Created
March 14, 2017 18:31
-
-
Save surya501/1ad1235bcb75131e25f8ab6da99ddfc7 to your computer and use it in GitHub Desktop.
Airport embedding in keras
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# %matplotlib inline | |
import pandas as pd | |
import numpy as np | |
import keras | |
import tensorflow as tf | |
import os | |
from keras.models import Model | |
from keras.layers import Input, Embedding, merge | |
from keras.layers.core import Flatten, Dense, Dropout, Lambda | |
from keras.optimizers import Adam | |
from keras.regularizers import l2 | |
# https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236 | |
# download the flight data from the above url and unzip/rename. | |
# select the following fields: Origin, Dest, Actual Elapsed time, distance | |
flights = pd.read_csv('flights_1.csv') | |
flights = flights[np.isfinite(flights['ACTUAL_ELAPSED_TIME'])] #remove empty and nan values for elapsed time. | |
# flights = flights.drop('ACTUAL_ELAPSED_TIME', 1) | |
flights = flights.drop('Unnamed: 4', 1) | |
# flights = flights.drop_duplicates() | |
# flights = flights[np.isfinite(flights['DISTANCE'])] #remove empty and nan values for elapsed time. | |
flights = flights.drop('DISTANCE', 1) | |
flights.head() | |
n_airports = flights.ORIGIN.nunique() | |
n_airports | |
airports = flights.ORIGIN.unique() | |
airports.sort() | |
airports_d = airports | |
# airports | |
airports2idx = {o:i for i,o in enumerate(airports)} | |
# airports2idx | |
#convert all airports to index values in the flights data. | |
flights.ORIGIN = flights.ORIGIN.apply(lambda x: airports2idx[x]) | |
flights.DEST = flights.DEST.apply(lambda x: airports2idx[x]) | |
# flights | |
# seperate data into train and test values. | |
msk = np.random.rand(len(flights)) < 0.8 | |
trn = flights[msk] | |
val = flights[~msk] | |
def embedding_input(name, n_in, n_out, reg): | |
inp = Input(shape=(1,), dtype='int64', name=name) | |
return inp, Embedding(n_in, n_out, input_length=1, W_regularizer=l2(reg))(inp) | |
n_factors = 5 | |
origin_airports, o = embedding_input('airports', n_airports, n_factors, 1e-4) | |
dest_airports, d = embedding_input('airports_d', n_airports, n_factors, 1e-4) | |
x = merge([o, d], mode='concat') | |
x = Flatten()(x) | |
# x = Dropout(0.3)(x) | |
x = Dense(70, activation='relu')(x) | |
# x = Dropout(0.7)(x) | |
x = Dense(1)(x) | |
nn = Model([origin_airports, dest_airports], x) | |
nn.compile(Adam(0.001), loss='mse') | |
nn.fit([trn.ORIGIN, trn.DEST], trn.ACTUAL_ELAPSED_TIME, batch_size=64, nb_epoch=8, | |
validation_data=([val.ORIGIN, val.DEST], val.ACTUAL_ELAPSED_TIME)) | |
nn.optimizer.lr=0.1 | |
nn.fit([trn.ORIGIN, trn.DEST], trn.ACTUAL_ELAPSED_TIME, batch_size=64, nb_epoch=20, | |
validation_data=([val.ORIGIN, val.DEST], val.ACTUAL_ELAPSED_TIME)) | |
saver = tf.train.Saver() | |
LOG_DIR = '/home/surya/tensorboard_log' | |
os.makedirs(LOG_DIR, exist_ok=True) | |
saver.save(keras.backend.get_session(), os.path.join(LOG_DIR, "model.ckpt")) | |
#start the tensorboard with `tensorboard --logdir=~/tensorboard_log` and explore the embedding tab (look for 294x2) | |
def estimate_time(src_airport, dest_airport): | |
return nn.predict([np.array([airports2idx[src_airport]]),np.array([airports2idx[dest_airport]])]) | |
estimate_time('ABE', 'ATL') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment