Last active
March 13, 2025 17:03
-
-
Save strengejacke/8c1ad0d82f962b6842ca141ea4625200 to your computer and use it in GitHub Desktop.
Modelling Within-Subject Variation in psychological trials with Reaction Times
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(easystats) | |
set.seed(1234) | |
n <- 100 | |
baseline <- rnorm(n, 5, 1.5) | |
d <- data.frame( | |
RT1 = rnorm(n, baseline, 0.5), | |
RT2 = rnorm(n, baseline, 0.5), | |
RT3 = rnorm(n, baseline, 0.5), | |
RT4 = rnorm(n, baseline, 0.5), | |
RT5 = rnorm(n, baseline, 0.5), | |
RT6 = rnorm(n, baseline, 0.5), | |
RT7 = rnorm(n, baseline, 0.5), | |
RT8 = rnorm(n, baseline, 0.5), | |
RT9 = rnorm(n, baseline, 0.5), | |
RT10 = rnorm(n, baseline, 0.5), | |
ID = 1:n, | |
time = 1 | |
) | |
set.seed(1234) | |
d2 <- data.frame( | |
RT1 = rnorm(n, d$RT1, 0.5), | |
RT2 = rnorm(n, d$RT2, 0.5), | |
RT3 = rnorm(n, d$RT3, 0.5), | |
RT4 = rnorm(n, d$RT4, 0.5), | |
RT5 = rnorm(n, d$RT5, 0.5), | |
RT6 = rnorm(n, d$RT6, 0.5), | |
RT7 = rnorm(n, d$RT7, 0.5), | |
RT8 = rnorm(n, d$RT8, 0.5), | |
RT9 = rnorm(n, d$RT9, 0.5), | |
RT10 = rnorm(n, d$RT10, 0.5), | |
ID = 1:n, | |
time = 2 | |
) | |
set.seed(1234) | |
d3 <- data.frame( | |
RT1 = rnorm(n, d$RT1, 0.5), | |
RT2 = rnorm(n, d$RT2, 0.5), | |
RT3 = rnorm(n, d$RT3, 0.5), | |
RT4 = rnorm(n, d$RT4, 0.5), | |
RT5 = rnorm(n, d$RT5, 0.5), | |
RT6 = rnorm(n, d$RT6, 0.5), | |
RT7 = rnorm(n, d$RT7, 0.5), | |
RT8 = rnorm(n, d$RT8, 0.5), | |
RT9 = rnorm(n, d$RT9, 0.5), | |
RT10 = rnorm(n, d$RT10, 0.5), | |
ID = 1:n, | |
time = 3 | |
) | |
d_final <- rbind(d, d2, d3) | |
d_final <- reshape_longer( | |
d_final, | |
select = RT1:RT10, | |
names_to = "trial", | |
values_to = "ReactionTime" | |
) | |
d_median <- rbind(d, d2, d3) | |
d_median$ReactionTime <- apply(data_select(d_median, select = RT1:RT10), MARGIN = 1, stats::median) | |
d_final$trialID <- as.numeric(as.factor(d_final$trial)) | |
priors <- data.frame(prior = "gamma(10,1)", class = "ranef") | |
m1 <- glmmTMB::glmmTMB( | |
ReactionTime ~ time + (1 + time | ID), | |
data = d_final, | |
priors = priors | |
) | |
m2 <- glmmTMB::glmmTMB( | |
ReactionTime ~ time + (1 + time | ID), | |
data = d_median, | |
priors = priors | |
) | |
m3 <- glmmTMB::glmmTMB( | |
ReactionTime ~ time + (1 + time + trialID | ID), | |
data = d_final, | |
priors = priors | |
) | |
model_parameters(m1, ci_random = 0.95) | |
#> # Fixed Effects | |
#> | |
#> Parameter | Coefficient | SE | 95% CI | z | p | |
#> ----------------------------------------------------------------- | |
#> (Intercept) | 4.76 | 0.15 | [ 4.46, 5.06] | 31.36 | < .001 | |
#> time | -6.65e-03 | 0.01 | [-0.03, 0.02] | -0.48 | 0.629 | |
#> | |
#> # Random Effects | |
#> | |
#> Parameter | Coefficient | 95% CI | |
#> ----------------------------------------------------- | |
#> SD (Intercept: ID) | 1.49 | [1.29, 1.72] | |
#> SD (time: ID) | 0.04 | [0.02, 0.08] | |
#> Cor (Intercept~time: ID) | 0.89 | [0.34, 0.96] | |
#> SD (Residual) | 0.59 | [0.57, 0.60] | |
#> | |
#> Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed | |
#> using a Wald z-distribution approximation. | |
model_parameters(m2, ci_random = 0.95) | |
#> # Fixed Effects | |
#> | |
#> Parameter | Coefficient | SE | 95% CI | z | p | |
#> ----------------------------------------------------------------- | |
#> (Intercept) | 4.77 | 0.15 | [ 4.48, 5.06] | 31.91 | < .001 | |
#> time | -0.01 | 0.01 | [-0.04, 0.01] | -1.20 | 0.230 | |
#> | |
#> # Random Effects | |
#> | |
#> Parameter | Coefficient | 95% CI | |
#> ----------------------------------------------------- | |
#> SD (Intercept: ID) | 1.49 | [1.29, 1.71] | |
#> SD (time: ID) | 0.10 | [0.08, 0.12] | |
#> Cor (Intercept~time: ID) | 0.37 | [0.12, 0.56] | |
#> SD (Residual) | 0.10 | [0.08, 0.11] | |
#> | |
#> Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed | |
#> using a Wald z-distribution approximation. | |
model_parameters(m3, ci_random = 0.95) | |
#> # Fixed Effects | |
#> | |
#> Parameter | Coefficient | SE | 95% CI | z | p | |
#> ----------------------------------------------------------------- | |
#> (Intercept) | 4.74 | 0.15 | [ 4.46, 5.03] | 32.65 | < .001 | |
#> time | -6.85e-03 | 0.01 | [-0.03, 0.02] | -0.52 | 0.603 | |
#> | |
#> # Random Effects | |
#> | |
#> Parameter | Coefficient | 95% CI | |
#> --------------------------------------------------------- | |
#> SD (Intercept: ID) | 1.64 | [ 1.42, 1.89] | |
#> SD (time: ID) | 0.04 | [ 0.02, 0.08] | |
#> SD (trialID: ID) | 0.06 | [ 0.05, 0.08] | |
#> Cor (Intercept~time: ID) | 0.87 | [ 0.19, 0.96] | |
#> Cor (Intercept~trialID: ID) | -0.51 | [-0.81, 0.05] | |
#> Cor (time~trialID: ID) | -0.12 | [-0.57, 0.33] | |
#> SD (Residual) | 0.56 | [ 0.54, 0.57] | |
#> | |
#> Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed | |
#> using a Wald z-distribution approximation. | |
estimate_means(m1, c("time", "ID=c(14,18,79)")) | |
#> Estimated Marginal Means | |
#> | |
#> time | ID | Mean | SE | 95% CI | z | |
#> ---------------------------------------------- | |
#> 1 | 14 | 4.85 | 0.15 | [4.55, 5.15] | 31.55 | |
#> 2 | 14 | 4.84 | 0.16 | [4.53, 5.15] | 30.88 | |
#> 3 | 14 | 4.84 | 0.16 | [4.52, 5.15] | 30.04 | |
#> 1 | 18 | 3.47 | 0.15 | [3.17, 3.78] | 22.61 | |
#> 2 | 18 | 3.44 | 0.16 | [3.13, 3.74] | 21.92 | |
#> 3 | 18 | 3.40 | 0.16 | [3.08, 3.71] | 21.11 | |
#> 1 | 79 | 5.41 | 0.15 | [5.11, 5.71] | 35.21 | |
#> 2 | 79 | 5.42 | 0.16 | [5.11, 5.73] | 34.57 | |
#> 3 | 79 | 5.43 | 0.16 | [5.11, 5.75] | 33.72 | |
#> | |
#> Variable predicted: ReactionTime | |
#> Predictors modulated: time, ID=c(14,18,79) | |
estimate_means(m2, c("time", "ID=c(14,18,79)")) | |
#> Estimated Marginal Means | |
#> | |
#> time | ID | Mean | SE | 95% CI | z | |
#> ---------------------------------------------- | |
#> 1 | 14 | 4.89 | 0.15 | [4.59, 5.19] | 31.97 | |
#> 2 | 14 | 4.79 | 0.16 | [4.49, 5.10] | 30.54 | |
#> 3 | 14 | 4.70 | 0.16 | [4.39, 5.02] | 29.05 | |
#> 1 | 18 | 3.62 | 0.15 | [3.32, 3.92] | 23.71 | |
#> 2 | 18 | 3.60 | 0.16 | [3.29, 3.90] | 22.91 | |
#> 3 | 18 | 3.57 | 0.16 | [3.25, 3.89] | 22.05 | |
#> 1 | 79 | 5.42 | 0.15 | [5.12, 5.72] | 35.46 | |
#> 2 | 79 | 5.49 | 0.16 | [5.18, 5.80] | 34.98 | |
#> 3 | 79 | 5.56 | 0.16 | [5.25, 5.88] | 34.37 | |
#> | |
#> Variable predicted: ReactionTime | |
#> Predictors modulated: time, ID=c(14,18,79) | |
estimate_means(m3, c("time", "ID=c(14,18,79)")) | |
#> Estimated Marginal Means | |
#> | |
#> time | ID | Mean | SE | 95% CI | z | |
#> ---------------------------------------------- | |
#> 1 | 14 | 4.85 | 0.15 | [4.56, 5.14] | 32.85 | |
#> 2 | 14 | 4.84 | 0.15 | [4.55, 5.14] | 32.07 | |
#> 3 | 14 | 4.84 | 0.16 | [4.53, 5.14] | 31.11 | |
#> 1 | 18 | 3.47 | 0.15 | [3.18, 3.76] | 23.54 | |
#> 2 | 18 | 3.44 | 0.15 | [3.14, 3.73] | 22.75 | |
#> 3 | 18 | 3.40 | 0.16 | [3.09, 3.70] | 21.85 | |
#> 1 | 79 | 5.41 | 0.15 | [5.12, 5.70] | 36.66 | |
#> 2 | 79 | 5.42 | 0.15 | [5.12, 5.72] | 35.90 | |
#> 3 | 79 | 5.43 | 0.16 | [5.13, 5.74] | 34.94 | |
#> | |
#> Variable predicted: ReactionTime | |
#> Predictors modulated: time, ID=c(14,18,79) | |
#> Predictors averaged: trialID (5.5) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment