-
-
Save sufeidechabei/1cad0ca20b33ceb3cea3781f619970c2 to your computer and use it in GitHub Desktop.
AdaBoost Python implementation of the AdaBoost (Adaptive Boosting) classification algorithm.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import division | |
from numpy import * | |
class AdaBoost: | |
def __init__(self, training_set): | |
self.training_set = training_set | |
self.N = len(self.training_set) | |
self.weights = ones(self.N)/self.N | |
self.RULES = [] | |
self.ALPHA = [] | |
def set_rule(self, func, test=False): | |
errors = array([t[1]!=func(t[0]) for t in self.training_set]) | |
e = (errors*self.weights).sum() | |
if test: return e | |
alpha = 0.5 * log((1-e)/e) | |
print 'e=%.2f a=%.2f'%(e, alpha) | |
w = zeros(self.N) | |
for i in range(self.N): | |
if errors[i] == 1: w[i] = self.weights[i] * exp(alpha) | |
else: w[i] = self.weights[i] * exp(-alpha) | |
self.weights = w / w.sum() | |
self.RULES.append(func) | |
self.ALPHA.append(alpha) | |
def evaluate(self): | |
NR = len(self.RULES) | |
for (x,l) in self.training_set: | |
hx = [self.ALPHA[i]*self.RULES[i](x) for i in range(NR)] | |
print x, sign(l) == sign(sum(hx)) | |
if __name__ == '__main__': | |
examples = [] | |
examples.append(((1, 2 ), 1)) | |
examples.append(((1, 4 ), 1)) | |
examples.append(((2.5,5.5), 1)) | |
examples.append(((3.5,6.5), 1)) | |
examples.append(((4, 5.4), 1)) | |
examples.append(((2, 1 ),-1)) | |
examples.append(((2, 4 ),-1)) | |
examples.append(((3.5,3.5),-1)) | |
examples.append(((5, 2 ),-1)) | |
examples.append(((5, 5.5),-1)) | |
m = AdaBoost(examples) | |
m.set_rule(lambda x: 2*(x[0] < 1.5)-1) | |
m.set_rule(lambda x: 2*(x[0] < 4.5)-1) | |
m.set_rule(lambda x: 2*(x[1] > 5)-1) | |
m.evaluate() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
hi,could you please explain the evaluate section;why there are three functions and how it is adding up the h(theta,x)