-
-
Save stray-leone/49896df4aaf0fe67f11c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import theano | |
from theano.tensor.io import send, recv, mpi_cmps | |
import theano.sandbox.linalg as linalg | |
from theano.gof.sched import sort_schedule_fn | |
from time import time | |
dot = theano.tensor.dot | |
dtype = 'float32' | |
n = 500 | |
run = False | |
# Set up a linker that orders nodes to overlap computation and communication | |
mpi_scheduler = sort_schedule_fn(*mpi_cmps) | |
mpi_linker = theano.OpWiseCLinker(schedule=mpi_scheduler) | |
mpi_mode = theano.Mode(linker=mpi_linker) | |
# initialize MPI | |
from mpi4py import MPI | |
import numpy as np | |
comm = MPI.COMM_WORLD | |
rank = comm.Get_rank() | |
if rank == 0 or not run: | |
# Create some input variables | |
mu = theano.tensor.matrix('mu') | |
Sigma = theano.tensor.matrix('Sigma') | |
H = theano.tensor.matrix('H') | |
R = theano.tensor.matrix('R') | |
data = theano.tensor.matrix('data') | |
input_shapes = { mu: (n, 1), | |
Sigma: (n, n), | |
H: (n, n), | |
R: (n, n), | |
data: (n, 1)} | |
# Some intermediate variables | |
A = dot(Sigma, H.T) | |
B = R + dot(H, dot(Sigma, H.T)) | |
new_mu = mu + dot(A, linalg.solve(B, dot(H, mu) - data)) | |
new_mu.name = "updated_mu" | |
# Send data to 1 | |
receipts = send(H, 1, 1), send(B, 1, 2), send(Sigma, 1, 3), send(A, 1, 4) | |
# Get back the work that 1 did | |
new_Sigma = recv((n, n), dtype, 1, 5) | |
# Compile | |
inputs_0 = (mu, Sigma, H, R, data) | |
outputs_0 = (new_mu, new_Sigma) + receipts | |
f0 = theano.function(inputs_0, outputs_0, mode=mpi_mode) | |
nodes0 = f0.maker.linker.make_all()[-1] # for debug | |
if run: | |
# Generate random inputs | |
numeric_inputs = [np.random.rand(*input_shapes[inp]).astype(dtype) | |
for inp in inputs_0] | |
a, b, _, _, _, _ = f0(*numeric_inputs) # warm start | |
# Run and time | |
comm.barrier() | |
starttime = time() | |
a, b, _, _, _, _ = f0(*numeric_inputs) | |
comm.barrier() | |
endtime = time() | |
print endtime - starttime | |
if rank == 1 or not run: | |
# Receive some data from 0 | |
H = recv((n, n), dtype, 0, 1) | |
B = recv((n, n), dtype, 0, 2) | |
Sigma = recv((n, n), dtype, 0, 3) | |
A = recv((n, n), dtype, 0, 4) | |
# Do some computation | |
new_Sigma = Sigma - dot(dot(A, linalg.solve(B, H)), Sigma) | |
new_Sigma.name = "updated_Sigma" | |
# Send it back to 0 | |
receipt = send(new_Sigma, 0, 5) | |
# compile locally using Theano | |
inputs_1 = () | |
outputs_1 = (receipt, ) | |
f1 = theano.function(inputs_1, outputs_1, mode=mpi_mode) | |
nodes1 = f1.maker.linker.make_all()[-1] # for debug | |
if run: | |
_ = f1() # warm start | |
comm.barrier() | |
_ = f1() | |
comm.barrier() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment