Created
July 9, 2015 17:38
-
-
Save supernullset/e5952c20695cbd9996fd to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module ZeroOneOne (main, parMain) where | |
import Lib as L | |
import Data.List (transpose) | |
import Control.Parallel.Strategies | |
{- | |
Problem 11: | |
In the 2020 grid below, four numbers along a diagonal line have been marked in red. | |
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 | |
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 | |
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65 | |
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 | |
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80 | |
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 | |
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70 | |
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21 | |
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72 | |
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95 | |
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92 | |
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57 | |
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58 | |
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40 | |
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66 | |
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69 | |
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36 | |
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16 | |
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54 | |
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48 | |
The product of these numbers is 26 63 78 14 = 1788696. | |
What is the greatest product of four adjacent numbers in any direction (up, down, left, right, or diagonally) in the 2020 grid? | |
-} | |
grid = [ | |
[08, 02, 22, 97, 38, 15, 00, 40, 00, 75, 04, 05, 07, 78, 52, 12, 50, 77, 91, 08], | |
[49, 49, 99, 40, 17, 81, 18, 57, 60, 87, 17, 40, 98, 43, 69, 48, 04, 56, 62, 00], | |
[81, 49, 31, 73, 55, 79, 14, 29, 93, 71, 40, 67, 53, 88, 30, 03, 49, 13, 36, 65], | |
[52, 70, 95, 23, 04, 60, 11, 42, 69, 24, 68, 56, 01, 32, 56, 71, 37, 02, 36, 91], | |
[22, 31, 16, 71, 51, 67, 63, 89, 41, 92, 36, 54, 22, 40, 40, 28, 66, 33, 13, 80], | |
[24, 47, 32, 60, 99, 03, 45, 02, 44, 75, 33, 53, 78, 36, 84, 20, 35, 17, 12, 50], | |
[32, 98, 81, 28, 64, 23, 67, 10, 26, 38, 40, 67, 59, 54, 70, 66, 18, 38, 64, 70], | |
[67, 26, 20, 68, 02, 62, 12, 20, 95, 63, 94, 39, 63, 08, 40, 91, 66, 49, 94, 21], | |
[24, 55, 58, 05, 66, 73, 99, 26, 97, 17, 78, 78, 96, 83, 14, 88, 34, 89, 63, 72], | |
[21, 36, 23, 09, 75, 00, 76, 44, 20, 45, 35, 14, 00, 61, 33, 97, 34, 31, 33, 95], | |
[78, 17, 53, 28, 22, 75, 31, 67, 15, 94, 03, 80, 04, 62, 16, 14, 09, 53, 56, 92], | |
[16, 39, 05, 42, 96, 35, 31, 47, 55, 58, 88, 24, 00, 17, 54, 24, 36, 29, 85, 57], | |
[86, 56, 00, 48, 35, 71, 89, 07, 05, 44, 44, 37, 44, 60, 21, 58, 51, 54, 17, 58], | |
[19, 80, 81, 68, 05, 94, 47, 69, 28, 73, 92, 13, 86, 52, 17, 77, 04, 89, 55, 40], | |
[04, 52, 08, 83, 97, 35, 99, 16, 07, 97, 57, 32, 16, 26, 26, 79, 33, 27, 98, 66], | |
[88, 36, 68, 87, 57, 62, 20, 72, 03, 46, 33, 67, 46, 55, 12, 32, 63, 93, 53, 69], | |
[04, 42, 16, 73, 38, 25, 39, 11, 24, 94, 72, 18, 08, 46, 29, 32, 40, 62, 76, 36], | |
[20, 69, 36, 41, 72, 30, 23, 88, 34, 62, 99, 69, 82, 67, 59, 85, 74, 04, 36, 16], | |
[20, 73, 35, 29, 78, 31, 90, 01, 74, 31, 49, 71, 48, 86, 81, 16, 23, 57, 05, 54], | |
[01, 70, 54, 71, 83, 51, 54, 69, 16, 92, 33, 48, 61, 43, 52, 01, 89, 19, 67, 48] | |
] | |
diagonals = transpose . zipWith drop [0..] | |
horizontals = grid | |
verticals = transpose grid | |
-- \ diagonals | |
rightDiagonals = lower ++ upper where | |
lower = diagonals grid | |
upper = diagonals verticals | |
-- / diagonals | |
-- This is accomplished in an odd way, by applying the SAME method | |
-- above, to a flipped grid | |
leftDiagonals = lower ++ upper where | |
lower = diagonals $ reverse grid | |
upper = diagonals $ transpose $ reverse grid | |
directions = concat [horizontals, verticals, rightDiagonals, leftDiagonals] | |
-- group by 4 and find max | |
main = maximum . map product $ concatMap (\o -> groupsOf 4 o) directions | |
-- Parallel version | |
parMain = runEval $ do | |
h <- rpar $ groupProd horizontals | |
v <- rpar $ groupProd verticals | |
r <- rpar $ groupProd rightDiagonals | |
l <- rpar $ groupProd leftDiagonals | |
s <- rseq $ maximum $ concat [h,v,r,l] | |
return s | |
where groupProd l = map product $ concatMap (\o -> groupsOf 4 o) l |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment