Created
February 2, 2015 04:53
-
-
Save stormxuwz/a6f077a600f2ad4e2abd to your computer and use it in GitHub Desktop.
Some regression/classification in R
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#### LDA,QDA, RDA, naive baye functions #### | |
lda.model=function(traindata){ | |
lda.result=lda(Y~.,data=traindata) | |
return(lda.result) | |
} | |
lda.pred=function(model,dataSets.X){ | |
predresult=lapply(dataSets.X,function(X) predict(model,X)$class) | |
errorInfo(predresult,"lda") | |
return(predresult) | |
} | |
#################################### | |
qda.model=function(traindata){ | |
qda.result=qda(Y~.,data=traindata) | |
return(qda.result) | |
} | |
qda.pred=function(model,dataSets.X){ | |
predresult=lapply(dataSets.X,function(X) predict(model,X)$class) | |
errorInfo(predresult,"qda") | |
return(predresult) | |
} | |
#################################### | |
rda.model=function(traindata){ | |
rda.result=rda(Y~.,data=traindata) | |
return(rda.result) | |
} | |
rda.pred=function(model,dataSets.X){ | |
predresult=lapply(dataSets.X,function(X) predict(model,X)$class) | |
errorInfo(predresult,"rda") | |
return(predresult) | |
} | |
#################################### | |
baye.model=function(traindata){ | |
baye.result=naiveBayes(Y~.,data=traindata) | |
return(baye.result) | |
##### Mannually programming #### | |
#traindata.X=traindata[,-1] | |
#Y=traindata$Y | |
#ntrain=length(Y) | |
#nfeatures=ncol(traindata.X) | |
#p=sum(Y==3)/ntrain | |
#for(i in 1:nfeatures){ | |
# traindata.X[,1] | |
#} | |
} | |
baye.pred=function(model,dataSets.X){ | |
predresult=lapply(dataSets.X,function(X) predict(model,X)) | |
errorInfo(predresult,"baye") | |
return(predresult) | |
} | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#### Functions for logistic regression model #### | |
logreg.select=function(traindata){ | |
logreg.result=glm(Y~.,data=traindata,family=binomial,maxit=200) #Choose 200 as maximum iteration | |
glm0 = glm(Y ~ 1, data = traindata, family = binomial(logit)) | |
n=nrow(traindata) | |
#step-wise model | |
logreg.resultAIC=step(glm0, scope=list(upper=logreg.result), trace=F,direction="forward") | |
logreg.resultBIC=step(glm0, scope=list(upper=logreg.result), trace=F,k=log(nrow(traindata)),direction="forward") | |
#regression with lasso | |
X=traindata[,-1] | |
Y=traindata[,1] | |
X=as.matrix(X) | |
logreg.resultLasso=cv.glmnet(X,Y,family="binomial",alpha=1) | |
return(list(fullmodel=logreg.result,AICmodel=logreg.resultAIC,BICmodel=logreg.resultBIC,lassomodel=logreg.resultLasso)) | |
} | |
logreg.pred=function(log.model,dataSets.X,addtitle="logit"){ | |
tmpfunc=function(data.X){ | |
Yhat=predict(log.model,data.X,type = "response") | |
Yhat=ifelse(Yhat>0.5,8,3) | |
Yhat=as.factor(Yhat) | |
return(Yhat) | |
} | |
predresult=lapply(dataSets.X,tmpfunc) | |
errorInfo(predresult,addtitle) | |
return(predresult) | |
} | |
logreg.lasso.pred=function(model,dataSets.X){ | |
tmpfunc=function(data.X){ | |
Yhat=predict(model,as.matrix(data.X),type="response",s="lambda.min") | |
Yhat=ifelse(Yhat>0.5,8,3) | |
Yhat=as.factor(Yhat) | |
return(Yhat) | |
} | |
predresult=lapply(dataSets.X,tmpfunc) | |
errorInfo(predresult,"Lasso") | |
return(predresult) | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
###### This is the funciton for SVM ######## | |
svm.model=function(traindata,test.X,kn){ | |
if(kn=="quar") | |
svm.result=ksvm(Y~.,data=traindata,kernel="polydot",kpar=list(degree=2)) | |
else | |
svm.result=ksvm(Y~.,data=traindata,kernel=kn) | |
return(svm.result) | |
} | |
svm.pred=function(model,dataSets.X,addtitle=""){ | |
predresult=lapply(dataSets.X,function(X) predict(model,X)) | |
errorInfo(predresult,addtitle) | |
return(predresult) | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
##### This is a function for tree model | |
tree.build=function(traindata){ | |
### Buld the tree | |
tree.result=tree(Y~.,data=traindata,mindev=0.005,minsize=2) | |
png("large_tree.png",width=800,height=800,res=100) | |
plot(tree.result) | |
text(tree.result) | |
dev.off() | |
cv=cv.tree(tree.result, K=5) | |
png("tree_cv.png",width=800,height=800,res=100) | |
plot(cv) | |
dev.off() | |
return(list(tree.result,cv)) | |
} | |
tree.prune=function(tree.result,size){ | |
tree.prune = prune.tree(tree.result, method="deviance",best=size); | |
png("Pruned_tree.png",width=800,height=800,res=100) | |
plot(tree.prune) | |
text(tree.prune) | |
dev.off() | |
return(tree.prune) | |
} | |
tree.pred=function(tree.model,dataSets.X){ | |
tmpfunc=function(X){ | |
Y_hat=predict(tree.model,X) | |
### Y_hat is a matrix with probability ### | |
colClass=as.numeric(c(colnames(Y_hat)[1],colnames(Y_hat)[2])) | |
Y_hat=ifelse(Y_hat[,1]>Y_hat[,2],colClass[1],colClass[2]) | |
Y_hat=as.factor(Y_hat) | |
return(Y_hat) | |
} | |
predresult=lapply(dataSets.X,tmpfunc) | |
errorInfo(predresult) | |
return(predresult) | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
##### This is the function for random forest ##### | |
rf.model=function(traindata){ | |
rf.result=randomForest(Y~.,data=traindata,importance=T,ntree=1000) #mtry is XX by default | |
sortedImpt = sort(importance(rf.result,scale = F)[,3], decreasing = T ); | |
png("rf_imp.png",width=800,height=800,res=100) | |
barplot(sortedImpt, horiz=TRUE, col="blue", space=.5, names.arg=substr(names(sortedImpt), 2, 5), cex.names=0.5) | |
dev.off() | |
return(list(rf.result,sortedImpt)) | |
} | |
rf.pred=function(model,dataSets.X){ | |
predresult=lapply(dataSets.X,function(X) predict(model,X)) | |
errorInfo(predresult) | |
return(predresult) | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
### This is the function to gbm ### | |
gbm.model=function(traindata){ | |
traindata$Y=ifelse(traindata$Y==3,0,1) | |
gbm.result=gbm(Y~.,data=traindata,n.trees=5000,shrinkage=0.005,bag.fraction=0.5,train.fraction=1,distribution="adaboost",cv.folds = 3) | |
png("GBMiter.png",width=1000,height=800,res=100) | |
#best.iter.oob <- gbm.perf(gbm.result,method="OOB") | |
#best.iter.test <- gbm.perf(gbm.result,method="test") | |
best.iter.cv <- gbm.perf(gbm.result,method="cv") | |
dev.off() | |
return(list(gbm.result,best.iter.cv)) | |
} | |
gbm.pred=function(model,dataSets.X,best.iter){ | |
tmpfunc=function(X){ | |
Yhat=predict(model,X,best.iter) | |
Yhat=plogis(Yhat) ### Convert to p value from logit value | |
Yhat=ifelse(Yhat>0.5,8,3) | |
Yhat=as.factor(Yhat) | |
} | |
predresult=lapply(dataSets.X,tmpfunc) | |
errorInfo(predresult) | |
return(predresult) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment