Certainly! Below are the instructions for converting a GPT-2 model to CoreML and the code for a macOS command-line tool to use that model.
First, use a Python script to convert the GPT-2 model to CoreML.
-
Install the required packages:
pip install transformers coremltools torch
-
Create the conversion script (
convert_gpt2_to_coreml.py):import coremltools as ct from transformers import GPT2LMHeadModel, GPT2Tokenizer import torch # Load the pre-trained GPT-2 model and tokenizer model_name = "gpt2" tokenizer = GPT2Tokenizer.from_pretrained(model_name) model = GPT2LMHeadModel.from_pretrained(model_name) # Trace the model with a dummy input input_text = "Convert this text" input_ids = tokenizer.encode(input_text, return_tensors="pt") traced_model = torch.jit.trace(model, input_ids) coreml_model = ct.convert( traced_model, inputs=[ct.TensorType(name="input_ids", shape=input_ids.shape)], ) # Save the CoreML model coreml_model.save("GPT2.mlmodel")
-
Run the conversion script:
python convert_gpt2_to_coreml.py
This will generate a GPT2.mlmodel file in your current directory.
- Open Xcode and create a new project.
- Choose "macOS" and then "Command Line Tool".
- Name your project, ensure the language is set to Swift.
- Drag and drop the
GPT2.mlmodelfile into your Xcode project.
import Foundation
import CoreML
// Define the LLM Manager
class LLMManager {
static let shared = LLMManager()
private init() {}
func runLLMTest() {
let input = "Fixed prompt for the language model"
// Measure the time of LLM response
let startTime = CFAbsoluteTimeGetCurrent()
// Perform LLM inference
let output = processLLM(input: input)
let endTime = CFAbsoluteTimeGetCurrent()
let responseTime = endTime - startTime
print("LLM Response: \(output)")
print("LLM Response Time: \(responseTime) seconds")
}
private func processLLM(input: String) -> String {
guard let model = try? GPT2(configuration: MLModelConfiguration()) else {
return "Failed to load model"
}
guard let input_ids = try? GPT2Input(text: input) else {
return "Failed to create input"
}
guard let output = try? model.prediction(input: input_ids) else {
return "Failed to make prediction"
}
return output.text
}
}
// Run the LLM Test
LLMManager.shared.runLLMTest()-
Add the Model to the Target:
- Ensure the
GPT2.mlmodelfile is added to the target settings of your project.
- Ensure the
-
Run the Project:
- Select the scheme for your command-line tool and run the project in Xcode. The output will be printed to the console.
- Convert GPT-2 Model to CoreML: Use the provided Python script to convert a GPT-2 model to CoreML.
- macOS Command-Line Tool: Create a new command-line tool in Xcode, add the
GPT2.mlmodelfile, and use the provided Swift code to perform inference and measure the response time.
This setup will allow you to run a local CoreML model in a macOS command-line tool and measure the inference time without any user interface.