Created
April 4, 2018 14:01
-
-
Save sweemeng/ef727fd8dc46fdf0a5fde1df73cce41f to your computer and use it in GitHub Desktop.
My first implementation of logistic regression model for mnist, based on the code on Fundamentals of Deep Learning
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Copyright 2015 Google Inc. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Functions for downloading and reading MNIST data.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import gzip | |
import os | |
import numpy | |
from six.moves import urllib | |
from six.moves import xrange # pylint: disable=redefined-builtin | |
import tensorflow as tf | |
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/' | |
def maybe_download(filename, work_directory): | |
"""Download the data from Yann's website, unless it's already here.""" | |
if not os.path.exists(work_directory): | |
os.mkdir(work_directory) | |
filepath = os.path.join(work_directory, filename) | |
if not os.path.exists(filepath): | |
filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath) | |
statinfo = os.stat(filepath) | |
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.') | |
return filepath | |
def _read32(bytestream): | |
dt = numpy.dtype(numpy.uint32).newbyteorder('>') | |
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0] | |
def extract_images(filename): | |
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth].""" | |
print('Extracting', filename) | |
with gzip.open(filename) as bytestream: | |
magic = _read32(bytestream) | |
if magic != 2051: | |
raise ValueError( | |
'Invalid magic number %d in MNIST image file: %s' % | |
(magic, filename)) | |
num_images = _read32(bytestream) | |
rows = _read32(bytestream) | |
cols = _read32(bytestream) | |
buf = bytestream.read(rows * cols * num_images) | |
data = numpy.frombuffer(buf, dtype=numpy.uint8) | |
data = data.reshape(num_images, rows, cols, 1) | |
return data | |
def dense_to_one_hot(labels_dense, num_classes=10): | |
"""Convert class labels from scalars to one-hot vectors.""" | |
num_labels = labels_dense.shape[0] | |
index_offset = numpy.arange(num_labels) * num_classes | |
labels_one_hot = numpy.zeros((num_labels, num_classes)) | |
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 | |
return labels_one_hot | |
def extract_labels(filename, one_hot=False): | |
"""Extract the labels into a 1D uint8 numpy array [index].""" | |
print('Extracting', filename) | |
with gzip.open(filename) as bytestream: | |
magic = _read32(bytestream) | |
if magic != 2049: | |
raise ValueError( | |
'Invalid magic number %d in MNIST label file: %s' % | |
(magic, filename)) | |
num_items = _read32(bytestream) | |
buf = bytestream.read(num_items) | |
labels = numpy.frombuffer(buf, dtype=numpy.uint8) | |
if one_hot: | |
return dense_to_one_hot(labels) | |
return labels | |
class DataSet(object): | |
def __init__(self, images, labels, fake_data=False, one_hot=False, | |
dtype=tf.float32): | |
"""Construct a DataSet. | |
one_hot arg is used only if fake_data is true. `dtype` can be either | |
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into | |
`[0, 1]`. | |
""" | |
dtype = tf.as_dtype(dtype).base_dtype | |
if dtype not in (tf.uint8, tf.float32): | |
raise TypeError('Invalid image dtype %r, expected uint8 or float32' % | |
dtype) | |
if fake_data: | |
self._num_examples = 10000 | |
self.one_hot = one_hot | |
else: | |
assert images.shape[0] == labels.shape[0], ( | |
'images.shape: %s labels.shape: %s' % (images.shape, | |
labels.shape)) | |
self._num_examples = images.shape[0] | |
# Convert shape from [num examples, rows, columns, depth] | |
# to [num examples, rows*columns] (assuming depth == 1) | |
assert images.shape[3] == 1 | |
images = images.reshape(images.shape[0], | |
images.shape[1] * images.shape[2]) | |
if dtype == tf.float32: | |
# Convert from [0, 255] -> [0.0, 1.0]. | |
images = images.astype(numpy.float32) | |
images = numpy.multiply(images, 1.0 / 255.0) | |
self._images = images | |
self._labels = labels | |
self._epochs_completed = 0 | |
self._index_in_epoch = 0 | |
@property | |
def images(self): | |
return self._images | |
@property | |
def labels(self): | |
return self._labels | |
@property | |
def num_examples(self): | |
return self._num_examples | |
@property | |
def epochs_completed(self): | |
return self._epochs_completed | |
def next_batch(self, batch_size, fake_data=False): | |
"""Return the next `batch_size` examples from this data set.""" | |
if fake_data: | |
fake_image = [1] * 784 | |
if self.one_hot: | |
fake_label = [1] + [0] * 9 | |
else: | |
fake_label = 0 | |
return [fake_image for _ in xrange(batch_size)], [ | |
fake_label for _ in xrange(batch_size)] | |
start = self._index_in_epoch | |
self._index_in_epoch += batch_size | |
if self._index_in_epoch > self._num_examples: | |
# Finished epoch | |
self._epochs_completed += 1 | |
# Shuffle the data | |
perm = numpy.arange(self._num_examples) | |
numpy.random.shuffle(perm) | |
self._images = self._images[perm] | |
self._labels = self._labels[perm] | |
# Start next epoch | |
start = 0 | |
self._index_in_epoch = batch_size | |
assert batch_size <= self._num_examples | |
end = self._index_in_epoch | |
return self._images[start:end], self._labels[start:end] | |
def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32): | |
class DataSets(object): | |
pass | |
data_sets = DataSets() | |
if fake_data: | |
def fake(): | |
return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype) | |
data_sets.train = fake() | |
data_sets.validation = fake() | |
data_sets.test = fake() | |
return data_sets | |
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz' | |
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz' | |
TEST_IMAGES = 't10k-images-idx3-ubyte.gz' | |
TEST_LABELS = 't10k-labels-idx1-ubyte.gz' | |
VALIDATION_SIZE = 5000 | |
local_file = maybe_download(TRAIN_IMAGES, train_dir) | |
train_images = extract_images(local_file) | |
local_file = maybe_download(TRAIN_LABELS, train_dir) | |
train_labels = extract_labels(local_file, one_hot=one_hot) | |
local_file = maybe_download(TEST_IMAGES, train_dir) | |
test_images = extract_images(local_file) | |
local_file = maybe_download(TEST_LABELS, train_dir) | |
test_labels = extract_labels(local_file, one_hot=one_hot) | |
validation_images = train_images[:VALIDATION_SIZE] | |
validation_labels = train_labels[:VALIDATION_SIZE] | |
train_images = train_images[VALIDATION_SIZE:] | |
train_labels = train_labels[VALIDATION_SIZE:] | |
data_sets.train = DataSet(train_images, train_labels, dtype=dtype) | |
data_sets.validation = DataSet(validation_images, validation_labels, | |
dtype=dtype) | |
data_sets.test = DataSet(test_images, test_labels, dtype=dtype) | |
return data_sets |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import input_data | |
import os | |
import time, shutil | |
mnist = input_data.read_data_sets("data/", one_hot=True) | |
learning_rate = 0.01 | |
training_epochs = 1000 | |
batch_size = 100 | |
display_step = 1 | |
def inference(x): | |
init = tf.constant_initializer(value=0) # tf.zero? | |
W = tf.get_variable("W", [784, 10], initializer=init) | |
b = tf.get_variable("b", [10], initializer=init) | |
# y = Wx + b | |
output = tf.nn.softmax(tf.matmul(x, W) + b) | |
w_hist = tf.summary.histogram("weights", W) | |
b_hist = tf.summary.histogram("biases", b) | |
y_hist = tf.summary.histogram("output", output) | |
return output | |
def loss(output, y): | |
dot_product = y * tf.log(output) | |
xentropy = -tf.reduce_sum(dot_product, axis=1) | |
loss = tf.reduce_mean(xentropy) | |
return loss | |
def training(cost, global_step): | |
tf.summary.scalar("cost", cost) | |
optimizer = tf.train.GradientDescentOptimizer(learning_rate) | |
train_op = optimizer.minimize(cost, global_step=global_step) | |
return train_op | |
def evaluate(output, y): | |
correct_prediction = tf.equal(tf.argmax(output, 1), tf.argmax(y, 1)) | |
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) | |
return accuracy | |
def main(): | |
if os.path.exists("logistic_logs/"): | |
shutil.rmtree("logistic_logs/") | |
graph = tf.Graph() | |
with graph.as_default(): | |
# mnist have is in 28 * 28 | |
x = tf.placeholder("float", [None, 784]) | |
# mnist have 10 answer | |
y = tf.placeholder("float", [None, 10]) | |
output = inference(x) | |
cost = loss(output, y) | |
global_step = tf.Variable(0, name="global_step", trainable=False) | |
train_op = training(cost, global_step) | |
eval_op = evaluate(output, y) | |
summary_op = tf.summary.merge_all() | |
saver = tf.train.Saver() | |
session = tf.Session() | |
summary_writer = tf.summary.FileWriter('logistic_logs/', graph=session.graph) | |
init_op = tf.global_variables_initializer() | |
session.run(init_op) | |
for epoch in range(training_epochs): | |
avg_cost = 0 | |
total_batch = int(mnist.train.num_examples / batch_size) | |
for i in range(total_batch): | |
mbatch_x, mbatch_y = mnist.train.next_batch(batch_size) | |
feed_dict = { x: mbatch_x, y: mbatch_y } | |
session.run(train_op, feed_dict=feed_dict) | |
minibatch_cost = session.run(cost, feed_dict=feed_dict) | |
avg_cost += session.run(cost, feed_dict={x: mbatch_x, y: mbatch_y}) / total_batch | |
if epoch % display_step == 0: | |
val_feed_dict = { | |
x: mnist.validation.images, | |
y: mnist.validation.labels | |
} | |
accuracy = session.run(eval_op, feed_dict=val_feed_dict) | |
print("validation Error:", (1 - accuracy)) | |
summary_str = session.run(summary_op, feed_dict=feed_dict) | |
summary_writer.add_summary(summary_str, session.run(global_step)) | |
saver.save(session, "logistic_logs/model_checkpoint", global_step=global_step) | |
print("Optimization Down") | |
test_feed_dict = { | |
x: mnist.test.images, | |
y: mnist.test.labels | |
} | |
accuracy = session.run(eval_op, feed_dict=test_feed_dict) | |
print("Test Accuracy:", accuracy) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment