Skip to content

Instantly share code, notes, and snippets.

@stsievert
Last active June 5, 2018 19:37
Show Gist options
  • Save stsievert/38780f0c746b2f1c8eb32feea4dd14de to your computer and use it in GitHub Desktop.
Save stsievert/38780f0c746b2f1c8eb32feea4dd14de to your computer and use it in GitHub Desktop.
Hyperband example
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"TODO: \n",
"1. Use dask.distributed joblib interface\n",
"1. Firm up cross validation.\n",
" * Use GridSearchCV for very small grids"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'../dask-ml/dask_ml/__init__.py'"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import sys\n",
"sys.path = ['../dask-ml/'] + sys.path\n",
"import dask_ml\n",
"\n",
"from dask_searchcv import Hyperband\n",
"\n",
"import numpy as np\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.linear_model import SGDClassifier\n",
"import sklearn\n",
"import time\n",
"import numpy as np\n",
"import dask.array as da\n",
"from dask_ml.linear_model import PartialSGDClassifier\n",
"import scipy.stats as stats\n",
"from dask_ml.datasets import make_classification\n",
"dask_ml.__file__"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0, 1]\n"
]
}
],
"source": [
"n, d = int(1e3), int(8e3)\n",
"X, y = make_classification(chunks=(n//10, d))\n",
"classes = da.unique(y).compute().tolist()\n",
"print(classes)\n",
"\n",
"# model = PartialSGDClassifier(loss='hinge', penalty='elasticnet',\n",
"# alpha=0.0001, l1_ratio=0.5,\n",
"# max_iter=1.0, warm_start=True, average=True,\n",
"# classes=classes)\n",
"# params = {'alpha': np.logspace(-4, 0, num=1000),\n",
"# 'l1_ratio': stats.uniform(0, 1),\n",
"# 'eta0': np.logspace(-4, 1, num=1000),\n",
"# 'power_t': stats.uniform(0, 1)}\n",
"\n",
"class TestFunction:\n",
" def _fn(self):\n",
" return self.value\n",
"\n",
" def get_params(self, deep=None, **kwargs):\n",
" return {k: getattr(self, k) for k, v in kwargs.items()}\n",
"\n",
" def set_params(self, **kwargs):\n",
" for k, v in kwargs.items():\n",
" setattr(self, k, v)\n",
" return self\n",
"\n",
" def partial_fit(self, *args, **kwargs):\n",
" pass\n",
"\n",
" def score(self, *args, **kwargs):\n",
" return self._fn()\n",
" \n",
"model = TestFunction()\n",
"params = {'value': stats.uniform(0, 1)}"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"from distributed import Client, LocalCluster\n",
"import distributed\n",
"\n",
"kwargs = {'n_workers': 8, 'threads_per_worker': 1}\n",
"cluster = LocalCluster(**kwargs)\n",
"client = Client(cluster)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/ssievert/Developer/stsievert/dask-searchcv/dask_searchcv/adaptive.py:246: UserWarning: model has no attribute warm_start. Hyperband will assume it is reusing previous calls to `partial_fit` during each call to `partial_fit`\n",
" warnings.warn('model has no attribute warm_start. Hyperband will assume it '\n"
]
},
{
"data": {
"text/plain": [
"Hyperband(eta=3, max_iter=None,\n",
" model=<__main__.TestFunction object at 0x114d55ba8>, n_jobs=-1,\n",
" params={'value': <scipy.stats._distn_infrastructure.rv_frozen object at 0x114d55c50>})"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"alg = Hyperband(model, params, max_iter=81, n_jobs=-1)\n",
"\n",
"alg.fit(X, y, classes=classes)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4\n",
"[0 1 2 3]\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>bracket</th>\n",
" <th>bracket_iter</th>\n",
" <th>model_id</th>\n",
" <th>num_models</th>\n",
" <th>partial_fit_iters</th>\n",
" <th>val_score</th>\n",
" <th>value</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>198</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>s=0-0</td>\n",
" <td>5</td>\n",
" <td>81.0</td>\n",
" <td>0.900382</td>\n",
" <td>0.900382</td>\n",
" </tr>\n",
" <tr>\n",
" <th>199</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>s=0-1</td>\n",
" <td>5</td>\n",
" <td>81.0</td>\n",
" <td>0.107369</td>\n",
" <td>0.107369</td>\n",
" </tr>\n",
" <tr>\n",
" <th>200</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>s=0-2</td>\n",
" <td>5</td>\n",
" <td>81.0</td>\n",
" <td>0.694792</td>\n",
" <td>0.694792</td>\n",
" </tr>\n",
" <tr>\n",
" <th>201</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>s=0-3</td>\n",
" <td>5</td>\n",
" <td>81.0</td>\n",
" <td>0.914636</td>\n",
" <td>0.914636</td>\n",
" </tr>\n",
" <tr>\n",
" <th>202</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>s=0-4</td>\n",
" <td>5</td>\n",
" <td>81.0</td>\n",
" <td>0.129101</td>\n",
" <td>0.129101</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" bracket bracket_iter model_id num_models partial_fit_iters val_score \\\n",
"198 0 0 s=0-0 5 81.0 0.900382 \n",
"199 0 0 s=0-1 5 81.0 0.107369 \n",
"200 0 0 s=0-2 5 81.0 0.694792 \n",
"201 0 0 s=0-3 5 81.0 0.914636 \n",
"202 0 0 s=0-4 5 81.0 0.129101 \n",
"\n",
" value \n",
"198 0.900382 \n",
"199 0.107369 \n",
"200 0.694792 \n",
"201 0.914636 \n",
"202 0.129101 "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"df = pd.DataFrame(alg.history)\n",
"print(df.bracket.max())\n",
"print(df.bracket_iter.unique())\n",
"df.tail()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>fit_time</th>\n",
" <th>param_value</th>\n",
" <th>params</th>\n",
" <th>score_time</th>\n",
" <th>test_score</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.000003</td>\n",
" <td>0.255089</td>\n",
" <td>{'value': 0.255089294638416}</td>\n",
" <td>0.000002</td>\n",
" <td>0.255089</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0.000004</td>\n",
" <td>0.357995</td>\n",
" <td>{'value': 0.35799455755066456}</td>\n",
" <td>0.000002</td>\n",
" <td>0.357995</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0.000006</td>\n",
" <td>0.306098</td>\n",
" <td>{'value': 0.30609797148984563}</td>\n",
" <td>0.000002</td>\n",
" <td>0.306098</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0.000004</td>\n",
" <td>0.410605</td>\n",
" <td>{'value': 0.41060493214300653}</td>\n",
" <td>0.000002</td>\n",
" <td>0.410605</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0.000003</td>\n",
" <td>0.281013</td>\n",
" <td>{'value': 0.28101256339566794}</td>\n",
" <td>0.000001</td>\n",
" <td>0.281013</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" fit_time param_value params score_time \\\n",
"0 0.000003 0.255089 {'value': 0.255089294638416} 0.000002 \n",
"1 0.000004 0.357995 {'value': 0.35799455755066456} 0.000002 \n",
"2 0.000006 0.306098 {'value': 0.30609797148984563} 0.000002 \n",
"3 0.000004 0.410605 {'value': 0.41060493214300653} 0.000002 \n",
"4 0.000003 0.281013 {'value': 0.28101256339566794} 0.000001 \n",
"\n",
" test_score \n",
"0 0.255089 \n",
"1 0.357995 \n",
"2 0.306098 \n",
"3 0.410605 \n",
"4 0.281013 "
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"results = pd.DataFrame(alg.cv_results_)\n",
"results.head()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.vegalite.v2+json": {
"$schema": "https://vega.github.io/schema/vega-lite/v2.4.1.json",
"config": {
"view": {
"height": 300,
"width": 400
}
},
"data": {
"values": [
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-0",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.255089294638416,
"value": 0.255089294638416
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-1",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.35799455755066456,
"value": 0.35799455755066456
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-2",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.30609797148984563,
"value": 0.30609797148984563
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-3",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.41060493214300653,
"value": 0.41060493214300653
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-4",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.28101256339566794,
"value": 0.28101256339566794
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-5",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.14983279555223994,
"value": 0.14983279555223994
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-6",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.03724476657876352,
"value": 0.03724476657876352
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-7",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.24283889661645552,
"value": 0.24283889661645552
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-8",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.43624899738620415,
"value": 0.43624899738620415
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-9",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.1259701006755395,
"value": 0.1259701006755395
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-10",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.6247378844080136,
"value": 0.6247378844080136
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-11",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.26292009282075013,
"value": 0.26292009282075013
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-12",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.3847239249139309,
"value": 0.3847239249139309
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-13",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.09363768674544848,
"value": 0.09363768674544848
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-14",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.3968372762546708,
"value": 0.3968372762546708
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-15",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.04966101781162646,
"value": 0.04966101781162646
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-16",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.07053351784667439,
"value": 0.07053351784667439
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-17",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.19767947389245222,
"value": 0.19767947389245222
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-18",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.21965898774042036,
"value": 0.21965898774042036
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-19",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.30223992932537,
"value": 0.30223992932537
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-20",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.8568562265766103,
"value": 0.8568562265766103
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-21",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.8634357561780677,
"value": 0.8634357561780677
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-22",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.5961578720922096,
"value": 0.5961578720922096
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-23",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.8414156877367199,
"value": 0.8414156877367199
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-24",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.9832947243737319,
"value": 0.9832947243737319
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-25",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.4015920585592375,
"value": 0.4015920585592375
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-26",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.9886000814750499,
"value": 0.9886000814750499
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-27",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.8630372120227231,
"value": 0.8630372120227231
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-28",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.6168249955003426,
"value": 0.6168249955003426
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-29",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.7542604417224272,
"value": 0.7542604417224272
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-30",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.38577600758225006,
"value": 0.38577600758225006
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-31",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.8495372142841935,
"value": 0.8495372142841935
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-32",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.7136547369286995,
"value": 0.7136547369286995
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-33",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.5125324798301732,
"value": 0.5125324798301732
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-34",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.2697884689294532,
"value": 0.2697884689294532
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-35",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.47433113013173467,
"value": 0.47433113013173467
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-36",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.7414678924149338,
"value": 0.7414678924149338
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-37",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.9504471810932272,
"value": 0.9504471810932272
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-38",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.0926828651533067,
"value": 0.0926828651533067
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-39",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.9930985157564423,
"value": 0.9930985157564423
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-40",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.792005367556333,
"value": 0.792005367556333
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-41",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.5664157335049629,
"value": 0.5664157335049629
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-42",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.14255116864383965,
"value": 0.14255116864383965
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-43",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.6374229943278855,
"value": 0.6374229943278855
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-44",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.9416811198695607,
"value": 0.9416811198695607
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-45",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.5233035614909473,
"value": 0.5233035614909473
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-46",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.2961471807290872,
"value": 0.2961471807290872
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-47",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.03167018728254145,
"value": 0.03167018728254145
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-48",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.23740291557396598,
"value": 0.23740291557396598
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-49",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.3268546616772945,
"value": 0.3268546616772945
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-50",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.7536103549129561,
"value": 0.7536103549129561
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-51",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.6853245243191206,
"value": 0.6853245243191206
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-52",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.3208428881131936,
"value": 0.3208428881131936
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-53",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.3999160227163605,
"value": 0.3999160227163605
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-54",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.30862192792672594,
"value": 0.30862192792672594
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-55",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.2410501447348532,
"value": 0.2410501447348532
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-56",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.20853064961912804,
"value": 0.20853064961912804
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-57",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.24424168909824662,
"value": 0.24424168909824662
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-58",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.27685855433175965,
"value": 0.27685855433175965
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-59",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.09810455908641114,
"value": 0.09810455908641114
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-60",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.3526445537293754,
"value": 0.3526445537293754
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-61",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.619540274449653,
"value": 0.619540274449653
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-62",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.7571422074352991,
"value": 0.7571422074352991
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-63",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.8485396575204348,
"value": 0.8485396575204348
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-64",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.40289166275873944,
"value": 0.40289166275873944
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-65",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.9025567240915049,
"value": 0.9025567240915049
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-66",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.23091609184296047,
"value": 0.23091609184296047
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-67",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.006730820220868572,
"value": 0.006730820220868572
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-68",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.4675723347302734,
"value": 0.4675723347302734
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-69",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.15285990269743188,
"value": 0.15285990269743188
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-70",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.8256574902419666,
"value": 0.8256574902419666
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-71",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.04369890155202538,
"value": 0.04369890155202538
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-72",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.42368280201257924,
"value": 0.42368280201257924
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-73",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.1760461610964058,
"value": 0.1760461610964058
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-74",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.3403230718697814,
"value": 0.3403230718697814
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-75",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.4750103313815053,
"value": 0.4750103313815053
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-76",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.03858391870328437,
"value": 0.03858391870328437
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-77",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.2536437874796632,
"value": 0.2536437874796632
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-78",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.019881940837096934,
"value": 0.019881940837096934
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-79",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.43674421572353916,
"value": 0.43674421572353916
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 0,
"model_id": "s=4-80",
"num_models": 81,
"partial_fit_iters": 1,
"val_score": 0.5835949625868366,
"value": 0.5835949625868366
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-41",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.5664157335049629,
"value": 0.5664157335049629
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-80",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.5835949625868366,
"value": 0.5835949625868366
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-22",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.5961578720922096,
"value": 0.5961578720922096
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-28",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.6168249955003426,
"value": 0.6168249955003426
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-61",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.619540274449653,
"value": 0.619540274449653
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-10",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.6247378844080136,
"value": 0.6247378844080136
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-43",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.6374229943278855,
"value": 0.6374229943278855
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-51",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.6853245243191206,
"value": 0.6853245243191206
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-32",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.7136547369286995,
"value": 0.7136547369286995
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-36",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.7414678924149338,
"value": 0.7414678924149338
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-50",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.7536103549129561,
"value": 0.7536103549129561
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-29",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.7542604417224272,
"value": 0.7542604417224272
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-62",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.7571422074352991,
"value": 0.7571422074352991
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-40",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.792005367556333,
"value": 0.792005367556333
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-70",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.8256574902419666,
"value": 0.8256574902419666
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-23",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.8414156877367199,
"value": 0.8414156877367199
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-63",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.8485396575204348,
"value": 0.8485396575204348
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-31",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.8495372142841935,
"value": 0.8495372142841935
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-20",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.8568562265766103,
"value": 0.8568562265766103
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-27",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.8630372120227231,
"value": 0.8630372120227231
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-21",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.8634357561780677,
"value": 0.8634357561780677
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-65",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.9025567240915049,
"value": 0.9025567240915049
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-44",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.9416811198695607,
"value": 0.9416811198695607
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-37",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.9504471810932272,
"value": 0.9504471810932272
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-24",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.9832947243737319,
"value": 0.9832947243737319
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-26",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.9886000814750499,
"value": 0.9886000814750499
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 1,
"model_id": "s=4-39",
"num_models": 27,
"partial_fit_iters": 4,
"val_score": 0.9930985157564423,
"value": 0.9930985157564423
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 2,
"model_id": "s=4-20",
"num_models": 9,
"partial_fit_iters": 13,
"val_score": 0.8568562265766103,
"value": 0.8568562265766103
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 2,
"model_id": "s=4-27",
"num_models": 9,
"partial_fit_iters": 13,
"val_score": 0.8630372120227231,
"value": 0.8630372120227231
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 2,
"model_id": "s=4-21",
"num_models": 9,
"partial_fit_iters": 13,
"val_score": 0.8634357561780677,
"value": 0.8634357561780677
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 2,
"model_id": "s=4-65",
"num_models": 9,
"partial_fit_iters": 13,
"val_score": 0.9025567240915049,
"value": 0.9025567240915049
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 2,
"model_id": "s=4-44",
"num_models": 9,
"partial_fit_iters": 13,
"val_score": 0.9416811198695607,
"value": 0.9416811198695607
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 2,
"model_id": "s=4-37",
"num_models": 9,
"partial_fit_iters": 13,
"val_score": 0.9504471810932272,
"value": 0.9504471810932272
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 2,
"model_id": "s=4-24",
"num_models": 9,
"partial_fit_iters": 13,
"val_score": 0.9832947243737319,
"value": 0.9832947243737319
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 2,
"model_id": "s=4-26",
"num_models": 9,
"partial_fit_iters": 13,
"val_score": 0.9886000814750499,
"value": 0.9886000814750499
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 2,
"model_id": "s=4-39",
"num_models": 9,
"partial_fit_iters": 13,
"val_score": 0.9930985157564423,
"value": 0.9930985157564423
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 3,
"model_id": "s=4-24",
"num_models": 3,
"partial_fit_iters": 40,
"val_score": 0.9832947243737319,
"value": 0.9832947243737319
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 3,
"model_id": "s=4-26",
"num_models": 3,
"partial_fit_iters": 40,
"val_score": 0.9886000814750499,
"value": 0.9886000814750499
},
{
"-bracket": -4,
"bracket": 4,
"bracket_iter": 3,
"model_id": "s=4-39",
"num_models": 3,
"partial_fit_iters": 40,
"val_score": 0.9930985157564423,
"value": 0.9930985157564423
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-0",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.08152521013114067,
"value": 0.08152521013114067
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-1",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.2221653441738215,
"value": 0.2221653441738215
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-2",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.30931942943346247,
"value": 0.30931942943346247
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-3",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.1214743101185155,
"value": 0.1214743101185155
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-4",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.8740136298674489,
"value": 0.8740136298674489
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-5",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.11706969835385295,
"value": 0.11706969835385295
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-6",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.275617665426233,
"value": 0.275617665426233
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-7",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.07717688375635745,
"value": 0.07717688375635745
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-8",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.08467856648517169,
"value": 0.08467856648517169
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-9",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.43503255566983956,
"value": 0.43503255566983956
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-10",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.5635331125604098,
"value": 0.5635331125604098
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-11",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.7853656925859994,
"value": 0.7853656925859994
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-12",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.9333630131970945,
"value": 0.9333630131970945
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-13",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.15193947539618013,
"value": 0.15193947539618013
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-14",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.1263772158549944,
"value": 0.1263772158549944
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-15",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.23584857169809814,
"value": 0.23584857169809814
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-16",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.2863673171824711,
"value": 0.2863673171824711
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-17",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.09214873624274911,
"value": 0.09214873624274911
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-18",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.4248583852941076,
"value": 0.4248583852941076
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-19",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.2965248141765894,
"value": 0.2965248141765894
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-20",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.4643761326025403,
"value": 0.4643761326025403
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-21",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.1854603736303514,
"value": 0.1854603736303514
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-22",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.6410047048296427,
"value": 0.6410047048296427
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-23",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.4762374256997044,
"value": 0.4762374256997044
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-24",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.6632251719501194,
"value": 0.6632251719501194
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-25",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.40902525851740645,
"value": 0.40902525851740645
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-26",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.4555104167318682,
"value": 0.4555104167318682
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-27",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.5066351462069696,
"value": 0.5066351462069696
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-28",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.18748054354534271,
"value": 0.18748054354534271
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-29",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.09542829191753122,
"value": 0.09542829191753122
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-30",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.6428917169224059,
"value": 0.6428917169224059
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-31",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.12785731853619253,
"value": 0.12785731853619253
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-32",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.35029906919765585,
"value": 0.35029906919765585
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 0,
"model_id": "s=3-33",
"num_models": 34,
"partial_fit_iters": 3,
"val_score": 0.20096289526109368,
"value": 0.20096289526109368
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 1,
"model_id": "s=3-26",
"num_models": 11,
"partial_fit_iters": 12,
"val_score": 0.4555104167318682,
"value": 0.4555104167318682
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 1,
"model_id": "s=3-20",
"num_models": 11,
"partial_fit_iters": 12,
"val_score": 0.4643761326025403,
"value": 0.4643761326025403
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 1,
"model_id": "s=3-23",
"num_models": 11,
"partial_fit_iters": 12,
"val_score": 0.4762374256997044,
"value": 0.4762374256997044
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 1,
"model_id": "s=3-27",
"num_models": 11,
"partial_fit_iters": 12,
"val_score": 0.5066351462069696,
"value": 0.5066351462069696
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 1,
"model_id": "s=3-10",
"num_models": 11,
"partial_fit_iters": 12,
"val_score": 0.5635331125604098,
"value": 0.5635331125604098
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 1,
"model_id": "s=3-22",
"num_models": 11,
"partial_fit_iters": 12,
"val_score": 0.6410047048296427,
"value": 0.6410047048296427
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 1,
"model_id": "s=3-30",
"num_models": 11,
"partial_fit_iters": 12,
"val_score": 0.6428917169224059,
"value": 0.6428917169224059
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 1,
"model_id": "s=3-24",
"num_models": 11,
"partial_fit_iters": 12,
"val_score": 0.6632251719501194,
"value": 0.6632251719501194
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 1,
"model_id": "s=3-11",
"num_models": 11,
"partial_fit_iters": 12,
"val_score": 0.7853656925859994,
"value": 0.7853656925859994
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 1,
"model_id": "s=3-4",
"num_models": 11,
"partial_fit_iters": 12,
"val_score": 0.8740136298674489,
"value": 0.8740136298674489
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 1,
"model_id": "s=3-12",
"num_models": 11,
"partial_fit_iters": 12,
"val_score": 0.9333630131970945,
"value": 0.9333630131970945
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 2,
"model_id": "s=3-11",
"num_models": 3,
"partial_fit_iters": 39,
"val_score": 0.7853656925859994,
"value": 0.7853656925859994
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 2,
"model_id": "s=3-4",
"num_models": 3,
"partial_fit_iters": 39,
"val_score": 0.8740136298674489,
"value": 0.8740136298674489
},
{
"-bracket": -3,
"bracket": 3,
"bracket_iter": 2,
"model_id": "s=3-12",
"num_models": 3,
"partial_fit_iters": 39,
"val_score": 0.9333630131970945,
"value": 0.9333630131970945
},
{
"-bracket": -2,
"bracket": 2,
"bracket_iter": 0,
"model_id": "s=2-0",
"num_models": 15,
"partial_fit_iters": 9,
"val_score": 0.09513451196771294,
"value": 0.09513451196771294
},
{
"-bracket": -2,
"bracket": 2,
"bracket_iter": 0,
"model_id": "s=2-1",
"num_models": 15,
"partial_fit_iters": 9,
"val_score": 0.2851602107959442,
"value": 0.2851602107959442
},
{
"-bracket": -2,
"bracket": 2,
"bracket_iter": 0,
"model_id": "s=2-2",
"num_models": 15,
"partial_fit_iters": 9,
"val_score": 0.4968045060462324,
"value": 0.4968045060462324
},
{
"-bracket": -2,
"bracket": 2,
"bracket_iter": 0,
"model_id": "s=2-3",
"num_models": 15,
"partial_fit_iters": 9,
"val_score": 0.11830168092708959,
"value": 0.11830168092708959
},
{
"-bracket": -2,
"bracket": 2,
"bracket_iter": 0,
"model_id": "s=2-4",
"num_models": 15,
"partial_fit_iters": 9,
"val_score": 0.4426926202910758,
"value": 0.4426926202910758
},
{
"-bracket": -2,
"bracket": 2,
"bracket_iter": 0,
"model_id": "s=2-5",
"num_models": 15,
"partial_fit_iters": 9,
"val_score": 0.2789514108671882,
"value": 0.2789514108671882
},
{
"-bracket": -2,
"bracket": 2,
"bracket_iter": 0,
"model_id": "s=2-6",
"num_models": 15,
"partial_fit_iters": 9,
"val_score": 0.16521230981047197,
"value": 0.16521230981047197
},
{
"-bracket": -2,
"bracket": 2,
"bracket_iter": 0,
"model_id": "s=2-7",
"num_models": 15,
"partial_fit_iters": 9,
"val_score": 0.9454817460929796,
"value": 0.9454817460929796
},
{
"-bracket": -2,
"bracket": 2,
"bracket_iter": 0,
"model_id": "s=2-8",
"num_models": 15,
"partial_fit_iters": 9,
"val_score": 0.6680812204922069,
"value": 0.6680812204922069
},
{
"-bracket": -2,
"bracket": 2,
"bracket_iter": 0,
"model_id": "s=2-9",
"num_models": 15,
"partial_fit_iters": 9,
"val_score": 0.710459064394753,
"value": 0.710459064394753
},
{
"-bracket": -2,
"bracket": 2,
"bracket_iter": 0,
"model_id": "s=2-10",
"num_models": 15,
"partial_fit_iters": 9,
"val_score": 0.5401231337483436,
"value": 0.5401231337483436
},
{
"-bracket": -2,
"bracket": 2,
"bracket_iter": 0,
"model_id": "s=2-11",
"num_models": 15,
"partial_fit_iters": 9,
"val_score": 0.44317330024360335,
"value": 0.44317330024360335
},
{
"-bracket": -2,
"bracket": 2,
"bracket_iter": 0,
"model_id": "s=2-12",
"num_models": 15,
"partial_fit_iters": 9,
"val_score": 0.763936268306793,
"value": 0.763936268306793
},
{
"-bracket": -2,
"bracket": 2,
"bracket_iter": 0,
"model_id": "s=2-13",
"num_models": 15,
"partial_fit_iters": 9,
"val_score": 0.5931023353568439,
"value": 0.5931023353568439
},
{
"-bracket": -2,
"bracket": 2,
"bracket_iter": 0,
"model_id": "s=2-14",
"num_models": 15,
"partial_fit_iters": 9,
"val_score": 0.4628188120819061,
"value": 0.4628188120819061
},
{
"-bracket": -2,
"bracket": 2,
"bracket_iter": 1,
"model_id": "s=2-13",
"num_models": 5,
"partial_fit_iters": 36,
"val_score": 0.5931023353568439,
"value": 0.5931023353568439
},
{
"-bracket": -2,
"bracket": 2,
"bracket_iter": 1,
"model_id": "s=2-8",
"num_models": 5,
"partial_fit_iters": 36,
"val_score": 0.6680812204922069,
"value": 0.6680812204922069
},
{
"-bracket": -2,
"bracket": 2,
"bracket_iter": 1,
"model_id": "s=2-9",
"num_models": 5,
"partial_fit_iters": 36,
"val_score": 0.710459064394753,
"value": 0.710459064394753
},
{
"-bracket": -2,
"bracket": 2,
"bracket_iter": 1,
"model_id": "s=2-12",
"num_models": 5,
"partial_fit_iters": 36,
"val_score": 0.763936268306793,
"value": 0.763936268306793
},
{
"-bracket": -2,
"bracket": 2,
"bracket_iter": 1,
"model_id": "s=2-7",
"num_models": 5,
"partial_fit_iters": 36,
"val_score": 0.9454817460929796,
"value": 0.9454817460929796
},
{
"-bracket": -1,
"bracket": 1,
"bracket_iter": 0,
"model_id": "s=1-0",
"num_models": 8,
"partial_fit_iters": 27,
"val_score": 0.29365904066417203,
"value": 0.29365904066417203
},
{
"-bracket": -1,
"bracket": 1,
"bracket_iter": 0,
"model_id": "s=1-1",
"num_models": 8,
"partial_fit_iters": 27,
"val_score": 0.4814308125225144,
"value": 0.4814308125225144
},
{
"-bracket": -1,
"bracket": 1,
"bracket_iter": 0,
"model_id": "s=1-2",
"num_models": 8,
"partial_fit_iters": 27,
"val_score": 0.4938103714662443,
"value": 0.4938103714662443
},
{
"-bracket": -1,
"bracket": 1,
"bracket_iter": 0,
"model_id": "s=1-3",
"num_models": 8,
"partial_fit_iters": 27,
"val_score": 0.04641277743294059,
"value": 0.04641277743294059
},
{
"-bracket": -1,
"bracket": 1,
"bracket_iter": 0,
"model_id": "s=1-4",
"num_models": 8,
"partial_fit_iters": 27,
"val_score": 0.10728569978504787,
"value": 0.10728569978504787
},
{
"-bracket": -1,
"bracket": 1,
"bracket_iter": 0,
"model_id": "s=1-5",
"num_models": 8,
"partial_fit_iters": 27,
"val_score": 0.2412501990481134,
"value": 0.2412501990481134
},
{
"-bracket": -1,
"bracket": 1,
"bracket_iter": 0,
"model_id": "s=1-6",
"num_models": 8,
"partial_fit_iters": 27,
"val_score": 0.8903830290299396,
"value": 0.8903830290299396
},
{
"-bracket": -1,
"bracket": 1,
"bracket_iter": 0,
"model_id": "s=1-7",
"num_models": 8,
"partial_fit_iters": 27,
"val_score": 0.7452059287943471,
"value": 0.7452059287943471
},
{
"-bracket": -1,
"bracket": 1,
"bracket_iter": 1,
"model_id": "s=1-7",
"num_models": 2,
"partial_fit_iters": 108,
"val_score": 0.7452059287943471,
"value": 0.7452059287943471
},
{
"-bracket": -1,
"bracket": 1,
"bracket_iter": 1,
"model_id": "s=1-6",
"num_models": 2,
"partial_fit_iters": 108,
"val_score": 0.8903830290299396,
"value": 0.8903830290299396
},
{
"-bracket": 0,
"bracket": 0,
"bracket_iter": 0,
"model_id": "s=0-0",
"num_models": 5,
"partial_fit_iters": 81,
"val_score": 0.9003816063344243,
"value": 0.9003816063344243
},
{
"-bracket": 0,
"bracket": 0,
"bracket_iter": 0,
"model_id": "s=0-1",
"num_models": 5,
"partial_fit_iters": 81,
"val_score": 0.10736872352025073,
"value": 0.10736872352025073
},
{
"-bracket": 0,
"bracket": 0,
"bracket_iter": 0,
"model_id": "s=0-2",
"num_models": 5,
"partial_fit_iters": 81,
"val_score": 0.6947915299032408,
"value": 0.6947915299032408
},
{
"-bracket": 0,
"bracket": 0,
"bracket_iter": 0,
"model_id": "s=0-3",
"num_models": 5,
"partial_fit_iters": 81,
"val_score": 0.9146356455559047,
"value": 0.9146356455559047
},
{
"-bracket": 0,
"bracket": 0,
"bracket_iter": 0,
"model_id": "s=0-4",
"num_models": 5,
"partial_fit_iters": 81,
"val_score": 0.12910142167436145,
"value": 0.12910142167436145
}
]
},
"encoding": {
"color": {
"field": "model_id",
"type": "nominal"
},
"row": {
"field": "-bracket",
"type": "quantitative"
},
"x": {
"field": "bracket_iter",
"type": "quantitative"
},
"y": {
"field": "val_score",
"scale": {
"zero": false
},
"type": "quantitative"
}
},
"mark": "line"
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAkNCAYAAAAycl86AAAgAElEQVR4nOzWMQEAAAiAMPuXxhh6bAk4mQAAaK4DAAA+MEUAAJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCACgMkUAAJUpAgCoTBEAQGWKAAAqUwQAUJkiAIDKFAEAVKYIAKAyRQAAlSkCAKhMEQBAZYoAACpTBABQmSIAgMoUAQBUpggAoDJFAACVKQIAqEwRAEBligAAKlMEAFCZIgCAyhQBAFSmCIBttw4EAAAAAAT5U79IUQRUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEcjRe1MAAAdJSURBVABAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAlRQBAFRSBABQSREAQCVFAACVFAEAVFIEAFBJEQBAJUUAAJUUAQBUUgQAUEkRAEAlRQAAVQ0WhKXhrYSuCQAAAABJRU5ErkJggg==",
"text/plain": [
"<VegaLite 2 object>\n",
"\n",
"If you see this message, it means the renderer has not been properly enabled\n",
"for the frontend that you are using. For more information, see\n",
"https://altair-viz.github.io/user_guide/troubleshooting.html\n"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import altair as alt\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# different brackets; need a better name than \"s\"\n",
"df['-bracket'] = -1 * df['bracket']\n",
"\n",
"alt.Chart(df).mark_line().encode(\n",
" x='bracket_iter', \n",
" y=alt.Y('val_score', scale=alt.Scale(zero=False)),\n",
" color='model_id',\n",
" row='-bracket')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment