Train command line for a single node training:
python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py \
--lr_drop 400 --epochs 500 \
--coco_path /path/to/coco
Eval command line:
python main.py --batch_size 2 --no_aux_loss --eval \
--resume https://dl.fbaipublicfiles.com/detr/detr-r50-e632da11.pth \
--coco_path /path/to/coco
COCO bbox detection val5k evaluation results:
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.420
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.624
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.442
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.205
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.458
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.611
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.333
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.533
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.574
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.312
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.628
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.805
Train command line for training on 8 nodes:
python run_with_submitit.py \
--nodes 8 --timeout 3200 \
--batch_size 1 --dilation \
--lr_drop 400 --epochs 500 \
--coco_path /path/to/coco
Eval command line:
python main.py --no_aux_loss --eval \
--batch_size 1 --dilation \
--resume https://dl.fbaipublicfiles.com/detr/detr-r50-dc5-f0fb7ef5.pth \
--coco_path /path/to/coco
COCO bbox detection val5k evaluation results:
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.433
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.631
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.459
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.225
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.473
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.611
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.342
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.551
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.594
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.344
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.646
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.814
Train command line for a single node training:
python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py \
--backbone resnet101 \
--lr_drop 400 --epochs 500 \
--coco_path /path/to/coco
Eval command line:
python main.py --batch_size 2 --no_aux_loss --eval \
--backbone resnet101 \
--resume https://dl.fbaipublicfiles.com/detr/detr-r101-2c7b67e5.pth \
--coco_path /path/to/coco
COCO bbox detection val5k evaluation results:
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.435
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.638
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.464
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.219
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.480
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.618
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.344
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.548
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.590
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.337
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.644
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.814
Train command line for training on 8 nodes:
python run_with_submitit.py \
--nodes 8 --timeout 3200 \
--backbone resnet101 \
--batch_size 1 --dilation \
--lr_drop 400 --epochs 500 \
--coco_path /path/to/coco
Eval command line:
python main.py --no_aux_loss --eval \
--backbone resnet101 \
--batch_size 1 --dilation \
--resume https://dl.fbaipublicfiles.com/detr/detr-r101-dc5-a2e86def.pth \
--coco_path /path/to/coco
COCO bbox detection val5k evaluation results:
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.449
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.647
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.477
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.237
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.495
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.623
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.350
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.561
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.604
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.348
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.662
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.810
Eval command line:
python main.py \
--batch_size 1 --no_aux_loss --eval \
--resume https://dl.fbaipublicfiles.com/detr/detr-r50-panoptic-00ce5173.pth \
--masks --dataset_file coco_panoptic \
--coco_path /path/to/coco/ \
--coco_panoptic_path /path/to/coco_panoptic
Results:
IoU metric: segm
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.311
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.541
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.313
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.116
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.346
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.507
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.264
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.395
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.411
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.190
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.467
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.604
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.388
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.599
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.400
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.173
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.428
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.591
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.314
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.485
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.510
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.253
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.561
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.738
| PQ SQ RQ N
--------------------------------------
All | 43.4 79.3 53.8 133
Things | 48.2 79.8 59.5 80
Stuff | 36.3 78.5 45.3 53
Eval command line:
python main.py \
--dilation \
--batch_size 1 --no_aux_loss --eval \
--resume https://dl.fbaipublicfiles.com/detr/detr-r50-dc5-panoptic-da08f1b1.pth \
--masks --dataset_file coco_panoptic \
--coco_path /path/to/coco/ \
--coco_panoptic_path /path/to/coco_panoptic
Results:
IoU metric: segm
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.319
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.547
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.325
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.130
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.358
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.504
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.268
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.406
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.424
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.210
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.478
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.609
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.402
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.601
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.418
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.193
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.441
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.592
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.320
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.499
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.527
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.279
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.577
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.743
| PQ SQ RQ N
--------------------------------------
All | 44.6 79.8 55.0 133
Things | 49.4 80.5 60.6 80
Stuff | 37.3 78.7 46.5 53
Eval command line:
python main.py \
--backbone resnet101 \
--batch_size 1 --no_aux_loss --eval \
--resume https://dl.fbaipublicfiles.com/detr/detr-r101-panoptic-40021d53.pth \
--masks --dataset_file coco_panoptic \
--coco_path /path/to/coco/ \
--coco_panoptic_path /path/to/coco_panoptic
Results:
IoU metric: segm
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.330
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.565
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.337
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.130
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.371
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.524
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.276
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.417
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.434
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.216
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.489
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.631
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.401
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.611
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.419
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.184
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.441
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.592
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.321
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.498
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.522
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.270
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.574
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.750
| PQ SQ RQ N
--------------------------------------
All | 45.1 79.9 55.5 133
Things | 50.5 80.9 61.7 80
Stuff | 37.0 78.5 46.0 53