Created
September 8, 2017 02:23
-
-
Save szymonk92/b2098cedffdd920c7eeae3fa38494852 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
X, X_test, y, y_test = get_data() | |
batch_size = 32 | |
num_classes = 2 | |
epochs = 400 | |
data_augmentation = False | |
# Convert class vectors to binary class matrices. | |
y_train = keras.utils.to_categorical(y, num_classes) | |
y_test = keras.utils.to_categorical(y_test, num_classes) | |
model = Sequential([ | |
Conv2D(32, (3, 3), padding='same', input_shape=X.shape[1:], activation='relu'), | |
Conv2D(32, (3, 3), padding='same', activation='relu'), | |
MaxPooling2D(pool_size=(2, 2)), | |
Conv2D(128, (3, 3), padding='same', activation='relu'), | |
Conv2D(128, (3, 3), padding='same',activation='relu'), | |
MaxPooling2D(pool_size=(2, 2)), | |
Conv2D(256, (3, 3), padding='same', activation='relu'), | |
Conv2D(256, (3, 3), padding='same', activation='relu'), | |
MaxPooling2D(pool_size=(2, 2)), | |
# Conv2D(512, (3, 3), padding='same', activation='relu'), | |
# Conv2D(512, (3, 3), padding='same', activation='relu'), | |
# MaxPooling2D(pool_size=(2, 2)), | |
Flatten(), | |
Dense(1024, activation='relu'), | |
Dropout(0.5), | |
Dense(1024, activation='relu'), | |
Dropout(0.5), | |
Dense(num_classes), | |
Activation('softmax'), | |
]) | |
# initiate RMSprop optimizer | |
opt = keras.optimizers.rmsprop(lr=1e-5, decay=1e-6) | |
# Let's train the model using RMSprop | |
model.compile(loss='categorical_crossentropy', | |
optimizer=opt, | |
metrics=['accuracy']) | |
x_train = X.astype('float32') | |
x_test = X_test.astype('float32') | |
x_train /= 255 | |
x_test /= 255 | |
checkpointer = ModelCheckpoint(filepath='tmp\\weights.hdf5', verbose=1, save_best_only=True) | |
if not data_augmentation: | |
print('Not using data augmentation.') | |
history = model.fit(x_train, y_train, | |
batch_size=batch_size, | |
epochs=epochs, | |
validation_data=(x_test, y_test), | |
callbacks=[checkpointer]) | |
else: | |
print('Using real-time data augmentation.') | |
# This will do preprocessing and realtime data augmentation: | |
datagen = ImageDataGenerator( | |
featurewise_center=False, # set input mean to 0 over the dataset | |
samplewise_center=False, # set each sample mean to 0 | |
featurewise_std_normalization=False, # divide inputs by std of the dataset | |
samplewise_std_normalization=False, # divide each input by its std | |
zca_whitening=False, # apply ZCA whitening | |
rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180) | |
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width) | |
height_shift_range=0.1, # randomly shift images vertically (fraction of total height) | |
horizontal_flip=True, # randomly flip images | |
vertical_flip=False) # randomly flip images | |
# Compute quantities required for feature-wise normalization | |
# (std, mean, and principal components if ZCA whitening is applied). | |
datagen.fit(x_train) | |
# Fit the model on the batches generated by datagen.flow(). | |
history = model.fit_generator(datagen.flow(x_train, y_train, | |
batch_size=batch_size), | |
steps_per_epoch=x_train.shape[0] // batch_size, | |
epochs=epochs, | |
validation_data=(x_test, y_test), | |
callbacks=[checkpointer]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment