class: middle, center, blackslide
Suriyadeepan Ramamoorthy
{"0": {"0": {"humidity": 0.0, "temperature": 0.0}, "1": {"humidity": 0.0, "temperature": 0.0}, "2": {"humidity": 0.0, "temperature": 0.0}, "3": {"humidity": 0.0, "temperature": 0.0}, "4": {"humidity": 0.0, "temperature": 0.0}, "5": {"humidity": 0.0, "temperature": 0.0}, "6": {"humidity": 0.0, "temperature": 0.0}, "7": {"humidity": 0.0, "temperature": 0.0}, "8": {"humidity": 30.216216216216218, "temperature": 35.0}, "9": {"humidity": 30.166666666666668, "temperature": 35.0}, "10": {"humidity": 31.0, "temperature": 34.54545454545455}, "11": {"humidity": 32.54545454545455, "temperature": 32.90909090909091}, "12": {"humidity": 38.54545454545455, "temperature": 31.454545454545453}, "13": {"humidity": 43.5, "temperature": 31.0}, "14": {"humidity": 41.45454545454545, "temperature": 31.0}, "15": {"humidity": 38.36363636363637, "temperature": 31.0}, "16": {"humidity": 38.583333333333336, "temperature": 31.0}, "17": {"humidity": 40.63636363636363, "temperature": 31.0}, "18": {"humidity": 37.45454545454545, "temperature |
temperature | windspeed | pressure | direction | humidity | timestamp | |
---|---|---|---|---|---|---|
30.00 | 0.00 | 917.01 | 234.69SW | 38.00 | 2016-09-30T13:51:22.573Z | |
30.00 | -0.00 | 917.14 | 234.69SW | 38.00 | 2016-09-30T13:46:21.203Z | |
30.00 | -0.00 | 916.59 | 234.69SW | 35.00 | 2016-09-30T13:04:42.901Z | |
30.00 | 2.85 | 915.65 | 277.12WN | 35.00 | 2016-09-30T12:23:08.626Z | |
30.00 | 0.00 | 914.87 | 275.07WN | 39.00 | 2016-09-30T11:51:54.471Z | |
31.00 | 22.57 | 913.68 | 275.07WN | 39.00 | 2016-09-30T11:46:35.589Z | |
31.00 | 23.21 | 913.49 | 230.86SW | 38.00 | 2016-09-30T11:41:16.630Z | |
31.00 | 13.74 | 912.75 | 230.86SW | 38.00 | 2016-09-30T11:35:57.636Z | |
31.00 | 32.92 | 912.03 | 249.03SW | 39.00 | 2016-09-30T11:30:36.698Z |
''' | |
Extract images from pdf. | |
- requires imagemagick and wand | |
sudo apt install imagemagick | |
sudo pip3 install --upgrade Wand | |
''' | |
from wand.image import Image |
######## | |
# ARRAYS | |
<?php | |
$marr = array('helga', 'rollo', 'ivar'); | |
$i = 0; | |
while($i < 3){ | |
$j = 0; | |
while($j < $i){ | |
echo "\t"; | |
$j++; |
# params | |
seqlen = metadata['max_words'] | |
state_size = 128 | |
vocab_size = len(metadata['idx2w']) | |
batch_size = 128 | |
num_classes = 2 | |
tf.reset_default_graph() |
<script src="//cdnjs.cloudflare.com/ajax/libs/p5.js/0.5.6/p5.js"></script> | |
<script src="sketch.js"></script> | |
<script src="circle.js"></script> |
import tensorflow as tf | |
import numpy as np | |
''' | |
Classification | |
X - [ 0.2, 0.1, 0.6 ] | |
Y - 2 (argmax X) | |
''' |