Install MLX LM and openai:
pip install mlx-lm openai
| Sub InsertAllSlides() | |
| ' Insert all slides from all presentations in the same folder as this one | |
| ' INTO this one; do not attempt to insert THIS file into itself, though. | |
| Dim vArray() As String | |
| Dim x As Long | |
| ' Change "*.PPT" to "*.PPTX" or whatever if necessary: | |
| EnumerateFiles ActivePresentation.Path & "\", "*.PPTX", vArray |
| /* Custom CSS for Marimo - Font customization */ | |
| /* Import Press Start 2P font from Google Fonts */ | |
| @import url('https://fonts.googleapis.com/css2?family=Press+Start+2P&display=swap'); | |
| :root { | |
| --marimo-monospace-font: 'Press Start 2P', 'Courier New', monospace; | |
| --marimo-text-font: 'Press Start 2P', 'Courier New', monospace; | |
| --marimo-heading-font: 'Press Start 2P', 'Courier New', monospace; | |
| } |
| import os | |
| import torch | |
| import psutil | |
| import datasets | |
| import glob | |
| from transformers import ( | |
| AutoTokenizer, LlamaConfig, LlamaForCausalLM, Trainer, TrainingArguments, | |
| DataCollatorForLanguageModeling | |
| ) |
| # /// script | |
| # requires-python = ">=3.11,<3.12" | |
| # dependencies = [ | |
| # "distilabel[mlx]", | |
| # ] | |
| # /// | |
| from distilabel.models import MlxLLM | |
| from distilabel.pipeline import InstructionResponsePipeline | |
| llm = MlxLLM( |
| # /// script | |
| # requires-python = ">=3.11,<3.12" | |
| # dependencies = [ | |
| # "distilabel[hf-transformers, hf-inference-endpoints]", | |
| # ] | |
| # /// | |
| from distilabel.models import InferenceEndpointsLLM | |
| from distilabel.pipeline import InstructionResponsePipeline | |
| repo_id = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" |
| # requires sentence_transformers>=3.2.0 | |
| from sentence_transformers import SentenceTransformer, export_optimized_onnx_model, export_dynamic_quantized_onnx_model | |
| # The model to export to ONNX (+ optimize, quantize), OpenVINO | |
| model_id = "mixedbread-ai/mxbai-embed-large-v1" | |
| # Where to save the exported models locally | |
| output_dir = model_id.replace("/", "-") | |
| onnx_model = SentenceTransformer(model_id, backend="onnx", model_kwargs={"export": True}) | |
| onnx_model.save_pretrained(output_dir) |
| Begin by enclosing all thoughts within <thinking> tags, exploring multiple angles and approaches. | |
| Break down the solution into clear steps within <step> tags. Start with a 20-step budget, requesting more for complex problems if needed. | |
| Use <count> tags after each step to show the remaining budget. Stop when reaching 0. | |
| Continuously adjust your reasoning based on intermediate results and reflections, adapting your strategy as you progress. | |
| Regularly evaluate progress using <reflection> tags. Be critical and honest about your reasoning process. | |
| Assign a quality score between 0.0 and 1.0 using <reward> tags after each reflection. Use this to guide your approach: | |
| 0.8+: Continue current approach | |
| 0.5-0.7: Consider minor adjustments | |
| Below 0.5: Seriously consider backtracking and trying a different approach |
| #VERBOSE=0 torchrun --nproc_per_node 3 self_contained_pp_LOC.py | |
| import os, random, numpy as np, torch, torch.nn as nn, torch.distributed as dist, torch.nn.functional as F | |
| from torch.optim import AdamW | |
| from torch.utils.data import DataLoader, DistributedSampler | |
| from datasets import load_dataset | |
| from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer | |
| STEP, local_rank, world_size, verbose = 0, int(os.environ["LOCAL_RANK"]), int(os.environ["WORLD_SIZE"]), os.environ.get("VERBOSE", "0") == "1" | |
| def set_all_seed(seed): |
| """ | |
| A minimal, fast example generating text with Llama 3.1 in MLX. | |
| To run, install the requirements: | |
| pip install -U mlx transformers fire | |
| Then generate text with: | |
| python l3min.py "How tall is K2?" |