Skip to content

Instantly share code, notes, and snippets.

@stsievert
stsievert / fftconv-conv-timings-2d.ipynb
Created July 24, 2019 16:39
constant timing for convolution methods (fft and direct)
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@stsievert
stsievert / timing.ipynb
Created April 15, 2019 13:34
Tornado yielding list
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta http-equiv="expires" content="0">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script>
</head>
import numpy as np
from scipy.signal import convolve
def test(type1, type2):
np.random.seed(42)
n = 3000
if 'int' in type1 or 'bool' in type1:
x1 = np.random.choice([0, 1], size=n).astype(type1)
else:
x1 = np.random.randn(n).astype(type1)
from dask_ml.model_selection import RandomizedSearchCV
from dask_ml.wrappers import Incremental
from dask_ml.datasets import make_classification
from sklearn.linear_model import SGDClassifier
import numpy as np
from sklearn.model_selection import KFold
X, y = make_classification(chunks=20)
params = {'estimator__alpha': np.logspace(-3, 0)}
@stsievert
stsievert / Noise-model.ipynb
Last active October 24, 2018 20:21
For the strange fruit triplets
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@stsievert
stsievert / _Hyperband-example-test-patience.ipynb
Last active September 10, 2018 18:52
Testing patience for hyperparam search
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@stsievert
stsievert / _Hyperband-example.ipynb
Last active April 14, 2019 23:12
Hyperparameter comparisons (with successive halving, hyperband, stop on plateau and passive random sampling)
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@stsievert
stsievert / a-incremental-model-selection.ipynb
Created August 22, 2018 23:31
Successive halving and "stop on plateau" comparison
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@stsievert
stsievert / PyTorch-autoencoder.ipynb
Last active February 14, 2022 21:20
PyTorch MNIST autoencoder
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.