-
-
Save sureshdontha/4b2cacec5fe1d2afa1a4e0dd14e9386a to your computer and use it in GitHub Desktop.
Filtering mobile spam messages with Naive Bayes (includes text mining transformations)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Download data set via: | |
# http://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection | |
# import libraries | |
library(caret) | |
library(e1071) | |
library(tm) | |
library(SnowballC) | |
# read in the dataset | |
df <- read.table("SMSSpamCollection", sep="\t", header=FALSE, stringsAsFactors=FALSE, quote="", col.names=c("type", "text")) | |
df$type = factor(df$type) | |
# build the corpus | |
corpus <- Corpus(VectorSource(df$text, encoding='UTF-8')) | |
corpus <- tm_map(corpus, tolower) | |
corpus <- tm_map(corpus, removePunctuation) | |
corpus <- tm_map(corpus, removeNumbers) | |
stopWordList <- stopwords('english') | |
# NOTE: add some stopwords, and keep some special words | |
# | |
# stopWordList <- c(stopwords(), 'add-this-word') | |
# redundant <- which(stopWordList == "keep-this-word") | |
# stopWordList <- stopWordList[-redundant] | |
corpus <- tm_map(corpus, removeWords, stopWordList) | |
corpus.stemmed <- tm_map(corpus, stemDocument) | |
corpus <- tm_map(corpus, stripWhitespace) | |
# build the document-term-matrix | |
dtm <- DocumentTermMatrix(corpus.stemmed) | |
dict <- findFreqTerms(dtm, 10); | |
dtm.sparse <- DocumentTermMatrix(corpus.stemmed, list(dictionary = dict)) | |
convert_to_factor <- function(x) { | |
x <- ifelse(x > 0, 1, 0); | |
x <- factor(x, levels=c(0,1), labels=c("No", "Yes")); | |
return(x) | |
} | |
dtm.final <- apply(dtm.sparse, MARGIN=2, convert_to_factor) | |
# build training and test corpora | |
sms.train <- dtm.final[1:4169,] | |
sms.test <- dtm.final[4170:5559,] | |
classes <- df$type | |
sms.train.classes <- classes[1:4169] | |
sms.test.classes <- classes[4170:5559] | |
# NOTE: compare train and test set class distribution | |
# prop.table(table(df.train.classes)) | |
# prop.table(table(df.test.classes)) | |
nb <- naiveBayes(sms.train, sms.train.classes, laplace=1) | |
pred <- predict(nb, sms.test) | |
confusionMatrix(pred, sms.test.classes) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment