Created
October 27, 2023 16:25
-
-
Save sukanka/1fa6d6be9e465b175b953451b04b7e86 to your computer and use it in GitHub Desktop.
proof of EX 4.13 Fourier analysis, stein
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
\documentclass[a4paper]{article} | |
\usepackage{amsmath} | |
\usepackage{amssymb} | |
\newcommand{\abs}[1]{\lvert #1 \rvert} | |
\newcommand{\diff}{\mathrm{d}} | |
\newcommand{\idx}[1]{\mathbb{I}(#1)} | |
\usepackage{hyperref} | |
\begin{document} | |
I use a quite different method from yours. | |
For (1), we see that | |
\begin{equation} | |
\begin{aligned} | |
I=&\int_{\abs{x}\leq 1/2}\abs{H_t(x)}^2\diff x\\ | |
=&\int_{\abs{x}\leq 1/2}H_t(x)\overline{H_t(x)}\diff x\\ | |
=&\int_{\abs{x}\leq 1/2}\sum_{n}e^{-4\pi^2n^2t}e^{2\pi i n x}\sum_{k}e^{-4\pi^2k^2t}e^{-2\pi i k x}\\ | |
=& \sum_{n}\sum_{k}e^{-4\pi^2(n^2+k^2)t}\int_{\abs{x}\leq 1/2}e^{2\pi i (n-k)x}\diff x\\ | |
=& \sum_{n}\sum_{k}e^{-4\pi^2(n^2+k^2)t}\idx{n=k}\\ | |
=&\sum_{n}e^{-8\pi^2n^2t} | |
\end{aligned} | |
\end{equation} | |
Note that | |
\begin{equation} | |
\begin{aligned} | |
I=&\sum_{n}e^{-8\pi^2n^2t}=1+2\sum_{n=1}^{\infty}e^{-8\pi^2n^2t}\\ | |
\leq& 1+2 \sum_{n=1}^{\infty}\int_{n-1}^n e^{-8\pi^2 x^2 t}\diff x=1+2\int_{0}^{\infty}e^{-8\pi^2 x^2 t}\diff x\\ | |
=&1+\int_{-\infty}^{+\infty}e^{-8\pi^2 x^2 t}\diff x | |
\end{aligned} | |
\end{equation} | |
by the same trick we can show that | |
\begin{equation} | |
\begin{aligned} | |
I=&\sum_{n}e^{-8\pi^2n^2t}=-1+2\sum_{n=0}^{\infty}e^{-8\pi^2n^2t}\\ | |
\geq & -1+2 \sum_{n=0}^{\infty}\int_{n}^{n+1} e^{-8\pi^2 x^2 t}\diff x=-1+2\int_{0}^{\infty}e^{-8\pi^2 x^2 t}\diff x\\ | |
=&-1+\int_{-\infty}^{+\infty}e^{-8\pi^2 x^2 t}\diff x | |
\end{aligned} | |
\end{equation} | |
and by the Normal distribution $N(0,\sigma^2)$, we see that (the constant might be wrong, but it does not matter.) | |
\begin{equation} | |
\int_{-\infty}^{+\infty}e^{-8\pi^2 x^2 t}\diff x=\int\exp\left(-\frac{x^2}{2\frac{1}{16\pi^2t}}\right)\diff x=\sqrt{2\pi t }\cdot 4\pi=O(t^{-1/2}). | |
\end{equation} | |
Thus $I=O(t^{-1/2})$. | |
For (2),by the hint we have $c_1\sin^2(\pi x)\leq x^2\leq C_1 \sin^2(\pi x)$, for $\abs{x}\leq 1/2$, i.e., $x^2=O(\sin^2(\pi x))$, we write $x^2=C \sin^2(\pi x)$. | |
\begin{equation} | |
\begin{aligned} | |
I_2=&\int_{\abs{x}\leq 1/2}x^2\abs{H_t(x)}^2\diff x=C\int\sin^2(\pi x)\abs{H_t(x)}^2\diff x\\ | |
=&C\int \frac{1}{2}(1-\cos(2\pi x))\sum_{n}\sum_{k}e^{-4\pi^2(n^2+k^2)t}e^{2\pi i (n-k)x} \diff x\\ | |
=&\frac{C}{2}\sum_{n}\sum_{k}e^{-4\pi^2(n^2+k^2)t}\int e^{2\pi i (n-k)x}\left(1-\frac{e^{2\pi i x}+e^{-2\pi i x}}{2}\right)\diff x\\ | |
=&\frac{C}{2}\sum_{n}\sum_{k}e^{-4\pi^2(n^2+k^2)t}\int e^{2\pi i (n-k)x}\diff x\\ | |
&-\frac{C}{4}\sum_{n}\sum_{k}e^{-4\pi^2(n^2+k^2)t}\int e^{2\pi i (n+1-k)x}\diff x\\ | |
&-\frac{C}{4}\sum_{n}\sum_{k}e^{-4\pi^2(n^2+k^2)t}\int e^{2\pi i (n-1-k)x}\diff x\\ | |
=&\frac{C}{2}\sum_{n}\sum_{k}e^{-4\pi^2(n^2+k^2)t}\idx{n=k}\\ | |
&-\frac{C}{4}\sum_{n}\sum_{k}e^{-4\pi^2(n^2+k^2)t}\idx{n=k-1}\\ | |
&-\frac{C}{4}\sum_{n}\sum_{k}e^{-4\pi^2(n^2+k^2)t}\idx {n=k+1}\\ | |
=&\frac{C}{2}\sum_{n}e^{-8\pi^2n^2t}-\frac{C}{4}\sum_{n}\left[e^{-4\pi^2(2n^2+2n+1)t}+e^{-4\pi^2(2n^2-2n+1)t}\right]\\ | |
=&\frac{C}{2}\sum_{n}e^{-8\pi^2n^2t}\left[1-\frac{e^{-4\pi^2(1+2n)t}+e^{-4\pi^2(1-2n)t}}{2}\right]\\ | |
=&\frac{C}{2}\sum_{n}e^{-8\pi^2n^2t}\left[1-e^{-4\pi^2t}\frac{e^{-8\pi^2nt}+e^{8\pi^2nt}}{2}\right]\\ | |
\end{aligned} | |
\end{equation} | |
Note that $2\leq e^x +e^{-x}\leq 2 e^{\abs{x}}$ | |
when $0\leq t \leq \delta$, $e^x \sim 1+x $, one can see | |
\begin{equation} | |
1-e^{-4\pi^2t}\frac{e^{-8\pi^2nt}+e^{8\pi^2nt}}{2}\leq 1-e^{-4\pi^2t}\leq c 4\pi^2t . | |
\end{equation} | |
and | |
\begin{equation} | |
1-e^{-4\pi^2t}\frac{e^{-8\pi^2nt}+e^{8\pi^2nt}}{2}\geq 1-e^{-4\pi^2t}e^{8\pi^2\abs{n}t}\geq c 4\pi^2(2\abs{n}-1)t . | |
\end{equation} | |
Finally we have | |
\begin{equation} | |
\begin{aligned} | |
I_2\leq K t \sum_{n}e^{-8\pi^2n^2t}=t O(t^{-1/2})=O(t^{1/2}), | |
\end{aligned} | |
\end{equation} | |
and | |
\begin{equation} | |
I_2\leq Kt \sum_{n}e^{-8\pi^2n^2t}(2\abs{n}-1)=2Kt \sum_{n}\abs{n}e^{-8\pi^2n^2t} -O(t^{1/2}). | |
\end{equation} | |
Note that | |
\begin{equation} | |
\sum_{n}\abs{n}e^{-8\pi^2n^2t} \sim\int \abs{x}e^{-8\pi^2x^2t }\diff x=O(t^{-1/2}), | |
\end{equation} | |
which is $E(\abs{X})$ for $X\sim N(0,\sigma^2)$, and $E(\abs{X})=\sigma\sqrt{\frac{2}{\pi}}$. | |
For more details, see \href{https://math.stackexchange.com/questions/555831/the-expectation-of-absolute-value-of-random-variables}{this question}. | |
By far we have proved that $I_2=O(t^{1/2})$. | |
\end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment