt.colorbar(graph, label='binding energy in MeV') | |
graph.axes.set_aspect('equal') | |
plt.grid(True) | |
plt.tight_layout() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment