Created
April 20, 2014 08:06
-
-
Save suxue/11108254 to your computer and use it in GitHub Desktop.
kmean classifier
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
_ = require("underscore") | |
assert = require('assert') | |
zip = (list) -> _.zip.apply(null, list) | |
sum = (list) -> _.reduce(list, ((memo, v) -> memo + v), 0) | |
mean = (list) -> sum(list) / list.length | |
distances = | |
euclidean : (p,q) ->Math.sqrt(sum _.map(_.zip(p, q), (v)->(v[0]-v[1])**2)) | |
manhattan : (p,q) ->sum(_.map(_.zip(p, q), (v) -> Math.abs(v[0] - v[1]))) | |
cosine : (p, q) -> | |
y = sum(_.map(_.zip(p,q), (v) -> v[0]*v[1])) | |
c = (x) -> Math.sqrt(sum(_.map(x, (i) -> i**2))) | |
r = Math.acos(y / (c(p) * c(q))) / Math.PI | |
init = | |
rand : (data, k) -> | |
index = _.map(data, (_, i) -> i) | |
for i in [1..k] | |
v = _.random(index.length-1) | |
x = index[v] | |
index = _.without(index, x) | |
data[x] | |
farthest : (data, k, dist) -> | |
data = _.clone(data) | |
r = _.random(data.length - 1) | |
for i in [1..k] | |
data = _.without(data, data[r]) | |
_.reduce(dist(data[r], q) for q in data, ((memo, v, i) -> | |
if memo > v then memo else r = i; v), -Infinity) | |
data[r] | |
assert process.argv.length>=6, "provide arguments: k, dist, iter, init" | |
conf = | |
k : Number(process.argv[2]) | |
dist : distances[process.argv[3]] | |
iter : Number(process.argv[4]) | |
init : init[process.argv[5]] | |
kmeans = (data, k, dist, iterno, init) -> | |
centroids = init(data, k, dist) | |
assign = () -> | |
distances = ((dist(p, c) for p in data) for c in centroids) | |
groups = ([] for c in centroids) | |
_.each(zip(distances), (dist_vec, index) -> | |
min_dist = _.min(dist_vec) | |
min_index = _.indexOf(dist_vec, min_dist) | |
groups[min_index].push data[index] | |
data[index].dist = min_dist) | |
groups | |
for i in [1..iterno] | |
groups = _.reject(assign(), (g) -> g.length == 0) | |
newcent = ((mean(dim) for dim in (zip(group))) for group in groups) | |
if _.isEqual(newcent, centroids) then break else centroids = newcent | |
console.log "#{i} GROUPS:", groups.length, _.sortBy(g.length for g in groups) | |
console.log(centroids) | |
main = (content, sep) -> | |
readcsv = (c) -> | |
((Number(r) for r in line.split(sep || ',')) for line in c.split('\n')) | |
data = readcsv(content) | |
kmeans(data, conf.k, conf.dist, conf.iter, conf.init) | |
buf = [] | |
process.stdin.resume(); process.stdin.setEncoding 'utf8' | |
process.stdin.on 'data', (chunk) -> buf.push chunk | |
process.stdin.on 'end', () -> main(buf.join('').trim(), process.argv[6]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment