Last active
March 25, 2020 23:31
-
-
Save sujithjay/17cf930ae9b9b135dc95457f5b8807a7 to your computer and use it in GitHub Desktop.
DataFrameNaFunctions.fill in Spark 2.4.5 & Spark 2.4.3
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* Returns a new `DataFrame` that replaces null or NaN values in specified | |
* numeric, string columns. If a specified column is not a numeric, string | |
* or boolean column it is ignored. | |
*/ | |
private def fillValue[T](value: T, cols: Seq[String]): DataFrame = { | |
// the fill[T] which T is Long/Double, | |
// should apply on all the NumericType Column, for example: | |
// val input = Seq[(java.lang.Integer, java.lang.Double)]((null, 164.3)).toDF("a","b") | |
// input.na.fill(3.1) | |
// the result is (3,164.3), not (null, 164.3) | |
val targetType = value match { | |
case _: Double | _: Long => NumericType | |
case _: String => StringType | |
case _: Boolean => BooleanType | |
case _ => throw new IllegalArgumentException( | |
s"Unsupported value type ${value.getClass.getName} ($value).") | |
} | |
val columnEquals = df.sparkSession.sessionState.analyzer.resolver | |
val projections = df.schema.fields.map { f => | |
val typeMatches = (targetType, f.dataType) match { | |
case (NumericType, dt) => dt.isInstanceOf[NumericType] | |
case (StringType, dt) => dt == StringType | |
case (BooleanType, dt) => dt == BooleanType | |
case _ => | |
throw new IllegalArgumentException(s"$targetType is not matched at fillValue") | |
} | |
// Only fill if the column is part of the cols list. | |
if (typeMatches && cols.exists(col => columnEquals(f.name, col))) { | |
fillCol[T](f, value) | |
} else { | |
df.col(f.name) | |
} | |
} | |
df.select(projections : _*) | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* Returns a new `DataFrame` that replaces null or NaN values in the specified | |
* columns. If a specified column is not a numeric, string or boolean column, | |
* it is ignored. | |
*/ | |
private def fillValue[T](value: T, cols: Seq[Attribute]): DataFrame = { | |
// the fill[T] which T is Long/Double, | |
// should apply on all the NumericType Column, for example: | |
// val input = Seq[(java.lang.Integer, java.lang.Double)]((null, 164.3)).toDF("a","b") | |
// input.na.fill(3.1) | |
// the result is (3,164.3), not (null, 164.3) | |
val targetType = value match { | |
case _: Double | _: Long => NumericType | |
case _: String => StringType | |
case _: Boolean => BooleanType | |
case _ => throw new IllegalArgumentException( | |
s"Unsupported value type ${value.getClass.getName} ($value).") | |
} | |
val projections = outputAttributes.map { col => | |
val typeMatches = (targetType, col.dataType) match { | |
case (NumericType, dt) => dt.isInstanceOf[NumericType] | |
case (StringType, dt) => dt == StringType | |
case (BooleanType, dt) => dt == BooleanType | |
case _ => | |
throw new IllegalArgumentException(s"$targetType is not matched at fillValue") | |
} | |
// Only fill if the column is part of the cols list. | |
if (typeMatches && cols.exists(_.semanticEquals(col))) { | |
fillCol(col.dataType, col.name, Column(col), value) | |
} else { | |
Column(col) | |
} | |
} | |
df.select(projections : _*) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment