Skip to content

Instantly share code, notes, and snippets.

View suvojit-0x55aa's full-sized avatar
💭
Learning to Learn

Suvojit Manna suvojit-0x55aa

💭
Learning to Learn
View GitHub Profile
@LeZuse
LeZuse / 00_README.md
Last active November 1, 2024 02:35
Install node on Apple Silicon M1 both ARM and x86 (Rosetta)

Node.js on Apple Silicon

Node Version Manager (https://github.com/nvm-sh/nvm) works perfectly across native node installations as well as emulated Rosetta installations. The trick I am using here is to install one LTS version of node under Rosetta and another stable version as native binary.

TODO

  • find a way how to run the same node version on both platforms
# git clone https://github.com/NVlabs/stylegan2
import os
import numpy as np
from scipy.interpolate import interp1d
from scipy.io import wavfile
import matplotlib.pyplot as plt
import PIL.Image
import moviepy.editor
import dnnlib
@redknightlois
redknightlois / ralamb.py
Last active August 9, 2023 20:50
Ralamb optimizer (RAdam + LARS trick)
class Ralamb(Optimizer):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0):
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
self.buffer = [[None, None, None] for ind in range(10)]
super(Ralamb, self).__init__(params, defaults)
def __setstate__(self, state):
super(Ralamb, self).__setstate__(state)
@thomwolf
thomwolf / parallel.py
Last active August 8, 2023 15:50
Data Parallelism in PyTorch for modules and losses
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang, Rutgers University, Email: [email protected]
## Modified by Thomas Wolf, HuggingFace Inc., Email: [email protected]
## Copyright (c) 2017-2018
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
"""Encoding Data Parallel"""
@bogdan-kulynych
bogdan-kulynych / install-cuda-10-bionic.sh
Last active October 17, 2024 23:17
Install CUDA 10 on Ubuntu 18.04
# WARNING: These steps seem to not work anymore!
#!/bin/bash
# Purge existign CUDA first
sudo apt --purge remove "cublas*" "cuda*"
sudo apt --purge remove "nvidia*"
# Install CUDA Toolkit 10
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-repo-ubuntu1804_10.0.130-1_amd64.deb
@diogocapela
diogocapela / moment-js-timezones.txt
Created September 7, 2018 00:10
List of All Moment.js Timezones
Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmara
Africa/Asmera
Africa/Bamako
Africa/Bangui
Africa/Banjul
Africa/Bissau
@rjdp
rjdp / coursera_downloader.py
Last active December 22, 2020 16:49
Script for downloading course Lectures from coursera specialization or individual course
import os
import requests
import time
import sys
video_quality = "540p" # available qualities 360p, 540p, 720p
"""
In order to get courseId go to a course page open network tab in browser dev tools and search for "onDemandSpecializations"
in search input of network tab and then go to videos section of say week 1 , check the query param "courseId" its value is what we use can use as value for "one_of_specialization_course_id"
@soumith
soumith / gist:01da3874bf014d8a8c53406c2b95d56b
Last active March 28, 2022 16:53
Install PillowSIMD+libjpeg-turbo on Conda
conda uninstall --force pillow -y
# install libjpeg-turbo to $HOME/turbojpeg
git clone https://github.com/libjpeg-turbo/libjpeg-turbo
pushd libjpeg-turbo
mkdir build
cd build
cmake .. -DCMAKE_INSTALL_PREFIX:PATH=$HOME/turbojpeg
make
make install
@ylogx
ylogx / xgboost_incremental.ipynb
Last active May 25, 2024 22:10
XGBoost Incremental Learning
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@peterroelants
peterroelants / mnist_estimator.py
Last active February 14, 2024 11:26
Example using TensorFlow Estimator, Experiment & Dataset on MNIST data.
"""Script to illustrate usage of tf.estimator.Estimator in TF v1.3"""
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data as mnist_data
from tensorflow.contrib import slim
from tensorflow.contrib.learn import ModeKeys
from tensorflow.contrib.learn import learn_runner
# Show debugging output