Skip to content

Instantly share code, notes, and snippets.

@sweemeng
Created April 4, 2018 14:01
Show Gist options
  • Save sweemeng/ef727fd8dc46fdf0a5fde1df73cce41f to your computer and use it in GitHub Desktop.
Save sweemeng/ef727fd8dc46fdf0a5fde1df73cce41f to your computer and use it in GitHub Desktop.
My first implementation of logistic regression model for mnist, based on the code on Fundamentals of Deep Learning
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for downloading and reading MNIST data."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
def maybe_download(filename, work_directory):
"""Download the data from Yann's website, unless it's already here."""
if not os.path.exists(work_directory):
os.mkdir(work_directory)
filepath = os.path.join(work_directory, filename)
if not os.path.exists(filepath):
filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
return filepath
def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def dense_to_one_hot(labels_dense, num_classes=10):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = numpy.arange(num_labels) * num_classes
labels_one_hot = numpy.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
def extract_labels(filename, one_hot=False):
"""Extract the labels into a 1D uint8 numpy array [index]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' %
(magic, filename))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
if one_hot:
return dense_to_one_hot(labels)
return labels
class DataSet(object):
def __init__(self, images, labels, fake_data=False, one_hot=False,
dtype=tf.float32):
"""Construct a DataSet.
one_hot arg is used only if fake_data is true. `dtype` can be either
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
`[0, 1]`.
"""
dtype = tf.as_dtype(dtype).base_dtype
if dtype not in (tf.uint8, tf.float32):
raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
dtype)
if fake_data:
self._num_examples = 10000
self.one_hot = one_hot
else:
assert images.shape[0] == labels.shape[0], (
'images.shape: %s labels.shape: %s' % (images.shape,
labels.shape))
self._num_examples = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
assert images.shape[3] == 1
images = images.reshape(images.shape[0],
images.shape[1] * images.shape[2])
if dtype == tf.float32:
# Convert from [0, 255] -> [0.0, 1.0].
images = images.astype(numpy.float32)
images = numpy.multiply(images, 1.0 / 255.0)
self._images = images
self._labels = labels
self._epochs_completed = 0
self._index_in_epoch = 0
@property
def images(self):
return self._images
@property
def labels(self):
return self._labels
@property
def num_examples(self):
return self._num_examples
@property
def epochs_completed(self):
return self._epochs_completed
def next_batch(self, batch_size, fake_data=False):
"""Return the next `batch_size` examples from this data set."""
if fake_data:
fake_image = [1] * 784
if self.one_hot:
fake_label = [1] + [0] * 9
else:
fake_label = 0
return [fake_image for _ in xrange(batch_size)], [
fake_label for _ in xrange(batch_size)]
start = self._index_in_epoch
self._index_in_epoch += batch_size
if self._index_in_epoch > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Shuffle the data
perm = numpy.arange(self._num_examples)
numpy.random.shuffle(perm)
self._images = self._images[perm]
self._labels = self._labels[perm]
# Start next epoch
start = 0
self._index_in_epoch = batch_size
assert batch_size <= self._num_examples
end = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32):
class DataSets(object):
pass
data_sets = DataSets()
if fake_data:
def fake():
return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)
data_sets.train = fake()
data_sets.validation = fake()
data_sets.test = fake()
return data_sets
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000
local_file = maybe_download(TRAIN_IMAGES, train_dir)
train_images = extract_images(local_file)
local_file = maybe_download(TRAIN_LABELS, train_dir)
train_labels = extract_labels(local_file, one_hot=one_hot)
local_file = maybe_download(TEST_IMAGES, train_dir)
test_images = extract_images(local_file)
local_file = maybe_download(TEST_LABELS, train_dir)
test_labels = extract_labels(local_file, one_hot=one_hot)
validation_images = train_images[:VALIDATION_SIZE]
validation_labels = train_labels[:VALIDATION_SIZE]
train_images = train_images[VALIDATION_SIZE:]
train_labels = train_labels[VALIDATION_SIZE:]
data_sets.train = DataSet(train_images, train_labels, dtype=dtype)
data_sets.validation = DataSet(validation_images, validation_labels,
dtype=dtype)
data_sets.test = DataSet(test_images, test_labels, dtype=dtype)
return data_sets
import tensorflow as tf
import input_data
import os
import time, shutil
mnist = input_data.read_data_sets("data/", one_hot=True)
learning_rate = 0.01
training_epochs = 1000
batch_size = 100
display_step = 1
def inference(x):
init = tf.constant_initializer(value=0) # tf.zero?
W = tf.get_variable("W", [784, 10], initializer=init)
b = tf.get_variable("b", [10], initializer=init)
# y = Wx + b
output = tf.nn.softmax(tf.matmul(x, W) + b)
w_hist = tf.summary.histogram("weights", W)
b_hist = tf.summary.histogram("biases", b)
y_hist = tf.summary.histogram("output", output)
return output
def loss(output, y):
dot_product = y * tf.log(output)
xentropy = -tf.reduce_sum(dot_product, axis=1)
loss = tf.reduce_mean(xentropy)
return loss
def training(cost, global_step):
tf.summary.scalar("cost", cost)
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train_op = optimizer.minimize(cost, global_step=global_step)
return train_op
def evaluate(output, y):
correct_prediction = tf.equal(tf.argmax(output, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
return accuracy
def main():
if os.path.exists("logistic_logs/"):
shutil.rmtree("logistic_logs/")
graph = tf.Graph()
with graph.as_default():
# mnist have is in 28 * 28
x = tf.placeholder("float", [None, 784])
# mnist have 10 answer
y = tf.placeholder("float", [None, 10])
output = inference(x)
cost = loss(output, y)
global_step = tf.Variable(0, name="global_step", trainable=False)
train_op = training(cost, global_step)
eval_op = evaluate(output, y)
summary_op = tf.summary.merge_all()
saver = tf.train.Saver()
session = tf.Session()
summary_writer = tf.summary.FileWriter('logistic_logs/', graph=session.graph)
init_op = tf.global_variables_initializer()
session.run(init_op)
for epoch in range(training_epochs):
avg_cost = 0
total_batch = int(mnist.train.num_examples / batch_size)
for i in range(total_batch):
mbatch_x, mbatch_y = mnist.train.next_batch(batch_size)
feed_dict = { x: mbatch_x, y: mbatch_y }
session.run(train_op, feed_dict=feed_dict)
minibatch_cost = session.run(cost, feed_dict=feed_dict)
avg_cost += session.run(cost, feed_dict={x: mbatch_x, y: mbatch_y}) / total_batch
if epoch % display_step == 0:
val_feed_dict = {
x: mnist.validation.images,
y: mnist.validation.labels
}
accuracy = session.run(eval_op, feed_dict=val_feed_dict)
print("validation Error:", (1 - accuracy))
summary_str = session.run(summary_op, feed_dict=feed_dict)
summary_writer.add_summary(summary_str, session.run(global_step))
saver.save(session, "logistic_logs/model_checkpoint", global_step=global_step)
print("Optimization Down")
test_feed_dict = {
x: mnist.test.images,
y: mnist.test.labels
}
accuracy = session.run(eval_op, feed_dict=test_feed_dict)
print("Test Accuracy:", accuracy)
if __name__ == "__main__":
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment