Skip to content

Instantly share code, notes, and snippets.

@sufeidechabei
Forked from tristanwietsma/adaboost.py
Created December 11, 2017 14:07
Show Gist options
  • Save sufeidechabei/1cad0ca20b33ceb3cea3781f619970c2 to your computer and use it in GitHub Desktop.
Save sufeidechabei/1cad0ca20b33ceb3cea3781f619970c2 to your computer and use it in GitHub Desktop.
AdaBoost Python implementation of the AdaBoost (Adaptive Boosting) classification algorithm.
from __future__ import division
from numpy import *
class AdaBoost:
def __init__(self, training_set):
self.training_set = training_set
self.N = len(self.training_set)
self.weights = ones(self.N)/self.N
self.RULES = []
self.ALPHA = []
def set_rule(self, func, test=False):
errors = array([t[1]!=func(t[0]) for t in self.training_set])
e = (errors*self.weights).sum()
if test: return e
alpha = 0.5 * log((1-e)/e)
print 'e=%.2f a=%.2f'%(e, alpha)
w = zeros(self.N)
for i in range(self.N):
if errors[i] == 1: w[i] = self.weights[i] * exp(alpha)
else: w[i] = self.weights[i] * exp(-alpha)
self.weights = w / w.sum()
self.RULES.append(func)
self.ALPHA.append(alpha)
def evaluate(self):
NR = len(self.RULES)
for (x,l) in self.training_set:
hx = [self.ALPHA[i]*self.RULES[i](x) for i in range(NR)]
print x, sign(l) == sign(sum(hx))
if __name__ == '__main__':
examples = []
examples.append(((1, 2 ), 1))
examples.append(((1, 4 ), 1))
examples.append(((2.5,5.5), 1))
examples.append(((3.5,6.5), 1))
examples.append(((4, 5.4), 1))
examples.append(((2, 1 ),-1))
examples.append(((2, 4 ),-1))
examples.append(((3.5,3.5),-1))
examples.append(((5, 2 ),-1))
examples.append(((5, 5.5),-1))
m = AdaBoost(examples)
m.set_rule(lambda x: 2*(x[0] < 1.5)-1)
m.set_rule(lambda x: 2*(x[0] < 4.5)-1)
m.set_rule(lambda x: 2*(x[1] > 5)-1)
m.evaluate()
@sounakmoju
Copy link

hi,could you please explain the evaluate section;why there are three functions and how it is adding up the h(theta,x)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment