Last active
March 7, 2016 14:13
-
-
Save sveitser/eed9909f5a9af6b5997d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
(lasagne) lulu@lulus ➜ theano git:(master) ✗ CUDA_LAUNCH_BLOCKING=1 THEANO_FLAGS='device=gpu1,exception_verbosity=high,optimizer=fast_compile,allow_gc=False' cuda-memcheck --tool racecheck python grad2.py | |
========= CUDA-MEMCHECK | |
Using gpu device 1: GeForce GTX 970 (CNMeM is disabled, CuDNN 4007) | |
========= Race reported between Read access at 0x00000490 in kernel_reduce_ccontig_node_meb404c8cd39208f6884dd773b584b7d7_0(unsigned int, float const *, float*) | |
========= and Write access at 0x000004b8 in kernel_reduce_ccontig_node_meb404c8cd39208f6884dd773b584b7d7_0(unsigned int, float const *, float*) [60 hazards] | |
========= and Write access at 0x00000488 in kernel_reduce_ccontig_node_meb404c8cd39208f6884dd773b584b7d7_0(unsigned int, float const *, float*) [60 hazards] | |
========= | |
========= Race reported between Read access at 0x00000418 in kernel_reduce_ccontig_node_meb404c8cd39208f6884dd773b584b7d7_0(unsigned int, float const *, float*) | |
========= and Write access at 0x00000450 in kernel_reduce_ccontig_node_meb404c8cd39208f6884dd773b584b7d7_0(unsigned int, float const *, float*) [48 hazards] | |
========= and Write access at 0x00000410 in kernel_reduce_ccontig_node_meb404c8cd39208f6884dd773b584b7d7_0(unsigned int, float const *, float*) [48 hazards] | |
========= | |
========= Race reported between Write access at 0x00000410 in kernel_reduce_ccontig_node_meb404c8cd39208f6884dd773b584b7d7_0(unsigned int, float const *, float*) | |
========= and Read access at 0x00000418 in kernel_reduce_ccontig_node_meb404c8cd39208f6884dd773b584b7d7_0(unsigned int, float const *, float*) [48 hazards] | |
========= and Read access at 0x000003d8 in kernel_reduce_ccontig_node_meb404c8cd39208f6884dd773b584b7d7_0(unsigned int, float const *, float*) [32 hazards] | |
========= | |
========= Race reported between Write access at 0x000003d0 in kernel_reduce_ccontig_node_meb404c8cd39208f6884dd773b584b7d7_0(unsigned int, float const *, float*) | |
========= and Read access at 0x000003d8 in kernel_reduce_ccontig_node_meb404c8cd39208f6884dd773b584b7d7_0(unsigned int, float const *, float*) [32 hazards] | |
========= | |
========= Race reported between Read access at 0x00000458 in kernel_reduce_ccontig_node_meb404c8cd39208f6884dd773b584b7d7_0(unsigned int, float const *, float*) | |
========= and Write access at 0x00000488 in kernel_reduce_ccontig_node_meb404c8cd39208f6884dd773b584b7d7_0(unsigned int, float const *, float*) [56 hazards] | |
========= and Write access at 0x00000450 in kernel_reduce_ccontig_node_meb404c8cd39208f6884dd773b584b7d7_0(unsigned int, float const *, float*) [56 hazards] | |
========= | |
========= Race reported between Write access at 0x00000370 in kernel_reduce_ccontig_node_meb404c8cd39208f6884dd773b584b7d7_0(unsigned int, float const *, float*) | |
========= and Read access at 0x000003a8 in kernel_reduce_ccontig_node_meb404c8cd39208f6884dd773b584b7d7_0(unsigned int, float const *, float*) [64 hazards] | |
========= | |
/home/lulu/envs/lasagne/src/theano/theano/tensor/signal/downsample.py:5: UserWarning: downsample module has been moved to the pool module. | |
warnings.warn("downsample module has been moved to the pool module.") | |
Error when tring to find the memory information on the GPU: an illegal memory access was encountered | |
Error freeing device pointer 0xb0e04b600 (an illegal memory access was encountered). Driver report 0 bytes free and 0 bytes total | |
device_free: cudaFree() returned an error, but there is already an Python error set. This happen during the clean up when there is a first error and the CUDA driver is in a so bad state that it don't work anymore. We keep the previous error set to help debugging it.CudaNdarray_uninit: error freeing self->devdata. (self=0x7f26418d8270, self->devata=0xb0e04b600) | |
Traceback (most recent call last): | |
File "/home/lulu/envs/lasagne/src/theano/theano/compile/function_module.py", line 859, in __call__ | |
outputs = self.fn() | |
RuntimeError: GpuDnnConv: error doing operation: CUDNN_STATUS_EXECUTION_FAILED | |
During handling of the above exception, another exception occurred: | |
Traceback (most recent call last): | |
File "grad2.py", line 27, in <module> | |
print(f(X, X)) | |
File "/home/lulu/envs/lasagne/src/theano/theano/compile/function_module.py", line 871, in __call__ | |
storage_map=getattr(self.fn, 'storage_map', None)) | |
File "/home/lulu/envs/lasagne/src/theano/theano/gof/link.py", line 314, in raise_with_op | |
reraise(exc_type, exc_value, exc_trace) | |
File "/usr/lib/python3.5/site-packages/six.py", line 685, in reraise | |
raise value.with_traceback(tb) | |
File "/home/lulu/envs/lasagne/src/theano/theano/compile/function_module.py", line 859, in __call__ | |
outputs = self.fn() | |
RuntimeError: GpuDnnConv: error doing operation: CUDNN_STATUS_EXECUTION_FAILED | |
Apply node that caused the error: GpuDnnConv{algo='small', inplace=False}(GpuContiguous.0, GpuContiguous.0, GpuAllocEmpty.0, GpuDnnConvDesc{border_mode=(1, 1), subsample=(1, 1), conv_mode='conv', precision='float32'}.0, Constant{1.0}, Constant{0.0}) | |
Toposort index: 87 | |
Inputs types: [CudaNdarrayType(float32, 4D), CudaNdarrayType(float32, 4D), CudaNdarrayType(float32, 4D), <theano.gof.type.CDataType object at 0x7f26423f0a90>, Scalar(float32), Scalar(float32)] | |
Inputs shapes: [(1, 1, 5, 5), (64, 1, 3, 3), (1, 64, 5, 5), 'No shapes', (), ()] | |
Inputs strides: [(0, 0, 5, 1), (9, 0, 3, 1), (0, 25, 5, 1), 'No strides', (), ()] | |
Inputs values: ['not shown', 'not shown', 'not shown', <capsule object NULL at 0x7f26401228d0>, 1.0, 0.0] | |
Inputs name: ('image', 'kernel', 'output', 'descriptor', 'alpha', 'beta') | |
Outputs clients: [[GpuDownsampleFactorMaxGradGrad{ds=(3, 3), ignore_border=True}(GpuDnnConv{algo='small', inplace=False}.0, GpuDnnPool{mode='max'}.0, GpuDnnConv{algo='small', inplace=False}.0)]] | |
Debugprint of the apply node: | |
GpuDnnConv{algo='small', inplace=False} [id A] <CudaNdarrayType(float32, 4D)> '' | |
|GpuContiguous [id B] <CudaNdarrayType(float32, 4D)> '' | |
| |GpuElemwise{mul,no_inplace} [id C] <CudaNdarrayType(float32, 4D)> '' | |
| |GpuElemwise{mul,no_inplace} [id D] <CudaNdarrayType(float32, 4D)> '' | |
| | |GpuElemwise{second,no_inplace} [id E] <CudaNdarrayType(float32, 4D)> '' | |
| | | |GpuElemwise{pow,no_inplace} [id F] <CudaNdarrayType(float32, 4D)> '' | |
| | | | |GpuElemwise{sub,no_inplace} [id G] <CudaNdarrayType(float32, 4D)> '' | |
| | | | | |GpuDnnConvGradI{algo='none', inplace=False} [id H] <CudaNdarrayType(float32, 4D)> '' | |
| | | | | | |GpuContiguous [id I] <CudaNdarrayType(float32, 4D)> '' | |
| | | | | | | |W [id J] <CudaNdarrayType(float32, 4D)> | |
| | | | | | |GpuContiguous [id K] <CudaNdarrayType(float32, 4D)> '' | |
| | | | | | | |GpuDnnPoolGrad{mode='max'} [id L] <CudaNdarrayType(float32, 4D)> '' | |
| | | | | | | |GpuContiguous [id M] <CudaNdarrayType(float32, 4D)> '' | |
| | | | | | | | |GpuDnnConv{algo='small', inplace=False} [id N] <CudaNdarrayType(float32, 4D)> '' | |
| | | | | | | | |GpuContiguous [id O] <CudaNdarrayType(float32, 4D)> '' | |
| | | | | | | | | |GpuFromHost [id P] <CudaNdarrayType(float32, 4D)> '' | |
| | | | | | | | | |X [id Q] <TensorType(float32, 4D)> | |
| | | | | | | | |GpuContiguous [id I] <CudaNdarrayType(float32, 4D)> '' | |
| | | | | | | | |GpuAllocEmpty [id R] <CudaNdarrayType(float32, 4D)> '' | |
| | | | | | | | | |Shape_i{0} [id S] <TensorType(int64, scalar)> '' | |
| | | | | | | | | | |X [id Q] <TensorType(float32, 4D)> | |
| | | | | | | | | |Shape_i{0} [id T] <TensorType(int64, scalar)> '' | |
| | | | | | | | | | |W [id J] <CudaNdarrayType(float32, 4D)> | |
| | | | | | | | | |Elemwise{add,no_inplace} [id U] <TensorType(int64, scalar)> '' | |
| | | | | | | | | | |Elemwise{int_div,no_inplace} [id V] <TensorType(int64, scalar)> '' | |
| | | | | | | | | | | |Elemwise{sub,no_inplace} [id W] <TensorType(int64, scalar)> '' | |
| | | | | | | | | | | | |Elemwise{add,no_inplace} [id X] <TensorType(int64, scalar)> '' | |
| | | | | | | | | | | | | |Shape_i{2} [id Y] <TensorType(int64, scalar)> '' | |
| | | | | | | | | | | | | | |X [id Q] <TensorType(float32, 4D)> | |
| | | | | | | | | | | | | |TensorConstant{2} [id Z] <TensorType(int8, scalar)> | |
| | | | | | | | | | | | |Shape_i{2} [id BA] <TensorType(int64, scalar)> '' | |
| | | | | | | | | | | | |W [id J] <CudaNdarrayType(float32, 4D)> | |
| | | | | | | | | | | |TensorConstant{1} [id BB] <TensorType(int8, scalar)> | |
| | | | | | | | | | |TensorConstant{1} [id BB] <TensorType(int8, scalar)> | |
| | | | | | | | | |Elemwise{add,no_inplace} [id BC] <TensorType(int64, scalar)> '' | |
| | | | | | | | | |Elemwise{int_div,no_inplace} [id BD] <TensorType(int64, scalar)> '' | |
| | | | | | | | | | |Elemwise{sub,no_inplace} [id BE] <TensorType(int64, scalar)> '' | |
| | | | | | | | | | | |Elemwise{add,no_inplace} [id BF] <TensorType(int64, scalar)> '' | |
| | | | | | | | | | | | |Shape_i{3} [id BG] <TensorType(int64, scalar)> '' | |
| | | | | | | | | | | | | |X [id Q] <TensorType(float32, 4D)> | |
| | | | | | | | | | | | |TensorConstant{2} [id Z] <TensorType(int8, scalar)> | |
| | | | | | | | | | | |Shape_i{3} [id BH] <TensorType(int64, scalar)> '' | |
| | | | | | | | | | | |W [id J] <CudaNdarrayType(float32, 4D)> | |
| | | | | | | | | | |TensorConstant{1} [id BB] <TensorType(int8, scalar)> | |
| | | | | | | | | |TensorConstant{1} [id BB] <TensorType(int8, scalar)> | |
| | | | | | | | |GpuDnnConvDesc{border_mode=(1, 1), subsample=(1, 1), conv_mode='conv', precision='float32'} [id BI] <CDataType{cudnnConvolutionDescriptor_t}> '' | |
| | | | | | | | | |MakeVector{dtype='int64'} [id BJ] <TensorType(int64, vector)> '' | |
| | | | | | | | | | |Shape_i{0} [id S] <TensorType(int64, scalar)> '' | |
| | | | | | | | | | |Shape_i{1} [id BK] <TensorType(int64, scalar)> '' | |
| | | | | | | | | | | |X [id Q] <TensorType(float32, 4D)> | |
| | | | | | | | | | |Shape_i{2} [id Y] <TensorType(int64, scalar)> '' | |
| | | | | | | | | | |Shape_i{3} [id BG] <TensorType(int64, scalar)> '' | |
| | | | | | | | | |MakeVector{dtype='int64'} [id BL] <TensorType(int64, vector)> '' | |
| | | | | | | | | |Shape_i{0} [id T] <TensorType(int64, scalar)> '' | |
| | | | | | | | | |Shape_i{1} [id BM] <TensorType(int64, scalar)> '' | |
| | | | | | | | | | |W [id J] <CudaNdarrayType(float32, 4D)> | |
| | | | | | | | | |Shape_i{2} [id BA] <TensorType(int64, scalar)> '' | |
| | | | | | | | | |Shape_i{3} [id BH] <TensorType(int64, scalar)> '' | |
| | | | | | | | |Constant{1.0} [id BN] <float32> | |
| | | | | | | | |Constant{0.0} [id BO] <float32> | |
| | | | | | | |GpuContiguous [id BP] <CudaNdarrayType(float32, 4D)> '' | |
| | | | | | | | |GpuDnnPool{mode='max'} [id BQ] <CudaNdarrayType(float32, 4D)> '' | |
| | | | | | | | |GpuContiguous [id M] <CudaNdarrayType(float32, 4D)> '' | |
| | | | | | | | |TensorConstant{(2,) of 3} [id BR] <TensorType(int64, vector)> | |
| | | | | | | | |TensorConstant{(2,) of 2} [id BS] <TensorType(int64, vector)> | |
| | | | | | | | |TensorConstant{(2,) of 0} [id BT] <TensorType(int64, vector)> | |
| | | | | | | |GpuContiguous [id BU] <CudaNdarrayType(float32, 4D)> '' | |
| | | | | | | | |GpuReshape{4} [id BV] <CudaNdarrayType(float32, 4D)> '' | |
| | | | | | | | |GpuDot22 [id BW] <CudaNdarrayType(float32, matrix)> '' | |
| | | | | | | | | |GpuDot22 [id BX] <CudaNdarrayType(float32, matrix)> '' | |
| | | | | | | | | | |GpuReshape{2} [id BY] <CudaNdarrayType(float32, matrix)> '' | |
| | | | | | | | | | | |GpuDnnPool{mode='max'} [id BQ] <CudaNdarrayType(float32, 4D)> '' | |
| | | | | | | | | | | |MakeVector{dtype='int64'} [id BZ] <TensorType(int64, vector)> '' | |
| | | | | | | | | | | |Shape_i{0} [id S] <TensorType(int64, scalar)> '' | |
| | | | | | | | | | | |TensorConstant{-1} [id CA] <TensorType(int64, scalar)> | |
| | | | | | | | | | |W [id CB] <CudaNdarrayType(float32, matrix)> | |
| | | | | | | | | |GpuDimShuffle{1,0} [id CC] <CudaNdarrayType(float32, matrix)> '' | |
| | | | | | | | | |W [id CB] <CudaNdarrayType(float32, matrix)> | |
| | | | | | | | |MakeVector{dtype='int64'} [id CD] <TensorType(int64, vector)> '' | |
| | | | | | | | |Shape_i{0} [id S] <TensorType(int64, scalar)> '' | |
| | | | | | | | |TensorConstant{64} [id CE] <TensorType(int64, scalar)> | |
| | | | | | | | |TensorConstant{2} [id CF] <TensorType(int64, scalar)> | |
| | | | | | | | |TensorConstant{2} [id CG] <TensorType(int64, scalar)> | |
| | | | | | | |TensorConstant{(2,) of 3} [id BR] <TensorType(int64, vector)> | |
| | | | | | | |TensorConstant{(2,) of 2} [id BS] <TensorType(int64, vector)> | |
| | | | | | | |TensorConstant{(2,) of 0} [id BT] <TensorType(int64, vector)> | |
| | | | | | |GpuAllocEmpty [id CH] <CudaNdarrayType(float32, 4D)> '' | |
| | | | | | | |Shape_i{0} [id S] <TensorType(int64, scalar)> '' | |
| | | | | | | |Shape_i{1} [id BM] <TensorType(int64, scalar)> '' | |
| | | | | | | |Subtensor{int64} [id CI] <TensorType(int64, scalar)> '' | |
| | | | | | | | |Subtensor{int64::} [id CJ] <TensorType(int64, vector)> '' | |
| | | | | | | | | |GpuShape [id CK] <TensorType(int64, vector)> '' | |
| | | | | | | | | | |GpuFromHost [id P] <CudaNdarrayType(float32, 4D)> '' | |
| | | | | | | | | |Constant{-2} [id CL] <int64> | |
| | | | | | | | |Constant{0} [id CM] <int64> | |
| | | | | | | |Subtensor{int64} [id CN] <TensorType(int64, scalar)> '' | |
| | | | | | | |Subtensor{int64::} [id CJ] <TensorType(int64, vector)> '' | |
| | | | | | | |Constant{1} [id CO] <int64> | |
| | | | | | |GpuDnnConvDesc{border_mode=(1, 1), subsample=(1, 1), conv_mode='conv', precision='float32'} [id CP] <CDataType{cudnnConvolutionDescriptor_t}> '' | |
| | | | | | | |MakeVector{dtype='int64'} [id CQ] <TensorType(int64, vector)> '' | |
| | | | | | | | |Shape_i{0} [id S] <TensorType(int64, scalar)> '' | |
| | | | | | | | |Shape_i{1} [id BM] <TensorType(int64, scalar)> '' | |
| | | | | | | | |Subtensor{int64} [id CI] <TensorType(int64, scalar)> '' | |
| | | | | | | | |Subtensor{int64} [id CN] <TensorType(int64, scalar)> '' | |
| | | | | | | |MakeVector{dtype='int64'} [id BL] <TensorType(int64, vector)> '' | |
| | | | | | |Constant{1.0} [id BN] <float32> | |
| | | | | | |Constant{0.0} [id BO] <float32> | |
| | | | | |GpuFromHost [id CR] <CudaNdarrayType(float32, 4D)> '' | |
| | | | | |X2 [id CS] <TensorType(float32, 4D)> | |
| | | | |CudaNdarrayConstant{error while transferring the value: error (an illegal memory access was encountered)copying data to host} [id CT] <CudaNdarrayType(float32, (True, True, True, True))> | |
| | | |GpuDimShuffle{x,x,x,x} [id CU] <CudaNdarrayType(float32, (True, True, True, True))> '' | |
| | | |GpuElemwise{true_div,no_inplace} [id CV] <CudaNdarrayType(float32, scalar)> '' | |
| | | |GpuElemwise{true_div,no_inplace} [id CW] <CudaNdarrayType(float32, scalar)> '' | |
| | | | |GpuElemwise{true_div,no_inplace} [id CX] <CudaNdarrayType(float32, scalar)> '' | |
| | | | | |GpuElemwise{true_div,no_inplace} [id CY] <CudaNdarrayType(float32, scalar)> '' | |
| | | | | | |CudaNdarrayConstant{error while transferring the value: error (an illegal memory access was encountered)copying data to host} [id CZ] <CudaNdarrayType(float32, scalar)> | |
| | | | | | |GpuSubtensor{int64} [id DA] <CudaNdarrayType(float32, scalar)> '' | |
| | | | | | |GpuFromHost [id DB] <CudaNdarrayType(float32, vector)> '' | |
| | | | | | | |Elemwise{Cast{float32}} [id DC] <TensorType(float32, vector)> '' | |
| | | | | | | |MakeVector{dtype='int64'} [id DD] <TensorType(int64, vector)> '' | |
| | | | | | | |Shape_i{0} [id S] <TensorType(int64, scalar)> '' | |
| | | | | | | |TensorConstant{1} [id DE] <TensorType(int64, scalar)> | |
| | | | | | | |TensorConstant{5} [id DF] <TensorType(int64, scalar)> | |
| | | | | | | |TensorConstant{5} [id DF] <TensorType(int64, scalar)> | |
| | | | | | |Constant{3} [id DG] <int64> | |
| | | | | |GpuSubtensor{int64} [id DH] <CudaNdarrayType(float32, scalar)> '' | |
| | | | | |GpuFromHost [id DB] <CudaNdarrayType(float32, vector)> '' | |
| | | | | |Constant{2} [id DI] <int64> | |
| | | | |GpuSubtensor{int64} [id DJ] <CudaNdarrayType(float32, scalar)> '' | |
| | | | |GpuFromHost [id DB] <CudaNdarrayType(float32, vector)> '' | |
| | | | |Constant{1} [id CO] <int64> | |
| | | |GpuSubtensor{int64} [id DK] <CudaNdarrayType(float32, scalar)> '' | |
| | | |GpuFromHost [id DB] <CudaNdarrayType(float32, vector)> '' | |
| | | |Constant{0} [id CM] <int64> | |
| | |CudaNdarrayConstant{error while transferring the value: error (an illegal memory access was encountered)copying data to host} [id CT] <CudaNdarrayType(float32, (True, True, True, True))> | |
| |GpuElemwise{pow,no_inplace} [id DL] <CudaNdarrayType(float32, 4D)> '' | |
| |GpuElemwise{sub,no_inplace} [id G] <CudaNdarrayType(float32, 4D)> '' | |
| |CudaNdarrayConstant{error while transferring the value: error (an illegal memory access was encountered)copying data to host} [id DM] <CudaNdarrayType(float32, (True, True, True, True))> | |
|GpuContiguous [id I] <CudaNdarrayType(float32, 4D)> '' | |
|GpuAllocEmpty [id DN] <CudaNdarrayType(float32, 4D)> '' | |
| |Shape_i{0} [id S] <TensorType(int64, scalar)> '' | |
| |Shape_i{0} [id T] <TensorType(int64, scalar)> '' | |
| |Elemwise{add,no_inplace} [id DO] <TensorType(int64, scalar)> '' | |
| | |Elemwise{int_div,no_inplace} [id DP] <TensorType(int64, scalar)> '' | |
| | | |Elemwise{sub,no_inplace} [id DQ] <TensorType(int64, scalar)> '' | |
| | | | |TensorConstant{7} [id DR] <TensorType(int64, scalar)> | |
| | | | |Shape_i{2} [id BA] <TensorType(int64, scalar)> '' | |
| | | |TensorConstant{1} [id BB] <TensorType(int8, scalar)> | |
| | |TensorConstant{1} [id BB] <TensorType(int8, scalar)> | |
| |Elemwise{add,no_inplace} [id DS] <TensorType(int64, scalar)> '' | |
| |Elemwise{int_div,no_inplace} [id DT] <TensorType(int64, scalar)> '' | |
| | |Elemwise{sub,no_inplace} [id DU] <TensorType(int64, scalar)> '' | |
| | | |TensorConstant{7} [id DR] <TensorType(int64, scalar)> | |
| | | |Shape_i{3} [id BH] <TensorType(int64, scalar)> '' | |
| | |TensorConstant{1} [id BB] <TensorType(int8, scalar)> | |
| |TensorConstant{1} [id BB] <TensorType(int8, scalar)> | |
|GpuDnnConvDesc{border_mode=(1, 1), subsample=(1, 1), conv_mode='conv', precision='float32'} [id DV] <CDataType{cudnnConvolutionDescriptor_t}> '' | |
| |MakeVector{dtype='int64'} [id DD] <TensorType(int64, vector)> '' | |
| |MakeVector{dtype='int64'} [id BL] <TensorType(int64, vector)> '' | |
|Constant{1.0} [id BN] <float32> | |
|Constant{0.0} [id BO] <float32> | |
Storage map footprint: | |
- GpuDimShuffle{1,0}.0, Shape: (128, 256), ElemSize: 4 Byte(s), TotalSize: 131072 Byte(s) | |
- W, Shared Input, Shape: (256, 128), ElemSize: 4 Byte(s), TotalSize: 131072 Byte(s) | |
- GpuElemwise{second,no_inplace}.0, Shape: (1, 64, 5, 5), ElemSize: 4 Byte(s), TotalSize: 6400 Byte(s) | |
- GpuAllocEmpty.0, Shape: (1, 64, 5, 5), ElemSize: 4 Byte(s), TotalSize: 6400 Byte(s) | |
- GpuDnnConv{algo='small', inplace=False}.0, Shape: (1, 64, 5, 5), ElemSize: 4 Byte(s), TotalSize: 6400 Byte(s) | |
- GpuElemwise{add,no_inplace}.0, Shape: (1, 64, 5, 5), ElemSize: 4 Byte(s), TotalSize: 6400 Byte(s) | |
- GpuContiguous.0, Shape: (1, 64, 5, 5), ElemSize: 4 Byte(s), TotalSize: 6400 Byte(s) | |
- GpuAllocEmpty.0, Shape: (1, 64, 5, 5), ElemSize: 4 Byte(s), TotalSize: 6400 Byte(s) | |
- GpuDnnPoolGrad{mode='max'}.0, Shape: (1, 64, 5, 5), ElemSize: 4 Byte(s), TotalSize: 6400 Byte(s) | |
- GpuDnnPoolGrad{mode='max'}.0, Shape: (1, 64, 5, 5), ElemSize: 4 Byte(s), TotalSize: 6400 Byte(s) | |
- GpuContiguous.0, Shape: (1, 64, 5, 5), ElemSize: 4 Byte(s), TotalSize: 6400 Byte(s) | |
- GpuContiguous.0, Shape: (64, 1, 3, 3), ElemSize: 4 Byte(s), TotalSize: 2304 Byte(s) | |
- W, Shared Input, Shape: (64, 1, 3, 3), ElemSize: 4 Byte(s), TotalSize: 2304 Byte(s) | |
- GpuDot22.0, Shape: (1, 256), ElemSize: 4 Byte(s), TotalSize: 1024 Byte(s) | |
- GpuContiguous.0, Shape: (1, 64, 2, 2), ElemSize: 4 Byte(s), TotalSize: 1024 Byte(s) | |
- GpuElemwise{second,no_inplace}.0, Shape: (1, 64, 2, 2), ElemSize: 4 Byte(s), TotalSize: 1024 Byte(s) | |
- GpuReshape{4}.0, Shape: (1, 64, 2, 2), ElemSize: 4 Byte(s), TotalSize: 1024 Byte(s) | |
- GpuContiguous.0, Shape: (1, 64, 2, 2), ElemSize: 4 Byte(s), TotalSize: 1024 Byte(s) | |
- GpuContiguous.0, Shape: (1, 64, 2, 2), ElemSize: 4 Byte(s), TotalSize: 1024 Byte(s) | |
- GpuReshape{2}.0, Shape: (1, 256), ElemSize: 4 Byte(s), TotalSize: 1024 Byte(s) | |
- GpuDnnPool{mode='max'}.0, Shape: (1, 64, 2, 2), ElemSize: 4 Byte(s), TotalSize: 1024 Byte(s) | |
- GpuDot22.0, Shape: (1, 128), ElemSize: 4 Byte(s), TotalSize: 512 Byte(s) | |
- GpuElemwise{second,no_inplace}.0, Shape: (1, 1, 5, 5), ElemSize: 4 Byte(s), TotalSize: 100 Byte(s) | |
- GpuContiguous.0, Shape: (1, 1, 5, 5), ElemSize: 4 Byte(s), TotalSize: 100 Byte(s) | |
- GpuContiguous.0, Shape: (1, 1, 5, 5), ElemSize: 4 Byte(s), TotalSize: 100 Byte(s) | |
- GpuElemwise{mul,no_inplace}.0, Shape: (1, 1, 5, 5), ElemSize: 4 Byte(s), TotalSize: 100 Byte(s) | |
- GpuFromHost.0, Shape: (1, 1, 5, 5), ElemSize: 4 Byte(s), TotalSize: 100 Byte(s) | |
- X, Input, Shape: (1, 1, 5, 5), ElemSize: 4 Byte(s), TotalSize: 100 Byte(s) | |
- X2, Input, Shape: (1, 1, 5, 5), ElemSize: 4 Byte(s), TotalSize: 100 Byte(s) | |
- GpuDnnConvGradI{algo='none', inplace=False}.0, Shape: (1, 1, 5, 5), ElemSize: 4 Byte(s), TotalSize: 100 Byte(s) | |
- GpuFromHost.0, Shape: (1, 1, 5, 5), ElemSize: 4 Byte(s), TotalSize: 100 Byte(s) | |
- GpuElemwise{mul,no_inplace}.0, Shape: (1, 1, 5, 5), ElemSize: 4 Byte(s), TotalSize: 100 Byte(s) | |
- GpuElemwise{sub,no_inplace}.0, Shape: (1, 1, 5, 5), ElemSize: 4 Byte(s), TotalSize: 100 Byte(s) | |
- GpuElemwise{pow,no_inplace}.0, Shape: (1, 1, 5, 5), ElemSize: 4 Byte(s), TotalSize: 100 Byte(s) | |
- GpuElemwise{pow,no_inplace}.0, Shape: (1, 1, 5, 5), ElemSize: 4 Byte(s), TotalSize: 100 Byte(s) | |
- GpuAllocEmpty.0, Shape: (1, 1, 5, 5), ElemSize: 4 Byte(s), TotalSize: 100 Byte(s) | |
- MakeVector{dtype='int64'}.0, Shape: (4,), ElemSize: 8 Byte(s), TotalSize: 32 Byte(s) | |
- MakeVector{dtype='int64'}.0, Shape: (4,), ElemSize: 8 Byte(s), TotalSize: 32 Byte(s) | |
- MakeVector{dtype='int64'}.0, Shape: (4,), ElemSize: 8 Byte(s), TotalSize: 32 Byte(s) | |
- MakeVector{dtype='int64'}.0, Shape: (4,), ElemSize: 8 Byte(s), TotalSize: 32 Byte(s) | |
- MakeVector{dtype='int64'}.0, Shape: (4,), ElemSize: 8 Byte(s), TotalSize: 32 Byte(s) | |
- GpuShape.0, Shape: (4,), ElemSize: 8 Byte(s), TotalSize: 32 Byte(s) | |
- TensorConstant{(2,) of 0}, Shape: (2,), ElemSize: 8 Byte(s), TotalSize: 16 Byte(s) | |
- Subtensor{int64::}.0, Shape: (2,), ElemSize: 8 Byte(s), TotalSize: 16 Byte(s) | |
- TensorConstant{(2,) of 3}, Shape: (2,), ElemSize: 8 Byte(s), TotalSize: 16 Byte(s) | |
- MakeVector{dtype='int64'}.0, Shape: (2,), ElemSize: 8 Byte(s), TotalSize: 16 Byte(s) | |
- TensorConstant{(2,) of 2}, Shape: (2,), ElemSize: 8 Byte(s), TotalSize: 16 Byte(s) | |
- Elemwise{Cast{float32}}.0, Shape: (4,), ElemSize: 4 Byte(s), TotalSize: 16 Byte(s) | |
- GpuFromHost.0, Shape: (4,), ElemSize: 4 Byte(s), TotalSize: 16 Byte(s) | |
- TensorConstant{2}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Elemwise{add,no_inplace}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- TensorConstant{5}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Shape_i{2}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Shape_i{1}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Elemwise{int_div,no_inplace}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Shape_i{3}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Constant{2}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Elemwise{add,no_inplace}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Shape_i{3}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- TensorConstant{2}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Shape_i{2}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Elemwise{add,no_inplace}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Elemwise{add,no_inplace}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Elemwise{add,no_inplace}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Elemwise{sub,no_inplace}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Constant{0}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- TensorConstant{1}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- TensorConstant{-1}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Constant{-2}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Elemwise{int_div,no_inplace}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Shape_i{1}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Elemwise{add,no_inplace}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Elemwise{sub,no_inplace}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Shape_i{0}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Constant{1}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Shape_i{0}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Subtensor{int64}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Elemwise{sub,no_inplace}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Elemwise{int_div,no_inplace}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Constant{3}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Elemwise{int_div,no_inplace}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- TensorConstant{7}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Subtensor{int64}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- TensorConstant{64}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- Elemwise{sub,no_inplace}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s) | |
- GpuElemwise{true_div,no_inplace}.0, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s) | |
- GpuSubtensor{int64}.0, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s) | |
- GpuSubtensor{int64}.0, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s) | |
- CudaNdarrayConstant{error while transferring the value: error (an illegal memory access was encountered)copying data to host}, Shape: (1, 1, 1, 1), ElemSize: 4 Byte(s), TotalSize: 4 Byte(s) | |
- GpuElemwise{true_div,no_inplace}.0, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s) | |
- Constant{1.0}, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s) | |
- GpuSubtensor{int64}.0, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s) | |
- CudaNdarrayConstant{error while transferring the value: error (an illegal memory access was encountered)copying data to host}, Shape: (1, 1, 1, 1), ElemSize: 4 Byte(s), TotalSize: 4 Byte(s) | |
- GpuSubtensor{int64}.0, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s) | |
- GpuDimShuffle{x,x,x,x}.0, Shape: (1, 1, 1, 1), ElemSize: 4 Byte(s), TotalSize: 4 Byte(s) | |
- Constant{0.0}, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s) | |
- CudaNdarrayConstant{error while transferring the value: error (an illegal memory access was encountered)copying data to host}, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s) | |
- CudaNdarrayConstant{error while transferring the value: error (an illegal memory access was encountered)copying data to host}, Shape: (1, 1, 1, 1), ElemSize: 4 Byte(s), TotalSize: 4 Byte(s) | |
- GpuElemwise{true_div,no_inplace}.0, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s) | |
- GpuElemwise{true_div,no_inplace}.0, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s) | |
- TensorConstant{1}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0 Byte(s) | |
- TensorConstant{2}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0 Byte(s) | |
- TensorConstant{-1}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0 Byte(s) | |
TotalSize: 183575.0 Byte(s) 0.000 GB | |
TotalSize inputs: 133747.0 Byte(s) 0.000 GB | |
HINT: Re-running with most Theano optimization disabled could give you a back-trace of when this node was created. This can be done with by setting the Theano flag 'optimizer=fast_compile'. If that does not work, Theano optimizations can be disabled with 'optimizer=None'. | |
========= RACECHECK SUMMARY: 6 hazards displayed (6 errors, 0 warnings) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment