Last active
September 10, 2018 18:52
-
-
Save stsievert/33bdc47b52ffc085dddd75e9b719cc07 to your computer and use it in GitHub Desktop.
Testing patience for hyperparam search
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import skorch.utils | |
from skorch import NeuralNetRegressor | |
import torch.nn as nn | |
import torch | |
import skorch | |
def _initialize(method, layer, gain=1): | |
weight = layer.weight.data | |
# _before = weight.data.clone() | |
kwargs = {'gain': gain} if 'xavier' in str(method) else {} | |
method(weight.data, **kwargs) | |
# assert torch.all(weight.data != _before) | |
class Autoencoder(nn.Module): | |
def __init__(self, activation='ReLU', init='xavier_uniform_', | |
**kwargs): | |
super().__init__() | |
self.activation = activation | |
self.init = init | |
self._iters = 0 | |
init_method = getattr(torch.nn.init, init) | |
act_layer = getattr(nn, activation) | |
act_kwargs = {'inplace': True} if self.activation != 'PReLU' else {} | |
gain = 1 | |
if self.activation in ['LeakyReLU', 'ReLU']: | |
name = 'leaky_relu' if self.activation == 'LeakyReLU' else 'relu' | |
gain = torch.nn.init.calculate_gain(name) | |
inter_dim = 28 * 28 // 4 | |
latent_dim = inter_dim // 4 | |
layers = [ | |
nn.Linear(28 * 28, inter_dim), | |
act_layer(**act_kwargs), | |
nn.Linear(inter_dim, latent_dim), | |
act_layer(**act_kwargs) | |
] | |
for layer in layers: | |
if hasattr(layer, 'weight') and layer.weight.data.dim() > 1: | |
_initialize(init_method, layer, gain=gain) | |
self.encoder = nn.Sequential(*layers) | |
layers = [ | |
nn.Linear(latent_dim, inter_dim), | |
act_layer(**act_kwargs), | |
nn.Linear(inter_dim, 28 * 28), | |
nn.Sigmoid() | |
] | |
layers = [ | |
nn.Linear(latent_dim, 28 * 28), | |
nn.Sigmoid() | |
] | |
for layer in layers: | |
if hasattr(layer, 'weight') and layer.weight.data.dim() > 1: | |
_initialize(init_method, layer, gain=gain) | |
self.decoder = nn.Sequential(*layers) | |
def forward(self, x): | |
self._iters += 1 | |
shape = x.size() | |
x = x.view(x.shape[0], -1) | |
x = self.encoder(x) | |
x = self.decoder(x) | |
return x.view(shape) | |
class NegLossScore(NeuralNetRegressor): | |
steps = 0 | |
def partial_fit(self, *args, **kwargs): | |
super().partial_fit(*args, **kwargs) | |
self.steps += 1 | |
def score(self, X, y): | |
X = skorch.utils.to_tensor(X, device=self.device) | |
y = skorch.utils.to_tensor(y, device=self.device) | |
self.initialize_criterion() | |
y_hat = self.predict(X) | |
y_hat = skorch.utils.to_tensor(y_hat, device=self.device) | |
loss = super().get_loss(y_hat, y, X=X, training=False).item() | |
print(f'steps = {self.steps}, loss = {loss}') | |
return -1 * loss | |
def initialize(self, *args, **kwargs): | |
super().initialize(*args, **kwargs) | |
self.callbacks_ = [] | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras.datasets import mnist | |
import numpy as np | |
import skimage.util | |
import random | |
import skimage.filters | |
import skimage | |
import scipy.signal | |
def noise_img(x): | |
noises = [ | |
{"mode": "s&p", "amount": np.random.uniform(0.1, 0.1)}, | |
{"mode": "gaussian", "var": np.random.uniform(0.10, 0.15)}, | |
] | |
# noise = random.choice(noises) | |
noise = noises[1] | |
return skimage.util.random_noise(x, **noise) | |
def train_formatting(img): | |
img = img.reshape(28, 28).astype("float32") | |
return img.flat[:] | |
def blur_img(img): | |
assert img.ndim == 1 | |
n = int(np.sqrt(img.shape[0])) | |
img = img.reshape(n, n) | |
h = np.zeros((n, n)) | |
angle = np.random.uniform(-5, 5) | |
w = random.choice(range(1, 3)) | |
h[n // 2, n // 2 - w : n // 2 + w] = 1 | |
h = skimage.transform.rotate(h, angle) | |
h /= h.sum() | |
y = scipy.signal.convolve(img, h, mode="same") | |
return y.flat[:] | |
def dataset(n=None): | |
(x_train, _), (x_test, _) = mnist.load_data() | |
x = np.concatenate((x_train, x_test)) | |
if n: | |
x = x[:n] | |
else: | |
n = int(70e3) | |
x = x.astype("float32") / 255. | |
x = np.reshape(x, (len(x), 28 * 28)) | |
y = np.apply_along_axis(train_formatting, 1, x) | |
clean = y.copy() | |
noisy = y.copy() | |
# order = [noise_img, blur_img] | |
# order = [blur_img] | |
order = [noise_img] | |
random.shuffle(order) | |
for fn in order: | |
noisy = np.apply_along_axis(fn, 1, noisy) | |
noisy = noisy.astype("float32") | |
clean = clean.astype("float32") | |
# noisy = noisy.reshape(-1, 1, 28, 28).astype("float32") | |
# clean = clean.reshape(-1, 1, 28, 28).astype("float32") | |
return noisy, clean |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment