Last active
December 29, 2015 14:49
-
-
Save straypacket/7686801 to your computer and use it in GitHub Desktop.
Journal:
Context for MongoDB + geo alerts
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Aggregate users and count location updates | |
db.locations.aggregate([ | |
{ $group: {_id: "$locatable_id", number: {$sum: 1} }}, | |
{ $sort: { "number": -1}} | |
]) | |
// Get all updates from a user, ordered by time | |
db.locations.find( | |
{ "locatable_id": ObjectId("51ac7bccee4340adef00000d") }, | |
{'_id': 0, 'coordinates': 1, 'created_at': 1} | |
).sort({"created_at": 1}) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(rmongodb) | |
mg2 <- mongo.create(host="192.168.13.141") | |
# Simple distinct | |
users <- mongo.distinct(mg2, "fern_osm.locations", "locatable_id") | |
# Simple query | |
buf <- mongo.bson.buffer.create() | |
#mongo.bson.buffer.append.object(buf, "locatable_id", "5179075dee434003f8000003") | |
query <- mongo.bson.from.buffer(buf) | |
# Make query | |
count <- mongo.count(mg2, "fern_osm.locations", query) | |
cur <- mongo.find(mg2, "fern_osm.locations", query) | |
# Grab results | |
locatable_id <- vector("character", count) | |
updated_at <- vector("character", count) | |
updated_at_hour <- vector("numeric", count) | |
updated_at_dayofweek <- vector("numeric", count) | |
coordinates_lon <- vector("numeric", count) | |
coordinates_lat <- vector("numeric", count) | |
value_list <- NULL | |
i <- 1 | |
while (mongo.cursor.next(cur)){ | |
value <- mongo.cursor.value(cur) | |
value_list <- mongo.bson.to.list(value) | |
locatable_id[i] <- as.character.mongo.oid(value_list['locatable_id']$locatable_id) | |
updated_at[i] <- value_list['updated_at']$updated_at | |
updated_at_hour[i] <- as.POSIXlt(value_list['updated_at']$updated_at)$hour | |
updated_at_dayofweek[i]<- as.POSIXlt(value_list['updated_at']$updated_at)$wday | |
coordinates_lon[i] <- value_list['coordinates']$coordinates[1] | |
coordinates_lat[i] <- value_list['coordinates']$coordinates[2] | |
i <- i + 1 | |
#print(i) | |
} | |
df <- data.frame(locatable_id=locatable_id, updated_at=updated_at, updated_at_hour=updated_at_hour, updated_at_dayofweek=updated_at_dayofweek, coordinates_lon=coordinates_lon, coordinates_lat=coordinates_lat) | |
#df <- as.data.frame(list(locatable_id=locatable_id, updated_at=updated_at, coordinates_lon=coordinates_lon, coordinates_lat=coordinates_lat)) | |
#summary(df) | |
mongo.cursor.destroy(cur) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(plyr) | |
library('fpc') | |
library("RCurl") | |
library("rjson") | |
library("gtools") | |
# Crawling function | |
crawler <- function(tree, name, d) { | |
treeArray[tree$shortName] <<- name | |
c <- length(tree$categories) | |
if (c) { | |
for (i in 1:c) { | |
tree$categories[[i]]$shortName | |
crawler(tree$categories[[i]], name) | |
} | |
} | |
} | |
tod <- array(c(8,10,10,12,12,14,14,16,16,18,18,20,20,22,22,24,0,2,6,8),c(2,10)) | |
#tod <- array(c(8,10,10,12,12,14,14,16,16,18,18,20,20,22,22,24),c(2,8)) | |
#tod <- array(c(8,10,10,12,12,14,14,16,16,18,18,20,20,22,22,24),c(2,8)) | |
# Select user | |
#Unknown #4: 51dcf3edee43408c250001e5(24198 points) NG | |
#Unknown #3: 51ba886eee4340ece1000039 (23848 points) NOK | |
#Fernando: 51b57fb8ee4340bec5000016 (17685 points) OK | |
#Unknown #2: 528b209d9db037c57900043d (5565 points) NG | |
#Unknown #1: 51f0c181ee4340139700002f (5003 points) NG | |
dfu <- subset(df, locatable_id=="51b57fb8ee4340bec5000016") | |
# Select weekdays | |
dfuwd <- subset(dfu, updated_at_dayofweek > 0 & updated_at_dayofweek < 6) | |
# Select weekends | |
dfuwe <- subset(dfu, updated_at_dayofweek == 0 | updated_at_dayofweek == 6) | |
# Sort results | |
dfuo <- arrange(dfuwd,desc(updated_at)) | |
#dfuo <- arrange(dfuwe,desc(updated_at)) | |
final <- {} | |
for (t in 1:(length(tod)/2)) { | |
x <- {} | |
# Create dataset for given time range | |
sequence <- seq(tod[1,t],tod[2,t]-1) | |
for ( h in sequence ) { | |
aux <- subset(dfuo, updated_at_hour == h ) | |
x <- rbind(x, aux) | |
} | |
print("==========================================") | |
print(sequence) | |
print(nrow(x)) | |
# Now, we only keep the last rows of a string of locations | |
# i.e. the rows whose next movement is after 1 hour | |
if (nrow(x) > 0){ | |
for (r in 2:nrow(x)-1) { | |
a <- x[r,] | |
b <- x[r+1,] | |
tdiff <- as.numeric(apply(a[c('updated_at')],1,function(r) paste(r))) - as.numeric(apply(b[c('updated_at')],1,function(r) paste(r))) | |
if (tdiff > 600){ | |
#print(tdiff) | |
#print(a) | |
final <- rbind(final,x[r,]) | |
} | |
} | |
if (is.null(final)) { | |
final <- rbind(final,x[r+1,]) | |
} | |
} | |
print(final) | |
} | |
# Build Foursquare tree | |
FSCats <- getURL("https://api.foursquare.com/v2/venues/categories?oauth_token=ADB02WREAK4W4R5BDYBVEXHWB14VZM4TQOIWZCYAD1GY22EK&v=20120410") | |
FSTree <- fromJSON(FSCats, method = "C") | |
treeArray <- {} | |
for (sc in 1:length(FSTree$response$categories)) { | |
crawler(FSTree$response$categories[[sc]], FSTree$response$categories[[sc]]$shortName) | |
} | |
# Clustering | |
par(mfrow=c(5,2)) | |
radius = 500 | |
timing <- c('Week Day 8-10','Week Day 10-12','Week Day 12-14','Week Day 14-16','Week Day 16-18','Week Day 18-20','Week Day 20-22','Week Day 22-24','Week Day 0-2','Week Day 6-8') | |
#timing <- c('Weekend 8-10','Weekend 10-12','Weekend 12-14','Weekend 14-16','Weekend 16-18','Weekend 18-20','Weekend 20-22','Weekend 22-24','Weekend 0-2','Weekend 6-8') | |
for (t in 1:(length(tod)/2)) { | |
# Create dataset for given time range | |
sequence <- seq(tod[1,t],tod[2,t]-1) | |
datax <- {} | |
datay <- {} | |
for ( h in sequence ) { | |
aux <- subset(dfuo, updated_at_hour == h ) | |
#aux <- subset(final, updated_at_hour == h ) | |
if (nrow(aux) > 0) { | |
for (r in seq(1:nrow(aux))){ | |
a <- aux[r,] | |
datax <- append(datax, as.numeric(apply(a[c('coordinates_lon')],1,function(r) paste(r)))) | |
datay <- append(datay, as.numeric(apply(a[c('coordinates_lat')],1,function(r) paste(r)))) | |
} | |
} | |
} | |
x <- {} | |
x <- cbind(datax,datay) | |
if(is.null(x)){ | |
plot(c(0,0), c(0,0), main=paste(timing[t]), xlim = c(139, 140), ylim = c(35, 36), ylab = "Latitude" , xlab = "Longitude") | |
} | |
else{ | |
if (nrow(x) > 0){ | |
d <- dbscan(x,eps=0.025, MinPts=20, scale=1, method="raw") | |
plot(d, x, main=paste(timing[t]), xlim = c(139.6, 140), ylim = c(35.5, 36), ylab = "Latitude" , xlab = "Longitude") | |
#plot(d, x, main=paste(timing[t],"density",0.025), xlim = c(139.7, 139.85), ylim = c(35.6, 35.8)) | |
#legend("bottomright", inset=.05, title="Clusters", c("1","2","3"), fill=tail(palette(), n=-1), horiz=TRUE) | |
venue <- {} | |
venue_count <- {} | |
venue_distance <- {} | |
finalvenue <- {} | |
venue[""] = 0 | |
venue_count[""] = 0 | |
venue_distance[""] = 0 | |
# Context inference | |
if (max(d$cluster)) { | |
for (c in 1:max(d$cluster)) { | |
# Cluster center | |
clusCenter <- colMeans(x[d$cluster==c, ]) | |
# Fetch context: Foursquare | |
Uctx <- getURL(paste("https://api.foursquare.com/v2/venues/search?ll=",clusCenter[2],",",clusCenter[1],"&oauth_token=ADB02WREAK4W4R5BDYBVEXHWB14VZM4TQOIWZCYAD1GY22EK&v=20120410&radius=",radius,"&intent=browse", sep="")) | |
# Convert JSON to R-object | |
Rctx <- fromJSON(Uctx,method = "C") | |
# Parse context | |
ctx <- {} | |
if (length(Rctx$response$venues)) { | |
for (v in 1:length(Rctx$response$venues)) { | |
if(length(Rctx$response$venues[[v]]$categories)) { | |
cat <- treeArray[Rctx$response$venues[[v]]$categories[[1]]$shortName] | |
dist <- Rctx$response$venues[[v]]$location$distance | |
if (dist < radius) { | |
ctx <- append( ctx, paste(dist,cat,Rctx$response$venues[[v]]$name) ) | |
if(is.na(venue[cat])){ | |
venue[cat] <- 1 | |
venue_count[cat] <- Rctx$response$venues[[v]]$stats$checkinsCount | |
venue_distance[cat] <- dist | |
} | |
else { | |
venue[cat] <- venue[cat] + 1 | |
venue_count[cat] <- venue[cat] + Rctx$response$venues[[v]]$stats$checkinsCount | |
venue_distance[cat] <- venue_distance[cat] + dist | |
} | |
} | |
} | |
} | |
} | |
} | |
} | |
if (length(venue) > 1) { | |
for (fv in 1:length(venue)){ | |
if(venue[fv] >= 1){ | |
finalvenue <- append(finalvenue, venue[fv]) | |
} | |
} | |
# Infer context | |
print(paste(timing[t], " density: ", 0.025, " cluster: ", c, " of ", length(finalvenue), " with ", sum(d$cluster == c) ," elements @ ", clusCenter[2], "," ,clusCenter[1], sep="")) | |
#sortedctx <- mixedsort(ctx) | |
#print(sortedctx) | |
sortedvenues <- mixedsort(finalvenue) | |
#sortedvenuecounts <- mixedsort(venue_count) | |
#for (sv in 1:length(sortedvenues)) { | |
#mongo.insert(mongo, "test.people", list(name=uid, category=names(sortedvenues[sv]), qty=matrix(sortedvenues)[sv], timeslot=timingWE[i], clusterpoints=sum(d$cluster == c), loc=c(clusCenter[2], clusCenter[1]))) | |
#} | |
#print(tail(sortedvenues,2)) | |
for (n in seq(3)){ | |
cat <- names(sortedvenues[length(sortedvenues)-n-1]) | |
print(paste(" - ", cat, ": ", sortedvenues[cat], "venues, ", venue_count[cat], " checkins, at an avg distance of ", venue_distance[cat]/venue_count[cat])) | |
} | |
} | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment