Last active
March 2, 2016 02:14
-
-
Save sveitser/be6c8c82d53b1060e5f1 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
----------------------------------- coverage: platform linux, python 3.5.1-final-0 ------------------------------------ | |
Name Stmts Miss Cover Missing | |
--------------------------------------------------------------------- | |
lasagne/__init__.py 14 0 100% | |
lasagne/conftest.py 3 0 100% | |
lasagne/init.py 112 0 100% | |
lasagne/layers/__init__.py 13 0 100% | |
lasagne/layers/base.py 52 0 100% | |
lasagne/layers/conv.py 85 0 100% | |
lasagne/layers/corrmm.py 23 0 100% | |
lasagne/layers/cuda_convnet.py 167 156 7% 17-634 | |
lasagne/layers/dense.py 53 0 100% | |
lasagne/layers/dnn.py 78 0 100% | |
lasagne/layers/embedding.py 15 0 100% | |
lasagne/layers/helper.py 127 2 98% 194-196 | |
lasagne/layers/input.py 23 0 100% | |
lasagne/layers/merge.py 108 0 100% | |
lasagne/layers/noise.py 31 0 100% | |
lasagne/layers/normalization.py 94 0 100% | |
lasagne/layers/pool.py 152 0 100% | |
lasagne/layers/recurrent.py 370 0 100% | |
lasagne/layers/shape.py 149 0 100% | |
lasagne/layers/special.py 333 0 100% | |
lasagne/nonlinearities.py 33 0 100% | |
lasagne/objectives.py 50 0 100% | |
lasagne/random.py 6 0 100% | |
lasagne/regularization.py 21 0 100% | |
lasagne/theano_extensions/__init__.py 0 0 100% | |
lasagne/theano_extensions/conv.py 119 0 100% | |
lasagne/theano_extensions/padding.py 20 0 100% | |
lasagne/updates.py 141 0 100% | |
lasagne/utils.py 109 0 100% | |
--------------------------------------------------------------------- | |
TOTAL 2501 158 94% | |
====================================================== FAILURES ======================================================= | |
________________________________ TestGetOutput_Layer.test_get_output_with_unused_kwarg ________________________________ | |
self = <test_helper.TestGetOutput_Layer object at 0x7fd96ad55e10> | |
layers = (<Mock name='mock.input_layer.input_layer' spec='InputLayer' id='140571776999376'>, <Mock name='mock.input_layer' spec='Layer' id='140571776999264'>, <Mock spec='Layer' id='140571776999320'>) | |
get_output = <function get_output at 0x7fd9acfb7378> | |
def test_get_output_with_unused_kwarg(self, layers, get_output): | |
l1, l2, l3 = layers | |
unused_kwarg = object() | |
with warnings.catch_warnings(record=True) as w: | |
warnings.simplefilter('always') | |
get_output(l3, kwagg=unused_kwarg) | |
> assert len(w) == 1 | |
E assert 3 == 1 | |
E + where 3 = len([<warnings.WarningMessage object at 0x7fd96ad561d0>, <warnings.WarningMessage object at 0x7fd96ad562b0>, <warnings.WarningMessage object at 0x7fd96ad560f0>]) | |
lasagne/tests/layers/test_helper.py:237: AssertionError | |
______________________________ TestGetOutput_Layer.test_get_output_with_no_unused_kwarg _______________________________ | |
self = <test_helper.TestGetOutput_Layer object at 0x7fd96ad56b38> | |
layers = (<Mock name='mock.input_layer.input_layer' spec='InputLayer' id='140571777001792'>, <Mock name='mock.input_layer' spec='Layer' id='140571777001680'>, <Mock spec='Layer' id='140571777001848'>) | |
get_output = <function get_output at 0x7fd9acfb7378> | |
def test_get_output_with_no_unused_kwarg(self, layers, get_output): | |
l1, l2, l3 = layers | |
with warnings.catch_warnings(record=True) as w: | |
warnings.simplefilter('always') | |
get_output(l3) | |
> assert len(w) == 0 | |
E assert 2 == 0 | |
E + where 2 = len([<warnings.WarningMessage object at 0x7fd96ad566d8>, <warnings.WarningMessage object at 0x7fd96ad56e48>]) | |
lasagne/tests/layers/test_helper.py:246: AssertionError | |
_______________________________________ TestParametricRectifierLayer.test_prelu _______________________________________ | |
self = <test_special.TestParametricRectifierLayer object at 0x7fd931ef1fd0> | |
init_alpha = <function TestParametricRectifierLayer.init_alpha.<locals>.<lambda> at 0x7fd93274b7b8> | |
def test_prelu(self, init_alpha): | |
import lasagne | |
input_shape = (3, 28) | |
input = np.random.randn(*input_shape).astype(theano.config.floatX) | |
l_in = lasagne.layers.input.InputLayer(input_shape) | |
l_dense = lasagne.layers.dense.DenseLayer(l_in, num_units=100) | |
l_prelu = lasagne.layers.prelu(l_dense, alpha=init_alpha) | |
output = lasagne.layers.get_output(l_prelu, input) | |
assert l_dense.nonlinearity == lasagne.nonlinearities.identity | |
W = l_dense.W.get_value() | |
b = l_dense.b.get_value() | |
alpha_v = l_prelu.alpha.get_value() | |
expected = np.dot(input, W) + b | |
expected = np.maximum(expected, 0) + \ | |
np.minimum(expected, 0) * alpha_v | |
> assert np.allclose(output.eval(), expected) | |
E assert <function allclose at 0x7fd9c434d0d0>(array([[ 0.00000000e+00, 1.26576021e-01, -1.16077764e-02,\n -8.72909743e-03, 2.74441659e-01, 1.35156974....95090973e-01,\n -8.30698758e-02, -4.08609122e-01, 6.13293409e-01,\n -2.84109414e-01]], dtype=float32), array([[ 0.00000000e+00, 1.26576036e-01, -1.16077941e-02,\n -8.72910116e-03, 2.74441659e-01, 1.35156974....95091033e-01,\n -8.30699131e-02, -4.08609092e-01, 6.13293350e-01,\n -2.84109414e-01]], dtype=float32)) | |
E + where <function allclose at 0x7fd9c434d0d0> = np.allclose | |
E + and array([[ 0.00000000e+00, 1.26576021e-01, -1.16077764e-02,\n -8.72909743e-03, 2.74441659e-01, 1.35156974....95090973e-01,\n -8.30698758e-02, -4.08609122e-01, 6.13293409e-01,\n -2.84109414e-01]], dtype=float32) = <bound method Variable.eval of Elemwise{add,no_inplace}.0>() | |
E + where <bound method Variable.eval of Elemwise{add,no_inplace}.0> = Elemwise{add,no_inplace}.0.eval | |
lasagne/tests/layers/test_special.py:688: AssertionError | |
================================ 3 failed, 1046 passed, 102 skipped in 189.63 seconds ================================= |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment