Created
May 13, 2018 08:40
-
-
Save suriyadeepan/4e2f945ccaf3c160af8dad20ed5e90d1 to your computer and use it in GitHub Desktop.
Multi-label classification
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import numpy as np | |
class LogisticRegressor(object): | |
def __init__(self, num_attrs, num_labels, threshold=0.8, lr=0.01): | |
self.attrs = tf.placeholder(tf.float32, [None, num_attrs], name='attrs') | |
self.labels= tf.placeholder(tf.int32, [None, num_labels], name='labels') | |
W = tf.get_variable(shape=[num_attrs, num_labels], dtype=tf.float32, | |
initializer=tf.random_uniform_initializer(-0.01, 0.01), | |
name='W') | |
b = tf.get_variable(shape=[num_labels, ], dtype=tf.float32, | |
initializer=tf.random_uniform_initializer(-0.01, 0.01), | |
name='b') | |
logits = tf.matmul(self.attrs, W) + b | |
ce = tf.nn.sigmoid_cross_entropy_with_logits( | |
labels= tf.cast(self.labels, tf.float32), | |
logits=logits | |
) | |
loss = tf.reduce_mean(ce) | |
accuracy = tf.cast(tf.equal(self.labels, | |
tf.cast(tf.nn.sigmoid(logits) > threshold, tf.int32) | |
), tf.float32) | |
self.out = { | |
'logits' : tf.nn.sigmoid(logits), | |
'accuracy' : tf.reduce_mean(accuracy), | |
'loss' : loss | |
} | |
self.train_op = tf.constant(5.) #tf.train.AdamOptimizer(lr).minimize(loss) | |
def random_execution(model): | |
with tf.Session() as sess: | |
sess.run(tf.global_variables_initializer()) | |
return sess.run(model.out, | |
feed_dict = { | |
model.attrs: np.random.uniform(-0.01, 0.01, [2, 103]), | |
model.labels : np.random.randint(0, 1, [2, 14]) | |
} | |
) | |
if __name__ == '__main__': | |
model = LogisticRegressor(103, 14) | |
out = random_execution(model) | |
print(out) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment