Last active
July 13, 2023 09:11
-
-
Save t-vi/0d0ae013072f96f50fa11fbc2287e33b to your computer and use it in GitHub Desktop.
PyTorch Type Hints work in progress (put into python3.x/dist-packages/torch/ directory to try)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from typing import List, Tuple, Optional, Union, Any, ContextManager, Callable, overload | |
import builtins | |
import math | |
import pickle | |
class dtype: ... | |
_dtype = dtype | |
class layout: ... | |
strided : layout = ... | |
class device: | |
def __init__(self, device: Union[device, str, None]=None) -> None: ... | |
class Generator: ... | |
class Size(tuple): ... | |
class Storage: ... | |
class enable_grad(): | |
def __enter__(self) -> None: ... | |
def __exit__(self, *args) -> None: ... | |
def __call__(self, func : Callable) -> Callable: ... | |
class no_grad(): | |
def __enter__(self) -> None: ... | |
def __exit__(self, *args) -> None: ... | |
def __call__(self, func : Callable) -> Callable: ... | |
class set_grad_enabled(): | |
def __init__(self, mode: bool) -> None: ... | |
def __enter__(self) -> None: ... | |
def __exit__(self, *args) -> None: ... | |
class Tensor: | |
dtype: _dtype = ... | |
shape: Size = ... | |
requires_grad: bool = ... | |
grad: Optional['Tensor'] = ... | |
def __abs__(self) -> 'Tensor': ... | |
def __add__(self, other: Any) -> 'Tensor': ... | |
def __and__(self, other: Any) -> 'Tensor': ... | |
def __array__(self, dtype=None): ... | |
def __array_wrap__(self, array): ... | |
def __bool__(self) -> bool: ... | |
def __deepcopy__(self, memo): ... | |
def __dir__(self): ... | |
def __div__(self, other: Any) -> 'Tensor': ... | |
def __eq__(self, other: Any) -> 'Tensor': ... # type: ignore | |
def __float__(self) -> builtins.float: ... | |
def __floordiv__(self, other): ... | |
def __format__(self, format_spec): ... | |
def __ge__(self, other: Any) -> 'Tensor': ... # type: ignore | |
def __getitem__(self, indices: Union[None, builtins.int, slice, 'Tensor', List, Tuple]) -> 'Tensor': ... | |
def __gt__(self, other: Any) -> 'Tensor': ... # type: ignore | |
def __hash__(self): ... | |
def __iadd__(self, other: Any) -> 'Tensor': ... | |
def __iand__(self, other: Any) -> 'Tensor': ... | |
def __idiv__(self, other: Any) -> 'Tensor': ... | |
def __ilshift__(self, other: Any) -> 'Tensor': ... | |
def __imul__(self, other: Any) -> 'Tensor': ... | |
def __index__(self) -> builtins.int: ... | |
def __int__(self) -> builtins.int: ... | |
def __invert__(self) -> 'Tensor': ... | |
def __ior__(self, other: Any) -> 'Tensor': ... | |
def __ipow__(self, other): ... | |
def __irshift__(self, other: Any) -> 'Tensor': ... | |
def __isub__(self, other: Any) -> 'Tensor': ... | |
def __iter__(self): ... | |
def __itruediv__(self, other: Any) -> 'Tensor': ... | |
def __ixor__(self, other: Any) -> 'Tensor': ... | |
def __le__(self, other: Any) -> 'Tensor': ... # type: ignore | |
def __len__(self): ... | |
def __long__(self) -> builtins.int: ... | |
def __lshift__(self, other: Any) -> 'Tensor': ... | |
def __lt__(self, other: Any) -> 'Tensor': ... # type: ignore | |
def __matmul__(self, other: Any) -> 'Tensor': ... | |
def __mod__(self, other: Any) -> 'Tensor': ... | |
def __mul__(self, other: Any) -> 'Tensor': ... | |
def __ne__(self, other: Any) -> 'Tensor': ... # type: ignore | |
def __neg__(self) -> 'Tensor': ... | |
def __nonzero__(self) -> bool: ... | |
def __or__(self, other: Any) -> 'Tensor': ... | |
def __pow__(self, other: Any) -> 'Tensor': ... | |
def __radd__(self, other: Any) -> 'Tensor': ... | |
def __rdiv__(self, other): ... | |
def __reduce_ex__(self, proto): ... | |
def __repr__(self): ... | |
def __reversed__(self): ... | |
def __rfloordiv__(self, other): ... | |
def __rmul__(self, other: Any) -> 'Tensor': ... | |
def __rpow__(self, other): ... | |
def __rshift__(self, other: Any) -> 'Tensor': ... | |
def __rsub__(self, other): ... | |
def __rtruediv__(self, other): ... | |
def __setitem__(self, indices: Union[None, builtins.int, slice, 'Tensor', List, Tuple], val: Union['Tensor', builtins.float, builtins.int]) -> None: ... | |
def __setstate__(self, state): ... | |
def __sub__(self, other: Any) -> 'Tensor': ... | |
def __truediv__(self, other: Any) -> 'Tensor': ... | |
def __xor__(self, other: Any) -> 'Tensor': ... | |
def abs(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def abs_(self) -> 'Tensor': ... | |
def acos(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def acos_(self) -> 'Tensor': ... | |
@overload | |
def add(self, other: 'Tensor', *, alpha: Union[builtins.float, builtins.int]=1, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def add(self, other: Union[builtins.float, builtins.int], alpha: Union[builtins.float, builtins.int]=1, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def add_(self, other: 'Tensor', *, alpha: Union[builtins.float, builtins.int]=1) -> 'Tensor': ... | |
@overload | |
def add_(self, other: Union[builtins.float, builtins.int], alpha: Union[builtins.float, builtins.int]=1) -> 'Tensor': ... | |
def addbmm(self, batch1: 'Tensor', batch2: 'Tensor', *, beta: Union[builtins.float, builtins.int]=1, alpha: Union[builtins.float, builtins.int]=1, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def addbmm_(self, batch1: 'Tensor', batch2: 'Tensor', *, beta: Union[builtins.float, builtins.int]=1, alpha: Union[builtins.float, builtins.int]=1) -> 'Tensor': ... | |
def addcdiv(self, tensor1: 'Tensor', tensor2: 'Tensor', *, value: Union[builtins.float, builtins.int]=1, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def addcdiv_(self, tensor1: 'Tensor', tensor2: 'Tensor', *, value: Union[builtins.float, builtins.int]=1) -> 'Tensor': ... | |
def addcmul(self, tensor1: 'Tensor', tensor2: 'Tensor', *, value: Union[builtins.float, builtins.int]=1, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def addcmul_(self, tensor1: 'Tensor', tensor2: 'Tensor', *, value: Union[builtins.float, builtins.int]=1) -> 'Tensor': ... | |
def addmm(self, mat1: 'Tensor', mat2: 'Tensor', *, beta: Union[builtins.float, builtins.int]=1, alpha: Union[builtins.float, builtins.int]=1, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def addmm_(self, mat1: 'Tensor', mat2: 'Tensor', *, beta: Union[builtins.float, builtins.int]=1, alpha: Union[builtins.float, builtins.int]=1) -> 'Tensor': ... | |
def addmv(self, mat: 'Tensor', vec: 'Tensor', *, beta: Union[builtins.float, builtins.int]=1, alpha: Union[builtins.float, builtins.int]=1, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def addmv_(self, mat: 'Tensor', vec: 'Tensor', *, beta: Union[builtins.float, builtins.int]=1, alpha: Union[builtins.float, builtins.int]=1) -> 'Tensor': ... | |
def addr(self, vec1: 'Tensor', vec2: 'Tensor', *, beta: Union[builtins.float, builtins.int]=1, alpha: Union[builtins.float, builtins.int]=1, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def addr_(self, vec1: 'Tensor', vec2: 'Tensor', *, beta: Union[builtins.float, builtins.int]=1, alpha: Union[builtins.float, builtins.int]=1) -> 'Tensor': ... | |
@overload | |
def all(self, *, out: Optional['Tensor']=None) -> Union[builtins.float, builtins.int]: ... | |
@overload | |
def all(self, dim: builtins.int, keepdim: bool=False, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def allclose(self, other: 'Tensor', rtol: builtins.float=1e-05, atol: builtins.float=1e-08, equal_nan: bool=False) -> bool: ... | |
@overload | |
def any(self, *, out: Optional['Tensor']=None) -> Union[builtins.float, builtins.int]: ... | |
@overload | |
def any(self, dim: builtins.int, keepdim: bool=False, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def apply_(self, callable: Callable) -> 'Tensor': ... | |
def argmax(self, dim=None, keepdim=False): ... | |
def argmin(self, dim=None, keepdim=False): ... | |
def argsort(self, dim=None, descending=False): ... | |
def asin(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def asin_(self) -> 'Tensor': ... | |
def atan(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def atan2(self, other: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def atan2_(self, other: 'Tensor') -> 'Tensor': ... | |
def atan_(self) -> 'Tensor': ... | |
def backward(self, gradient=None, retain_graph=None, create_graph=False): ... | |
def baddbmm(self, batch1: 'Tensor', batch2: 'Tensor', *, beta: Union[builtins.float, builtins.int]=1, alpha: Union[builtins.float, builtins.int]=1, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def baddbmm_(self, batch1: 'Tensor', batch2: 'Tensor', *, beta: Union[builtins.float, builtins.int]=1, alpha: Union[builtins.float, builtins.int]=1) -> 'Tensor': ... | |
@overload | |
def bernoulli(self, *, generator: Generator=None, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def bernoulli(self, p: builtins.float, *, generator: Generator=None, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def bernoulli_(self, p: 'Tensor', *, generator: Generator=None) -> 'Tensor': ... | |
@overload | |
def bernoulli_(self, p: builtins.float=0.5, *, generator: Generator=None) -> 'Tensor': ... | |
def bincount(self, weights: Optional['Tensor']=None, minlength: builtins.int=0) -> 'Tensor': ... | |
def bmm(self, mat2: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def btrifact(self, info=None, pivot=True): ... | |
def btrifact_with_info(self, *, pivot: bool=True, out: Optional['Tensor']=None) -> Tuple['Tensor', 'Tensor', 'Tensor']: ... | |
def btrisolve(self, LU_data: 'Tensor', LU_pivots: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def byte(self) -> 'Tensor': ... | |
def cauchy_(self, median: builtins.float=0, sigma: builtins.float=1, *, generator: Generator=None) -> 'Tensor': ... | |
def ceil(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def ceil_(self) -> 'Tensor': ... | |
def char(self) -> 'Tensor': ... | |
def chunk(self, chunks: builtins.int, dim: builtins.int=0) -> Union[Tuple['Tensor', ...],List['Tensor']]: ... | |
def clamp(self, min: builtins.float=-math.inf, max: builtins.float =math.inf, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def clamp_(self, min: builtins.float=-math.inf, max: builtins.float =math.inf) -> 'Tensor': ... | |
def clone(self) -> 'Tensor': ... | |
def contiguous(self) -> 'Tensor': ... | |
def copy_(self, src: 'Tensor', non_blocking: bool=False) -> 'Tensor': ... | |
def cos(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def cos_(self) -> 'Tensor': ... | |
def cosh(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def cosh_(self) -> 'Tensor': ... | |
def cpu(self) -> 'Tensor': ... | |
def cross(self, other: 'Tensor', dim: builtins.int=-1, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def cuda(self, device: Optional[device]=None, non_blocking: bool=False) -> 'Tensor': ... | |
@overload | |
def cumprod(self, dim: builtins.int, *, dtype: _dtype, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def cumprod(self, dim: builtins.int, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def cumsum(self, dim: builtins.int, *, dtype: _dtype, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def cumsum(self, dim: builtins.int, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def data_ptr(self) -> builtins.int: ... | |
def det(self) -> 'Tensor': ... | |
def detach(self) -> 'Tensor': ... | |
def detach_(self) -> 'Tensor': ... | |
def diag(self, diagonal: builtins.int=0, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def diagflat(self, offset: builtins.int=0) -> 'Tensor': ... | |
def diagonal(self, offset: builtins.int=0, dim1: builtins.int=0, dim2: builtins.int=1) -> 'Tensor': ... | |
def digamma(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def digamma_(self) -> 'Tensor': ... | |
def dim(self) -> builtins.int: ... | |
def dist(self, other: 'Tensor', p: Union[builtins.float, builtins.int]=2) -> Union[builtins.float, builtins.int]: ... | |
@overload | |
def div(self, other: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def div(self, other: Union[builtins.float, builtins.int], *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def div_(self, other: 'Tensor') -> 'Tensor': ... | |
@overload | |
def div_(self, other: Union[builtins.float, builtins.int]) -> 'Tensor': ... | |
def dot(self, tensor: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def double(self) -> 'Tensor': ... | |
def eig(self, eigenvectors: bool=False, *, out: Optional['Tensor']=None) -> Tuple['Tensor', 'Tensor']: ... | |
def element_size(self) -> builtins.int: ... | |
@overload | |
def eq(self, other: Union[builtins.float, builtins.int], *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def eq(self, other: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def eq_(self, other: Union[builtins.float, builtins.int]) -> 'Tensor': ... | |
@overload | |
def eq_(self, other: 'Tensor') -> 'Tensor': ... | |
def equal(self, other: 'Tensor') -> bool: ... | |
def erf(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def erf_(self) -> 'Tensor': ... | |
def erfc(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def erfc_(self) -> 'Tensor': ... | |
def erfinv(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def erfinv_(self) -> 'Tensor': ... | |
def exp(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def exp_(self) -> 'Tensor': ... | |
@overload | |
def expand(self, size: Union[Tuple[builtins.int, ...], List[builtins.int], Size], *, implicit: bool=False) -> 'Tensor': ... | |
@overload | |
def expand(self, *size: builtins.int, implicit: bool=False) -> 'Tensor': ... | |
def expand_as(self, other: 'Tensor') -> 'Tensor': ... | |
def expm1(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def expm1_(self) -> 'Tensor': ... | |
def exponential_(self, lambd: builtins.float=1, *, generator: Generator=None) -> 'Tensor': ... | |
def fft(self, signal_ndim: builtins.int, normalized: bool=False) -> 'Tensor': ... | |
@overload | |
def fill_(self, value: Union[builtins.float, builtins.int]) -> 'Tensor': ... | |
@overload | |
def fill_(self, value: 'Tensor') -> 'Tensor': ... | |
def flatten(self, start_dim: builtins.int=0, end_dim: builtins.int=-1) -> 'Tensor': ... | |
@overload | |
def flip(self, dims: Union[Tuple[builtins.int, ...], List[builtins.int], Size]) -> 'Tensor': ... | |
@overload | |
def flip(self, *dims: builtins.int) -> 'Tensor': ... | |
def float(self) -> 'Tensor': ... | |
def floor(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def floor_(self) -> 'Tensor': ... | |
@overload | |
def fmod(self, other: Union[builtins.float, builtins.int], *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def fmod(self, other: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def fmod_(self, other: Union[builtins.float, builtins.int]) -> 'Tensor': ... | |
@overload | |
def fmod_(self, other: 'Tensor') -> 'Tensor': ... | |
def frac(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def frac_(self) -> 'Tensor': ... | |
def gather(self, dim: builtins.int, index: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def ge(self, other: Union[builtins.float, builtins.int], *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def ge(self, other: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def ge_(self, other: Union[builtins.float, builtins.int]) -> 'Tensor': ... | |
@overload | |
def ge_(self, other: 'Tensor') -> 'Tensor': ... | |
def gels(self, A: 'Tensor', *, out: Optional['Tensor']=None) -> Tuple['Tensor', 'Tensor']: ... | |
def geometric_(self, p: builtins.float, *, generator: Generator=None) -> 'Tensor': ... | |
def geqrf(self, *, out: Optional['Tensor']=None) -> Tuple['Tensor', 'Tensor']: ... | |
def ger(self, vec2: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def gesv(self, A: 'Tensor', *, out: Optional['Tensor']=None) -> Tuple['Tensor', 'Tensor']: ... | |
def get_device(self) -> builtins.int: ... | |
@overload | |
def gt(self, other: Union[builtins.float, builtins.int], *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def gt(self, other: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def gt_(self, other: Union[builtins.float, builtins.int]) -> 'Tensor': ... | |
@overload | |
def gt_(self, other: 'Tensor') -> 'Tensor': ... | |
def half(self) -> 'Tensor': ... | |
def hardshrink(self, lambd: Union[builtins.float, builtins.int]=0.5) -> 'Tensor': ... | |
def histc(self, bins: builtins.int=100, min: Union[builtins.float, builtins.int]=0, max: Union[builtins.float, builtins.int]=0, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def ifft(self, signal_ndim: builtins.int, normalized: bool=False) -> 'Tensor': ... | |
def index_add(self, dim, index, tensor): ... | |
def index_add_(self, dim: builtins.int, index: 'Tensor', source: 'Tensor') -> 'Tensor': ... | |
def index_copy(self, dim, index, tensor): ... | |
def index_copy_(self, dim: builtins.int, index: 'Tensor', source: 'Tensor') -> 'Tensor': ... | |
def index_fill(self, dim, index, value): ... | |
@overload | |
def index_fill_(self, dim: builtins.int, index: 'Tensor', value: Union[builtins.float, builtins.int]) -> 'Tensor': ... | |
@overload | |
def index_fill_(self, dim: builtins.int, index: 'Tensor', value: 'Tensor') -> 'Tensor': ... | |
def index_put_(self, indices: Union[Tuple['Tensor', ...],List['Tensor']], values: 'Tensor') -> 'Tensor': ... | |
def index_select(self, dim: builtins.int, index: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def int(self) -> 'Tensor': ... | |
def inverse(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def irfft(self, signal_ndim: builtins.int, normalized: bool=False, onesided: bool=True, signal_sizes: Union[Tuple[builtins.int, ...], List[builtins.int], Size]=()) -> 'Tensor': ... | |
def is_contiguous(self) -> bool: ... | |
def is_pinned(self): ... | |
def is_set_to(self, tensor: 'Tensor') -> bool: ... | |
def is_shared(self): ... | |
def item(self) -> Union[builtins.float, builtins.int]: ... | |
def kthvalue(self, k: builtins.int, dim: builtins.int=-1, keepdim: bool=False, *, out: Optional['Tensor']=None) -> Tuple['Tensor', 'Tensor']: ... | |
@overload | |
def le(self, other: Union[builtins.float, builtins.int], *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def le(self, other: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def le_(self, other: Union[builtins.float, builtins.int]) -> 'Tensor': ... | |
@overload | |
def le_(self, other: 'Tensor') -> 'Tensor': ... | |
def lerp(self, end: 'Tensor', weight: Union[builtins.float, builtins.int], *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def lerp_(self, end: 'Tensor', weight: Union[builtins.float, builtins.int]) -> 'Tensor': ... | |
def log(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def log10(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def log10_(self) -> 'Tensor': ... | |
def log1p(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def log1p_(self) -> 'Tensor': ... | |
def log2(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def log2_(self) -> 'Tensor': ... | |
def log_(self) -> 'Tensor': ... | |
def log_normal_(self, mean: builtins.float=1, std: builtins.float=2, *, generator: Generator=None) -> 'Tensor': ... | |
def logdet(self) -> 'Tensor': ... | |
def logsumexp(self, dim: builtins.int, keepdim: bool=False, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def long(self) -> 'Tensor': ... | |
@overload | |
def lt(self, other: Union[builtins.float, builtins.int], *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def lt(self, other: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def lt_(self, other: Union[builtins.float, builtins.int]) -> 'Tensor': ... | |
@overload | |
def lt_(self, other: 'Tensor') -> 'Tensor': ... | |
def map_(tensor: 'Tensor', callable: Callable) -> 'Tensor': ... | |
def masked_fill(self, mask, value): ... | |
@overload | |
def masked_fill_(self, mask: 'Tensor', value: Union[builtins.float, builtins.int]) -> 'Tensor': ... | |
@overload | |
def masked_fill_(self, mask: 'Tensor', value: 'Tensor') -> 'Tensor': ... | |
def masked_scatter(self, mask, tensor): ... | |
def masked_scatter_(self, mask: 'Tensor', source: 'Tensor') -> 'Tensor': ... | |
def masked_select(self, mask: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def matmul(self, other: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def matrix_power(self, n: builtins.int) -> 'Tensor': ... | |
@overload | |
def max(self, other: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def max(self, *, out: Optional['Tensor']=None) -> Union[builtins.float, builtins.int]: ... | |
@overload | |
def max(self, dim: builtins.int, keepdim: bool=False, *, out: Optional['Tensor']=None) -> Tuple['Tensor', 'Tensor']: ... | |
@overload | |
def mean(self, *, dtype: _dtype, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def mean(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def mean(self, dim: builtins.int, keepdim: bool, *, dtype: _dtype, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def mean(self, dim: builtins.int, keepdim: bool=False, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def mean(self, dim: builtins.int, *, dtype: _dtype, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def median(self, *, out: Optional['Tensor']=None) -> Union[builtins.float, builtins.int]: ... | |
@overload | |
def median(self, dim: builtins.int, keepdim: bool=False, *, out: Optional['Tensor']=None) -> Tuple['Tensor', 'Tensor']: ... | |
@overload | |
def min(self, other: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def min(self, *, out: Optional['Tensor']=None) -> Union[builtins.float, builtins.int]: ... | |
@overload | |
def min(self, dim: builtins.int, keepdim: bool=False, *, out: Optional['Tensor']=None) -> Tuple['Tensor', 'Tensor']: ... | |
def mm(self, mat2: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def mode(self, dim: builtins.int=-1, keepdim: bool=False, *, out: Optional['Tensor']=None) -> Tuple['Tensor', 'Tensor']: ... | |
@overload | |
def mul(self, other: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def mul(self, other: Union[builtins.float, builtins.int], *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def mul_(self, other: 'Tensor') -> 'Tensor': ... | |
@overload | |
def mul_(self, other: Union[builtins.float, builtins.int]) -> 'Tensor': ... | |
def multinomial(self, num_samples: builtins.int, replacement: bool=False, *, generator: Generator=None, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def mv(self, vec: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def mvlgamma(self, p: builtins.int) -> 'Tensor': ... | |
def mvlgamma_(self, p: builtins.int) -> 'Tensor': ... | |
def narrow(self, dim: builtins.int, start: builtins.int, length: builtins.int) -> 'Tensor': ... | |
def narrow_copy(self, dim: builtins.int, start: builtins.int, length: builtins.int) -> 'Tensor': ... | |
def ndimension(self) -> builtins.int: ... | |
@overload | |
def ne(self, other: Union[builtins.float, builtins.int], *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def ne(self, other: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def ne_(self, other: Union[builtins.float, builtins.int]) -> 'Tensor': ... | |
@overload | |
def ne_(self, other: 'Tensor') -> 'Tensor': ... | |
def neg(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def neg_(self) -> 'Tensor': ... | |
def nelement(self) -> builtins.int: ... | |
def new_empty(self, size: Union[Tuple[builtins.int, ...], List[builtins.int], Size], dtype: Optional[_dtype]=None, device: Union[device, str, None]=None, requires_grad: bool=False) -> 'Tensor': ... | |
def new_full(self, size: Union[Tuple[builtins.int, ...], List[builtins.int], Size], value: Union[builtins.float, builtins.int], dtype: Optional[_dtype]=None, device: Union[device, str, None]=None, requires_grad: bool=False) -> 'Tensor': ... | |
def new_ones(self, size: Union[Tuple[builtins.int, ...], List[builtins.int], Size], dtype: Optional[_dtype]=None, device: Union[device, str, None]=None, requires_grad: bool=False) -> 'Tensor': ... | |
def new_tensor(self, data: Any, dtype: Optional[_dtype]=None, device: Union[device, str, None]=None, requires_grad: bool=False) -> 'Tensor': ... | |
def new_zeros(self, size: Union[Tuple[builtins.int, ...], List[builtins.int], Size], dtype: Optional[_dtype]=None, device: Union[device, str, None]=None, requires_grad: bool=False) -> 'Tensor': ... | |
def nonzero(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def norm(self, p='fro', dim=None, keepdim=False): ... | |
def normal_(self, mean: builtins.float=0, std: builtins.float=1, *, generator: Generator=None) -> 'Tensor': ... | |
def numel(self) -> builtins.int: ... | |
def numpy(self) -> Any: ... | |
def orgqr(self, input2: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def ormqr(self, input2: 'Tensor', input3: 'Tensor', left: bool=True, transpose: bool=False, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def permute(self, dims: Union[Tuple[builtins.int, ...], List[builtins.int], Size]) -> 'Tensor': ... | |
@overload | |
def permute(self, *dims: builtins.int) -> 'Tensor': ... | |
def pinverse(self, rcond: builtins.float=1e-15) -> 'Tensor': ... | |
def potrf(self, upper: bool=True, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def potri(self, upper: bool=True, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def potrs(self, input2: 'Tensor', upper: bool=True, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def pow(self, exponent: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def pow(self, exponent: Union[builtins.float, builtins.int], *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def pow_(self, exponent: Union[builtins.float, builtins.int]) -> 'Tensor': ... | |
@overload | |
def pow_(self, exponent: 'Tensor') -> 'Tensor': ... | |
@overload | |
def prod(self, *, dtype: _dtype, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def prod(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def prod(self, dim: builtins.int, keepdim: bool, *, dtype: _dtype, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def prod(self, dim: builtins.int, keepdim: bool=False, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def prod(self, dim: builtins.int, *, dtype: _dtype, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def pstrf(self, upper: bool=True, tol: Union[builtins.float, builtins.int]=-1, *, out: Optional['Tensor']=None) -> Tuple['Tensor', 'Tensor']: ... | |
def put_(self, index: 'Tensor', source: 'Tensor', accumulate: bool=False) -> 'Tensor': ... | |
def qr(self, *, out: Optional['Tensor']=None) -> Tuple['Tensor', 'Tensor']: ... | |
@overload | |
def random_(self, from_: builtins.int, to: builtins.int, *, generator: Generator=None) -> 'Tensor': ... | |
@overload | |
def random_(self, to: builtins.int, *, generator: Generator=None) -> 'Tensor': ... | |
@overload | |
def random_(self, *, generator: Generator=None) -> 'Tensor': ... | |
def reciprocal(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def reciprocal_(self) -> 'Tensor': ... | |
def register_hook(self, hook): ... | |
@overload | |
def remainder(self, other: Union[builtins.float, builtins.int], *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def remainder(self, other: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def remainder_(self, other: Union[builtins.float, builtins.int]) -> 'Tensor': ... | |
@overload | |
def remainder_(self, other: 'Tensor') -> 'Tensor': ... | |
def renorm(self, p: Union[builtins.float, builtins.int], dim: builtins.int, maxnorm: Union[builtins.float, builtins.int], *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def renorm_(self, p: Union[builtins.float, builtins.int], dim: builtins.int, maxnorm: Union[builtins.float, builtins.int]) -> 'Tensor': ... | |
@overload | |
def repeat(self, repeats: Union[Tuple[builtins.int, ...], List[builtins.int], Size]) -> 'Tensor': ... | |
@overload | |
def repeat(self, *repeats: builtins.int) -> 'Tensor': ... | |
def requires_grad_(self, mode: bool=True) -> 'Tensor': ... | |
@overload | |
def reshape(self, shape: Union[Tuple[builtins.int, ...], List[builtins.int], Size]) -> 'Tensor': ... | |
@overload | |
def reshape(self, *shape: builtins.int) -> 'Tensor': ... | |
def reshape_as(self, other: 'Tensor') -> 'Tensor': ... | |
@overload | |
def resize_(self, size: Union[Tuple[builtins.int, ...], List[builtins.int], Size]) -> 'Tensor': ... | |
@overload | |
def resize_(self, *size: builtins.int) -> 'Tensor': ... | |
def resize_as_(self, the_template: 'Tensor') -> 'Tensor': ... | |
def retain_grad(self): ... | |
def rfft(self, signal_ndim: builtins.int, normalized: bool=False, onesided: bool=True) -> 'Tensor': ... | |
def rot90(self, k: builtins.int=1, dims: Union[Tuple[builtins.int, ...], List[builtins.int], Size]=(0,1)) -> 'Tensor': ... | |
def round(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def round_(self) -> 'Tensor': ... | |
def rsqrt(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def rsqrt_(self) -> 'Tensor': ... | |
def scatter(self, dim, index, source): ... | |
@overload | |
def scatter_(self, dim: builtins.int, index: 'Tensor', src: 'Tensor') -> 'Tensor': ... | |
@overload | |
def scatter_(self, dim: builtins.int, index: 'Tensor', value: Union[builtins.float, builtins.int]) -> 'Tensor': ... | |
def scatter_add(self, dim, index, source): ... | |
def scatter_add_(self, dim: builtins.int, index: 'Tensor', src: 'Tensor') -> 'Tensor': ... | |
def select(self, dim: builtins.int, index: builtins.int) -> 'Tensor': ... | |
@overload | |
def set_(self, source: Storage) -> 'Tensor': ... | |
@overload | |
def set_(self, source: Storage, storage_offset: builtins.int, size: Union[Tuple[builtins.int, ...], List[builtins.int], Size], stride: Union[Tuple[builtins.int, ...], List[builtins.int], Size]=()) -> 'Tensor': ... | |
@overload | |
def set_(self, source: 'Tensor') -> 'Tensor': ... | |
@overload | |
def set_(self) -> 'Tensor': ... | |
def share_memory_(self): ... | |
def short(self) -> 'Tensor': ... | |
def sigmoid(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def sigmoid_(self) -> 'Tensor': ... | |
def sign(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def sign_(self) -> 'Tensor': ... | |
def sin(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def sin_(self) -> 'Tensor': ... | |
def sinh(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def sinh_(self) -> 'Tensor': ... | |
@overload | |
def size(self) -> Size: ... | |
@overload | |
def size(self, dim: builtins.int) -> builtins.int: ... | |
def slogdet(self) -> Tuple['Tensor', 'Tensor']: ... | |
def sort(self, dim: builtins.int=-1, descending: bool=False, *, out: Optional['Tensor']=None) -> Tuple['Tensor', 'Tensor']: ... | |
def split(self, split_size, dim=0): ... | |
def sqrt(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def sqrt_(self) -> 'Tensor': ... | |
@overload | |
def squeeze(self) -> 'Tensor': ... | |
@overload | |
def squeeze(self, dim: builtins.int) -> 'Tensor': ... | |
@overload | |
def squeeze_(self) -> 'Tensor': ... | |
@overload | |
def squeeze_(self, dim: builtins.int) -> 'Tensor': ... | |
@overload | |
def std(self, unbiased: bool=True, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def std(self, dim: builtins.int, unbiased: bool=True, keepdim: bool=False, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def stft(self, n_fft, hop_length=None, win_length=None, window=None, center=True, pad_mode='reflect', normalized=False, onesided=True): ... | |
def storage(self) -> Storage: ... | |
def storage_offset(self) -> builtins.int: ... | |
@overload | |
def stride(self) -> Tuple[builtins.int]: ... | |
@overload | |
def stride(self, dim: builtins.int) -> builtins.int: ... | |
@overload | |
def sub(self, other: 'Tensor', *, alpha: Union[builtins.float, builtins.int]=1, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def sub(self, other: Union[builtins.float, builtins.int], alpha: Union[builtins.float, builtins.int]=1, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def sub_(self, other: 'Tensor', *, alpha: Union[builtins.float, builtins.int]=1) -> 'Tensor': ... | |
@overload | |
def sub_(self, other: Union[builtins.float, builtins.int], alpha: Union[builtins.float, builtins.int]=1) -> 'Tensor': ... | |
@overload | |
def sum(self, *, dtype: _dtype, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def sum(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def sum(self, dim: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size], keepdim: bool, *, dtype: _dtype, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def sum(self, dim: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size], keepdim: bool=False, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def sum(self, dim: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size], *, dtype: _dtype, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def sum(self, *dim: builtins.int, dtype: _dtype, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def svd(self, some: bool=True, compute_uv: bool=True, *, out: Optional['Tensor']=None) -> Tuple['Tensor', 'Tensor', 'Tensor']: ... | |
def symeig(self, eigenvectors: bool=False, upper: bool=True, *, out: Optional['Tensor']=None) -> Tuple['Tensor', 'Tensor']: ... | |
def t(self) -> 'Tensor': ... | |
def t_(self) -> 'Tensor': ... | |
def take(self, index: 'Tensor', *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def tan_(self) -> 'Tensor': ... | |
def tanh(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def tanh_(self) -> 'Tensor': ... | |
@overload | |
def to(self, device: Union[device, str, None], dtype: _dtype, non_blocking: bool=False, copy: bool=False) -> 'Tensor': ... | |
@overload | |
def to(self, dtype: _dtype, non_blocking: bool=False, copy: bool=False) -> 'Tensor': ... | |
@overload | |
def to(self, device: Union[device, str, None], non_blocking: bool=False, copy: bool=False) -> 'Tensor': ... | |
@overload | |
def to(self, other: 'Tensor', non_blocking: bool=False, copy: bool=False) -> 'Tensor': ... | |
def tolist(self) -> List: ... | |
def topk(self, k: builtins.int, dim: builtins.int=-1, largest: bool=True, sorted: bool=True, *, out: Optional['Tensor']=None) -> Tuple['Tensor', 'Tensor']: ... | |
def trace(self) -> Union[builtins.float, builtins.int]: ... | |
def transpose(self, dim0: builtins.int, dim1: builtins.int) -> 'Tensor': ... | |
def transpose_(self, dim0: builtins.int, dim1: builtins.int) -> 'Tensor': ... | |
def tril(self, diagonal: builtins.int=0, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def tril_(self, diagonal: builtins.int=0) -> 'Tensor': ... | |
def triu(self, diagonal: builtins.int=0, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def triu_(self, diagonal: builtins.int=0) -> 'Tensor': ... | |
def trtrs(self, A: 'Tensor', upper: bool=True, transpose: bool=False, unitriangular: bool=False, *, out: Optional['Tensor']=None) -> Tuple['Tensor', 'Tensor']: ... | |
def trunc(self, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
def trunc_(self) -> 'Tensor': ... | |
def type(self, dtype: Union[None, str, _dtype]=None, non_blocking: bool=False) -> Union[str, 'Tensor']: ... | |
def type_as(self, other: 'Tensor') -> 'Tensor': ... | |
def unbind(self, dim: builtins.int=0) -> Union[Tuple['Tensor', ...],List['Tensor']]: ... | |
def unfold(self, dimension: builtins.int, size: builtins.int, step: builtins.int) -> 'Tensor': ... | |
def uniform_(self, from_: builtins.float=0, to: builtins.float=1, *, generator: Generator=None) -> 'Tensor': ... | |
def unique(self, sorted=False, return_inverse=False, dim=None): ... | |
def unsqueeze(self, dim: builtins.int) -> 'Tensor': ... | |
def unsqueeze_(self, dim: builtins.int) -> 'Tensor': ... | |
@overload | |
def var(self, unbiased: bool=True, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def var(self, dim: builtins.int, unbiased: bool=True, keepdim: bool=False, *, out: Optional['Tensor']=None) -> 'Tensor': ... | |
@overload | |
def view(self, size: Union[Tuple[builtins.int, ...], List[builtins.int], Size]) -> 'Tensor': ... | |
@overload | |
def view(self, *size: builtins.int) -> 'Tensor': ... | |
def view_as(self, other: 'Tensor') -> 'Tensor': ... | |
def where(self, condition: 'Tensor', other: 'Tensor') -> 'Tensor': ... | |
def zero_(self) -> 'Tensor': ... | |
def abs(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def acos(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def adaptive_avg_pool1d(self: Tensor, output_size: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size]) -> Tensor: ... | |
@overload | |
def add(self: Tensor, other: Tensor, *, alpha: Union[builtins.float, builtins.int]=1, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def add(self: Tensor, other: Union[builtins.float, builtins.int], alpha: Union[builtins.float, builtins.int]=1, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def add(self: Tensor, alpha: Union[builtins.float, builtins.int], other: Tensor) -> Tensor: ... | |
@overload | |
def add(self: Tensor, alpha: Union[builtins.float, builtins.int], other: Tensor, *, out: Tensor) -> Tensor: ... | |
@overload | |
def addbmm(self: Tensor, batch1: Tensor, batch2: Tensor, *, beta: Union[builtins.float, builtins.int]=1, alpha: Union[builtins.float, builtins.int]=1, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def addbmm(beta: Union[builtins.float, builtins.int], self: Tensor, alpha: Union[builtins.float, builtins.int], batch1: Tensor, batch2: Tensor) -> Tensor: ... | |
@overload | |
def addbmm(beta: Union[builtins.float, builtins.int], self: Tensor, alpha: Union[builtins.float, builtins.int], batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: ... | |
@overload | |
def addbmm(beta: Union[builtins.float, builtins.int], self: Tensor, batch1: Tensor, batch2: Tensor) -> Tensor: ... | |
@overload | |
def addbmm(beta: Union[builtins.float, builtins.int], self: Tensor, batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: ... | |
@overload | |
def addcdiv(self: Tensor, tensor1: Tensor, tensor2: Tensor, *, value: Union[builtins.float, builtins.int]=1, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def addcdiv(self: Tensor, value: Union[builtins.float, builtins.int], tensor1: Tensor, tensor2: Tensor) -> Tensor: ... | |
@overload | |
def addcdiv(self: Tensor, value: Union[builtins.float, builtins.int], tensor1: Tensor, tensor2: Tensor, *, out: Tensor) -> Tensor: ... | |
@overload | |
def addcmul(self: Tensor, tensor1: Tensor, tensor2: Tensor, *, value: Union[builtins.float, builtins.int]=1, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def addcmul(self: Tensor, value: Union[builtins.float, builtins.int], tensor1: Tensor, tensor2: Tensor) -> Tensor: ... | |
@overload | |
def addcmul(self: Tensor, value: Union[builtins.float, builtins.int], tensor1: Tensor, tensor2: Tensor, *, out: Tensor) -> Tensor: ... | |
@overload | |
def addmm(self: Tensor, mat1: Tensor, mat2: Tensor, *, beta: Union[builtins.float, builtins.int]=1, alpha: Union[builtins.float, builtins.int]=1, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def addmm(beta: Union[builtins.float, builtins.int], self: Tensor, alpha: Union[builtins.float, builtins.int], mat1: Tensor, mat2: Tensor) -> Tensor: ... | |
@overload | |
def addmm(beta: Union[builtins.float, builtins.int], self: Tensor, alpha: Union[builtins.float, builtins.int], mat1: Tensor, mat2: Tensor, *, out: Tensor) -> Tensor: ... | |
@overload | |
def addmm(beta: Union[builtins.float, builtins.int], self: Tensor, mat1: Tensor, mat2: Tensor) -> Tensor: ... | |
@overload | |
def addmm(beta: Union[builtins.float, builtins.int], self: Tensor, mat1: Tensor, mat2: Tensor, *, out: Tensor) -> Tensor: ... | |
@overload | |
def addmv(self: Tensor, mat: Tensor, vec: Tensor, *, beta: Union[builtins.float, builtins.int]=1, alpha: Union[builtins.float, builtins.int]=1, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def addmv(beta: Union[builtins.float, builtins.int], self: Tensor, alpha: Union[builtins.float, builtins.int], mat: Tensor, vec: Tensor) -> Tensor: ... | |
@overload | |
def addmv(beta: Union[builtins.float, builtins.int], self: Tensor, alpha: Union[builtins.float, builtins.int], mat: Tensor, vec: Tensor, *, out: Tensor) -> Tensor: ... | |
@overload | |
def addmv(beta: Union[builtins.float, builtins.int], self: Tensor, mat: Tensor, vec: Tensor) -> Tensor: ... | |
@overload | |
def addmv(beta: Union[builtins.float, builtins.int], self: Tensor, mat: Tensor, vec: Tensor, *, out: Tensor) -> Tensor: ... | |
@overload | |
def addr(self: Tensor, vec1: Tensor, vec2: Tensor, *, beta: Union[builtins.float, builtins.int]=1, alpha: Union[builtins.float, builtins.int]=1, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def addr(beta: Union[builtins.float, builtins.int], self: Tensor, alpha: Union[builtins.float, builtins.int], vec1: Tensor, vec2: Tensor) -> Tensor: ... | |
@overload | |
def addr(beta: Union[builtins.float, builtins.int], self: Tensor, alpha: Union[builtins.float, builtins.int], vec1: Tensor, vec2: Tensor, *, out: Tensor) -> Tensor: ... | |
@overload | |
def addr(beta: Union[builtins.float, builtins.int], self: Tensor, vec1: Tensor, vec2: Tensor) -> Tensor: ... | |
@overload | |
def addr(beta: Union[builtins.float, builtins.int], self: Tensor, vec1: Tensor, vec2: Tensor, *, out: Tensor) -> Tensor: ... | |
def allclose(self: Tensor, other: Tensor, rtol: builtins.float=1e-05, atol: builtins.float=1e-08, equal_nan: bool=False) -> bool: ... | |
@overload | |
def arange(start: Union[builtins.float, builtins.int], end: Union[builtins.float, builtins.int], *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def arange(start: Union[builtins.float, builtins.int], end: Union[builtins.float, builtins.int], step: Union[builtins.float, builtins.int], *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def arange(end: Union[builtins.float, builtins.int], *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
def argmax(input, dim=None, keepdim=False): ... | |
def argmin(input, dim=None, keepdim=False): ... | |
def argsort(input, dim=None, descending=False): ... | |
def as_tensor(data: Any, dtype: _dtype=None, device: Optional[device]=None) -> Tensor: ... | |
def asin(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def atan(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def atan2(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def avg_pool1d(self: Tensor, kernel_size: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size], stride: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size]=(), padding: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size]=0, ceil_mode: bool=False, count_include_pad: bool=True) -> Tensor: ... | |
@overload | |
def baddbmm(self: Tensor, batch1: Tensor, batch2: Tensor, *, beta: Union[builtins.float, builtins.int]=1, alpha: Union[builtins.float, builtins.int]=1, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def baddbmm(beta: Union[builtins.float, builtins.int], self: Tensor, alpha: Union[builtins.float, builtins.int], batch1: Tensor, batch2: Tensor) -> Tensor: ... | |
@overload | |
def baddbmm(beta: Union[builtins.float, builtins.int], self: Tensor, alpha: Union[builtins.float, builtins.int], batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: ... | |
@overload | |
def baddbmm(beta: Union[builtins.float, builtins.int], self: Tensor, batch1: Tensor, batch2: Tensor) -> Tensor: ... | |
@overload | |
def baddbmm(beta: Union[builtins.float, builtins.int], self: Tensor, batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: ... | |
@overload | |
def bartlett_window(window_length: builtins.int, *, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def bartlett_window(window_length: builtins.int, periodic: bool, *, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def bernoulli(self: Tensor, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def bernoulli(self: Tensor, p: builtins.float, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ... | |
def bincount(self: Tensor, weights: Optional[Tensor]=None, minlength: builtins.int=0) -> Tensor: ... | |
@overload | |
def blackman_window(window_length: builtins.int, *, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def blackman_window(window_length: builtins.int, periodic: bool, *, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
def bmm(self: Tensor, mat2: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def broadcast_tensors(*tensors:Tensor) -> List[Tensor]: ... | |
def btrifact(A:Tensor, info:Union[Tensor, None]=None, pivot:bool=True) -> Tuple[Tensor, Tensor]: ... | |
def btrifact_with_info(self: Tensor, *, pivot: bool=True, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor, Tensor]: ... | |
def btrisolve(self: Tensor, LU_data: Tensor, LU_pivots: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def btriunpack(LU_data:Tensor, LU_pivots:Tensor, unpack_data:bool=True, unpack_pivots:bool=True) -> Tuple[Tensor, Tensor, Tensor]: ... | |
def cat(tensors: Union[Tuple[Tensor, ...],List[Tensor]], dim: builtins.int=0, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def ceil(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def celu_(self: Tensor, alpha: Union[builtins.float, builtins.int]=1.0) -> Tensor: ... | |
def chain_matmul(*matrices): ... | |
def chunk(self: Tensor, chunks: builtins.int, dim: builtins.int=0) -> Union[Tuple[Tensor, ...],List[Tensor]]: ... | |
def clamp(self, min: builtins.float=-math.inf, max: builtins.float=math.inf, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def compiled_with_cxx11_abi(): ... | |
def conv1d(input: Tensor, weight: Tensor, bias: Tensor=None, stride: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size]=1, padding: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size]=0, dilation: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size]=1, groups: builtins.int=1) -> Tensor: ... | |
def conv2d(input: Tensor, weight: Tensor, bias: Tensor=None, stride: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size]=1, padding: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size]=0, dilation: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size]=1, groups: builtins.int=1) -> Tensor: ... | |
def conv3d(input: Tensor, weight: Tensor, bias: Tensor=None, stride: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size]=1, padding: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size]=0, dilation: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size]=1, groups: builtins.int=1) -> Tensor: ... | |
def conv_tbc(self: Tensor, weight: Tensor, bias: Tensor, pad: builtins.int=0) -> Tensor: ... | |
def conv_transpose1d(input: Tensor, weight: Tensor, bias: Tensor=None, stride: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size]=1, padding: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size]=0, output_padding: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size]=0, groups: builtins.int=1, dilation: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size]=1) -> Tensor: ... | |
def conv_transpose2d(input: Tensor, weight: Tensor, bias: Tensor=None, stride: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size]=1, padding: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size]=0, output_padding: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size]=0, groups: builtins.int=1, dilation: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size]=1) -> Tensor: ... | |
def conv_transpose3d(input: Tensor, weight: Tensor, bias: Tensor=None, stride: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size]=1, padding: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size]=0, output_padding: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size]=0, groups: builtins.int=1, dilation: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size]=1) -> Tensor: ... | |
def cos(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def cosh(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def cross(self: Tensor, other: Tensor, dim: builtins.int=-1, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def cumprod(self: Tensor, dim: builtins.int, *, dtype: _dtype, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def cumprod(self: Tensor, dim: builtins.int, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def cumsum(self: Tensor, dim: builtins.int, *, dtype: _dtype, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def cumsum(self: Tensor, dim: builtins.int, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def det(self: Tensor) -> Tensor: ... | |
def diag(self: Tensor, diagonal: builtins.int=0, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def diagflat(self: Tensor, offset: builtins.int=0) -> Tensor: ... | |
def diagonal(self: Tensor, offset: builtins.int=0, dim1: builtins.int=0, dim2: builtins.int=1) -> Tensor: ... | |
def digamma(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def dist(self: Tensor, other: Tensor, p: Union[builtins.float, builtins.int]=2) -> Union[builtins.float, builtins.int]: ... | |
@overload | |
def div(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def div(self: Tensor, other: Union[builtins.float, builtins.int], *, out: Optional[Tensor]=None) -> Tensor: ... | |
def dot(self: Tensor, tensor: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def eig(self: Tensor, eigenvectors: bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ... | |
def einsum(equation:str, *operands:Tensor) -> Tensor: ... | |
@overload | |
def empty(size: Union[Tuple[builtins.int, ...], List[builtins.int], Size], *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def empty(*size: builtins.int, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def empty_like(self: Tensor) -> Tensor: ... | |
@overload | |
def empty_like(self: Tensor, *, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def eq(self: Tensor, other: Union[builtins.float, builtins.int], *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def eq(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def equal(self: Tensor, other: Tensor) -> bool: ... | |
def erf(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def erfc(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def erfinv(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def exp(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def expm1(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def eye(n: builtins.int, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def eye(n: builtins.int, m: builtins.int, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
def fft(self: Tensor, signal_ndim: builtins.int, normalized: bool=False) -> Tensor: ... | |
def flatten(self: Tensor, start_dim: builtins.int=0, end_dim: builtins.int=-1) -> Tensor: ... | |
def flip(self: Tensor, dims: Union[Tuple[builtins.int, ...], List[builtins.int], Size]) -> Tensor: ... | |
def floor(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def fmod(self: Tensor, other: Union[builtins.float, builtins.int], *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def fmod(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def frac(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def from_numpy(ndarray) -> Tensor: ... | |
def full(size: Union[Tuple[builtins.int, ...], List[builtins.int], Size], fill_value: Union[builtins.float, builtins.int], *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def full_like(self: Tensor, fill_value: Union[builtins.float, builtins.int]) -> Tensor: ... | |
@overload | |
def full_like(self: Tensor, fill_value: Union[builtins.float, builtins.int], *, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
def gather(self: Tensor, dim: builtins.int, index: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def ge(self: Tensor, other: Union[builtins.float, builtins.int], *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def ge(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def gels(self: Tensor, A: Tensor, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ... | |
def geqrf(self: Tensor, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ... | |
def ger(self: Tensor, vec2: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def gesv(self: Tensor, A: Tensor, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ... | |
def get_default_dtype() -> _dtype: ... | |
def get_num_threads() -> builtins.int: ... | |
def get_rng_state(): ... | |
@overload | |
def gt(self: Tensor, other: Union[builtins.float, builtins.int], *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def gt(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def hamming_window(window_length: builtins.int, *, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def hamming_window(window_length: builtins.int, periodic: bool, *, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def hamming_window(window_length: builtins.int, periodic: bool, alpha: builtins.float, *, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def hamming_window(window_length: builtins.int, periodic: bool, alpha: builtins.float, beta: builtins.float, *, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def hann_window(window_length: builtins.int, *, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def hann_window(window_length: builtins.int, periodic: bool, *, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
def histc(self: Tensor, bins: builtins.int=100, min: Union[builtins.float, builtins.int]=0, max: Union[builtins.float, builtins.int]=0, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def ifft(self: Tensor, signal_ndim: builtins.int, normalized: bool=False) -> Tensor: ... | |
def index_select(self: Tensor, dim: builtins.int, index: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def initial_seed(): ... | |
def inverse(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def irfft(self: Tensor, signal_ndim: builtins.int, normalized: bool=False, onesided: bool=True, signal_sizes: Union[Tuple[builtins.int, ...], List[builtins.int], Size]=()) -> Tensor: ... | |
def is_storage(obj): ... | |
def is_tensor(obj): ... | |
def isfinite(tensor:Tensor) -> Tensor: ... | |
def isinf(tensor:Tensor) -> Tensor: ... | |
def isnan(tensor:Tensor) -> Tensor: ... | |
def kthvalue(self: Tensor, k: builtins.int, dim: builtins.int=-1, keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ... | |
@overload | |
def le(self: Tensor, other: Union[builtins.float, builtins.int], *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def le(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def lerp(self: Tensor, end: Tensor, weight: Union[builtins.float, builtins.int], *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def linspace(start: Union[builtins.float, builtins.int], end: Union[builtins.float, builtins.int], *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def linspace(start: Union[builtins.float, builtins.int], end: Union[builtins.float, builtins.int], steps: builtins.int, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
def load(f, map_location=None, pickle_module=pickle): ... | |
def log(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def log10(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def log1p(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def log2(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def logdet(self: Tensor) -> Tensor: ... | |
@overload | |
def logspace(start: Union[builtins.float, builtins.int], end: Union[builtins.float, builtins.int], *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def logspace(start: Union[builtins.float, builtins.int], end: Union[builtins.float, builtins.int], steps: builtins.int, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
def logsumexp(self: Tensor, dim: builtins.int, keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def lt(self: Tensor, other: Union[builtins.float, builtins.int], *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def lt(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def manual_seed(seed): ... | |
def masked_select(self: Tensor, mask: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def matmul(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def matrix_power(self: Tensor, n: builtins.int) -> Tensor: ... | |
@overload | |
def matrix_rank(self: Tensor, tol: builtins.float, symmetric: bool=False) -> Tensor: ... | |
@overload | |
def matrix_rank(self: Tensor, symmetric: bool=False) -> Tensor: ... | |
@overload | |
def max(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def max(self: Tensor, *, out: Optional[Tensor]=None) -> Union[builtins.float, builtins.int]: ... | |
@overload | |
def max(self: Tensor, dim: builtins.int, keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ... | |
@overload | |
def mean(self: Tensor, *, dtype: _dtype, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def mean(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def mean(self: Tensor, dim: builtins.int, keepdim: bool, *, dtype: _dtype, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def mean(self: Tensor, dim: builtins.int, keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def mean(self: Tensor, dim: builtins.int, *, dtype: _dtype, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def median(self: Tensor, *, out: Optional[Tensor]=None) -> Union[builtins.float, builtins.int]: ... | |
@overload | |
def median(self: Tensor, dim: builtins.int, keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ... | |
def meshgrid(*tensors, **kwargs): ... | |
@overload | |
def min(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def min(self: Tensor, *, out: Optional[Tensor]=None) -> Union[builtins.float, builtins.int]: ... | |
@overload | |
def min(self: Tensor, dim: builtins.int, keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ... | |
def mm(self: Tensor, mat2: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def mode(self: Tensor, dim: builtins.int=-1, keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ... | |
@overload | |
def mul(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def mul(self: Tensor, other: Union[builtins.float, builtins.int], *, out: Optional[Tensor]=None) -> Tensor: ... | |
def multinomial(self: Tensor, num_samples: builtins.int, replacement: bool=False, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ... | |
def mv(self: Tensor, vec: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def mvlgamma(self: Tensor, p: builtins.int) -> Tensor: ... | |
def narrow(self: Tensor, dim: builtins.int, start: builtins.int, length: builtins.int) -> Tensor: ... | |
@overload | |
def ne(self: Tensor, other: Union[builtins.float, builtins.int], *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def ne(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def neg(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def nonzero(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def norm(input, p='fro', dim=None, keepdim=False, out=None): ... | |
@overload | |
def normal(mean: Tensor, std: builtins.float=1, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def normal(mean: builtins.float, std: Tensor, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def normal(mean: Tensor, std: Tensor, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ... | |
def numel(self: Tensor) -> builtins.int: ... | |
@overload | |
def ones(size: Union[Tuple[builtins.int, ...], List[builtins.int], Size], *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def ones(*size: builtins.int, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def ones_like(self: Tensor) -> Tensor: ... | |
@overload | |
def ones_like(self: Tensor, *, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
def orgqr(self: Tensor, input2: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def ormqr(self: Tensor, input2: Tensor, input3: Tensor, left: bool=True, transpose: bool=False, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def pdist(self: Tensor, p: builtins.float=2) -> Tensor: ... | |
def pinverse(self: Tensor, rcond: builtins.float=1e-15) -> Tensor: ... | |
def pixel_shuffle(self: Tensor, upscale_factor: builtins.int) -> Tensor: ... | |
def potrf(self: Tensor, upper: bool=True, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def potri(self: Tensor, upper: bool=True, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def potrs(self: Tensor, input2: Tensor, upper: bool=True, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def pow(self: Tensor, exponent: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def pow(self: Union[builtins.float, builtins.int], exponent: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def pow(self: Tensor, exponent: Union[builtins.float, builtins.int], *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def prod(self: Tensor, *, dtype: _dtype, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def prod(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def prod(self: Tensor, dim: builtins.int, keepdim: bool, *, dtype: _dtype, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def prod(self: Tensor, dim: builtins.int, keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def prod(self: Tensor, dim: builtins.int, *, dtype: _dtype, out: Optional[Tensor]=None) -> Tensor: ... | |
def pstrf(self: Tensor, upper: bool=True, tol: Union[builtins.float, builtins.int]=-1, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ... | |
def qr(self: Tensor, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ... | |
@overload | |
def rand(size: Union[Tuple[builtins.int, ...], List[builtins.int], Size], *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def rand(*size: builtins.int, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def rand(size: Union[Tuple[builtins.int, ...], List[builtins.int], Size], *, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def rand(*size: builtins.int, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def rand_like(self: Tensor) -> Tensor: ... | |
@overload | |
def rand_like(self: Tensor, *, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def randint(high: builtins.int, size: Union[Tuple[builtins.int, ...], List[builtins.int], Size], *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def randint(high: builtins.int, size: Union[Tuple[builtins.int, ...], List[builtins.int], Size], *, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def randint(low: builtins.int, high: builtins.int, size: Union[Tuple[builtins.int, ...], List[builtins.int], Size], *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def randint(low: builtins.int, high: builtins.int, size: Union[Tuple[builtins.int, ...], List[builtins.int], Size], *, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def randint_like(self: Tensor, high: builtins.int) -> Tensor: ... | |
@overload | |
def randint_like(self: Tensor, low: builtins.int, high: builtins.int) -> Tensor: ... | |
@overload | |
def randint_like(self: Tensor, high: builtins.int, *, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def randint_like(self: Tensor, low: builtins.int, high: builtins.int, *, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def randn(size: Union[Tuple[builtins.int, ...], List[builtins.int], Size], *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def randn(*size: builtins.int, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def randn(size: Union[Tuple[builtins.int, ...], List[builtins.int], Size], *, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def randn(*size: builtins.int, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def randn_like(self: Tensor) -> Tensor: ... | |
@overload | |
def randn_like(self: Tensor, *, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def randperm(n: builtins.int, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def randperm(n: builtins.int, *, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def range(start: Union[builtins.float, builtins.int], end: Union[builtins.float, builtins.int], *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def range(start: Union[builtins.float, builtins.int], end: Union[builtins.float, builtins.int], step: Union[builtins.float, builtins.int], *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
def reciprocal(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def relu_(self: Tensor) -> Tensor: ... | |
@overload | |
def remainder(self: Tensor, other: Union[builtins.float, builtins.int], *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def remainder(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def renorm(self: Tensor, p: Union[builtins.float, builtins.int], dim: builtins.int, maxnorm: Union[builtins.float, builtins.int], *, out: Optional[Tensor]=None) -> Tensor: ... | |
def reshape(self: Tensor, shape: Union[Tuple[builtins.int, ...], List[builtins.int], Size]) -> Tensor: ... | |
def rfft(self: Tensor, signal_ndim: builtins.int, normalized: bool=False, onesided: bool=True) -> Tensor: ... | |
def rot90(self: Tensor, k: builtins.int=1, dims: Union[Tuple[builtins.int, ...], List[builtins.int], Size]=(0,1)) -> Tensor: ... | |
def round(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def rrelu_(self: Tensor, lower: Union[builtins.float, builtins.int]=0.125, upper: Union[builtins.float, builtins.int]=0.3333333333333333, training: bool=False, generator: Generator=None) -> Tensor: ... | |
def rsqrt(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def save(obj, f, pickle_module=pickle, pickle_protocol=2): ... | |
def selu_(self: Tensor) -> Tensor: ... | |
def set_default_dtype(d): ... | |
def set_default_tensor_type(t): ... | |
def set_flush_denormal(mode: bool) -> bool: ... | |
def set_num_threads(num: builtins.int) -> None: ... | |
def set_printoptions(precision=None, threshold=None, edgeitems=None, linewidth=None, profile=None): ... | |
def set_rng_state(new_state): ... | |
def sigmoid(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def sign(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def sin(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def sinh(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def slogdet(self: Tensor) -> Tuple[Tensor, Tensor]: ... | |
def sort(self: Tensor, dim: builtins.int=-1, descending: bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ... | |
@overload | |
def sparse_coo_tensor(indices: Tensor, values: Tensor) -> Tensor: ... | |
@overload | |
def sparse_coo_tensor(indices: Tensor, values: Tensor, size: Union[Tuple[builtins.int, ...], List[builtins.int], Size]) -> Tensor: ... | |
@overload | |
def sparse_coo_tensor(size: Union[Tuple[builtins.int, ...], List[builtins.int], Size], *, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def sparse_coo_tensor(*size: builtins.int, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def sparse_coo_tensor(indices: Tensor, values: Tensor, *, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def sparse_coo_tensor(indices: Tensor, values: Tensor, size: Union[Tuple[builtins.int, ...], List[builtins.int], Size], *, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
def split(tensor:Tensor, split_size_or_sections:Union[List[builtins.int], builtins.int], dim:builtins.int=0) -> List[Tensor]: ... | |
def sqrt(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def squeeze(self: Tensor) -> Tensor: ... | |
@overload | |
def squeeze(self: Tensor, dim: builtins.int) -> Tensor: ... | |
@overload | |
def sspaddmm(beta: Union[builtins.float, builtins.int], self: Tensor, alpha: Union[builtins.float, builtins.int], mat1: Tensor, mat2: Tensor) -> Tensor: ... | |
@overload | |
def sspaddmm(beta: Union[builtins.float, builtins.int], self: Tensor, mat1: Tensor, mat2: Tensor) -> Tensor: ... | |
def stack(tensors: Union[Tuple[Tensor, ...],List[Tensor]], dim: builtins.int=0, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def std(self: Tensor, unbiased: bool=True, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def std(self: Tensor, dim: builtins.int, unbiased: bool=True, keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def stft(input, n_fft, hop_length=None, win_length=None, window=None, center=True, pad_mode='reflect', normalized=False, onesided=True): ... | |
@overload | |
def sub(self: Tensor, alpha: Union[builtins.float, builtins.int], other: Tensor) -> Tensor: ... | |
@overload | |
def sub(self: Tensor, alpha: Union[builtins.float, builtins.int], other: Tensor, *, out: Tensor) -> Tensor: ... | |
@overload | |
def sum(self: Tensor, *, dtype: _dtype, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def sum(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def sum(self: Tensor, dim: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size], keepdim: bool, *, dtype: _dtype, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def sum(self: Tensor, dim: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size], keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def sum(self: Tensor, dim: Union[builtins.int, Tuple[builtins.int, ...], List[builtins.int], Size], *, dtype: _dtype, out: Optional[Tensor]=None) -> Tensor: ... | |
def svd(self: Tensor, some: bool=True, compute_uv: bool=True, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor, Tensor]: ... | |
def symeig(self: Tensor, eigenvectors: bool=False, upper: bool=True, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ... | |
def t(self: Tensor) -> Tensor: ... | |
def take(self: Tensor, index: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def tan(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def tanh(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def tensor(data: Any, dtype: Optional[_dtype]=None, device: Union[device, str, None]=None, requires_grad: bool=False) -> Tensor: ... | |
@overload | |
def tensor(storage: Storage, storageOffset: builtins.int, size: Union[Tuple[builtins.int, ...], List[builtins.int], Size], stride: Union[Tuple[builtins.int, ...], List[builtins.int], Size]=()) -> Tensor: ... | |
@overload | |
def tensor(size: Union[Tuple[builtins.int, ...], List[builtins.int], Size], stride: Union[Tuple[builtins.int, ...], List[builtins.int], Size]) -> Tensor: ... | |
def tensordot(a:Tensor, b:Tensor, dims=2) -> Tensor: ... | |
def topk(self: Tensor, k: builtins.int, dim: builtins.int=-1, largest: bool=True, sorted: bool=True, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ... | |
def trace(self: Tensor) -> Union[builtins.float, builtins.int]: ... | |
def transpose(self: Tensor, dim0: builtins.int, dim1: builtins.int) -> Tensor: ... | |
def tril(self: Tensor, diagonal: builtins.int=0, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def triu(self: Tensor, diagonal: builtins.int=0, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def trtrs(self: Tensor, A: Tensor, upper: bool=True, transpose: bool=False, unitriangular: bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ... | |
def trunc(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def unbind(self: Tensor, dim: builtins.int=0) -> Union[Tuple[Tensor, ...],List[Tensor]]: ... | |
def unique(input, sorted=False, return_inverse=False, dim=None): ... | |
def unsqueeze(self: Tensor, dim: builtins.int) -> Tensor: ... | |
@overload | |
def var(self: Tensor, unbiased: bool=True, *, out: Optional[Tensor]=None) -> Tensor: ... | |
@overload | |
def var(self: Tensor, dim: builtins.int, unbiased: bool=True, keepdim: bool=False, *, out: Optional[Tensor]=None) -> Tensor: ... | |
def where(condition: Tensor, self: Tensor, other: Tensor) -> Tensor: ... | |
@overload | |
def zeros(size: Union[Tuple[builtins.int, ...], List[builtins.int], Size], *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def zeros(*size: builtins.int, out: Optional[Tensor]=None, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
@overload | |
def zeros_like(self: Tensor) -> Tensor: ... | |
@overload | |
def zeros_like(self: Tensor, *, dtype: _dtype=None, layout: layout=strided, device: Optional[device]=None, requires_grad:bool=False) -> Tensor: ... | |
class DoubleStorage(Storage): ... | |
class FloatStorage(Storage): ... | |
class LongStorage(Storage): ... | |
class IntStorage(Storage): ... | |
class ShortStorage(Storage): ... | |
class CharStorage(Storage): ... | |
class ByteStorage(Storage): ... | |
class DoubleTensor(Tensor): ... | |
class FloatTensor(Tensor): ... | |
class LongTensor(Tensor): ... | |
class IntTensor(Tensor): ... | |
class ShortTensor(Tensor): ... | |
class CharTensor(Tensor): ... | |
class ByteTensor(Tensor): ... | |
complex128: dtype = ... | |
complex32: dtype = ... | |
complex64: dtype = ... | |
double: dtype = ... | |
float: dtype = ... | |
float16: dtype = ... | |
float32: dtype = ... | |
float64: dtype = ... | |
half: dtype = ... | |
int: dtype = ... | |
int16: dtype = ... | |
int32: dtype = ... | |
int64: dtype = ... | |
int8: dtype = ... | |
long: dtype = ... | |
short: dtype = ... | |
uint8: dtype = ... |
Any objection if I add this to https://github.com/python/typeshed as a pull request? I know it's not the final version but something is better than nothing.
The stub seems cause me to now have errors which say can't find find reference to nn in init.pyi now when I reference torch.nn. Is there a way to prevent it from shadowing the normal pytorch files?
Thanks for your good work, but there are also problems with 'torch.optim', 'torch.cuda'
Super guys! Thanks!
@yl-jiang,me too, and problems with torch.nn.
@ZDstandup,I also have the same problem.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I have tried this, but there is still have "Cannot find reference" warning on Pycharm for
torch.__version__
andtorch.cuda
. Did I miss something?