Created
September 4, 2024 15:15
-
-
Save stephenmm/8771ec38592e66f39357907ece53d76b to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
""" | |
Helper file that has executable examples. | |
Ex: | |
~/hlp/PY_HLP.py map_simple_example | |
""" | |
def ex_args_kwargs( *args, **kwargs ): | |
for i in kwargs.items(): | |
print(f'{i}: {kwargs[i]}') | |
for i in args: | |
print(f'{i}{type(i)}') | |
def ex_dbg_interactive( *args, **kwargs ): | |
#import pdb: pdb.set_trace() # shorter but need to proceed command with 'p' to get completion | |
import pdb, rlcompleter | |
pdb.Pdb.complete=rlcompleter.Completer(locals()).complete | |
this = { "that": "other" } | |
pdb.set_trace() | |
def ex_map_simple( *args, **kwargs ): | |
''' The most simplified MAP example ''' | |
def double(x): | |
return x * 2 | |
numbers = [1,2,3,4,5] | |
# Map with function pointer | |
doubles = map(double, numbers) | |
print(doubles) | |
print(numbers,list(doubles)) | |
# Same but using lanbda (unamed function) | |
doubles = map(lambda x: x * 2, numbers) | |
print(doubles) | |
print(numbers,list(doubles)) | |
def ex_dict_comp( *args, **kwargs ): | |
# dict comprehension (programmatically build a dict) | |
myMap = { i: 2*i for i in range(3) } | |
print(myMap) | |
def ex_zip( *args, **kwargs ): | |
nums1=[1,2,3,4] | |
nums2=["a","b","c"] | |
for n1, n2 in zip(nums1,nums2): | |
print(n1,n2) | |
def ex_filter_simple( *args, **kwargs ): | |
numbers = [1,2,3,4,5] | |
evens = filter(lambda x: x % 2 == 1, numbers) | |
odds = filter(lambda x: x % 2 == 0, numbers) | |
print(evens,odds) | |
print(list(evens),list(odds)) | |
def ex_heap( *args, **kwargs ): | |
import heapq | |
# under the hood are arrays | |
minHeap=[] | |
heapq.heappush(miniHeap, 3) | |
heapq.heappush(miniHeap, 2) | |
heapq.heappush(miniHeap, 4) | |
# Min is always at index 0 | |
print(miniHeap[0]) # 2 | |
# Build heap from initial values | |
arr=[1,2,3,4,7,84,3] | |
heapq.heapify(arr) | |
while arr: | |
print(heapq.heappop(arr)) | |
def ex_palindrome( *args, **kwargs ): | |
# Ex of two pointers problem | |
def is_palindrome(string): | |
start=0 | |
end=len(string)-1 | |
while start < end: | |
if string[start] != string[end]: | |
return False | |
start +=1 | |
end -=1 | |
return True | |
print( is_palindrome("racecar")) | |
print( is_palindrome("abccba") ) | |
print( is_palindrome("123421") ) | |
def ex_slidewindow( *args, **kwargs ): | |
def max_subarry_sum_sliding_window( arr, k): | |
n=len(arr) | |
window_sum=sum(arr[:k]) | |
max_sum=window_sum | |
max_start_index=0 | |
for i in range(n-k): | |
window_sum=window_sum - arr[i] + arr[i+k] | |
print( window_sum ) | |
if window_sum>max_sum: | |
max_sum=window_sum | |
max_start_index=i+1 | |
return arr[max_start_index:max_start_index+k], max_start_index, max_sum | |
a=[3,2,7,5,9,6,2,1,1,8,7,8,0] | |
print( max_subarry_sum_sliding_window( a, 4 ) ) | |
print( max_subarry_sum_sliding_window( a, 3 ) ) | |
print( max_subarry_sum_sliding_window( a, 2 ) ) | |
print( max_subarry_sum_sliding_window( a, 1 ) ) | |
# python type hints (they are not enforced by python but third party tools can use) https://www.uninformativ.de/blog/postings/2022-04-21/0/POSTING-en.html | |
def ex_decorator_func_w_func( *args, **kwargs ): | |
import functools, time | |
def timer(func): | |
"""Print the runtime of the decorated function""" | |
@functools.wraps(func) | |
def wrapper_timer(*args, **kwargs): | |
start_time = time.perf_counter() | |
value = func(*args, **kwargs) | |
end_time = time.perf_counter() | |
run_time = end_time - start_time | |
print(f"Finished {func.__name__}() in {run_time:.4f} secs") | |
return value | |
return wrapper_timer | |
@timer | |
def waste_some_time(num_times): | |
val=0 | |
for _ in range(num_times): | |
val+=sum([number**2 for number in range(10_000)]) | |
return val | |
print( waste_some_time(1) ) | |
def ex_decorator_func_w_class( *args, **kwargs ): | |
class Power(object): | |
def __init__(self, func): | |
self._func = func | |
def __call__(self, a, b): | |
retval = self._func( a, b ) | |
return retval ** 2 | |
@Power | |
def multiply_together(a, b): | |
return a * b | |
print(multiply_together) | |
print(multiply_together(2,2)) | |
def ex_decorator_w_param( *args, **kwargs ): | |
class Power(object): | |
def __init__(self, arg): | |
self._arg = arg | |
def __call__(self, *param_arg): | |
"""If there are decorator arguments, __call__() is only called once as part of the decoration process. You can only give it a single argument, which is the function object If there are no decorator arguments, the function to be decorated is passed to the constructor. """ | |
if len(param_arg) == 1: | |
def wrapper(a, b): | |
retval = param_arg[0](a, b) | |
return retval ** self._arg | |
return wrapper | |
else: | |
expo = 2 | |
retval = self._arg(param_arg[0], param_arg[1]) | |
return retval ** expo | |
@Power | |
def multiply_together(a, b): | |
return a * b | |
print(multiply_together(2, 2)) | |
@Power(3) | |
def multiply_together(a, b): | |
return a * b | |
print(multiply_together(2, 2)) | |
def ex_constraint_solver( *args, **kwargs ): | |
import constraint, random | |
problem = constraint.Problem() | |
problem.addVariable("a", [1,2,3]) | |
problem.addVariable("b", [4,5,6]) | |
print( problem.getSolutions() ) | |
# [{'a': 3, 'b': 6}, {'a': 3, 'b': 5}, {'a': 3, 'b': 4}, | |
# {'a': 2, 'b': 6}, {'a': 2, 'b': 5}, {'a': 2, 'b': 4}, | |
# {'a': 1, 'b': 6}, {'a': 1, 'b': 5}, {'a': 1, 'b': 4}] | |
problem.addConstraint(lambda a, b: a*2 == b, ("a", "b")) | |
print( problem.getSolutions() ) | |
# [{'a': 3, 'b': 6}, {'a': 2, 'b': 4}] | |
problem = constraint.Problem() | |
problem.addVariables(["a", "b"], [1, 2, 3]) | |
problem.addConstraint(constraint.AllDifferentConstraint()) | |
print( problem.getSolutions() ) | |
# [{'a': 3, 'b': 2}, {'a': 3, 'b': 1}, {'a': 2, 'b': 3}, | |
# {'a': 2, 'b': 1}, {'a': 1, 'b': 2}, {'a': 1, 'b': 3}]: | |
problem = constraint.Problem() | |
problem.addVariables(["a", "b"], [1, 2, 3, 4]) | |
problem.addConstraint(lambda a, b: b==1 if (a%2==0) else b==2, ("a", "b")) | |
rslt = problem.getSolutions() | |
print( rslt ) | |
random.seed(100) # keep the results stable | |
random.shuffle( rslt ) #in-place shuffle | |
for i in range(len(rslt)): | |
print(f"{rslt[i]}") | |
def ex_udp_msg( *args, **kwargs ): | |
''' Test out sending UDP packets. Run in seperate terminals: ~/HLP/PY_HLP.py ex_udp_msg; nc -u localhost 12345 ''' | |
# Creating a socket: | |
# TCP: socket.socket(socket.AF_INET, socket.SOCK_STREAM) | |
# UDP: socket.socket(socket.AF_INET, socket.SOCK_DGRAM) | |
# Establishing a connection (TCP only): | |
# socket.connect((host, port)) | |
# Sending data: | |
# TCP: socket.send(data) | |
# UDP: socket.sendto(data, (host, port)) | |
# Receiving data: | |
# TCP: socket.recv(buffer_size) | |
# UDP: socket.recvfrom(buffer_size) | |
#UDPServerSocket = socket.socket(family=socket.AF_INET, type=socket.SOCK_DGRAM) | |
#UDPServerSocket.bind((localIP, localPort)) | |
import socket | |
# Server setup | |
server_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) | |
server_address = ('localhost', 12345) | |
server_socket.bind(server_address) | |
print("Chatbot server listening on {}:{}".format(*server_address)) | |
while True: | |
data, client_address = server_socket.recvfrom(1024) | |
message = data.decode('utf-8') | |
print("Received message from {}:{}: {}".format(*client_address, message)) | |
# Process message and generate a response | |
response = "You said: " + message | |
server_socket.sendto(response.encode('utf-8'), client_address) | |
def ex_bytearray_reverse( *args, **kwargs ): # reverse the bytes | |
msg = bytearray(b"Hello World!") | |
msg.reverse() | |
print(msg) | |
def ex_bytearray_xor_lrc( *args, **kwargs ): # Longitudinal Redundancy Check (LRC) | |
msg = bytearray(b"Hello World!") | |
lrc = 0 | |
for b in msg: | |
lrc ^= b | |
msg.append(lrc) | |
print(msg) | |
# python2 version: | |
msg = "Hello World!" | |
lrc = 0 | |
for b in msg: | |
lrc ^= ord(b) | |
msg += chr(lrc) | |
print(msg) | |
def ex_bytearray_xor_cypher( *args, **kwargs ): | |
key = 37 | |
msg = bytearray(b"Hello World!") | |
enc_msg = bytearray(x ^ key for x in msg) | |
print(enc_msg) | |
dec_msg=bytearray(x ^ key for x in enc_msg) | |
print(dec_msg) | |
def ex_bytearray_data2bin_file( *args, **kwargs ): | |
import struct | |
points = [(1,2),(3,4),(5,6),(7,8),(9,0)] | |
f = open("points.bin","wb") | |
msg = bytearray() | |
msg.extend(struct.pack("I",len(points))) | |
for x,y in points: | |
msg.extend(struct.pack("II",x,y)) | |
f.write(msg) | |
f.close() | |
def ex_bytearray_endianness( *args, **kwargs ): | |
''' | |
Import struct: The struct module provides functions for packing and unpacking binary data. | |
Create a bytearray: This is the data you want to convert. | |
Convert using struct.unpack: | |
The first argument to unpack is the format string, specifying the data type and endianness. | |
"<I" means unpack as a 4-byte unsigned integer in little-endian format. | |
">I" means unpack as a 4-byte unsigned integer in big-endian format. | |
unpack returns a tuple, so we take the first element to get the integer value. | |
''' | |
import struct | |
data = bytearray([0x12, 0x34, 0x56, 0x78]) | |
little_endian = struct.unpack("<I", data)[0] | |
print("little_endian: "+hex(little_endian)) | |
big_endian = struct.unpack(">I", data)[0] | |
print("big_endian: "+hex(big_endian)) | |
def get_func_names(): | |
''' Get the name of functions defined in this "module" ''' | |
module = sys.modules[__name__] | |
is_function_in_module = lambda obj: inspect.isfunction(obj) and inspect.getmodule(obj) == module | |
script_functions = inspect.getmembers(module, is_function_in_module) | |
func_names = [] | |
for func in script_functions: | |
if func[0].startswith("ex_"): | |
func_names.append( func[0] ) | |
return f"Callable functions:\n {func_names}\n" | |
# Here’s the complete code for an agent and its components: | |
from pyuvm import * | |
class MyDriver(uvm_driver): | |
def run_phase(self): | |
while True: | |
transaction = self.seq_item_port.get_next_item() | |
self.drive(transaction) | |
self.seq_item_port.item_done() | |
def drive(self, transaction): | |
pass | |
class MyMonitor(uvm_monitor): | |
def run_phase(self): | |
while True: | |
transaction = self.collect() | |
self.analysis_port.write(transaction) | |
def collect(self): | |
return None # Replace with actual collection code | |
class MySequencer(uvm_sequencer): | |
def run_phase(self): | |
while True: | |
transaction = MyTransaction() | |
self.seq_item_export.put_next_item(transaction) | |
class MyAgent(uvm_agent): | |
def build_phase(self): | |
super().build_phase() | |
self.driver = MyDriver("driver", self) | |
self.monitor = MyMonitor("monitor", self) | |
self.sequencer = MySequencer("sequencer", self) | |
def connect_phase(self): | |
super().connect_phase() | |
self.driver.seq_item_port.connect(self.sequencer.seq_item_export) | |
class MyEnv(uvm_env): | |
def build_phase(self): | |
super().build_phase() | |
self.agent = MyAgent("agent", self) | |
# TODO - | |
# def ex_pyuvm( *args, **kwargs ): | |
# def ex_zip( *args, **kwargs ): | |
# def ex_graph( *args, **kwargs ): # simple example of creating graph with nodes and archs | |
if __name__ == '__main__': | |
import inspect, sys | |
from argparse import ArgumentParser, RawTextHelpFormatter | |
parser = ArgumentParser( | |
description = __doc__+get_func_names(), | |
formatter_class = RawTextHelpFormatter | |
) | |
# Add your arguments here | |
parser.add_argument("name", help="Name of the function to run") | |
parser.add_argument('unparsed_args', nargs='*') | |
args = parser.parse_args() | |
try: | |
eval( f"{args.name}"+f"(*args.unparsed_args)" ) | |
except: | |
raise | |
print( "Done" ) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment