Last active
August 19, 2024 07:51
-
-
Save svdamani/1015c5c4b673c3297309 to your computer and use it in GitHub Desktop.
Natural Cubic Spline Interpolation in C
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** Numerical Analysis 9th ed - Burden, Faires (Ch. 3 Natural Cubic Spline, Pg. 149) */ | |
#include <stdio.h> | |
int main() { | |
/** Step 0 */ | |
int n, i, j; | |
scanf("%d", &n); | |
n--; | |
float x[n + 1], a[n + 1], h[n], A[n], l[n + 1], | |
u[n + 1], z[n + 1], c[n + 1], b[n], d[n]; | |
for (i = 0; i < n + 1; ++i) scanf("%f", &x[i]); | |
for (i = 0; i < n + 1; ++i) scanf("%f", &a[i]); | |
/** Step 1 */ | |
for (i = 0; i <= n - 1; ++i) h[i] = x[i + 1] - x[i]; | |
/** Step 2 */ | |
for (i = 1; i <= n - 1; ++i) | |
A[i] = 3 * (a[i + 1] - a[i]) / h[i] - 3 * (a[i] - a[i - 1]) / h[i - 1]; | |
/** Step 3 */ | |
l[0] = 1; | |
u[0] = 0; | |
z[0] = 0; | |
/** Step 4 */ | |
for (i = 1; i <= n - 1; ++i) { | |
l[i] = 2 * (x[i + 1] - x[i - 1]) - h[i - 1] * u[i - 1]; | |
u[i] = h[i] / l[i]; | |
z[i] = (A[i] - h[i - 1] * z[i - 1]) / l[i]; | |
} | |
/** Step 5 */ | |
l[n] = 1; | |
z[n] = 0; | |
c[n] = 0; | |
/** Step 6 */ | |
for (j = n - 1; j >= 0; --j) { | |
c[j] = z[j] - u[j] * c[j + 1]; | |
b[j] = (a[j + 1] - a[j]) / h[j] - h[j] * (c[j + 1] + 2 * c[j]) / 3; | |
d[j] = (c[j + 1] - c[j]) / (3 * h[j]); | |
} | |
/** Step 7 */ | |
printf("%2s %8s %8s %8s %8s\n", "i", "ai", "bi", "ci", "di"); | |
for (i = 0; i < n; ++i) | |
printf("%2d %8.2f %8.2f %8.2f %8.2f\n", i, a[i], b[i], c[i], d[i]); | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
@Pin09091 yes of course. Feel free to use it, mention link to the gist of my name. I'm glad this code is useful for you