Created
April 6, 2012 17:43
-
-
Save stephenjbarr/2321592 to your computer and use it in GitHub Desktop.
Here is my trended R code to plot trended vs detrended data
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## Stephen J. Barr | |
## - this is some practice retrending the model | |
setwd("/home/stevejb/myhg/is-solver/indep_sim/") | |
retrendDemo <- function(THETA = 0.7880) { | |
## produce initial values | |
x = rnorm(30, sd=.03) | |
K = 500 | |
z0 = 1 | |
zmat = matrix(0, ncol = length(x), nrow=1) | |
zmat[1,1] = z0 | |
theta = 0.788 | |
ztrend = (z0 * cumprod(exp(x)))^(1/(1-theta)) | |
times = 1:length(x) | |
######################################## | |
## Plot comparaing the trended (blue) | |
## vs untrended (red) | |
plot(times, ztrend, type="l", col="blue", | |
ylim=(c(-2, max(ztrend))), | |
main = "Trended vs Untrended Shock") | |
par(new=T) | |
plot(times, x, type="l", col="red", | |
xaxt='n', axes=F) | |
axis(4, pretty(c(min(x), max(x))), col='red') | |
grid() | |
######################################## | |
dev.new() | |
Kuntrended = matrix(K, ncol = length(x), nrow=1) | |
Ktrended = matrix(K, ncol = length(x), nrow=1) | |
## K_t = k_t * {z^P_{t-1}}^(1/(1-THETA)) | |
for(t in 2:length(x)) { | |
Ktrended[1,t] = K * ztrend[(t-1)]^(1/(1-THETA)) | |
} | |
meaninv = mean((Ktrended[2:30] - 0.85*(Ktrended[1:29]))/Ktrended[1:29]) | |
plot(times, log(Ktrended), type="l", | |
main = paste("Mean inv: ", meaninv)) | |
print("Press enter to continue") | |
y <- scan(n=1) | |
dev.off() | |
dev.off() | |
} | |
retrendFromData <- function( | |
EPS_P_PATH = "bv9___--is--tr--epsilon_P_RAW.csv", | |
K_PATH = "bv9___--is--tr--k_prev_raw.csv", | |
P_PATH = "bv9___--is--tr--p_prev_raw.csv", | |
doplot = FALSE | |
) { | |
### VARS | |
THETA = 0.7880 | |
DELTA = 0.15 | |
z0 = 1 | |
######### | |
epsP = read.csv(EPS_P_PATH, header=FALSE, as.is=TRUE) | |
kmat = read.csv(K_PATH, header=FALSE, as.is=TRUE) | |
pmat = read.csv(P_PATH, header=FALSE, as.is=TRUE) | |
epsP = as.matrix(epsP) | |
kmat = as.matrix(kmat) | |
pmat = as.matrix(pmat) | |
######################################## | |
## trended k plot | |
if(doplot) { | |
mycolors = rainbow(10) | |
for(t in 1:min(nrow(kmat),10)) { | |
if(t == 1) { | |
plot(kmat[t,], type="l", col = mycolors[t], | |
main="DETRENDED K EXAMPLES") | |
} else { | |
lines(kmat[t,], type="l", col = mycolors[t]) | |
} | |
} ## end for | |
} | |
######################################## | |
## STEP 1 - CALCULATE THE CUMULATIVE PERMANENT SHOCK | |
## STEP 2 - RETREND THE K MATRIX | |
## STEP 3 - RETREND THE P MATRIX | |
## STEP 1 -- | |
ztrend_mat = matrix(0, nrow=nrow(epsP), | |
ncol=ncol(epsP)) | |
for( nn in 1:nrow(epsP)) { | |
ztrend_mat[nn,] = cumprod(exp(epsP[nn,]))##^(1/(1-THETA)) | |
} | |
## STEP 2 -- RETREND INV | |
Ktrended = matrix(0, ncol = ncol(kmat), | |
nrow = nrow(kmat)) | |
Ktrended[,1] = kmat[,1] | |
for(nn in 1:nrow(kmat)) { | |
for(tt in 2:ncol(kmat)) { | |
Ktrended[nn,tt] = kmat[nn,tt] * (ztrend_mat[nn, (t-1)])^(1/(1-THETA)) | |
} | |
} | |
## STEP 3 -- RETREND DEBT | |
Ptrended = matrix(0, ncol = ncol(pmat), nrow = nrow(pmat)) | |
Ptrended[,1] = pmat[,1] | |
for(nn in 1:nrow(kmat)) { | |
for(tt in 2:ncol(kmat)) { | |
Ptrended[nn, tt] = pmat[nn,tt] * ztrend_mat[nn,tt] | |
} | |
} | |
d_indic_trended = pmax(Ptrended, 0) | |
leverage_trended = d_indic_trended/Ktrended | |
d_indic_dtr = pmax(pmat, 0) | |
leverage_dtr = d_indic_dtr/kmat | |
make_inv_vector = function(kvec) { | |
KL = length(kvec) | |
invs = (kvec[2:KL] - (1-DELTA) * kvec[1:(KL-1)])/kvec[1:(KL-1)] | |
return(invs) | |
} | |
## CALCULATED TRENDED INVESTMENT | |
## | |
invmat_TR = t(apply(Ktrended, 1, make_inv_vector)) | |
invmat_DTR = t(apply(kmat, 1, make_inv_vector)) | |
mean_inv_TR = mean(invmat_TR) | |
mean_inv_DTR = mean(invmat_DTR) | |
var_inv_TR = var(as.vector(invmat_TR)) | |
var_inv_DTR = var(as.vector(invmat_DTR)) | |
## CALCULATE TRENDED LEVERAGE | |
## | |
mean_lev_TR = mean(leverage_trended) | |
mean_lev_DTR = mean(leverage_dtr) | |
var_lev_TR = var(as.vector(leverage_trended)) | |
var_lev_DTR = var(as.vector(leverage_dtr)) | |
## reslist = list(mean_TR = mean_TR, | |
## mean_DTR = mean_DTR, | |
## var_TR = var_TR, | |
## var_DTR = var_DTR) | |
## return(reslist) | |
print(paste("Mean inv TR", mean_inv_TR)) | |
print(paste("Mean inv DTR", mean_inv_DTR)) | |
print(paste("Mean lev TR", mean_lev_TR)) | |
print(paste("Mean lev DTR", mean_lev_DTR)) | |
} | |
retrendFromData() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment