Skip to content

Instantly share code, notes, and snippets.

@sumofat
Forked from jakubtomsu/collision_3d.odin
Created August 19, 2023 15:21
Show Gist options
  • Save sumofat/1645897853232b1e46b941c4e5197ed5 to your computer and use it in GitHub Desktop.
Save sumofat/1645897853232b1e46b941c4e5197ed5 to your computer and use it in GitHub Desktop.
Simple raylib example of 3d FPS player movement with triangle collision
package main
import "core:fmt"
import "core:math"
import "core:math/linalg"
import rl "vendor:raylib"
main :: proc() {
rl.SetConfigFlags({.VSYNC_HINT, .WINDOW_RESIZABLE, .MSAA_4X_HINT})
rl.InitWindow(800, 600, "collision")
defer rl.CloseWindow()
rl.SetWindowSize(rl.GetScreenWidth(), rl.GetScreenHeight())
rl.DisableCursor()
look_angles: rl.Vector2 = 0
cam: rl.Camera3D = {
position = {5, 1, 5},
target = {0, 0, 3},
up = {0, 3, 0},
fovy = 90,
projection = .PERSPECTIVE,
}
vel: rl.Vector3
tris: [dynamic][3]rl.Vector3
append_quad :: proc(tris: ^[dynamic][3]rl.Vector3, a, b, c, d: rl.Vector3, offs: rl.Vector3 = {}) {
points := [][3]rl.Vector3{{b + offs, a + offs, c + offs}, {b + offs, c + offs, d + offs}}
append(tris, ..points)
}
append_quad(&tris, {0, 0, 0}, {10, 0, 0}, {0, 0, 10}, {10, 0, 10}, {0, -2, 0})
append_quad(&tris, {0, 0, 0}, {10, 0, 0}, {0, 0, 10}, {10, 0, 10}, {0, -2, 10})
append_quad(&tris, {0, 0, 0}, {10, 0, 0}, {0, 0, 10}, {10, 0, 10}, {10, 0, 10})
append_quad(&tris, {0, 0, 0}, {10, 0, 0}, {0, 10, 10}, {10, 10, 10}, {10, 0, 20})
append_quad(&tris, {0, 0, 0}, {10, 0, 0}, {0, 0, 10}, {10, 0, 10}, {10, 10, 30})
for !rl.WindowShouldClose() {
rl.BeginDrawing()
rl.ClearBackground({40, 30, 50, 255})
rl.BeginMode3D(cam)
dt := rl.GetFrameTime()
rot :=
linalg.quaternion_from_euler_angle_y_f32(look_angles.y) *
linalg.quaternion_from_euler_angle_x_f32(look_angles.x)
forward := linalg.quaternion128_mul_vector3(rot, linalg.Vector3f32{0, 0, 1})
right := linalg.quaternion128_mul_vector3(rot, linalg.Vector3f32{1, 0, 0})
look_angles.y -= rl.GetMouseDelta().x * dt * 0.13
look_angles.x += rl.GetMouseDelta().y * dt * 0.13
SPEED :: 20
RAD :: 1
if rl.IsKeyDown(.W) do vel += forward * dt * SPEED
if rl.IsKeyDown(.S) do vel -= forward * dt * SPEED
if rl.IsKeyDown(.D) do vel -= right * dt * SPEED
if rl.IsKeyDown(.A) do vel += right * dt * SPEED
if rl.IsKeyDown(.E) do vel.y += dt * SPEED
if rl.IsKeyDown(.Q) do vel.y -= dt * SPEED
// gravity
vel.y -= dt * 10 * (vel.y < 0.0 ? 2 : 1)
if rl.IsKeyPressed(.SPACE) do vel.y = 15
// damping
vel *= 1.0 / (1.0 + dt * 2)
// Collide
for t in tris {
closest := closest_point_on_triangle(cam.position, t[0], t[1], t[2])
diff := cam.position - closest
dist := linalg.length(diff)
normal := diff / dist
rl.DrawCubeV(closest, 0.05, dist > RAD ? rl.ORANGE : rl.WHITE)
if dist < RAD {
cam.position += normal * (RAD - dist)
// project velocity to the normal plane, if moving towards it
vel_normal_dot := linalg.dot(vel, normal)
if vel_normal_dot < 0 {
vel -= normal * vel_normal_dot
}
}
}
cam.position += vel * dt
cam.target = cam.position + forward
rl.DrawCubeV(cam.position + forward * 10, 0.25, rl.BLACK)
for t in tris {
rl.DrawTriangle3D(t[0], t[1], t[2], rl.GRAY)
rl.DrawLine3D(t[0], t[1], rl.LIGHTGRAY)
rl.DrawLine3D(t[0], t[2], rl.LIGHTGRAY)
rl.DrawLine3D(t[1], t[2], rl.LIGHTGRAY)
}
rl.DrawCube({0, 0, 0}, 0.1, 0.1, 0.1, rl.WHITE)
rl.DrawCube({1, 0, 0}, 1, 0.1, 0.1, rl.RED)
rl.DrawCube({0, 1, 0}, 0.1, 1, 0.1, rl.GREEN)
rl.DrawCube({0, 0, 1}, 0.1, 0.1, 1, rl.BLUE)
rl.EndMode3D()
rl.DrawFPS(4, 4)
rl.DrawText(fmt.ctprintf("pos: %v, vel: %v", cam.position, vel), 4, 30, 20, rl.WHITE)
rl.EndDrawing()
}
}
// Real Time collision detection 5.1.5
closest_point_on_triangle :: proc(p, a, b, c: rl.Vector3) -> rl.Vector3 {
// Check if P in vertex region outside A
ab := b - a
ac := c - a
ap := p - a
d1 := linalg.dot(ab, ap)
d2 := linalg.dot(ac, ap)
if d1 <= 0.0 && d2 <= 0.0 do return a // barycentric coordinates (1,0,0)
// Check if P in vertex region outside B
bp := p - b
d3 := linalg.dot(ab, bp)
d4 := linalg.dot(ac, bp)
if d3 >= 0.0 && d4 <= d3 do return b // barycentric coordinates (0,1,0)
// Check if P in edge region of AB, if so return projection of P onto AB
vc := d1 * d4 - d3 * d2
if vc <= 0.0 && d1 >= 0.0 && d3 <= 0.0 {
v := d1 / (d1 - d3)
return a + v * ab // barycentric coordinates (1-v,v,0)
}
// Check if P in vertex region outside C
cp := p - c
d5 := linalg.dot(ab, cp)
d6 := linalg.dot(ac, cp)
if d6 >= 0.0 && d5 <= d6 do return c // barycentric coordinates (0,0,1)
// Check if P in edge region of AC, if so return projection of P onto AC
vb := d5 * d2 - d1 * d6
if vb <= 0.0 && d2 >= 0.0 && d6 <= 0.0 {
w := d2 / (d2 - d6)
return a + w * ac // barycentric coordinates (1-w,0,w)
}
// Check if P in edge region of BC, if so return projection of P onto BC
va := d3 * d6 - d5 * d4
if va <= 0.0 && (d4 - d3) >= 0.0 && (d5 - d6) >= 0.0 {
w := (d4 - d3) / ((d4 - d3) + (d5 - d6))
return b + w * (c - b) // barycentric coordinates (0,1-w,w)
}
// P inside face region. Compute Q through its barycentric coordinates (u,v,w)
denom := 1.0 / (va + vb + vc)
v := vb * denom
w := vc * denom
return a + ab * v + ac * w // = u*a + v*b + w*c, u = va * denom = 1.0-v-w
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment