Created
January 31, 2017 06:21
-
-
Save stormxuwz/a7151cb7b56e9c31bd7adf5d11b34d49 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# This is a pure python K-means implementation | |
import numpy as np | |
def calDistance(x,y): | |
# return the distance of x and y | |
return np.sum((x-y)**2) | |
def assignClusters(centers,data): | |
distance = np.zeros((len(data),len(centers))) | |
for i in range(len(centers)): | |
distance[:,i] = [calDistance(point,centers[i]) for point in data] | |
return np.argmin(distance,1) | |
def updateCenters(data,clusterIndex,K): | |
# return new centers | |
newCenters = [] | |
for i in range(K): | |
newCenters.append(np.mean(data[clusterIndex == i,:],axis = 0)) | |
return newCenters | |
def converge(oldCenters,newCenters): | |
return set([tuple(a) for a in oldCenters]) == set([tuple(a) for a in newCenters]) | |
def k_means(data,K): | |
# data: with shape [nsample, nfeature] | |
# K: the number of cluster | |
# intialize start | |
N = data.shape[0] | |
initializedRandom = np.random.choice(range(N),size = 3, replace = False) | |
centers = [data[i,:] for i in initializedRandom] | |
while True: | |
clusterIndex = assignClusters(centers, data) | |
newCenters = updateCenters(data, clusterIndex, K) | |
if converge(centers, newCenters): | |
break | |
else: | |
centers = newCenters | |
return newCenters, clusterIndex | |
def init_board_gauss(N, k): | |
n = float(N)/k | |
X = [] | |
for i in range(k): | |
c = (np.random.uniform(-1, 1), np.random.uniform(-1, 1)) | |
print c | |
s = np.random.uniform(0.03,0.3) | |
x = [] | |
while len(x) < n: | |
a, b = np.array([np.random.normal(c[0], s), np.random.normal(c[1], s)]) | |
# Continue drawing points from the distribution in the range [-1,1] | |
if abs(a) < 1 and abs(b) < 1: | |
x.append([a,b]) | |
X.extend(x) | |
X = np.array(X)[:N] | |
return X | |
data = init_board_gauss(1000, 3) | |
import matplotlib.pyplot as plt | |
#plt.plot(data[:,0],data[:,1],"o") | |
newCenters, clusterIndex = k_means(data, 3) | |
print newCenters | |
plt.plot([center[0] for center in newCenters],[center[1] for center in newCenters],"ro") | |
plt.scatter(data[:,0],data[:,1],c = clusterIndex) | |
plt.show() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment