Skip to content

Instantly share code, notes, and snippets.

@sylvchev
Last active January 20, 2017 09:35
Show Gist options
  • Save sylvchev/62012c110515f68261087ceddd392b14 to your computer and use it in GitHub Desktop.
Save sylvchev/62012c110515f68261087ceddd392b14 to your computer and use it in GitHub Desktop.
Detect and estimate the pose of some objects with SURF keypoints
cmake_minimum_required(VERSION 2.8)
project( detection_pose_estimation_surf )
find_package( OpenCV REQUIRED )
add_executable( detection_pose_estimation_surf detection_pose_estimation_surf.cpp )
target_link_libraries( detection_pose_estimation_surf ${OpenCV_LIBS} )
#include <stdio.h>
#include <iostream>
#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/calib3d.hpp"
#include "opencv2/xfeatures2d.hpp"
using namespace cv;
using namespace cv::xfeatures2d;
void readme();
int main( int argc, char** argv )
{
if( argc != 3 )
{
std::cout << " Usage: ./detection_pose_estimation <imgtrain> <imgtest>" << std::endl;
return -1;
}
Mat img_object = imread( argv[1], IMREAD_GRAYSCALE );
Mat img_scene = imread( argv[2], IMREAD_GRAYSCALE );
if( !img_object.data || !img_scene.data )
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }
//-- Extract only the center of train image as ROI
Mat roi_object(img_object, Rect (192, 112, 255, 255)); //Rect (192, 112, 448, 368));
//-- Detect SURF keypoints on ROI and test image
int minHessian = 800;
Ptr<SURF> detector = SURF::create( minHessian );
detector->setUpright(false);
detector->setExtended(true);
std::vector<KeyPoint> keypoints_object, keypoints_scene;
Mat descriptors_object, descriptors_scene;
detector->detectAndCompute( roi_object, Mat(), keypoints_object, descriptors_object );
detector->detectAndCompute( img_scene, Mat(), keypoints_scene, descriptors_scene );
//-- FLANN matcher to identify the pair of descriptors
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_object, descriptors_scene, matches );
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors_object.rows; i++ )
{ double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
//-- "good" matches are less than 3*min_dist )
std::vector< DMatch > good_matches;
for( int i = 0; i < descriptors_object.rows; i++ )
{ if( matches[i].distance < 3*min_dist )
{ good_matches.push_back( matches[i]); }
}
Mat img_matches;
drawMatches( roi_object, keypoints_object, img_scene, keypoints_scene,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
std::vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
//-- Localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene;
for( size_t i = 0; i < good_matches.size(); i++ )
{
//-- store good matches
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
}
Mat mask;
Mat H = findHomography( obj, scene, RANSAC, 3.0, mask);
//-- Corner of the object image ROI
std::vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint( 0, 0 );
obj_corners[1] = cvPoint( roi_object.cols, 0 );
obj_corners[2] = cvPoint( roi_object.cols, roi_object.rows );
obj_corners[3] = cvPoint( 0, roi_object.rows );
//-- Get the center and top of image for computing a direction vector
std::vector<Point2f> obj_orien(2);
obj_orien[0] = cvPoint( 128, 128 );
obj_orien[1] = cvPoint( 128, 0 );
std::vector<Point2f> scene_corners(4);
std::vector<Point2f> scene_orien(2);
perspectiveTransform( obj_corners, scene_corners, H);
perspectiveTransform( obj_orien, scene_orien, H);
//-- Contour lines of the detected object
line( img_matches, scene_corners[0] + Point2f( roi_object.cols, 0), scene_corners[1] + Point2f( roi_object.cols, 0), Scalar(0, 0, 255), 4 );
line( img_matches, scene_corners[1] + Point2f( roi_object.cols, 0), scene_corners[2] + Point2f( roi_object.cols, 0), Scalar( 0, 0, 255), 4 );
line( img_matches, scene_corners[2] + Point2f( roi_object.cols, 0), scene_corners[3] + Point2f( roi_object.cols, 0), Scalar( 0, 0, 255), 4 );
line( img_matches, scene_corners[3] + Point2f( roi_object.cols, 0), scene_corners[0] + Point2f( roi_object.cols, 0), Scalar( 0, 0, 255), 4 );
//-- Orientation vector
line( img_matches, scene_orien[0] + Point2f( roi_object.cols, 0), scene_orien[1] + Point2f( roi_object.cols, 0), Scalar(255, 0, 0), 4 );
Vec2f u(obj_orien[1].x-obj_orien[0].x, obj_orien[1].y-obj_orien[0].y), v(scene_orien[1].x-scene_orien[0].x, scene_orien[1].y-scene_orien[0].y);
float a = acos(u.dot(v)/(norm(u)*norm(v)))*180./CV_PI;
printf ("orientation: %g - recognition: %g (%d/%d points)\n", a,
float(good_matches.size())/matches.size(), int(good_matches.size()),
int (matches.size()));
//-- Show detected matches
imshow( "Good Matches & Object detection", img_matches );
waitKey(0);
// imwrite("detection_pose_estimation_surf.jpg", img_matches );
return 0;
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment