Forked from sayakpaul/inference_with_torchao_serialized.py
Created
August 22, 2024 04:22
-
-
Save sumitmamoria/c4912c4311c73e62d11bd4410c5f4730 to your computer and use it in GitHub Desktop.
Shows how to run Flux schnell under 17GBs without bells and whistles. It additionally shows how to serialize the quantized checkpoint and load it back.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from huggingface_hub import hf_hub_download | |
from diffusers import FluxTransformer2DModel, DiffusionPipeline | |
dtype, device = torch.bfloat16, "cuda" | |
ckpt_id = "black-forest-labs/FLUX.1-schnell" | |
with torch.device("meta"): | |
config = FluxTransformer2DModel.load_config(ckpt_id, subfolder="transformer") | |
model = FluxTransformer2DModel.from_config(config).to(dtype) | |
ckpt_path = hf_hub_download(repo_id="sayakpaul/flux.1-schell-int8wo", filename="flux_schnell_int8wo.pt") | |
state_dict = torch.load(ckpt_path, map_location="cpu") | |
model.load_state_dict(state_dict, assign=True) | |
pipeline = DiffusionPipeline.from_pretrained(ckpt_id, transformer=model, torch_dtype=dtype).to("cuda") | |
image = pipeline( | |
"cat", guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256 | |
).images[0] | |
image.save("flux_schnell_int8.png") |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Install `torchao` from source: https://github.com/pytorch/ao | |
# Install PyTorch nightly | |
from diffusers import DiffusionPipeline, FluxTransformer2DModel, AutoencoderKL | |
from transformers import T5EncoderModel, CLIPTextModel | |
from torchao.quantization import quantize_, int8_weight_only | |
import torch | |
ckpt_id = "black-forest-labs/FLUX.1-schnell" | |
# Quantize the components individually. | |
# If quality is taking a hit then don't quantize all components. | |
# Mix and match. | |
############ Diffusion Transformer ############ | |
transformer = FluxTransformer2DModel.from_pretrained( | |
ckpt_id, subfolder="transformer", torch_dtype=torch.bfloat16 | |
) | |
quantize_(transformer, int8_weight_only()) | |
############ Text Encoder ############ | |
text_encoder = CLIPTextModel.from_pretrained( | |
ckpt_id, subfolder="text_encoder", torch_dtype=torch.bfloat16 | |
) | |
quantize_(text_encoder, int8_weight_only()) | |
############ Text Encoder 2 ############ | |
text_encoder_2 = T5EncoderModel.from_pretrained( | |
ckpt_id, subfolder="text_encoder_2", torch_dtype=torch.bfloat16 | |
) | |
quantize_(text_encoder_2, int8_weight_only()) | |
############ VAE ############ | |
vae = AutoencoderKL.from_pretrained( | |
ckpt_id, subfolder="vae", torch_dtype=torch.bfloat16 | |
) | |
quantize_(vae, int8_weight_only()) | |
# Initialize the pipeline now. | |
pipeline = DiffusionPipeline.from_pretrained( | |
ckpt_id, | |
transformer=transformer, | |
vae=vae, | |
text_encoder=text_encoder, | |
text_encoder_2=text_encoder_2, | |
torch_dtype=torch.bfloat16 | |
).to("cuda") | |
image = pipeline( | |
"cat", guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256 | |
).images[0] | |
torch.cuda.empty_cache() | |
memory = (torch.cuda.memory_allocated() / 1024 / 1024 / 1024) | |
print(f"{memory=:.3f} GB") | |
image.save("quantized_image.png") |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from diffusers import FluxTransformer2DModel | |
from torchao.quantization import quantize_, int8_weight_only | |
import torch | |
ckpt_id = "black-forest-labs/FLUX.1-schnell" | |
transformer = FluxTransformer2DModel.from_pretrained( | |
ckpt_id, subfolder="transformer", torch_dtype=torch.bfloat16 | |
) | |
quantize_(transformer, int8_weight_only()) | |
# should ideally be possible with safetensors but | |
# https://github.com/huggingface/safetensors/issues/515 | |
# this checkpoint is 12GB instead of 23GB. | |
torch.save(transformer.state_dict(), "flux_schnell_int8wo.pt") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment