You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[24 pts] Classify the following systems, with input $x(t)$ (or $x[n]$) and output $y(t)$ (or $y[n]$). In each column, write "yes", "no", or "?" if the property is not edcidable with the given information. (+1 for correct, 0 for blank, -0.5 for incorrect). (For 1d, you are given the system is known to be linear and time=invariant.) For 1b and 1d, 2 test input cases are given.
Let $\Pi(t) = u(t + \frac12) - u(t - \frac12)$.
System
Causal
Linear
Time-invariant
BIBO stable
a. $y(t) = 2x(t-1)-5$
yes
no
yes
yes
b. \begin{cases} x & \text{if input }x(t)=0 \ tu(t) & \text{if input }x(t)=u(t-1)\end{cases}
Answer each part independently. Note $\Pi(t) = u(t+\frac12) - u(t-\frac12)$.
[4 pts] a. Complete the table with the approprate type of Fourier transform to use (FS, FT, DTFT, or DFT) on a signal of each type.
aperiodic in time
periodic in time
continuous time
discrete time
[3 pts] b. $X(j\omega) = \cos(\omega/2) + 1$. Find $x(t)$.
[4 pts] c. A periodic signal $x(t) = p(t) * \sum_{n=-\infty}^\infty \delta(t-2n)$, where $\mathcal{F}{p(t)}=P(j\omega)=\cos(\omega/2)+1$.
[7 pts] d. A periodic signal $x(t)$ has period 4 seconds and Fourier Series coefficients $a_k = \frac{\sin(k\pi/4)}{k\pi}$. Find the time average power $\frac{1}{T}\int_T x^2(t)dt$.
[9 pts] e. Initial and final value.
i. Given $X(s) = \frac{s+3{s^2+3s+2}$. Find $x(0^+)$.
ii. Given causal $X(z) = \frac{z^{-2} + 2z^{-3}}{1-2z^{-1}+\frac54z^{-2}-\frac14z^{-3}}$.
Find $\lim_{n\rightarrow \infty}x[n]$.
iii. Given causal $X(z) = \frac{z^{-2} + 2z^{-3}}{1-2z^{-1}+\frac54z^{-2}-\frac14z^{-3}}$.
Find $x[0]$.
[5 pts] f. Given $X(s) = \frac{s+5}{s^3+3s^2+2s}$. Find $x(t)$.
A continuous time filter has impulsse response $h(t) = e^{-\pi t/2} u(t)$.
[5 pts] a. The filter is sampled such that $h[n] = h(nT_s)$ where the sampling rate $T_s = 1$ sec. Find the Z transform of $h[n]$.
[5 pts] b. Sketch $|H(e^{j\omega})|$, labelling maximum and minimum amplitude. (Maximum nd minimum may be left as functions of $e$).