Created
July 28, 2017 10:12
-
-
Save swateek/1c0ea7558fed6c4577cc0252f9324dba to your computer and use it in GitHub Desktop.
Freedman-Diaconis thumb rule for number of bins of a histogram
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
def numBins(metric, defaultBins): | |
h = binWidth(metric) | |
ulim = max(metric) | |
llim = min(metric) | |
if (h <= (ulim - llim) / len(metric)): | |
return defaultBins or 10 | |
return int(math.ceil((ulim - llim) / h)) | |
def binWidth(metric): | |
return 2 * iqr(metric) * (len(metric) ** (-0.333)) | |
def comparator(a, b): | |
return a - b | |
def iqr(metric): | |
metric[0:].sort(cmp=comparator) | |
q1 = metric[int(math.floor(len(metric) / 4))] | |
q3 = metric[int(math.floor(len(metric) * 3 / 4))] | |
return q3 - q1 | |
metric = [] | |
for x in range(0,1866): | |
metric.append(x) | |
print numBins(metric, 10) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment