Last active
September 19, 2024 23:54
-
-
Save syllog1sm/10343947 to your computer and use it in GitHub Desktop.
A simple Python dependency parser
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""A simple implementation of a greedy transition-based parser. Released under BSD license.""" | |
from os import path | |
import os | |
import sys | |
from collections import defaultdict | |
import random | |
import time | |
import pickle | |
SHIFT = 0; RIGHT = 1; LEFT = 2; | |
MOVES = (SHIFT, RIGHT, LEFT) | |
START = ['-START-', '-START2-'] | |
END = ['-END-', '-END2-'] | |
class DefaultList(list): | |
"""A list that returns a default value if index out of bounds.""" | |
def __init__(self, default=None): | |
self.default = default | |
list.__init__(self) | |
def __getitem__(self, index): | |
try: | |
return list.__getitem__(self, index) | |
except IndexError: | |
return self.default | |
class Parse(object): | |
def __init__(self, n): | |
self.n = n | |
self.heads = [None] * (n-1) | |
self.labels = [None] * (n-1) | |
self.lefts = [] | |
self.rights = [] | |
for i in range(n+1): | |
self.lefts.append(DefaultList(0)) | |
self.rights.append(DefaultList(0)) | |
def add(self, head, child, label=None): | |
self.heads[child] = head | |
self.labels[child] = label | |
if child < head: | |
self.lefts[head].append(child) | |
else: | |
self.rights[head].append(child) | |
class Parser(object): | |
def __init__(self, load=True): | |
model_dir = os.path.dirname(__file__) | |
self.model = Perceptron(MOVES) | |
if load: | |
self.model.load(path.join(model_dir, 'parser.pickle')) | |
self.tagger = PerceptronTagger(load=load) | |
self.confusion_matrix = defaultdict(lambda: defaultdict(int)) | |
def save(self): | |
self.model.save(path.join(os.path.dirname(__file__), 'parser.pickle')) | |
self.tagger.save() | |
def parse(self, words): | |
n = len(words) | |
i = 2; stack = [1]; parse = Parse(n) | |
tags = self.tagger.tag(words) | |
while stack or (i+1) < n: | |
features = extract_features(words, tags, i, n, stack, parse) | |
scores = self.model.score(features) | |
valid_moves = get_valid_moves(i, n, len(stack)) | |
guess = max(valid_moves, key=lambda move: scores[move]) | |
i = transition(guess, i, stack, parse) | |
return tags, parse.heads | |
def train_one(self, itn, words, gold_tags, gold_heads): | |
n = len(words) | |
i = 2; stack = [1]; parse = Parse(n) | |
tags = self.tagger.tag(words) | |
while stack or (i + 1) < n: | |
features = extract_features(words, tags, i, n, stack, parse) | |
scores = self.model.score(features) | |
valid_moves = get_valid_moves(i, n, len(stack)) | |
gold_moves = get_gold_moves(i, n, stack, parse.heads, gold_heads) | |
guess = max(valid_moves, key=lambda move: scores[move]) | |
assert gold_moves | |
best = max(gold_moves, key=lambda move: scores[move]) | |
self.model.update(best, guess, features) | |
i = transition(guess, i, stack, parse) | |
self.confusion_matrix[best][guess] += 1 | |
return len([i for i in range(n-1) if parse.heads[i] == gold_heads[i]]) | |
def transition(move, i, stack, parse): | |
if move == SHIFT: | |
stack.append(i) | |
return i + 1 | |
elif move == RIGHT: | |
parse.add(stack[-2], stack.pop()) | |
return i | |
elif move == LEFT: | |
parse.add(i, stack.pop()) | |
return i | |
assert move in MOVES | |
def get_valid_moves(i, n, stack_depth): | |
moves = [] | |
if (i+1) < n: | |
moves.append(SHIFT) | |
if stack_depth >= 2: | |
moves.append(RIGHT) | |
if stack_depth >= 1: | |
moves.append(LEFT) | |
return moves | |
def get_gold_moves(n0, n, stack, heads, gold): | |
def deps_between(target, others, gold): | |
for word in others: | |
if gold[word] == target or gold[target] == word: | |
return True | |
return False | |
valid = get_valid_moves(n0, n, len(stack)) | |
if not stack or (SHIFT in valid and gold[n0] == stack[-1]): | |
return [SHIFT] | |
if gold[stack[-1]] == n0: | |
return [LEFT] | |
costly = set([m for m in MOVES if m not in valid]) | |
# If the word behind s0 is its gold head, Left is incorrect | |
if len(stack) >= 2 and gold[stack[-1]] == stack[-2]: | |
costly.add(LEFT) | |
# If there are any dependencies between n0 and the stack, | |
# pushing n0 will lose them. | |
if SHIFT not in costly and deps_between(n0, stack, gold): | |
costly.add(SHIFT) | |
# If there are any dependencies between s0 and the buffer, popping | |
# s0 will lose them. | |
if deps_between(stack[-1], range(n0+1, n-1), gold): | |
costly.add(LEFT) | |
costly.add(RIGHT) | |
return [m for m in MOVES if m not in costly] | |
def extract_features(words, tags, n0, n, stack, parse): | |
def get_stack_context(depth, stack, data): | |
if depth >= 3: | |
return data[stack[-1]], data[stack[-2]], data[stack[-3]] | |
elif depth >= 2: | |
return data[stack[-1]], data[stack[-2]], '' | |
elif depth == 1: | |
return data[stack[-1]], '', '' | |
else: | |
return '', '', '' | |
def get_buffer_context(i, n, data): | |
if i + 1 >= n: | |
return data[i], '', '' | |
elif i + 2 >= n: | |
return data[i], data[i + 1], '' | |
else: | |
return data[i], data[i + 1], data[i + 2] | |
def get_parse_context(word, deps, data): | |
if word == -1: | |
return 0, '', '' | |
deps = deps[word] | |
valency = len(deps) | |
if not valency: | |
return 0, '', '' | |
elif valency == 1: | |
return 1, data[deps[-1]], '' | |
else: | |
return valency, data[deps[-1]], data[deps[-2]] | |
features = {} | |
# Set up the context pieces --- the word (W) and tag (T) of: | |
# S0-2: Top three words on the stack | |
# N0-2: First three words of the buffer | |
# n0b1, n0b2: Two leftmost children of the first word of the buffer | |
# s0b1, s0b2: Two leftmost children of the top word of the stack | |
# s0f1, s0f2: Two rightmost children of the top word of the stack | |
depth = len(stack) | |
s0 = stack[-1] if depth else -1 | |
Ws0, Ws1, Ws2 = get_stack_context(depth, stack, words) | |
Ts0, Ts1, Ts2 = get_stack_context(depth, stack, tags) | |
Wn0, Wn1, Wn2 = get_buffer_context(n0, n, words) | |
Tn0, Tn1, Tn2 = get_buffer_context(n0, n, tags) | |
Vn0b, Wn0b1, Wn0b2 = get_parse_context(n0, parse.lefts, words) | |
Vn0b, Tn0b1, Tn0b2 = get_parse_context(n0, parse.lefts, tags) | |
Vn0f, Wn0f1, Wn0f2 = get_parse_context(n0, parse.rights, words) | |
_, Tn0f1, Tn0f2 = get_parse_context(n0, parse.rights, tags) | |
Vs0b, Ws0b1, Ws0b2 = get_parse_context(s0, parse.lefts, words) | |
_, Ts0b1, Ts0b2 = get_parse_context(s0, parse.lefts, tags) | |
Vs0f, Ws0f1, Ws0f2 = get_parse_context(s0, parse.rights, words) | |
_, Ts0f1, Ts0f2 = get_parse_context(s0, parse.rights, tags) | |
# Cap numeric features at 5? | |
# String-distance | |
Ds0n0 = min((n0 - s0, 5)) if s0 != 0 else 0 | |
features['bias'] = 1 | |
# Add word and tag unigrams | |
for w in (Wn0, Wn1, Wn2, Ws0, Ws1, Ws2, Wn0b1, Wn0b2, Ws0b1, Ws0b2, Ws0f1, Ws0f2): | |
if w: | |
features['w=%s' % w] = 1 | |
for t in (Tn0, Tn1, Tn2, Ts0, Ts1, Ts2, Tn0b1, Tn0b2, Ts0b1, Ts0b2, Ts0f1, Ts0f2): | |
if t: | |
features['t=%s' % t] = 1 | |
# Add word/tag pairs | |
for i, (w, t) in enumerate(((Wn0, Tn0), (Wn1, Tn1), (Wn2, Tn2), (Ws0, Ts0))): | |
if w or t: | |
features['%d w=%s, t=%s' % (i, w, t)] = 1 | |
# Add some bigrams | |
features['s0w=%s, n0w=%s' % (Ws0, Wn0)] = 1 | |
features['wn0tn0-ws0 %s/%s %s' % (Wn0, Tn0, Ws0)] = 1 | |
features['wn0tn0-ts0 %s/%s %s' % (Wn0, Tn0, Ts0)] = 1 | |
features['ws0ts0-wn0 %s/%s %s' % (Ws0, Ts0, Wn0)] = 1 | |
features['ws0-ts0 tn0 %s/%s %s' % (Ws0, Ts0, Tn0)] = 1 | |
features['wt-wt %s/%s %s/%s' % (Ws0, Ts0, Wn0, Tn0)] = 1 | |
features['tt s0=%s n0=%s' % (Ts0, Tn0)] = 1 | |
features['tt n0=%s n1=%s' % (Tn0, Tn1)] = 1 | |
# Add some tag trigrams | |
trigrams = ((Tn0, Tn1, Tn2), (Ts0, Tn0, Tn1), (Ts0, Ts1, Tn0), | |
(Ts0, Ts0f1, Tn0), (Ts0, Ts0f1, Tn0), (Ts0, Tn0, Tn0b1), | |
(Ts0, Ts0b1, Ts0b2), (Ts0, Ts0f1, Ts0f2), (Tn0, Tn0b1, Tn0b2), | |
(Ts0, Ts1, Ts1)) | |
for i, (t1, t2, t3) in enumerate(trigrams): | |
if t1 or t2 or t3: | |
features['ttt-%d %s %s %s' % (i, t1, t2, t3)] = 1 | |
# Add some valency and distance features | |
vw = ((Ws0, Vs0f), (Ws0, Vs0b), (Wn0, Vn0b)) | |
vt = ((Ts0, Vs0f), (Ts0, Vs0b), (Tn0, Vn0b)) | |
d = ((Ws0, Ds0n0), (Wn0, Ds0n0), (Ts0, Ds0n0), (Tn0, Ds0n0), | |
('t' + Tn0+Ts0, Ds0n0), ('w' + Wn0+Ws0, Ds0n0)) | |
for i, (w_t, v_d) in enumerate(vw + vt + d): | |
if w_t or v_d: | |
features['val/d-%d %s %d' % (i, w_t, v_d)] = 1 | |
return features | |
class Perceptron(object): | |
def __init__(self, classes=None): | |
# Each feature gets its own weight vector, so weights is a dict-of-arrays | |
self.classes = classes | |
self.weights = {} | |
# The accumulated values, for the averaging. These will be keyed by | |
# feature/clas tuples | |
self._totals = defaultdict(int) | |
# The last time the feature was changed, for the averaging. Also | |
# keyed by feature/clas tuples | |
# (tstamps is short for timestamps) | |
self._tstamps = defaultdict(int) | |
# Number of instances seen | |
self.i = 0 | |
def predict(self, features): | |
'''Dot-product the features and current weights and return the best class.''' | |
scores = self.score(features) | |
# Do a secondary alphabetic sort, for stability | |
return max(self.classes, key=lambda clas: (scores[clas], clas)) | |
def score(self, features): | |
all_weights = self.weights | |
scores = dict((clas, 0) for clas in self.classes) | |
for feat, value in features.items(): | |
if value == 0: | |
continue | |
if feat not in all_weights: | |
continue | |
weights = all_weights[feat] | |
for clas, weight in weights.items(): | |
scores[clas] += value * weight | |
return scores | |
def update(self, truth, guess, features): | |
def upd_feat(c, f, w, v): | |
param = (f, c) | |
self._totals[param] += (self.i - self._tstamps[param]) * w | |
self._tstamps[param] = self.i | |
self.weights[f][c] = w + v | |
self.i += 1 | |
if truth == guess: | |
return None | |
for f in features: | |
weights = self.weights.setdefault(f, {}) | |
upd_feat(truth, f, weights.get(truth, 0.0), 1.0) | |
upd_feat(guess, f, weights.get(guess, 0.0), -1.0) | |
def average_weights(self): | |
for feat, weights in self.weights.items(): | |
new_feat_weights = {} | |
for clas, weight in weights.items(): | |
param = (feat, clas) | |
total = self._totals[param] | |
total += (self.i - self._tstamps[param]) * weight | |
averaged = round(total / float(self.i), 3) | |
if averaged: | |
new_feat_weights[clas] = averaged | |
self.weights[feat] = new_feat_weights | |
def save(self, path): | |
print "Saving model to %s" % path | |
pickle.dump(self.weights, open(path, 'w')) | |
def load(self, path): | |
self.weights = pickle.load(open(path)) | |
class PerceptronTagger(object): | |
'''Greedy Averaged Perceptron tagger''' | |
model_loc = os.path.join(os.path.dirname(__file__), 'tagger.pickle') | |
def __init__(self, classes=None, load=True): | |
self.tagdict = {} | |
if classes: | |
self.classes = classes | |
else: | |
self.classes = set() | |
self.model = Perceptron(self.classes) | |
if load: | |
self.load(PerceptronTagger.model_loc) | |
def tag(self, words, tokenize=True): | |
prev, prev2 = START | |
tags = DefaultList('') | |
context = START + [self._normalize(w) for w in words] + END | |
for i, word in enumerate(words): | |
tag = self.tagdict.get(word) | |
if not tag: | |
features = self._get_features(i, word, context, prev, prev2) | |
tag = self.model.predict(features) | |
tags.append(tag) | |
prev2 = prev; prev = tag | |
return tags | |
def start_training(self, sentences): | |
self._make_tagdict(sentences) | |
self.model = Perceptron(self.classes) | |
def train(self, sentences, save_loc=None, nr_iter=5): | |
'''Train a model from sentences, and save it at save_loc. nr_iter | |
controls the number of Perceptron training iterations.''' | |
self.start_training(sentences) | |
for iter_ in range(nr_iter): | |
for words, tags in sentences: | |
self.train_one(words, tags) | |
random.shuffle(sentences) | |
self.end_training(save_loc) | |
def save(self): | |
# Pickle as a binary file | |
pickle.dump((self.model.weights, self.tagdict, self.classes), | |
open(PerceptronTagger.model_loc, 'wb'), -1) | |
def train_one(self, words, tags): | |
prev, prev2 = START | |
context = START + [self._normalize(w) for w in words] + END | |
for i, word in enumerate(words): | |
guess = self.tagdict.get(word) | |
if not guess: | |
feats = self._get_features(i, word, context, prev, prev2) | |
guess = self.model.predict(feats) | |
self.model.update(tags[i], guess, feats) | |
prev2 = prev; prev = guess | |
def load(self, loc): | |
w_td_c = pickle.load(open(loc, 'rb')) | |
self.model.weights, self.tagdict, self.classes = w_td_c | |
self.model.classes = self.classes | |
def _normalize(self, word): | |
if '-' in word and word[0] != '-': | |
return '!HYPHEN' | |
elif word.isdigit() and len(word) == 4: | |
return '!YEAR' | |
elif word[0].isdigit(): | |
return '!DIGITS' | |
else: | |
return word.lower() | |
def _get_features(self, i, word, context, prev, prev2): | |
'''Map tokens into a feature representation, implemented as a | |
{hashable: float} dict. If the features change, a new model must be | |
trained.''' | |
def add(name, *args): | |
features[' '.join((name,) + tuple(args))] += 1 | |
i += len(START) | |
features = defaultdict(int) | |
# It's useful to have a constant feature, which acts sort of like a prior | |
add('bias') | |
add('i suffix', word[-3:]) | |
add('i pref1', word[0]) | |
add('i-1 tag', prev) | |
add('i-2 tag', prev2) | |
add('i tag+i-2 tag', prev, prev2) | |
add('i word', context[i]) | |
add('i-1 tag+i word', prev, context[i]) | |
add('i-1 word', context[i-1]) | |
add('i-1 suffix', context[i-1][-3:]) | |
add('i-2 word', context[i-2]) | |
add('i+1 word', context[i+1]) | |
add('i+1 suffix', context[i+1][-3:]) | |
add('i+2 word', context[i+2]) | |
return features | |
def _make_tagdict(self, sentences): | |
'''Make a tag dictionary for single-tag words.''' | |
counts = defaultdict(lambda: defaultdict(int)) | |
for sent in sentences: | |
for word, tag in zip(sent[0], sent[1]): | |
counts[word][tag] += 1 | |
self.classes.add(tag) | |
freq_thresh = 20 | |
ambiguity_thresh = 0.97 | |
for word, tag_freqs in counts.items(): | |
tag, mode = max(tag_freqs.items(), key=lambda item: item[1]) | |
n = sum(tag_freqs.values()) | |
# Don't add rare words to the tag dictionary | |
# Only add quite unambiguous words | |
if n >= freq_thresh and (float(mode) / n) >= ambiguity_thresh: | |
self.tagdict[word] = tag | |
def _pc(n, d): | |
return (float(n) / d) * 100 | |
def train(parser, sentences, nr_iter): | |
parser.tagger.start_training(sentences) | |
for itn in range(nr_iter): | |
corr = 0; total = 0 | |
random.shuffle(sentences) | |
for words, gold_tags, gold_parse, gold_label in sentences: | |
corr += parser.train_one(itn, words, gold_tags, gold_parse) | |
if itn < 5: | |
parser.tagger.train_one(words, gold_tags) | |
total += len(words) | |
print itn, '%.3f' % (float(corr) / float(total)) | |
if itn == 4: | |
parser.tagger.model.average_weights() | |
print 'Averaging weights' | |
parser.model.average_weights() | |
def read_pos(loc): | |
for line in open(loc): | |
if not line.strip(): | |
continue | |
words = DefaultList('') | |
tags = DefaultList('') | |
for token in line.split(): | |
if not token: | |
continue | |
word, tag = token.rsplit('/', 1) | |
#words.append(normalize(word)) | |
words.append(word) | |
tags.append(tag) | |
pad_tokens(words); pad_tokens(tags) | |
yield words, tags | |
def read_conll(loc): | |
for sent_str in open(loc).read().strip().split('\n\n'): | |
lines = [line.split() for line in sent_str.split('\n')] | |
words = DefaultList(''); tags = DefaultList('') | |
heads = [None]; labels = [None] | |
for i, (word, pos, head, label) in enumerate(lines): | |
words.append(intern(word)) | |
#words.append(intern(normalize(word))) | |
tags.append(intern(pos)) | |
heads.append(int(head) + 1 if head != '-1' else len(lines) + 1) | |
labels.append(label) | |
pad_tokens(words); pad_tokens(tags) | |
yield words, tags, heads, labels | |
def pad_tokens(tokens): | |
tokens.insert(0, '<start>') | |
tokens.append('ROOT') | |
def main(model_dir, train_loc, heldout_in, heldout_gold): | |
if not os.path.exists(model_dir): | |
os.mkdir(model_dir) | |
input_sents = list(read_pos(heldout_in)) | |
parser = Parser(load=False) | |
sentences = list(read_conll(train_loc)) | |
train(parser, sentences, nr_iter=15) | |
parser.save() | |
c = 0 | |
t = 0 | |
gold_sents = list(read_conll(heldout_gold)) | |
t1 = time.time() | |
for (words, tags), (_, _, gold_heads, gold_labels) in zip(input_sents, gold_sents): | |
_, heads = parser.parse(words) | |
for i, w in list(enumerate(words))[1:-1]: | |
if gold_labels[i] in ('P', 'punct'): | |
continue | |
if heads[i] == gold_heads[i]: | |
c += 1 | |
t += 1 | |
t2 = time.time() | |
print 'Parsing took %0.3f ms' % ((t2-t1)*1000.0) | |
print c, t, float(c)/t | |
if __name__ == '__main__': | |
main(sys.argv[1], sys.argv[2], sys.argv[3], sys.argv[4]) |
is your algorithm arc-eager or arc-standard?
Finally I get it working, to some extend. A few bumps I have get through (in addtion to @cadddr's comments)
- line 84, assert fail on some sentences, just ignore
# assert gold_moves
if not gold_moves:
break
- line 481, there is off-by-one error, as the gold heads index starts from 1 rather than 0
# heads.append(int(head) + 1 if head != '-1' else len(lines) + 1)
heads.append(int(head) if head != '-1' else len(lines))
- pad tokens before calling the parser
parser = Parser()
tokens = sentence.split()
pad_tokens(tokens)
tags, heads = parser.parse(tokens)
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
where can I get some training samples to run the codes? I don't need large amount of data, But only enough for running it.