Last active
February 10, 2023 23:49
-
-
Save stephenroller/f45a372e231825f9f5578e9e705f4e95 to your computer and use it in GitHub Desktop.
Example of mixout on generic modules.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
""" | |
Example of a generic Mixout implementation. (Lee et al., 2019). | |
https://arxiv.org/abs/1909.11299 | |
Implementation by Stephen Roller (https://stephenroller.com). | |
Updated 2020-02-10 to include 1/(1 - p) correction term. Thanks to | |
Cheolhyoung Lee for making this correction. | |
Example output: | |
$ python mixout.py | |
parameter: 0.weight Vanilla distance: 0.00239 Mixout distance: 0.00128 | |
parameter: 0.bias Vanilla distance: 0.000191 Mixout distance: 5.8e-05 | |
parameter: 2.weight Vanilla distance: 0.000494 Mixout distance: 0.000258 | |
parameter: 2.bias Vanilla distance: 1.75e-05 Mixout distance: 1.01e-05 | |
""" | |
import torch | |
import torch.nn as nn | |
def MixoutWrapper(module: nn.Module, p: float = 0.5): | |
""" | |
Implementation of Mixout (https://arxiv.org/abs/1909.11299). | |
Use with: | |
>>> mixout_model = model.apply(MixoutWrapper). | |
""" | |
# duplicate all the parameters, making copies of them and freezing them | |
module._names = [] | |
module._params_orig = dict() | |
_params_learned = nn.ParameterDict() | |
for n, q in list(module.named_parameters(recurse=False)): | |
c = q.clone().detach() | |
c.requires_grad = False | |
module._params_orig[n] = c | |
_params_learned[n] = q | |
module._names.append(n) | |
delattr(module, n) | |
setattr(module, n, c) | |
if module._names: | |
module._params_learned = _params_learned | |
def mixout(module, n): | |
if module.training: | |
o = module._params_orig[n] | |
mask = (torch.rand_like(o) < p).type_as(o) | |
# update 2020-02- | |
return ( | |
mask * module._params_orig[n] | |
+ (1 - mask) * module._params_learned[n] | |
- p * module._params_orig[n] | |
) / (1 - p) | |
else: | |
return module._params_learned[n] | |
def hook(module, input): | |
for n in module._names: | |
v = mixout(module, n) | |
setattr(module, n, v) | |
module.register_forward_pre_hook(hook) | |
return module | |
def learn_vanilla(): | |
model = nn.Sequential(nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, 2)) | |
with torch.no_grad(): | |
for p in model.parameters(): | |
p.fill_(1) | |
o = torch.optim.Adam(model.parameters(), 3e-4) | |
for _ in range(10): | |
o.zero_grad() | |
x = torch.randn(16, 64) | |
y = torch.ones((16), dtype=torch.long) | |
loss = torch.nn.functional.cross_entropy(model(x), y) | |
loss.backward() | |
o.step() | |
return list(model.named_parameters()) | |
def learn_mixout(): | |
model = nn.Sequential(nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, 2)) | |
with torch.no_grad(): | |
for p in model.parameters(): | |
p.fill_(1) | |
mixed = model.apply(MixoutWrapper) | |
o = torch.optim.Adam(mixed.parameters(), 3e-4) | |
for _ in range(10): | |
o.zero_grad() | |
x = torch.randn(16, 64) | |
y = torch.ones((16), dtype=torch.long) | |
loss = torch.nn.functional.cross_entropy(mixed(x), y) | |
loss.backward() | |
o.step() | |
return list(mixed.named_parameters()) | |
def main(): | |
""" | |
Test mixout by checking the mixout moves slower from the initial parameters | |
than the vanilla implementation. | |
""" | |
vanilla = learn_vanilla() | |
mixed = learn_mixout() | |
for (name, pv), (name2, pm) in zip(vanilla, mixed): | |
# we expect the parameters of the mixed model to be closer to all ones | |
# than the vanilla is | |
vanilla_distance = ((pv - 1) ** 2).sum() | |
mixed_distance = ((pm - 1) ** 2).sum() | |
print( | |
f"parameter: {name:10s} " | |
f"Vanilla distance: {vanilla_distance:.03} " | |
f"Mixout distance: {mixed_distance:.03}" | |
) | |
assert mixed_distance < vanilla_distance | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I haven't tried it with MultiGPU. Would happily accept a patch to fix it.