Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save sxfmol/9c313cedd28ee2c7df28ebedbd15cd5a to your computer and use it in GitHub Desktop.
Save sxfmol/9c313cedd28ee2c7df28ebedbd15cd5a to your computer and use it in GitHub Desktop.
finance-pandas-mysql-scrapy-scikit_learn-pythorch备忘
#mysql批量插入效率提升问题。#SQLAlchemy
https://towardsdatascience.com/how-to-perform-bulk-inserts-with-sqlalchemy-efficiently-in-python-23044656b97d
SQLAlchemy
https://towardsdatascience.com/a-minimalist-end-to-end-scrapy-tutorial-part-iii-bcd94a2e8bf3
https://www.tutorialspoint.com/sqlalchemy/sqlalchemy_quick_guide.htm
来源website,以及个人总结
query = ("SELECT price, house_size, year_built FROM Listing") df = pd.read_sql(query, self.conn)
d = {'Mean': df.mean(), 'Min': df.min(), 'Max': df.max(), 'Median': df.median()}
return pd.DataFrame.from_dict(d, dtype='int32')[["Min", "Max", "Mean", "Median"]].transpose()
query = "SELECT price, year_built FROM Listing" df = pd.read_sql(query, self.conn)
x = df["year_built"].tolist() y = df["price"].tolist() c = Counter(zip(x, y))
s = [10 * c[(xx, yy)] for xx, yy in zip(x, y)] df.plot(kind="scatter", x="year_built", y="price", s=s, color="blue")
yy, locs = plt.yticks() ll = ['%.0f' % a for a in yy] plt.yticks(yy, ll) plt.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment