Skip to content

Instantly share code, notes, and snippets.

@stsievert
Created January 28, 2019 21:28
Show Gist options
  • Save stsievert/ce8f8835040744c8d77d3a14f5d0c2b7 to your computer and use it in GitHub Desktop.
Save stsievert/ce8f8835040744c8d77d3a14f5d0c2b7 to your computer and use it in GitHub Desktop.
import numpy as np
from scipy.signal import convolve
def test(type1, type2):
np.random.seed(42)
n = 3000
if 'int' in type1 or 'bool' in type1:
x1 = np.random.choice([0, 1], size=n).astype(type1)
else:
x1 = np.random.randn(n).astype(type1)
if 'int' in type2 or 'bool' in type2:
x2 = np.random.choice([0, 1], size=n).astype(type2)
else:
x2 = np.random.randn(n).astype(type2)
y = {method: convolve(x1, x2, method=method) for method in ['fft', 'direct']}
try:
assert np.allclose(y['fft'], y['direct'], atol=1e-2)
except:
error = np.abs(y['fft'] - y['direct'])
print(type1, type2, np.median(error), error.max())
if __name__ == "__main__":
types = ['bool', 'uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', 'int64', 'float16', 'float32']
for t1 in types:
for t2 in types:
test(t1, t2)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment