Last active
November 12, 2022 09:44
-
-
Save syrte/ff63bd9b5e383afc2bc0cc18d57f1274 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from scipy import optimize | |
from scipy import stats | |
def gaussian(x, p): | |
n = len(p) // 2 | |
return np.add.reduce([p[i] * stats.norm.pdf(x, scale=p[n + i]) for i in range(n)]) | |
def fit_gauss_sym(x, y, n=2, origin=True, full=True, positive=True): | |
""" | |
x, y: | |
The right half (x>0) of an even function. | |
x and y are monotonically increasing and decreasing respectively. | |
""" | |
if origin: | |
y1 = y[0] * np.linspace(1, 0, 2 * n + 1)[:-1] | |
else: | |
y1 = y[0] * np.linspace(1, 0, 2 * n + 2)[1:-1] | |
x1 = np.interp(-y1, -y, x) | |
if positive or n == 1: | |
s0 = x1[n] / 1.18 * np.geomspace(0.8, 1.25, n + 2)[1:-1] | |
a0 = y1[0] / stats.norm.pdf(0, scale=s0) / n | |
p0 = [*a0, *s0] | |
else: | |
s0 = x1[n] / 1.18 * np.geomspace(0.8, 1.25, n + 2)[1:-1] | |
a0 = y1[0] / stats.norm.pdf(0, scale=s0) / (n - 1) | |
a0[0] *= 1.05 | |
a0[-1] *= -0.05 | |
p0 = [*a0, *s0] | |
if positive: | |
lnp0 = np.log(p0) | |
else: | |
lnp0 = *np.arcsinh(p0[:n]), *np.log(p0[n:]) | |
if full: | |
args = (x, y) | |
else: | |
args = (x1, y1) | |
def func_obj(lnp, x, y): | |
if positive: | |
p = np.exp(lnp) | |
else: | |
p = *np.sinh(lnp[:n]), *np.exp(lnp[n:]) | |
f = gaussian(x, p) | |
return f - y | |
with np.errstate(all='ignore'): | |
res = optimize.root(func_obj, lnp0, args=args, method='lm', options={'ftol': 1e-4 * y1[0], 'maxiter': 2000}) | |
lnp = res.x | |
if positive: | |
p = np.exp(lnp) | |
else: | |
p = *np.sinh(lnp[:n]), *np.exp(lnp[n:]) | |
return p, p0, x1, y1, res | |
x = np.linspace(0, 20, 1000) | |
y = 0.2 * norm.pdf(x) + norm.pdf(x, scale=4) | |
# x = np.linspace(0, np.pi / 2, 100) | |
# y = np.cos(x)**2 | |
n = 3 | |
p, p0, x1, y1, res = fit_gauss_sym(x, y, n=n, origin=1, full=1, positive=0) | |
printarr(p0) | |
printarr(p) | |
printarr(res.success, (res.fun**2).mean()**0.5) | |
plt.plot(x, y) | |
plt.scatter(x1, y1) | |
ylim = plt.ylim() | |
plt.plot(x, func(x, p), ls='--') | |
plt.plot(x, func(x, p0), ls='-.') | |
for i in range(n): | |
plt.plot(x, func(x, [p[i], p[n + i]]), ls=':') | |
plt.ylim(0, ylim[1]) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
x = np.hstack([-t[::-1], t]) | |
y = np.hstack([A[::-1], A]) | |
y = y - y[-1] | |
f = CubicSpline(x, y, extrapolate=False) | |
amp = f(0) | |
sig1 = (-amp / f(0, nu=2))**0.5 # |d^2f/dt^2|=-A/sigma^2 | |
rt = f.derivative(2).roots(extrapolate=False) # root of d^2f/dt^2 = 1 sigma | |
sig2 = np.abs(rt[np.argmin(np.abs(rt))]) # root closest to 0, usually smaller than sig1? | |
sig = (sig1 * sig2)**0.5 # average (purely empirical!) | |
amp *= (2 * np.pi)**0.5 * sig | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment