Last active
March 24, 2025 19:52
-
-
Save stuarteberg/cae6538db08764f209d75b366d18d7fd to your computer and use it in GitHub Desktop.
Find the closest point in a mask to an aribtrary point
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from itertools import starmap | |
import numpy as np | |
def closest_to_point(point, mask, mask_offset=None, voxel_size=None): | |
""" | |
Find the point in the mask that is closest to the given point. | |
Args: | |
point: | |
The point to find the closest point to. | |
mask: | |
ND mask image/volume (Will be converted to bool if necessary.) | |
mask_offset: | |
The spatial location, in physical units, of the mask's upper corner, | |
if the mask doesn't occupy the region starting with (0,0,...). | |
voxel_size: | |
The dimensions of each mask voxel in physical units. | |
Useful for anisotropic masks. | |
Returns: | |
The coordinates of the closest point in the mask, in physical units | |
Example: | |
.. code-block:: python | |
_ = 0 | |
mask = [ | |
[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], | |
[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], | |
[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], | |
[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], | |
[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], | |
[_, _, _, _, _, _, _, _, 1, _, _, _, _, _, _, _, _], | |
[_, _, _, _, _, _, 1, 1, 1, 1, 1, _, _, _, _, _, _], | |
[_, _, _, _, _, _, 1, 1, 1, 1, 1, _, _, _, _, _, _], | |
[_, _, _, _, _, 1, 1, 1, 1, 1, 1, 1, _, _, _, _, _], | |
[_, _, _, _, _, _, 1, 1, 1, 1, 1, _, _, _, _, _, _], | |
[_, _, _, _, _, _, 1, 1, 1, 1, 1, _, _, _, _, _, _], | |
[_, _, _, _, _, _, _, _, 1, _, _, _, _, _, _, _, _], | |
[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], | |
[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], | |
[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], | |
[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], | |
[_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _] | |
] | |
p = (30, 15) | |
vs = (3,1) | |
p2 = closest_to_point(p, mask, (0,0), vs) | |
viz = np.array(mask.copy()) | |
viz[tuple(np.array(p) // vs)] = -1 | |
viz[tuple(np.array(p2) // vs)] = -2 | |
print(str(viz).replace('0', '_')) | |
Result: | |
.. code-block:: | |
[ | |
[ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _] | |
[ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _] | |
[ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _] | |
[ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _] | |
[ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _] | |
[ _ _ _ _ _ _ _ _ 1 _ _ _ _ _ _ _ _] | |
[ _ _ _ _ _ _ 1 1 1 1 1 _ _ _ _ _ _] | |
[ _ _ _ _ _ _ 1 1 1 1 1 _ _ _ _ _ _] | |
[ _ _ _ _ _ 1 1 1 1 1 1 1 _ _ _ _ _] | |
[ _ _ _ _ _ _ 1 1 1 1 1 _ _ _ _ _ _] | |
[ _ _ _ _ _ _ 1 1 1 1 -2 _ _ _ _ -1 _] | |
[ _ _ _ _ _ _ _ _ 1 _ _ _ _ _ _ _ _] | |
[ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _] | |
[ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _] | |
[ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _] | |
[ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _] | |
[ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _] | |
] | |
""" | |
mask = np.asarray(mask, dtype=bool) | |
D = mask.ndim | |
if voxel_size is None: | |
voxel_size = (1,) * D | |
if mask_offset is None: | |
mask_offset = (0,) * D | |
mask_offset = np.asarray(mask_offset) // voxel_size | |
mask_box = np.array([mask_offset, mask_offset + mask.shape]) | |
assert len(point) == D | |
assert mask_offset.shape == (D,) | |
assert mask_box.shape == (2, D) | |
assert len(voxel_size) == D | |
# Use ogrid to avoid allocating a big array of coordinates. | |
sl = starmap(slice, mask_box.T) | |
mask_coords = np.ogrid[tuple(sl)] | |
mask_coords = tuple(c * vs for c, vs in zip(mask_coords, voxel_size)) | |
# Pairwise squared distances | |
# (We don't need actual distances to find the minimum.) | |
distances_sq = np.zeros(mask.shape, dtype=np.float32) | |
for c, p in zip(mask_coords, point): | |
distances_sq += (c - p)**2 | |
INF = distances_sq.max() + 1 | |
distances_sq[~mask] = INF | |
closest_point = np.unravel_index(np.argmin(distances_sq), mask.shape) | |
closest_point = (closest_point + mask_box[0]) * voxel_size | |
if distances_sq[tuple(closest_point)] == INF: | |
raise ValueError("mask is empty") | |
return tuple(closest_point) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment